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Abstract 

This paper describes the structure of the so- called Rayleigh estimates 
and the features they share with indirect SVD like procedures. The problem of 
finding procedures of high resolution in spectral estimation is faced under the 
framework of non-linear estimates of the autoco rrelation matrix and the low rank 
approximation to the frequency estimation problem. 

It is shown the existing relations hip between the proposed estimates and 
the principal component analysis. The main advantages of the procedure is that 
the performance of the spectral estimates reported herein is almost equal to 
SVD techniques, yet preserving a good asymptotic convergence to the actual power 
spectral density. Also, the procedure could be viewed under variotional concepts 
revealing its potential under adaptive schemes and data adaptive windowing for 
spectral estimation . In summary, the work shows how classical constrained Wiener 
filtering with data adaptive windowing can enhance the performance of SVD 
met hods with very low complexity. 

175 

l. INTRODUCTION 

The basic principle in spectral 
estimation resides in the use of the 
autocorrelation function of the signal under 
analysis. The acf function has in its Fourier 
Transform its eigendecompoVtion. In other 
words, the steering vector S =( •• ,exp(jnw), •• ) 
are the eigenvectors and the power spectral 
density Sx(w) are the corresponding 
eigenvalues. 

'component 
so-called 
Pisarenko 
case wit h 
advantages 

analysis, and, the second one the 
power function estimates reported by 
/1/ . Rayleigh estimates is a special 
particular features and sharing the 
of both ideas. 

r(n)=(l/271) J11sx(w).ejnw.dw (l) 
- 11 

Based on this principle, it could be 
stated that any candidate to be a spectral 
estimate, based in Q acf lags, have to converge 
to the actual spectral density and, as a 
consequence, to t he eigenvalu es of the acf 
matrix as the order Q tends to infinity. This 
provides an useful background to formulate 
non-linear functions of the data 
autocorrelation matrix, yet preserving the 
convergence mentioned before. 

Thus, 
e ncompassed 
mentioned; 

two 
in 

approaches that can be 
this direction s hould be 

one is the well know principal 

This work is suppo rted by CAYCIT grant number 
21906/84 (Spain). 

Let us to review briefly the principal 
component analysis ( PCA ). The procedure 
consists in the select ion of subspaces from the 
eigendecompos it ion, either of the data 
a~Iocorrelation matrix R or over its inverse 
~.Thus, depending ~9. the procedur e /2/ , PCA 
versions of R or R can be used in the 
structure of= curr~ntly reported spectral 
estimates. As an example, a PCA version of R 
(the signal subspace) can be used i n t he 
Blackman- Tykey es timate, 

Sx(w)= SH.R .s (2 .a) 
- ::pea -

or a PCA version of ~- 1 , R- 1 can be used in 
the linear prediction :; cf~) or maximum 
likelihood estimates (2.c). 

l//1T.R- 1 .s/ 2 
= pea -

(2.b) 

1/(SH.R- 1 .S) 
- = pea -

(2. c) 
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The main drawback of the se procedures 
a rise f ram the e ige ndecompos it ton itself I 3/ . 
Using the most familiar case which is t he 
linear predictio n approach -'1nd assuming (3) as 
the eigendecomposition of g , 

Q -
R- 1=E A .u.u 11 (3) 
= i = 1 l.-i -i 

with Ai > A t+1 ( i=l ,Q-1) , the corresponding PCA 
or low rank app roximation will be (4). 

Q 
-1 " A H R - '-' 1 ui.ui (4) = pea i = 1 - -

The resulting est lmate hand l es only the noise 
subs pace of R and, because the ort hogonsl ity 
with the signal subspace , its location at t he 
denom inator of the spectral estimate formula 
produces the claimed high resolution of these 
procedures. Nevertheless, the resulting PCA 
estimate cannot longer be considered as a true 
spectral estimate due to the distor t lon 
involved in the rank reduction ope rat ion. This 
why better to refer this kind of procedures as 
frequency detectors than real power density 
estimates. As the reader can see when the order 
tends to inf Lnity the est imate will tend · to a 
cero eigenvalue instead of the actual value, 
breaking down the basic principle stated at the 
beginlng of this section. The point is the 
possibility of finding high resolution without 
loosing the desired natural convergence of the 
estimation process. 

Even consider ing the interest of 
frequency detectors, the practical absence of 
low complexity approaches /4/ or adaptive 
schemes /5/ , promotes the interest o f non-exact 
solutions but suitable to beused under 
filtering or adaptive schemes constrained o r 
uncons trained. T hese aspects will be covered by 
Rayleigh estimates in a very elegant manner 
providing, at the same time, a nice background 
for open pro cedures in this field. 

2. NON-LINEAR FUNCTIONS OF THE AUTOCORRELATION 
MATRIX 

The second approach to eigenvalue 
analysis of the power spectral estimation, 
mentioned i n the previous section, is the use 
of non-linear functions of the autocorrelation 
matrix. To better understand the presentation 
we will. focuss in the presentation the Capon 
maximum H l~ielib?od powe r level estimate 
Px(w) m(~ ·B .~) , Being H(.) a function of R 
and h(.) -its inverse, a general family of 
spectral estimate s can be done by (5); being 
H(.) a continuous and non-decreasing function 
for positive arguments. 

(5) 

To prove the convergence of this 
estimate, the eigendecomposition of B . and the 
properties of function H(.) should be used in 
order to obtain a new formulation of the 
estimate. 

Q 

R=}: A U .• U. H ( 6) 
=j = 1 j - J - J 

H(R)=E H(A).u .• u .
11 

(7) 
= j=1,Q j - J -J 

Thus, denoting U(w) as the Fourler transform 
magniturte 2f the eigenvector uj (i.e. 
!J(w)z/~ •!!/ ), (3) results. 

- Q 
S(w)=h( [; H( Aj ) .U .(w)) (8) 

j = 1 J 

As the order Q goes to Lnf inity, the 
eigenvectors converge to the Q equal ty spaced 
steering vectors ~; under this clrcunstance, 
only one of the eigenvectors will produce a 
Fourier transform different from cero, and, 
S(w) will converge to the corresponding 
e igenvalue , 

S(wi)=h(H(\).Ui(wi))=h(H(A i)a Ai (9) 
Q_ 00 

Facing now the problem of selecting a 
function !!(.), it is clear that a PCA analysis 
will require a non-linear function as it is 
shown in (10). 

ll (x) Jx 
op lo 

for x <: x 
0 

for 0 :> x <x 
0 

(10) 

A more suitable choice for H(.) is a 
polynomial of x or, furthermore, a given power 
of x. This last choice arises to the so-called 
power function estimates. 

(11) 

The relationsh ip o f the power q, in (11), with 
the PCA or low rank approximation can be viewed 
in Fig 1. Note also that q=-1 and qal represent 
the Blackman-Tukey and Capon MLM est imates 
respectively . 

u.,(,A) 

Fig 1. H(.) for the optimum low rank reduction 
problem H (,) and the approximation of the 
power func~~on estimates H ( ,), ap 



Further detail s a bout (1 1) can be found 
i n /1/, but the fundamental 1 imitations 
concerning filtering framework and adaptive 
sc hemes supporting (11) remain unsolved. In 
other words, power function est i mates could be 
viewed as an approximate solution to the PCA 
problem without eige ndecomposition; but, there 
is not a good f ramework to suppo rt them and no 
ad at ive schemes could be e nv isaged from their 
formulation. 

3. RAYLEIGH ESTIMATES 

Starting from the bank filtering approach 
/2/ , it s hould be pointed out that t he data 
snapshot ~n in a spectral estimate procedure is 
handled in two ways: one is to design the 
ded t catif filter A steered at a given frequency 
( i.e. S .A~1); and second one to produce the 
output -re;idual which power provides the power 
level estimate Px(w). After, the bandwidt h 
normal Lzat ion allow t o ~bta in the power density 
estima te Sx(w)=Px(w)/(~ .~). 

In order to obtain the family of 
Rayleigh estimates it is necessary to introduce 
a transformation T, over the data snaps hot X , 
to modif y the design of the dedicated filter~&. 
The new data will be: 

X =T.X 
- n = -n 

(12) 

a nd t he design equations for ~will be as it is 
shown in (13) . 

H - - H 
~ .E(~n · ~ ).~ 1min 

(13) 

It is worthwhile t o note that the 
tran sformation matrix includes non-data 
adaptive window methods just reducing ! to be a 
diagonal matrix , with elements equaf to the 
window weig t hs along i ts main diagonal . 

At this point, if an enphasis should be 
performed in the signal eigenvalues an adequate 
c hoice for the t rans format ion matrix, amo ng 
many othe r s, is t he data autocorrelation ma trix 
§ o r a power of it . 

- s X • R . X 
-n = -n 

(14) 

Again , it is important that a review of the 
window theory, under this formulation, opens 
new oportunities because 2-D windows for 1-d 
problems can be implemented using t he above 
fo rmulation. 

Going back to the filter design , solving 
( 13) for vector A a nd using (14), t he desired 
solution is (15) . -

-1 H - 1 
~~ .§.(2 ·~ .~) (lS . a) 

· 2s+1 
Q•T . R.T•R 
= = = = = 

(lS . b) 
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I n order to obtain the power level 
estimate it is ne'ifssa ry to compute the output 
filter residual A • R. A. It is remarkable the 
difference between the out put r es idual, which 
is obtained from the o riginal data, and the 
objective, in t he design equations (13), which 
is performed over the transfo r med data. Once 
the power level estimate is obtained , the white 
no i se bandwidth normalization provides the 
final estimate shown in (16). 

( 16) 

This will be refered hereafter as 
Rayleigh estimates . Next section will be 
devoted to the special properties associated 
with Rayleigh estimates. 

4. RAYLEIGH ESTULATES AND THE LOW RANK 
REDUCTION PROBLEH 

From the formulation of Rayleigh 
estimates, results clear that the de nominator 
can be viewed as the low rank approximation 
mentioned in sec t ion 2 . In fact, t his 
expression without t he quadratic form of the 
numerator, can be used succesfully as a 
frequency detector. Of course , the exponetial 
enphas is o f the e igenvalues done i n the 
denominator alone produces distortion , this is 
why is better to consider it as a frequency 
estimate than a spe ctral density estimate . It 
is t he numerator which compensates the 
denominator weigthing a nd removes, i n this way, 
the dis tortion introdu ced in the e igenspace. To 
be more espec i.fic, (l7.a) has the convergence 
desired for a spectral es timate , (17. b) is the 
propossed f r equency detector, a nd (1 7.c) 
recovers t he converge nce from the frequency 
detector by formi ng the Rayleigh quotient. 

(§H.~-4s-2 . ~)-4s-2 

(§H.f4s-z.~n-1 

(§H. ~-4s-1.~).(§H.~-4s-2)- 1 

(17 .a ) 

(17 . b ) 

(17. c) 

The main difference between (17.a) and (17.c) 
resides in the framework which support t he l ast 
one . A const ra ined design f ilter s u pport i ng 
(17. c) allows its adaptive implementation, it 
provides an easy extension to 2-D problems, 
angle of ar r ival estimat i on, open new f ields 
and perspective to t he topic of data adaptive 
windows and produces a SVD-like procedure with 
low compu tational burden. This l as t sentence 
summarizes the main properties associated with 
these estimates. Rayleigh estimates enhance the 
performance of f reque ncy detectors and 
principal component analysis without 
eigendecomposition~ 
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About 
can be sa id 
convergence 
d is t rib ut ion 

the choice of t he parameter s , it 
that this parameter controls the 
to the actual power density 
when the order o f t he data 

a utocorrelation matrix tends to infinity. But, 
more close to t re practical use of the 
estimate, it i s important to point out that s 
controls the peaky charac ter of the resulting 
estimat e /6/. In fact, it is worthwhil e to 
remind that s, in some extent, is the degree of 
rank reduction carried out over the o riginal 
data ac f. Also, tha case of s equal one could 
be, for some applications, very high. Using the 
final fo rmula (16), non-integer values can be 
set for pa rameter s in such a way that q•4s+l 
mus t be an integer one . 

When using the procedure with 
constrained adaptive algorithms, /7/ , /8/, 
special attention should be payed to the 
existing trade-off between resolution and 
convergence rate . The associated high 
resolut ion to Rayleigh estimates promotes a 
lower convergence rate when compared with 
classical algorithms, like maximum likelihood 
or 1 inea r predict ion. This slowness phenomena 
in convergence rate could be justifyed from the 
inc rease in the eigenvalue spread of t he 
involved matrix Q refered to the eigenvalues o f 

~· 
Eigenvalue spread 

A 
Rayleigh=---~~~-2s+ 1 

A 
m in 

• A max 
orig1nal=-------

A 
m in 

6. REFERENCES 

/1/ V.P. Pisare nko . " On the Estimatetion of 
Spectra by Means of non- linear Functions o f 
the Covariance Matrix". Geophys. J.R. 
Astro. Soc . (1972) 28, pp. 511-531. 

/2/ M.A. Lagunas et al. "Maximum Like lihood 
Filte r s in Spectral Estimation P roblems". 
Signal Processing 10, Nort h- Holland, 1986 , 
pp. 19-34 

/3/ G . H. Golub and C.F. Van Loa n , "Matrix 

/4/ 

Computation" . 
1983. 

Baltimore, MD: Univ. Press. 

S.M. Kay and A.K. Shaw. "Frequency 
Est ima tion by Principal Compo nent AR 
Spectral Es t i mation Method Wi t hout 
E ige ndecompos it ion" . IEEE Trans. on 
Acoustics Speech and Signal Processing, 
ASSP-36, no . 1, Jan. 1988, pp. 95-101. 

Finally , and as an example, in Fig 2 i t 
can be viewed some examples for sucessive 
values of q ( q=4s+l) i n a 2-D p r oblems o f 
sinuso ids in noise. From Fig 2 it is easy to 
conclude the similar performance of Rayleigh 
estimates a nd principal component analysis. 

Fig 2.- Performance of Rayleigh estimates for 
the problem of sinusoids in noise for sucessive 
values of parameter q . 

/5/ J . F . Yang and M. Kaveh. "Adaptive 
Eigensubspace Algorithms for Direction or 
F requency Estimation a nd Tracking . IEEE 
Trans. on Aco ustics Spe ech and S ignal 
Processing , ASSP-36 , no. 2, Feb. 1988, pp. 
24 1-251. 

/6/ M. A. Lagunas and M. Cabrera. "Rayleig h 
Spect ral Est i mation". Submitted for 
publication . 

/7/ O. L . Frost IlL "An Algorithm for Linea r l y 
Constrained Adaptive Array Process ing " . 
Proc. IEEE, Vol. 55 , no . 8, Aug. 1972, pp. 
926-935. 

/8/ L.J . Griffiths and K.M.Buckley. "Quiescent 
Pattern Control in L inea rly Const rained 
Adaptive Arrays " . IEEE Trans. on Acoustics 
Speech and S i gnal processing, ASSP-35 , no. 
7, Jul. 1987, pp. 917-926 . 




