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ABSTRACT

The least squares estimation problem with nonmini-
mum norm constraints on the unknown model parameters
is considered. Contrary to the quadratic constraint least
squares solutions the approach presented does not neces-
sarily satisfy the constraint, but rather relies on the nul-
lity of the data matrix to maintain the unconstrained least
squares error value while trading off the minimum norm
solution by another with the shortest distance from the
null space of the constraint. The SVD of the data matrix
is used to obtain the necessary information about the min-
imum norm soluticn as well as the basis of the null apace.
Closed form expressions are derived for the case in which
the constraint of interest is the smooth of the model
parameters. Examples of sinusoids in white noise are given
for illustration.

1. INTRODUCTION
In the least es estimation (LSE) problem, the

nonsero nullity property of the data matrix may arise mostly
due to the nature of the data, as in the case of noise free
sinusoids [1]. This property, however also manifests itself
in the noisy environment as a consequence of processing
the data prior to estimation to increase the signal-to-noise
ratio [2]. In the Iatter case, the data is prajected into the
signal subspace and results in a reduced rank expression
of the nonsingular dats matrix. When constraints other
than minimum norm exist on the optimum weight vector
the null space of the data matrix can be searched in an
attempt to satisfy the constraints without increasing the
minimum norm solution error value.

In this paper the above LSE problem is considered in
the context of a multiple linear regression model imple-
mented by a transversal filter whose tap weights are the
unknown model parameters. In this context, cases are con-
sidered for which the model parameter estimate is derived
from a finite block of data samples whose corresponding

data matrix possesses the nonsero nullity property. An

optimal solution to this problem is, therefore, any model
parameter vecior that yields the minimum possible value
of the sum of error squares performance criterion. This
solution characterizes a parameter subspace whose dimen-
sion is equal to that of the data matrix nulility.

For the well-known minimum norm constraint, the re-
sult is a unique solution determined by the pseudo inverse
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of the data matrix and corresponds to selecting a partic-
ular member of the subspace of the weight vectors which
intersect only the origin of the nullspace. The invariant
performance imposed by the span of the null space is used
a8 a reference in searching for and selecting an optimal LSE
solution from a set of competitive suboptimal features.

Searching the nullspace is performed by first defining
the LSE null space basis via singular value decomposition
(SVD) of the data matrix {3]. Theee bases are then used
to determine the additional null space weight components
which when added to the minimum norm solution result in
a total weight vector which has the shortest distance from
the null space of the nonlinear constraints.

The paper presents an insightful approach to solve the
above type LSE of problems. Detailed analysis is given to
the case where smoothness is chosen as the nonlinear con-
straint of interest. Smoothness [4] is & measure of how
close the filter weights are to a constant mean value. It is
viewed as driving the filter towards a rectangular impulse
response or equivalently a sinc fanction in the frequency
domain. In the z domain, the smoothness constraint trans-
late into equally spaced zeros of unit value excluding that
of zero phase.

Two examples of one step forward linear prediction
are presented in which smoothness constraints are consid-
ered as the quadratic constraints on the predictor weights.
The data in both examples consists of two sinusoids with
widely spread frequencies in additive gaussian white noise.
The first example rep ts the noiseless case where the
noise power level is set to zero. In this case, with M > 4,
the nonzero nullity of the data matrix is a natural prop-
erty of the least-squares problem formulation. The nullity
in the noisy case, on the other hand, is established through
the rank reduction process which invokes setting the noise
eigenvalues to zero [5]. Both examples show that by mov-
ing in the null space of the data matrix, or its reduced rank
form, a smoother filter impulse response can be obtained
at no expense of the least-squares error.

II. NULL SPACE LEAST SQUARES

The least squares estimation problem is considered in
the context of a linear predictor. The one step predictor
output (i) may be expressed as the convolution sum



M
di) =Y wa(i-k+1) (1)
=1
where M is the filter length, w; are the fiiter weights and
the u(') are the tap inputs. Employing the covariance
method for windowing the input data u(i),i = 1,..., N;
the sum of error squares measure is given by

N
Jt(wh e |w~) = Z Ie(")lz (2)
=M
where
(i) = u(i) - 4(3) ®
Equation (2) may be expressed as
Je(w)=x"r
={b— Aw)T(b— Aw) 4)
where
':[wl,W3,...,w~]T, (5)
r = [e(M),e(M +1),...,e(N)F, (8
b=[uM+1),s(M+2),...,«(N+ 1, (1)
and
(M) uw(M-1) ... (1)

u(M+1 u(M u(2
(41 u) SIS

u(N) uw(N-1) W(N-M+1)

The superscript T denotes transposition, w is the Mx1
tap weight vector, u(i) is the M x1 input vector, r is the
M x1 residual vector, and A is the (M — N + 1)x N data
matrix.

The least squares solution of the filter weights, which
minimizes J¢ over the data window, satisfies the normal
equation

ATAw=A"b 9

I rank(A) = M, AAT is nonsingular and the tap weight
vector is uniquely determined as W = (AAT)"'ATb. On
the other hand, for rank(A) = r < M the nullity of A
is nonzero and the least squares solution ,W, is no longer
unique. In this case, the pseudo inverse of the data matrix,
denoted Af, characterizes the minimum norm solution that
is given by

w =AM
=Xzy” (10)

The orthogonal transformation mastrices Y and X of
the singular value decomposition (SVD) of A characterize
the null space, N(A), and the range space, R(A), of the
data matrix, respectively. The first r diagonal entries of £
satisfy 0y > 03 >,...,0 > 0 while the rest of the matrix
elements have zero values. The lnst (M — #) + 1 columns
of the matrix X form an orthonormal basis for N(A) and
will be used in the next section to move away from the
minimum norm solution toward satisfying the nonlinear
constraint.
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1I1. SMOOTHNESS CONSTRAINT CASE

The approach to null space least squares is applied to
the case where a nonlinear smoothness constraint is im-
posed on the weight vector. The smoothness constraint
provides a simple example which illustrates the fundamen-
tal mechanism of null space least squares. The goal here
is to constrain the weight vector to the minimum possible
smoothness measure which still results in the minimum
least squares error. For & given weight vector w, a mea-
sure of its smoothness is expressed as

M
Juw) =Y (w; —w)?
i=1

=w'Qw (11)

where W is the average value of the weights and Q is an
M x M symmetric matrix with entries

M-l

Mol fri=j
L _[TW
9 {%} for ij (12)

The behavior of the smoothnese measure for M = 2 is illus-
trated in Figure 1. The null space of Q is one dimensional
and spanned by the M x 1 unit vector

=
A maximally flat impulse response corresponds to zero

variance in the weight vector which implies perfect smooth-
ness and thus

Y-t
n

(13)

w=cl forsomeceR (14)

The set of column vectors X, 43,...,Xy of X form
an orthonormal basis for N(A). Moving a weight vector
through N(A) does not change its LSE error, i.e. J¢(w) =
Je(w + Aw), VAw € N(A). Thus the least squares
problem in terms of the bases for N(A) and N(Q) is: given
the minimum norm least squares weight vector W, find the
scalars ¢, o, 41, .. ., oy Which minimize

Jye(w) = "Ci —Wror lr

M
Wror = z ax; (15)
i=r4l
It can be shown that the scalars in (15) which maxi-
mize smoothness without increasing the least squares error

are i
. w
= 16
° 1 E---+1 Fx; e
and
& = dx; an



Two simulation examples are given in Section IV which
use (15-17) to improve smoothness in the case of sinusoids
with additive white noise.

IV. SIMULATIONS

Twenty data samples z(n) n = 1,...,20 are gener-
ated with

#(n) = cos(win) + cos(wan) + cw(n) (18)

where w(n) is & white noise sequence whose power level
is chosen to provide infinite SNR in the noiseless case
and 20dB SNR in the noisy case. In both cases, w, =
x/3, wy=nx/6 rad/sec and the filter length M = 11.

Noise free case. In this case, the null space of A, N(A),
is of dimension 7. The minimum norm solution is W =
{0.3415, 0.0000, -0.2500, -0.5000, -0.0915, 0.0000, -0.0915,
-0.2500, -0.2500, 0.0000, 0.3415]7, which yields a smooth-
ness w7 QW = 0.4773 and gero prediction. The zeros of the
z domain weight vector polynomial include tei*/3, tei*/®
which correspond to the two sinusoidal frequencies. Incor-
porating W with the last seven columns of the matrix X in
equation (15) results in é = —3.3166. From (16) and (17),
wror = [~1,...,=1|T = -i7. Accordingly wTQw = 0,
i.e. maximum smoothness (flat response) is obtained while
maintaining J¢ = 0. As shown in Figure 2, the new set
of zeros still include +e/*/3, +e&/*/8 je., the polynomial
roots which correspond to the input signal did not exhibit
any displacement as a result of operating in N(A). This
property is satisfied for any set of values of w, and w,. Fig-
ure 8 shows the weight vector before and after smoothing.

Noisy case. In this case, the SVD of A in first performed
and followed by setting the last T values of the diagonal el-
ements of L to zero. With the new X the reduced rank
form of A is obtained using the same orthogonal matrices
X and Y. The rank reduction of A provides and an im-
provement of smoothness over the full rank original data
matrix and reduces W' QW from 3.3911 to 0.4954. The
rank reduction however causes an increase in the LSE error
from approximately zero to 0.2633. After reducing r from
11 to 4 the problem becomes similar to the noiseless case.
The corresponding value of ¢ is found to be -3.8085 and
the total weight vector obtained from equation (15) has
kept J; = .2533 while further reducing the smoothnese to
0.0246. Figure 4 shows a plot of the three different values
of the optimum weight vector results from the above pro-
cess. While the ~weight vector, based on the original data
matrix is highly unsmooth, the nonminimum norm weight
vector of the reduced rank data matrix is almost flat. This
smoothness improvement is also shown in Figure 5 which
illustrates the immigration of the : domain roots of the
weight vector polynomial towards the unit circle.

V. CONCLUSIONS

The paper presented an insightful approach to the
least squares estimation problem in which 1) the data ma-
trix has nonsero nullity, 2) it is desired to minimize a non-
linear quadratic function in the estimator weight vector.

Contrary to the solution of the constraint least squares
problem [6,7] which satisfies the constraint by trading off
the unconstrained least squares error value, the weight vec-
tor in the underlying problem is set to be as close as pos-
sible to the constraint null space without an increase in
the estimation error. The key to this approach is to define
the basis of the null space via the SVD of the data matrix
which also provides the minimum norm solution. There
bases are then used to drive the weight vector away from
its minimum norm value to an optimum solution which
maintains the LSE error and has the shortest distance from
the null space of the traint. A th tical frame work
is developed with closed form expression for the case where
smoothness represents the quadratic function. Verification
is given using examples of sinusoid in white noise.
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Fig. 1 Illustration of the invariance of the smoothness mea-
sure, J,(w), with respect to its null space 1. )

2192



noisy data case.
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Fig. 5 Zero diagram of the LSE weight vector
in the noisy data example, (x) for %, (®) for
wror, () for W of the reduced rank data matrix.
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