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ABSTRACT' 

Since the publication in 1957 of the work of Andrei 
Kolmogorov 181 in mapping a function of multiple variables 
by means functions of a single variable, many 
mathematicians and engineers try , with different degree of 
success and not without controversy 1191. to find the direct 
application of it to multiple extremes problems, rooting of 
multivariate polynomials, neural networks and pattern 
recognition. This paper revisits the theorem from the optic 
of a generalised architecture for signal processing 1281. It is 
envisaged the high potential of the theorem to handle either 
linear or non-linear processing problems. A specific 
implementation following the main guide-lines of the 
theorem is reported, as well as some preliminary results 
concerning the design, implementation and performance of 
non-linear systems. The applications cover non linear 
transmission channels for communications, instantaneous 
companders and prediction of chaotic series. 

I. INTRODUCTION 

Regardless linear systems have been the main 
component of communications and signal processing 
engineering, with a clean and forinal mathematical 
background, it is interesting lo note the massive presence of 
non-linear systems and devices in modern communicatio~~s 
equipment. Analog mixers and modulators, companders, 
synchronism units, decoders are examples of a vast list from 
which i t  can be said that the role of non-linear systems 
components and devices is. most of the cases, ahsolutely 
crucial in the global systems when compared with the 
corresponding linear part of them. Also. thc inherent non- 
linear hehaviour of many amplifiers and filters. when 
handling high dynamic ranges, put  in  sccne the issue of 
linearisation in the analog domain. Surprisingly. there is 
not a formal manner to modcl a non-linear system neither an 
architecture with support the reportcd schemes with a broad 
ambit of application, heing most of the works reported 
dealing with the pro l~ lcn i  of gaussiion inpu t  
/14//15//16//25/26/127/. 111 fact. i t  can h c  said tha t  
polynomial modclling constitutes the only way to work 
with non-lincar filters. At the s:iinc time. cascading non- 
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linear memory less with convolutive systems, using the two 
possible alternatives, was considered as a serious attempt to 
implement non-linear equalisers for  dispersive 
communication channels in the seventies. 

More recently, two topics emerged in an almost 
separate manner. Neural networks 1'21 contributed, at the 
architecture level, to increase the interest and viability of 
non-linear processing schemes. On the other hand, high 
order processing 13//4/, at the algorithmic level, were in the 
scene as a basic tool to increase the scope of, let us say, 
classical processing system developed from second order 
functions. In any case, th: architecture and the processing 
tools efforts seem to go ahead one apart from the other, 
without an uniform and global approach to the non-linear 
processing framework. 

The purpose of this work was, at the beginning three 
years ago, to find out refreshing mathematics, in the line of 
what has been mentioned in the previous paragraph, 
focussing the linearisation problem of communication 
components. The theoiem reported by Kolmogorov 
concerning the representation of multivariate functions with 
single variable functions 1201 shown the link, in some sense 
especulative, between neural networks, high order 
processing and the EM aigorithm /6 / /5 / .  In fact, a lateral 
inhibition network with high order learning is a clarifyed 
example concerning the implementation of the EM 
algorihtm's principle. The application reported was a DOA 
tracker for moving sources which, in a blind context, 
generates a dedicated beam for every source impinging the 
aperture, for radial velocities below one degree per 
snapshot. No matter the mapping theorem was the basic 
motivation to encompass .he thrce techniques in a source 
separation prohlem 17/.9/11011111112/113/. no specific 
contribution to the architectural design of non-linear 
systems was concluded fiom this work. More interesting 
than the hlind DOA tracker was a system, with the same 
background. designed to solve collision problems in a time 
reference heamforiner for inohile communications. The 
architecture was again a latcral inhibition network, with two 
cxtcnded Kalman filters to acquire and track two 
siinultancous carriers. which act as a call signal dcmanding a 
dedicatcd beam. The lcjrning was high order for the 
ii i  hi b i tio n pen a 1 t y  i n  
acquisition. convergence mte. hcnmforining arid complexity 
with respect the singlc call system /30//31/. This last 
systcrn w a s  an examplc of up to what degree the EM 
;ilgorithni involves a n  archilccture. heing the scope of 
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applications enlarged when the estimation steep is 
considered as an inhibibon one, which reduces the multlple 
extrema problem to a single maximum objective. 

Coming back to the mapping theorem, it was 
considered the importance of the architectural aspect 
involved in the Kolmogorov's theorem. In fact, what is 
going to be reported hereafter is more an architecture than an 
algorithm for signal processing. Ir seems clear that most of 
the possibilities of success in non-linear processors, as well 
as in neural network approach for a problem solver, are 
based in the architecture choice, locating in a secondary 
plane the corresponding algorithm for design andlor 
learning. The architecture will be refereed from now on as the 
kol-filter. Regardless the paper focuss its content in non- 
linear filtering, the impact of the theorem in many different 
problems, with different applications, rises the doubt of up 
to what degree the reported scheme is just a very small part 
of the potential applications and consequences of it. The 
author is highly convinced that the theorem will be still 
alive and that the reported material are really very small and 
specific results, with a high component of speculation and 
lack of formality, that in any case do not preclude further 
contributions from the work of Andrei Kolmogorov. 

2. THE MAPPING THEOREM. 

The mapping theorem due to A. Kohogorov proves 
the existence of a two stage architecture to map and input 
vector in an output vector y. Being an existence theorem, 
there is not reported yet any practical implementation, for 
non-linear processing, following in strict senke its guide- 
lines. In fact, it seems that the issue will remain in the 
current status and that, in future work, the theorem will act as 
fundamental motivation to formalise the solutions of 
application driven problems. It may be that this way is the 
adequate manner to arise at a full profit, at the engineering 
level, of a mathematical work of outstanding interest in 
signal processing. 

No matter in the literature we can find, together with 
the original version, many descriptions as well as 
fundamentals and controversy about the theorein, hereafter 
we will reduce its reading tu the aspects of interest for signal 
processing; further reading in the theorein can be found in 
the following references /8//17//19//18//20/. Given a 
continuous mapping E(.) function of 11 input 8variahles, the 
components of the input vector &, i t  exists an architecture, 
based in single variable functions that implements the 
mapping ~- ->g(&) .  The architecture contains two stages of 
processing. Selecting the case of siuglc output (i.e. the 
output vector reduces to a scalar y ) .  the theorein i n  its 
original formulation had the following representation: 

2n n 

Later on, i t  u 'as rcportcd rhc possibility o f  changing 
functions y by  a singlc f'uiictivn y ( without any change i n  

the definition interval): at the saint time. fuiictions @( . )  o f  
P 

the first stage can be replaced by 2n+l  functions +q 
(q=1.2n+l) plus a chosen parameters X which depend on the 
number of input componznts n. The formulation that is 
going to be used here is another possibility, which reduces 
to a single function the first stage and preserves the 2n+l of 
the second stage. Thus, the first stage of processing is 
formed by (2). 

P 

n 

where the function or transform represented by @(.) does not 
depend on the specific mapping, and the parameters h and 

E also do not depend on the mapping, but they do on the 
number of components of the input vector n. 

q 

q 

The second stage of processing is formed by 2n+l 
(.), which, by direct superposition, form the functions y 

output function y. 
P 

2 n t  1 

Note that the most interesting part of the theorem is 
the, let us say, absolute value or the wide amhit of 
application of the functions forming the f i s t  stage. It seems 
to he like a general trans:orm which is mandatory t3 any 
processor architecture for the mapping problem. An 
approach that keeps some similarity with this transform is 
the use of saturated de* ices (limiters) prior a Volterra 
approximation in model!ing a compander. This scheme 
arises when a given non-linearity is modelled by a 
polynomial approximation. The approximation by itself 
does not include saturation , in consequence, and to avoid 
that the polynomial approximation of the compander may 
produce out of range values at the output, it is necessary to 
saturate the dynamic of the input values applied to the 
Volterra system. 

Fig. I .  A transform before the Volterra approximation of a 
givcn compander helps to avoid high dynamic output ranges 

and protects later stage:. in  communications equipment. 

At the same time. t IS well known the extraordinary 
pcrlorinance of logarithm coinpaodcrs in  many applications 
lor coding and  noise red iction both in speech and high 
ficlclity audio /23//24/ Somehow the mentioned experience 
u l ~ o u t  ccrtain traiihforin\. together with what 1s stated i n  the 
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theorem, for the first stage of processing, arise to the 
conclusion that i t  may exist a data transform which. 
independently of the mapping and connected with the 
extended use of logarithmic and sigmoidal companders, 
reduces the complexity and improves the performance of a 
second stage of processing based only in Volterra systems. 
As we will see later on this paper, this architecture has a 
formal approach and somehow provides additional reasoning 
to the use of the above functions. To be more specific, the 
architecture of the kol-filter will be a first stage formed by 
phase modulators (PM) followed by Volterra filters. 

Before we pass to the next section. note that the 
problem to be considered is the filtering one, where a data 
diversity input, that could he either time ( FIR filters) or 
spatial (array processing), is the input to the processor 
which will map this data diversity in a given output function 
YO). 

y(t)=g(x(t),x(t-T), ..... x(t-Q.T)) (4) 

3.VOLTERRA, FOURIER AND KOL-FILTERS. 

Regardless the main interest of non-linear 
processing use to be reduced to the case of data diversity 
input mapped to a single output (i.e. non-linear system with 
memory), the presentation will start with the case of non 
diversity data input. When adequate, an indication will be 
provided about the extension to the general case. 

Thus, assuming a memory less non-linear function 
g(.). 

Y (t)=s(x(t)) (5  ) 

the polynomial approximation models the ahove system as 
(6), which will he refereed as the Volterra filter or model. 

Q 

q=1,3, . .  
yv(t)= c d(q) .x% (6) 

The corresponding filter for the case of diversity in the input 
reduces to include kernels with all suitable combinations of 
the diversity components, both in number and exponents. 
Continuing with the diversity case. a reduced complexity 
schemes, at the expense of approximation quality of the 
actual mapping, are the so-called Wiener and Hammerstein 
architectures /1//22/. which basically are the cascade of P 
non-linear system without meinory with a linear system or 
viceversa. 

An alternative to the above representation, more in  
line with the architecture involved i n  the mapping theorem, 
is to use a Fourier representation of the inapping. as i t  is 
indicated in (7). 

m 

yf(t)= J G(w) , exp[j.w.x(t)) . dw (7) 
-00 

Furthermore, given the input dynainics. the ahove mapping 
can be reduced to a Fouricr Series which, under a11 
approximation error. cui hc rcducctl ((1 il fiiiitc Fuuricr SCII 'IC~ 

as in (8). 

Before going i r to  details on the mentioned 
approximation, note that the Fourier model keeps a close 
relationship with the theorem, in the sense that a f r s t  stage 
of PM modulation is always required, independently of the 
mapping itself, and a second stage, specific for the given 
mapping function , follows. This second stage can be 
implemented with a Volterra filter. 

[ exp(j.wo.x(t)) 
WO 

Fig 2. Fourier model of the. mapping function showing some 
similarity with the two stage processor of the mapping 

iheorem. 

Some other guide-lines of the theorem are pending 
like the necessary 2Q+1 functions of the first stage and the 
parameters h and E. 

In the case that the mapping has an odd symmetry the 
above model can be represented as a power series of non- 
complex PM modulators. At the same time, to do not exclude 
the case of non-cero output for Zero input, the dc term has to 
be added to the model as j: is denoted in (9). where the sine 
model has been reformulated in tenns of the hannonics of the 
PM carrier frequency. 1 

Q I  
yf(t)=h(O)+ b(q).sinq(w,.x(t)) (9.a) 

q= 1 
Q 

q= 1 
yf(t)=c(O)+ C c(q).sin(q.wo.x(t)) (9.b) 

With respect the dc term in the above formulas, note that, for 
the case of (9.a), i t  will .le necessary, even there is a zero 
input to zero output ccuversion in the mapping, since 
ititcinal modulation produt LS may produce a dc term that has 
to be adjusted or ccimpensated to reproduce the 
corresponding mapping fu,iction. At this moment, i t  can he 
said that for the case of Q-components input i t  is necessary 
to have II I'M modulators plus the dc tenn. In other words. i t  
relnains Q additional functions to match the above processor 
with the theorem. 

Before going ahead. it  is worthwhile to compare the 
approximations associatcc, to the single Volterra model and 
the Fourier model. Both! approximations are i n  principle 
equivalent since.  assui->inp n o  over m o d u l a t i o n  ( i .e .  

Q . w ~ , . x ( I ) < ~ c K ) ,  the exponential term in  (7) can be 
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approximated by a Taylor's series producing 
very generic form, relates the two approaches 

10) which, in a 

90 

Nevertheless, the above derivation reduces to a formal 
relationship since the convergence of the two 
approximations, with increasing order, to the actual 
mapping could be quite different ( an extreme case is for 
sinusoidal-like mappings which are very common in 
practice). More important that the previous argument, in an 
adaptive design of the approximation weights. the bounded 
dynamic range of the Fourier kernels acts very much in 
favour of it, with respect the Volterra modelling, improving 
dramatically the convergence rate for similar adaptive 
algorithm or learning rule. Also, it should be noticed that 
the cross-correlation of the kernels involved in each 
approximation, easy to compute for the case of gaussian 
distributed input data, is lower in the Fourier model than in 
the Volterra case; this improves convergence rate and 
provides an effective order reduction for similar levels of 
performance. 

With respect to the design of the CO-efficients, it can 
be carried out by direct frequency sampling of the Fourier 
transform of the mapping G(w), when the desired mapping is 
a priori known, or by a LMS like algorithm for the 
sinusoidal kernels, using standard MSE objectives. 

The extension of the model to the case of data 
diversity input is done by setting a PM modulator for every 
diversity component followed by a specific Volterra system 
for every branch. This generates n+l functions z (t); the 

addition of these functions provides the output of the filter. 
P 

z (t)= sin (w . x(t-pT)), p=l,n (11) 
P P 

f0 

n 
(12.b) 

y(t)= c fp(t) (13) 
p=o 

This structure makes evident the coinbination of PM 
modulators, with different frequency for every diversity 
component, and the specific Voltcrra systems. 

Let us to revisit. a t  this 1noinent. the approximation 
involved in passing from the continuous Fourier model to 
the Fourier series in (8). Note that the formulation we arise 
in (11)-(13) sets up the roll of the I'M modulators. followed 
by memory less Voltena systems. as the way out to 
implement the sampling of the continuous Fourier Model. In 
other words, (1 1) with (12) represent the multidiniensiona1 
sampling of the corresponding Fourier representation of the 
model. This sampling is uniform and concentrated in the 
axes of the multidiniensional function G(wl ,.... wp ..... w ), 

but not i n  the planc. which should h e  more adequate in 
general. In this sampling prolilem are iinl~cded two 
arguments claimed in thc inappinp thcurcm as wc will sec i n  
the next paragraphs. 

Q 

About the sampling involved in the Fourier series 
representation of the contiiiuous model, and focussing again 
the case of nondiversity input, the corresponding model can 
be re-formulated as( 14). 

zl(t)= sin (wl .  x(t)) (14.a) 

0 

f0 
1 

(14.c) 

(14.d) 

where it is evident the uniform sampling performed by the 
Volterra system at the harmonics of the modulation 
frequency. 

Related with the problem of sampling, it is 
interesting to remind the important consequences of random 
sampling for discrete processing in order t e  emulate 
continuous systems. It is :>ossible by suitable randomising 
schemes to design, and to implement, discrete systems with 
reduced, in practice negligible, aliasing effect (see 1211 for a 
detailed study on randomised signal processing). The basic 
idea is to achieve an almost uniform distribution of 
sampling intervals because the expected value of the discrete 
processing converges to the actual or continuous value 
without aliasing effects.In consequence, a better approach 
would be to randomise the mentioned sampling in order to 
obtain an approximation y kol(t), such that the expected 

value of it coincides with the actual function y(t). Just to 
describe briefly the effect.: claimed under the randomised 
assumption, and taking .us as the random samples of the 
continuous G(w), the expected value of the model output will 
he: 

where, i t  is clear that, whenever the distributions of the 
sampling frequencies ove.lap in a constant or uniform pdf, 
the expected value will coincide with the actual one. 

One way out to produce an almost random sampling. 
or scanning. of the frequency axis is to modify the Volterra 
system that follows the PM modulator; nevertheless. this 
will increase the iinpleinentation complexity and somehow 
will deviate thc architecture from the theorcm. in the sense 
that the random samplinp, effect takes part inside the first 
stage of processing, i.e. i t  should he independent of the 
mapping itself. The inann-r selected to produce this random 
sampling effect is to a:.d another I'M modulator with 
modulation frequency slightly deviated from the initial one. 
This implies the presence of another I'M modulator with 
modulation frequency equal to w + E Note that this 
;itlditional modulator inay introduce the  random effect 
whcncver the harmonics of the second frequency do not 
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coincide with the original one. In fact, taking an MSE 
technique to find out the co-efficients. c(q) in (14), the 
selection of the perturbation influences the condition 
number of the corresponding kernel matrix. Note also that in 
the case of diversity data input. the selection of the 
perturbations E (p=l,Q) depends on the number of input 

diversity components Q and not in the specific mapping, as 
it was anticipated in the existence theorem. At the same 
time, the perturbed modulators, together with the dc term, 
seems to be the necessary 2Q+1 functions claimed in the 
theorem. 

P 

"""""",,------------, _ - .  
I 
I r I '  1 I '  

I 
C , r ' - - - - - - - - - - -  - I !  - - - - - - - - - - - -  I 

Figure 3. The architecture of the Kol-filter. The three steeps 
are imbeded in dashed syuares, these squares indicate the 

diversity stage, the transforms or phase modulators with the 
nominal and perturbed frequency plus the linear combiner. 

and the specific Volterra systems. 

Still there is a prohlein associated with sampling 
only along the freyuency axis and not i n  the 
multidimensional frequency plane. In other words, with the 
current scheme. every diversity component is scanned, 
almost at random, in its coi~esponding frcqucncy axis of the 
function G(wl ..... w .... w,,). It is clear that combining [he 
modulated versions prior to the Volterra processing will 
produce a frequency scan in  the ~nultidimc~~sional frequency 
plane. leaving to the Vollcrra order the C O I I V C ~ ~ C I I C ~  lo the 
actual system to model. The solution was [ (I  inclutlc a linear 
combiner of the ~nodula~ctl diverbily compoilents. prior to 

P' 

the Volterra systems of the second stage, which was 
formulated as (16). 

1 oo., 0 
110..0 

c=111..0 
111. . :  

This combiner, which is also independent of the 
specific mapping. seems to play the role assigned to 
parameters h included in the theorem ( see (2) ) .  It is clear that 
the choice for the linear combiner reduces to a very specific 
scanning mode of the multidimensional frequency plane. In 
the case that some a priori knowledge of the mapping 
Fourier transform is available, both, the selection of 
modulation frequencies, pcrturbations and combiner, could 
be oriented to ensure aJequate sampling of every local 
extremes of the mentioned Fourier representation of the 
mapping. 

The architecture that summarises all the points 
included in this section, refereed herein as the kol-filter, is 
depicted in figure 3. 

It is worthwhile to remind that this structure includes 
a dedicated processing foi every diversity branch, being a 
steep ahead from the coarse approximation which is 
associated with the existing alternatives, refereed as Wiener 
and Hammerstein structures. Finally, note that the Volterra 
kernels can be designed with and MSE criteria, when a 
training output is available or by direct sampling of the 
multidimensional Fourier function associated with the 
system. The adaptive versions can be applied also to the 
mentioned co-efficients, having the benefit of the bounded 
dynamic range of the corresponding kernels. 

4. SOME APPLICATIONS OF INTEREST 

The kol-filter was k e d  to equalise a communication 
system with non-linear hc:!iaviour in the transmitter (above 
6% distortion to the secoi:d and third harmonic), dispersive 
communication channel, ai;d non-linear receiver effects (2% 
distortion to the second harmonic). The second stage 
weights were estimated by using a MSE objective. The 
performance of the kol-filter was highly above the 
corresponding Volterra or Hammerstein alternatives. The 
residual, with respect the undistorted transmitted signal was 
2% of the reference power. 16 and 42% for the kol-filter. 
Volterra and Hammerstei 1 respectively. A very important 
result was that even when :io distortion was set in the overall 
coinmunication link (i.e. the system to he equalised was 
linear) the kol-filter shown the same performance that the 
optimum linear Wiener filt,?r. 

Other aspect of interest is the ability of the herein 
reported filter to predict, with no appreciable error. chaotic 
signal series. The so-citlled Tent-map was used to evaluate 
thc prediction capabilities of the non-linear kol-filter with 
excellent results. 

The design. block or adaptive. of instantaneous 
cornpanders was done i n  :.xnparison with classical Volterra 
models. A g a i n  the yua!ity of the mapping. i n  block 
processing mode. and also the convergence rate i n  adaptive 
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mode were dramatically good when compared with the 
classical alternative. Similar results were obtained for 
linearising power amplifiers. reducing the scheme to an  
array of medium power amp!ifiers with no relevant distortion 
in the global response. 

Finally, the kol-filter ideas has been used in order to 
obtain high rate 1-bit A D  and D/A converters. Being this 
work at a very preliminary stage, the result are very 
promising to encourage further work in the topic as a valid 
alternative to the CD converters used currently. 

5.  CONCLUSIONS 

The purpose of this work was to shown the potential 
associated to an important and, at the same time, more 
surprising theorem concerning non-linear mapping or 
filtering. Motivated and written by an engineer, the style of 
the paper has been speculative and positive, versus the 
relevance of the theorem and the extraordinary contribution 
of Andrei Kolmogorov. Probably, almost certain, that this 
work can be improved even in fundamental aspects of it. The 
search for the unknown transform of the first stage. even the 
special character of it, seems to be the main issue to come 
out with any efficient implementation of the theorem. In any 
case, and in favour of the importance of further work on the 
theorem, it is important to remark the excellent results 
obtained, for the applications listed in section four, with an 
architecture that just, again in a very speculative manner, 
was trying to follow the guide-lines of the theorem. 
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