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ABSTRACT 

The least squama estimation problem with nonmini- 
mum norm conrtraiots on the unknown model paramden 
is coonidmed. Contrary to the quadratic conmtraint leaet 
sq- solutions the approach presented d w  not - 
d y  satis@ the constraint, but rather relies on the nul- 
lity of the data matrix to maintain the unconstrained k t  
squares error d u e  while trading off the minimum norm 
solution by another with the shorted distance from the 
null space of the constraint. The SVD of the data matrix 
is used to obtain the neeeaary informsion about the min- 
imum norm solution M well M the ba& of the null space. 
C l o d  form expressions are derived for the case in which 
the Constraint of interest is the smoothna of the model 
parametera. Exampks of sinumida in white noise are given 
tor illustdion. 

I. INTRODUCTION 

In the leant-squares eatimation (LSE) probkm, the 
nonzero nullity property of the data matrix m4y arise mostly 
due to the nature of the data, M in the cane of noik free 
sinumida [l]. ThL property, however alro Mllaat. ituelf 
in the noby environment M a conneqnence of proassing 
the data prior to estimation to increak the d g d - b n o i r  
ratio [2]. In the latter cue, the data is prqjscted into the 
signal subspace and d t s  in a r e d u d  rank exprwsion 
of the nonsingular data matrix. When constraints other 
than minimum norm exist on the optimum weight vector 
the null space of the data matrix can be netuched in an 
attempt to satisfy the constraints without inereasing the 
minimum norm solution error d u e .  

In this papex the above LSE problem is considered in 
the context of a multiple linear regremion model imple- 
mented by a transvensl filter whose tap weights are the 
unknown model panunetem. In this context, cures are wn- 
dared for which the model parsmeter estimate is derived 
from a finite block of data samples whase corresponding 
data matrix pomewea the nonseso nullity property. An 
optimal solution to this problem is, therefore, any model 
parruneter vector that  yield^ the minimum poasible d u e  
of the num of error squares performance criterion. This 
dut ion  rhanckrires a puuneter subqace whom dimen- 
sion is equal to that of the data matrix nullity. 

For the well-known minimum norm constraint, the re- 
sult is a unique solution determined by the pseudo inverae 
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of the data matrix and cornspond. to selecting a partic- 
ular member of the subupace of the mi& vecton which 
int-t only the origin of the nullspsa. The invariant 
performance i m p d  by the upan of the null space is used 
M a reference in d n g  for and electing an optimal LSE 
solution from a set of competitive suboptimal festurea. 

Searching the nullspace is performed by 6mt deiining 
the LSE null upace b d  via singular d u e  decomposition 
(SVD) of the data matrix IS]. Them h are then uasd 
to determine the additional null space weight components 
which when added to the minimum norm solution r e d t  in 
a total weight vector which ham the shortcat diatance from 
the null Bpaee of the nonlinear constraints. 

The paper p-ts an insightful approach to solve the 
above type LSE of p r o b h .  Detailad andysia is given to 
the CULC where smoothnem is ch- M the nonlinear con- 
straint of interest. Smwthnas [4] is a measure of how 
ckme the filter weights are to a conatant umbo d u e .  It is 
viewed M driving the filter to& a rectangular impuLe 
response or equivalently a ninc function in the frequency 
domain. In the z domain, thesmoothnem condmint trans- 
late into equally spaced ceros of unit d u e  excluding that 
of zero phase. 

Two exampka of one step forward linear pdiction 
are presented in which smoothnas constraintm are consid- 
ered M the quadratic constraints on the predictor weights. 
The data in both examples coneiets of t m  sinueoida with 
widely spread freqnmcien in additive gamh white noise. 
The first example represents the noiselem case where the 
no& power level is net to wro. In this case, with A4 2 4, 
the nonzero nullity of the data matrix is a natnral prop 
erty of the lesstsquaren problem formulation. The nullity 
in the noisy cane, on the other hand, is established through 
the rank reduction proceza which invokea setting the noik 
eigenduen to zero [a]. Both examples shm that by mov- 
ing in the null space of the data matrix, or its reduced rank 
form, a -ther tllter imp& rapome c m  be obtained 
at no expeme of the lesstsquarar error. 

11. NULL SPACE LEAST SQUAREX 

The knot squares estimation problem is codexed  in 
the context of a linear predictor. The me skp predictor 
output 4(i) may be upremed M the convolntion sum 
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d(i) = wru(i - L + 1) (1) 
krl 

where M the mer length, Wk ere the 6lter mta and 
the U(.) are the tap inpnta Employing the covariance 
method for windowing the input data u(i), i = 1,. . . , N; 

The supemript denotes trannponition, w is the M x l  
tap weight vector, n(i) in the M x l  input vector, r in the 
M x 1 residual vector, and A is the (M - N + 1) x N  data 
matrix. 

The leant squares solution of the filter weights, w h i  
minimires Jc Over the data window, natimiiea the n o d  
equation 

ATA+ = ATb (9) 

If ronk(A) = M ,  AAT is nonsingular and the tap weight 
vector in uniquely determined as w = (AAT)-'ATb. On 
the other hand, for rank(A) = r < M the nullity of A 
is nonzero and the least squares solution ,i, is no longer 
unique. In this cane, the pneudo inveree of the data matrix, 
denoted At, characterizes the minimum norm solution that 
in given by 

ir = A'b 

= XC-'YT (10) 

The orthogonal tramdormation matricrs Y and X of 
the singular d u e  decompcmition (SVD) of A characterise 
the nuU space, N(A), and the range qace, R(A), of the 
data matrix, respectively. The first r diagond entrim of E 
satisfy u1 2 0 3  z , . .  . ,OM 2 0 whik therest ofthe matrix 
elemat6 have ~ e r o  dues .  The 1Mt (M - r) + 1 coiumns 
of the matrix X form an orthonormal b i e  for N ( A )  and 
wil l  be used in the next d i o n  to move away from the 
minimum norm solution t-d satisfying the nonlinear 
constraint. 

111. SMOOTHNESS CONSTRAINT CASE 

The approach to  nnll rp.ec last oqnaaen m .pplied to 
the c- where a nonlinear smoothnm conatdnt m im- 
p o d  on the weight vector. The smoothnas condraint 
provides a simple example which illuntratea the fundamen- 
tal mechanism of null space leant squares. The goal here 
in to constrain the weight vector to the minimum possible 
smoothness measure which still results in the minimum 
least quares error. For a given weight vector w, a mea- 
sure of its smoothnese m expreased M 

i= l  

= wTQw (11) 

where iii is the average d u e  of the weights and Q m an 
Mx M symmetric matrix with entries 

The behavior of the smoothnew messure for M = 2 ie ill- 
tmted in Fiyre 1. The null space of Q in one d-iond 
and spanned by the M x 1 unit vector 

I =  - ["I 
7b 

A maximally flat impulse response corresponds to zero 
variance in the weight vector which implies perfect smooth- 
ness and thus 

n = d  fo rmmecER (14) 

The set of column vecton, & + I , . .  . , x y  of X form 
an orthonormal basiis for N(A).  Moving a might vector 
through N ( A )  d a s  not change its LSE error, i.e. Jr(w) = 
Jt(w + An), VAw E N(A). Thus the I d  squaras 
problem in termn of the basen for N(A) and N ( Q )  is given 
the minimum norm I d  squares weight vector i, find the 
Bcslsrs c, a,+1,, . . ,ay which minimirse 

M 

*TOT = C ai- (15) 
;=,+I 

It can be shown that the d a m  in (15) which maxi- 
mise smoothness without increaning the h t  squares error 
are 
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Two hula t ion  examplea are given in Section IV which 
we (16-17) to improve Bmoothnum in the came of sinmido 
with additive white nobe. 

IV. SIMULATIONS 

Twenty data ~ ~ ~ ~ p l e s  z(n) n = 1,. . . ,20 are gener- 
ated with 

z(n) = eor(w1n) + eor(w*n) + atu(n) (18) 

where'w(n) ia a white nobe quenee whome power level 
is chosen to provide infinite SNR in the noiseless caae 
and 2OdB SNR in the noisy c a .  In both CMW, w1 = 
rJ3, 
Ndme h e  care. In this csle, the null space of A, N(A), 
k of dimension 7. The minimum norm solution is w = 

y = */6 radJrcc and the filter length M = 11. 

[O.S416, 0.0000, -0.2600, -0.6000, -0.0916, 0.0000, -0.0915, 
-0.2600, -0.2600, 0.0000, 0.S416]T, which ykkb smooth- 
ness wTQ+ = 0.4773 and sero prediction. The ~em of the 
z domain weight vector polynomial include id"/', 
which correapond to the two sinusoidal frequencies. Incor- 
porating * with the IMt seven c o l u m ~  of the matrix X in 
equation (16) reaulb in 6 = -3.3166. Rom (16) and (17), 

= [-I,. . . , -11' = -fT. Accordingly w T Q i  = 0, 
i.e. maximum muoothnem (5at response) ia obtained while 
maintaining Jr = 0. An shown in Figure 2, the new set 
of senm still include &*la, idr/", i.e., the polynomial 
roob which correspond to the input signal did not exhibit 
any diaphcement aa a nsult of operating in N(A). This 
property is Batisged for any ret of values ofwl  and y. Fw- 
ure 3 ahom the weight vector before and afte.r smoothing. 

Noisy case. In this came, the SVD of A in first performed 
and followed by wtting the lsst 7 values of the diagonal el- 
ements of C to zero. With the new C the reduced rank 
form of A is obtained using the w e  orthogonal matricea 
X and Y. The rank reduction of A providee and an im- 
provement of smoothnum over the full rank original data 
matrix and reduces wTQ+ from 3.3911 to 0.4964. The 
rank reduction h o m e r  causeu an incrarw in the LSE error 
from approximately zero to 0.2633. After reducing r from 
11 to 4 the problem becornea similar to the noiselear c a .  
The corrwponding value of E is found to be -3.8086 and 
the total weight vector obtained from equation (16) has 
kept Jc = .2533 while fnrths reducing the smoothnean to 
0.0246. Figure 4 shown a plot of the three different values 
of the optimum weight vector results from the above p m  
cum. While the weight vector, baaed on the original data 
matrix is highly unamooth, the nonminimum norm weight 
vector of the reduced rank data matrix ir h w t  5at. This 
smoothnwn improvement L .Lo shown in Figure 6 which 
illustrates the immigration of the z domain loots of the 
weight vector polynomial torstds the unit circle. 

fdrls 

V. CONCLUSIONS 

The paper presented an insightful approach to the 
leant quama artimation problem in which 1) the data n m  
trix h.s nonsero nullity, 2) it ia deuired to minimire a non- 
Linear quadratic function in the eutimator weight vector. 

Contrary to the solution of the constraint lesst squares 
problem [6,7] which ~ a t i s g ~  the constraint by trading off 
the unconstrained least squara error value, the might vec- 
tor in the underlying problem is e t  to be M close M pob 

sible to the COMtIaint null space without an increak in 
the estimation error. The key to thia appronch is to define 
the baais of the null spw via the SVD of the data matrix 
which ab0 provides the minimum norm solution. There 
bases are then uued to drive the weight vector away from 
its minimum norm value to an optimum solution which 
maintains the LSE error and haa the ohortest distance from 
the null space of the constraint. A theoretical frame work 
in developed with closed form expruwion for the came where 
smoothness represents the quadratic function. Veri5cation 
is given using examples of sinusoid in white noise. 
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Fig. 1 Illustration of the invariance of the smoothnese mea- 
sure, J,(w), with r q e c t  to its null npace I. 

2192 



I 

F i g .  5 Zero diagram of the LSE weight vector 
in the noisy data example, ( x )  for w, (e) for 
w r m ,  ( w )  for w of the reduced rank data matrix. 

Fig. 2 Zero diagram of the LSE weight vector 
in the noise free example, ( x )  for w, (a) for 
WTOT. 
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