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Abstract

This paper describes the structure of the so-called Rayleigh estimates
and the features they share with indirect SVD 1like procedures. The problem of
finding procedures of high resolution in spectral estimation is faced under the
framework of non-linear estimates of the autocorrelation matrix and the low rank
approximation to the frequency estimation problem.

It is shown the existing relationship between the proposed estimates and
the principal component analysis. The main advantages of the procedure is that
the performance of the spectral estimates reported herein is almost equal to
SVD techniques, yet preserving a good asymptotic convergence to the actual power
spectral density. Also, the procedure could be viewed under variotional concepts
revealing its potential under adaptive schemes and data adaptive windowing for
spectral estimation. In summary, the work shows how classical constrained Wiener
filtering with data adaptive windowing can enhance the performance of SVD
methods with very low complexity.

1. INTRODUCTION ‘component analysis, and, the second one the
‘ . so-called power function estimates reported by
The basic principle in spectral Pisarenko /1/. Rayleigh estimates is a special
estimation res ides in the use of the case with particular features and sharing the
autocorrelation function of the signal under advantages of both ideas.
analysis. The acf function has in its Fourier
Transform 1its eigendecompogition. In other Let us to review briefly the principal
words, the steering vector S =(..,exp(jnw),..) component analysis ( PCA ). The procedure
are the eigenvectors and the power spectral consists in the selection of subspaces from the
density Sx(w) are the corresponding eigendecompos it ion, either of the data
eigenvalues. agiucorrelation matrix R or over its inverse

R *. Thus, depending oy the procedure /2/, PCA

r(n)=(1/27 ) fﬂSx(w).ean.dw (1) versions of R or R can be used in the
=T structure of =~ currently reported spectral
Based on this principle, it could be est imates. As an example, a PCA version of R
stated that any candidate to be a spectral (the signal subspace) can be used in the
estimate, based in Q acf lags, have to converge Blackman-Tykey estimate,
to the actual spectral density and, as a - H
consequence, to the eigenvalues of the acf Sx(w)= 8§ -lépca.§ (2.a)
matrix as the order Q tends to infinity. This ST e
provides an useful background to formulate or a PCA version of R, R can be used in
non-1inear functions of the data the linear prediction (?8) or maximum
autocorrelation matrix, yet preserving the likel ihood estimates (2.c).
convergence mentioned before. G A )
1//1°.R pea*S/ (2.b)
Thus, two approaches that can be i R |
encompassed in this direction should be 1/(s R pca'§) (2.¢)

ment ioned; one 1is the well know principal
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The main drawback of these procedures
arise from the eigendecomposition itself /3/.
Using the most familiar case which is the
linear prediction approach ”_alnd assuming (3) as
the eigendecomposition of R ~,

Q
=1 H
R "= A.l..
= EI lgi Qi 3
with )~1> A (i=1,Q-1), the corresponding PCA
or low rank approximation will be (4).
=1 R
- Ny
5 pea ;-9 1 [-Ji'gi (4)

The resulting estlmate handles only the noise
subspace of R and, because the orthogonality
with the signal subspace, its location at the
denominator of the spectral estimate formula
produces the claimed high resolution of these
procedures. Nevertheless, the resulting PCA
estimate cannot longer be considered as a true
spectral estimate due to the distortion
involved in the rank reduction operation. This
why better to refer this kind of procedures as
frequency detectors Lthan real power density
est imates. As the reader can see when the order
tends to infinity the estimate will tend to a
cero eigenvalue instead of the actual value,
breaking down the basic principle stated at the
begining of this section. The point is the
possibility of finding high resolution without
loosing the desired natural convergence of the
est imation process.

Even cons idering the interest of
frequency detectors, the practical absence of
low complexity approaches /[4/ or adaptive
schemes /5/, promotes the interest of non-exact
solutions but suitable to Dbeused under
filtering or adaptive schemes constrained or
unconstrained. These aspects will be covered by
Rayleigh estimates in a very elegant manner
providing, at the same time, a nice background
for open procedures in this field.

2. NON-LINEAR FUNCTIONS OF THE AUTOCORRELATION
MATRIX

The second approach to eigenvalue
analysis of the power spectral estimation,
ment ioned in the previous section, 1is the use
of non-linear functions of the autocorrelation
matrix. To better understand the presentation
we will. focuss in the presentation the Capon
max imum H lili.el i.'gTod power level estimate
P (w)=(§ R ".8) ". Being H(.) a function of R
and h(.) "its inverse, a general family of
spectral estimates can be done by (5); being
H(.) a continuous and non-decreasing function
for positive arguments.

S(w=n(s".u(R). 5 (s)

To prove the convergence of this
estimate, the eigendecomposition of R and the
properties of function H(.) should be used in
ordet to obtain a new formulation of the
estimate.

= H
= U..Uu, 6
‘—'jz:llj‘J =) L
H

H(R)= H «U,.U,

(=)j-_-E1‘Q ()\:'? s (7)
Thus, denoting U(w) as the Fouriler transform
magnituge Bf the eigenvector U (i.e.
Ulw)=/s .l_Jj/ ), (8) results. J

S(w)=h( L H( A D).U, (W) (8)

g 4

As the order Q goes to Infinity, the
eigenvectors converge to the Q equally spaced
steering vectors §; under this clrcunstance,
only one of the eigenvectors will produce a
Eourier transform different from cero, and,
§(w) will <converge to the corresponding
eigenvalue.

S(wi)=h(H(Jli) .Ui(wi))=h(ii()\ i)= Ai (9)

—_ o

Facing now the problem of selecting a
function H(.), it 1is clear that a PCA analysis
will require a non-linear function as 1t is
shown in (10).

X for x2 x,
Ho (x)= (10)
P 0 for 03x <x°

A more suitable choice for H(.) is a
polynomial of x or, furthermore, a given power
of x. This last choice arises to the so-called
power function estimates.

=gt p s /D ()

The relationship of the power q, in (11), with
the PCA or low rank approximation can be viewed
in Fig l. Note also that q=-1 and q=1 represent
the Blackman-Tukey and Capon MLM estimates
respectively.

Hept{A)

Ho(A)

Fig 1. H(.) for the optimum low rank reduction
problem H_(.) and the approximation of the
power function estimates Hap(')°



Further details about (l1) can be found
in /1/, but the fundamental limitations
concerning filtering framework and adaptive
schemes supporting (11) remain unsolved. In
other words, power function estimates could be
viewed as an approximate solution to the PCA
problem without eigendecomposition; but, there
is not a good framework to support them and no
adative schemes could be envisaged from their
formulation.

3. RAYLEIGH ESTIMATES

Starting from the bank filtering approach
/2/, it should be pointed out that the data
snapshot En in a spectral estimate procedure is
handled in two ways: one 1is to design the
dedicate}{i filter A steered at a given frequency
(i.e. S .A=1); and second one to produce the
output residual which power provides the power
level estimate P_(w). After, the bandwidth
normalization alloW to ﬁbtain the power density
estimate Sx(w)ﬂPx(w)/(g WA

In order to obtain the family of
Rayleigh estimates it is necessary to introduce
a transformation T, over the data snapshot X ,
to modify the design of the dedicated filter B.
The new data will be:

X =T.X (12)

“n = o

and the design equations for A will be as it is
shown in (13).

H

H ~
AT EE

)-A& /

X in
“n m (13)

It 1is worthwhile to note ¢that the
transformation matrix includes non-data
adaptive window methods just reducing T to be a
diagonal matrix, with elements equal to the
window weigths along its main diagonal.

At this point, if an enphasis should be
performed in the signal eigenvalues an adequate
choice for the transformation matrix, among
many others, is the data autocorrelation matrix
R or a power of it.

_ o8 N
i A S 30 & (14)

n=

Again, it 1is important that a review of the
window theory, under this formulation, opens
new oportunities because 2-D windows for 1-d
problems can be dimplemented using the above
formulation.

Going back to the filter design, solving
(13) for vector A and using (14), the desired
solution is (15).

AQ.5.(87.97 .8) (15.a)
(15.1)
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In order to obtain the power 1level
estimate it is ne%essary to compute the output
filter residual A .R.A. It 1is remarkable the
difference between Ehe output residual, which
is obtained from the original data, and the
objective, in the design equations (13), which
is performed over the transformed data. Once
the power level estimate is obtained, the white
noise bandwidth normalization provides the
final estimate shown in (16).

AH-B':‘} H. —As-l.

S

it (16)
B 4725

S(w)

i 1w
n=

This will be refered hereafter as
Rayleigh estimates. Next section will be
devoted to the special properties associated
with Rayleigh estimates.

4. RAYLEIGH ESTIMATES AND THE LOW RANK
REDUCTION PROBLEM

From the formulation of Rayleigh
estimates, results clear that the denominator
can be viewed as the low rank approximation
ment ioned in section 2. In fact, this
expression without the quadratic form of the
numerator, can be used succesfully as a
frequency detector. Of course, the exponetial
enphasis of the eigenvalues done in the
denominator alone produces distortion, this is
why 1is better to consider it as a frequency
estimate than a spectral density estimate. It
is the numerator which compensates t he
denominator weigthing and removes, in this way,
the distortion introduced in the eigenspace. To
be more especific, (l7.a) has the convergence
desired for a spectral estimate, (17.b) is the
propossed frequency detector, and (1l7.c)
recovers the convergence from the frequency
detector by forming the Rayleigh quotient.

(EH_§—ﬁs-2.§)-hs~2 (17.a)
tgh e ® gyl (17.b)
@l la i s HT G

The main difference between (17.a) and (17.c)
resides in the framework which support the last
one. A constrained design filter supporting
(17.c) allows its adaptive implementation, it
provides an easy extension to 2-D problems,
angle of arrival estimation, open new fields
and perspective to the topic of data adaptive
windows and produces a SVD-like procedure with
low computational burden. This last sentence
summarizes the main properties associated with
these estimates. Rayleigh estimates enhance the
performance of frequency detectors and
principal component analysis without
eigendecomposition.l
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About the choice of the parameter s, it
can be said that this parameter controls the
convergence to the actual power density
distribution when the order of the data
autocorrelation matrix tends to infinity. But,
more close to the practical wuse of the
estimate, it is {important to point out that s
controls the peaky character of the resulting
estimate /6/. In fact, it 1s worthwhile to
remind that s, in some extent, 1is the degree of
rank reduction carried out over the original
data acf. Also, tha case of s equal one could
be, for some applications, very high. Using the
final formula (16), non—integer values can be
set for parameter s in such a way that q=4s+l
must be an integer one.

When us ing the procedure with
constrained adaptive algorithms, /7/,/8/,
special attention should be payed to the
existing trade-off between resolution and
convergence rate. The associated high
resolution to Rayleigh estimates promotes a
lower convergence rate when compared with
classical algorithms, like maximum 1likelihood
or linear prediction. This slowness phenomena
in convergence rate could be justifyed from the
increase 1in the eigenvalue spread of the
involved matrix Q refered to the eigenvalues of
R.

Eigenvalue spread

A
orig inaln—*—-—k—gé.}f— Rayle igh=-——[—n§§—25+1
A
min min
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