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ABSTRACT’ 

A multitone tracker is described using two basic 
principles in optimum frequency estimation, namely: 
Processing bandwidth depending on the distance from the 
estimate to the actual frequency values; and, parallel 
estimates with inhibitory paths to ensure orthogonality 
between the enhanced tones. The first feature is provided by 
Extended Kalman Filters (EKF), and the second one is 
achieved by high order rule for the learning of the inhibitory 
cells. It is shown that the independence between signals is 
linked to the high order function of the learning process. 
The resulting multitone tracker seems to be a potential 
alternative to adaptive high resolution methods or time- 
frequency tools. 

I. INTRODUCTION 

This paper deals with the problem of simultaneous 
acquisition and tracking of complex sinusoids either in 
white and colored noise. Regardless the motivations of this 
problem can be found almost in any signal processing 
application, the objective of the authors was to solve the 
problem of collisions produced when two simultaneous users 
ask for a dedicated beam in an adaptive array beamforming 
with temporal reference. Being more specific, the access to 
the satellite link is provided to any user which issues a pure 
(bandwidth less than 5% of the global frequency slotj 
sinusoid in a pre-assigned frequency band. The received 
frequency is regenerated by an EKF at the array output. This 
regenerated signal, being compared with the array output, in 
the same frequency band, produces the residual signal which 
enables the adaptive algorithm to steer the desired source yet 
preserving adequate nulling to interferences (see /1/ for more 
details in Time Reference Beamforming (TRB)). 

The problem of collision, as mentioned above, 
appears when two users send two different unmodulated 
references at the same time. In order to increase the 
throughput of the communication link, i t  is necessary to 
form two beams, time or frequency multiplexed for the 
corresponding DOAs of the two users. To do this we require 
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that, when the users send the two pure tones, two EKFs 
acquire and track independently the two references. 

Adaptive algorithm 

Figure1 . EKF in the regeneration of unmodulated references 
in TRB systems. 

In summary, the problem to be faced is a multitone 
tracking in white or colored noise as it corresponds to the 
described application. Naming x(t) the signal, which 
contains the two pure tones at the array output, its 
formulation will be (1). 

Being el(t) and e2(t) the envelope of each tone. These 
magnitudes, as indicated, may fluctuate in time +/-3 dB 
during tracking. In consequence all the signal to noise ratios 
provided will be given from their average. 

SNRi=ave(ei2(t))/s2 ; s2=1; ref level (2) 
The instantaneous phase obeys to a given nominal 

frequency assigned to the user fi (i=1,2). At the base-band 

level, this frequency will be in the range of 1 up to 3KHz, for 
a sampling rate of 8 KHz. The main difficulties come from 
the existing doppler that will be in the range of +/- 1.5 KHz, 
with a doppler rate of 4KHz per second. The scheme depicted 
in figure 2, shows the frequency range where the operating 
frequencies may vary. 
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Figure 2.- Frequency range and bounds 

It is worthwhile to note that it is just the doppler rate 
the effect which increases the inherent difficulty of the 
problem. In summary, two instantaneous frequencies 
together with their slow time varying magnitudes have to be 
acquired and tracked. 

2. SPECTRAL METHODS AND EXTENDED 
KALMAN FILTERING. 

There are many alternatives which may be used in 
trying to solve the problem of multitone tracking. 

The first approach may come from time-varying or 
adaptive versions of high resolution frequency detectors. 
Most of the cases these procedures are based in SVD analysis 
of data matrix and the algorithms to update such 
decompositions, recently reported, should be used 121. In 
reference j3/, and for the case of DOA estimation with a filled 
linear array, some examples of crossing trajectories (i.e. 
crossing frequencies evolution in this paper). Regardless 
that the computational load and the sequential character of 
these algorithms is very high, the resulting performance 
does not achieves the same levels of quality that we are 
going to observe hereafter. Furthermore, the degree of 
parallelism of the scheme to be proposed hereafter is high 
and it supports analog and optical implementation. 

The second approach is the use of time-frequency 
methods which have been shown excellent performance in 
revealing the structure of frequency modulated signals. Still, 
we do believe that the optimum procedure cannot be achieved 
by these techniques for the multitone tracking, because they 
work, somehow, under a broadband basis. To be more 
precise, an optimum frequency processor should be in such a 
way that, by the time new data arrives, it concentrates more 
and more its performance in a narrowband around the actual 
frequency position. In other words, the processing 
bandwidth must be dependent on the vicinity of the 
estimated frequency versus the actual frequency. This is the 
main guide-line to anticipate the degree of quality that can be 
achieved from a given frequency estimate. Of course, the 
asymptotic bandwidth, theoretically cero, has to be set 
above some threshold depending on the desired persecution 
error in time varying scenarios. 

From the above paragraphs it is clear that only PLLs 
or FLLs follows the basic guide-lines in order to achieve 
optimum performance. This justifies why they last almost 
during fifty years without competition in single tone 
acquisition and tracking in communications receivers. In 
other words, whenever a pure tone can be isolated in a given 
frequency band, no other system may compete with a PLL. In 

this sense, The Extended Kalman Filter (EKF) has been 
proved to be a steep ahead to classical PLL, being the main 
contribution of digital technology in this field. We will 
review hereafter the basic equations for an EKF. 

In an EKF a signal model is required. For a single 
tone in noise the two equations of this model are: 

hT= (e(n) , f (n) . f (n)) ;~+lT=F.~T+~(n)  
x(n)= e(n).exp(if(n))+w(n) (3a-3b) 

The so-called state vector contains the actual envelope, 
instantaneous phase and instantaneous frequency; F is the 
transition matrix; and v(n)  is a random vector with 
independent components representing the uncertainty in the 
time evolution of the state parameters. 

F= 0 1 2 ~  E&(n).vH(n))=Q (diagonal) (3.c) (::: 1 
The corresponding EKF equations are: 

a(n+l)=F. a(n)+ Kn . (4 .4  
z(n)= e(n).exp(iQ(n)) or 

~Tn=(e(n).cos(Q(n)),-e(n)sin(Q(n)) (4.b) 

where K n  is the so-called gain matrix, a(n) the state 

estimate, vector .~r, is the signal error between the measured 

signal x(n) and z(n) in vector form with the in-phase and 
quadrature components. The crucial point in getting the EKF 
equations is to set the waveform error in a linear 

dependence of the state error (i.e. the difference between 
the actual state A,, and the EKF estimate a(n). This can be 

done assuming that the tracking error in the state vector is 
small enough to approximate the waveform error by (5). 

+,= H,. + w(n) (5 1 

being 

cos Q(n)-sin Q(n)O 
H=( -sin Q(n)-cos Q(n)O 

The design equations follow straight forward from the 
necessary orthogonality between the state error estimate 

and the waveform error h. The resulting gain matrix 
is: 

Kn=F. Sn.E-' (7. a) 
E=E(%.% H ) = H ~ .  s,.H,~+I 

(7.b) 

where it has been assumed the uncorrelated character of the 
noise vector w(n), with power normalised to one. The state 
covariance Sn is updated from the difference between the 

state model error (3.a) and the EKF update (4.a). 
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It is important to note, concerning the involved 
complexity, that all the above matrix are of a maximum 
dimension of 3x3. Also, we recall that the above scheme is 
nearly optimum to track a single tone in colored gaussian 
noise. 

3.MULTITONE TRACKING AND HIGH ORDER 
LEARNING 

In this section we deal with the extension of the 
previous system to the case where multiple tones (two) are 
present in the measured signal. 

A classical approach is to extend the state vector 
with the addition of three new variables which correspond to 
the parameters of the second tone. The performance of this 
procedure for a different case of pseudoperiodic signal 
tracking may be viewed in /4/. No matter the performance in 
a more difficult and general case is going to be better with 
the procedure to be reported hereafter, note that the 
mentioned approach extends the dimensions up to 6x6 in the 
corresponding algorithm, avoiding the natural parallelism 
of the problem. This point becomes crucial when dealing 
with other technologies. 

The alternative we propose is to use two EKFs in 
parallel with two inhibitory cells. These inhibitory cells 
consist in an adder with a weight (synapsis) subject to some 
learning rule. The scheme is depicted in figure 3. 

Figure 3. Multitone tracker with two inhibitory cells and two 
EKFs. 

This scheme avoids many inherent difficulties and it 
has been used with fixed weights in frequency acquisition 
with no doppler and fixed magnitude by some authors /5/ 
with success under the mentioned conditions. Also it is 
worth to mention the use of coupled PLLs in spectral 
estimation and array processing, following the above 
scheme / 6 / .  In any case, the presence of hard doppler rates, 
and slowly fluctuating envelopes in severe noise conditions, 
hardly degrades the reported performance of the mentioned 
procedures. 

Here, we propose to use an adaptive learning rule to 
ensure that the pure tones, generated at the EKFs outputs, 

remain orthogonal in very short time periods. In other 
words, the learning rule for the weights cl(n) and c2(n) 

should be in such a way that it tends to minimise the 
magnitude of the scalar products between the two outputs in a 
given interval of time T. 

( 9 )  

The learning rule is obtained from the derivative of this 
objective with respect the corresponding weight (let us 
concentrate in c1). This derivative is: 

At this moment, note that yl( t )  is a non-linear 
function of g(t) (equal to x(t)-c, .y2(t)) being, in 
consequence, rather difficult to get some closed form for this 
derivative. An approximation could be done from the 
following expression: 

by assuming the first derivative almost constant and 
neglecting its contribution to the global gradient learning 
rule. After this, the corresponding learning rule can be set as 
indicated in (12). 

It is very important to note two basic points in 
deriving the above learning rule: First note the mentioned 
assumption concerning the derivative of the non-linearity; 
second, the instantaneous value of the gradient has been 
taken. Also we would like to give emphasis in two important 
issues concerning this learning rule. First, any scheme with 
two identical adaptive systems, regardless the inhibitory 
cells, will require unsymmetrical learning in order to 
separate the two signals. In other words, with symmetrical 
learning, the two EKFs will track the same signal. 
Furthermore, even with different learning parameter m 
controlling a symmetric (i.e. order two moment y1.y2 ), the 

scheme will have not the same power, in achieving the 
objective, when compared with the unsymmetrical m and the 
four order moment involved in the herein proposed learning 
rule. Second, and in the same sense, the order four of our 
objective precludes the use of lower order moments in the 
corresponding learning. This sentence supports the success 
of the above rule in problems like source separation and 
blind equalizers /7/,/8/. 

In order to asses the above claims, the following figure 
shows the performance of the order two rule and the proposed 
order four rule. The signal contains two tones at 0 dB of 
signal to noise ratio. The signal bandwidth was 8KHz and 

* 
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the doppler rate was sinusoidal with maximum at +/- lKHz 
and rate, on average, of 4KHz per second. 
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Figure 4. Performance of the order two learning when 
compared with the proposed order four learning. 

When comparing the plot on top of figure 4 (order 2 
learning with unsymmetrical p : 1.2 for inhibitory cell of 
c1 and 0.8 for inhibitory cell of c2) with the bottom 
graphic, which corresponds to the high order learning rule, 
it is evident the superiority of this rule in separating the two 
tones at the EKFs outputs. In ordinates we have normalised 
frequency versus number of samples divided by 1000 (10000 
samples has been used in this experiment), The signal to 
noise ratio was -5 dB. for the high frequency and 0 dB for the 
low frequency. The diagonal values of the diagonal matrix Q 
in the EKFs algorithms were set to 1.e-3,1.e-5 and 1.e-5 
respectively. The tables below the graphics show the 
accuracy in magnitude and frequency estimates at the last 
iteration. 

Finally, the case of 1000 samples data record has 
been used in figure 5. The SNRs were the same, and the 
diagonal values of Q have been modifyed to 1.e-2.l.e-3 and 
1.e-3 respectively in order to cope with the severe doppler 
and doppler rate involved in this experiment. 

a ..et+*. 1 

Figure 5. The same experiment that in figure 4 for lo00 
samples data record using the high order learning multitone 

tracker 

4. CONCLUSIONS 

The multitone tracker described in this paper uses two 
basic guide-lines in its design namely: High degree of 
parallelism and high order learning in the inhibitory cells. 
The principle of perfect frequency estimation, concerning 
the processing bandwidth of an optimum system, has been 
preserved because the closeness of the EKF to every tone is 
granted whenever they are uncoupled. The reported estimate 
seems to exhibit better performance than currently reported 
methods using either adaptive minimum norm or time- 
frequency methods. 
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