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SUMMARY 

This is a very personal point of view of the underlying ideas that 
y:ields most of the currently reported spectral estimation techni
ques, procedures and algorithms. After a brief introduction on 
non-parametric spectral estimation, which includes a shutle aspect 
about how to use averaging in DFT based methods, the paper des
cribes the potential of the variational approach in deriving alrea
dy reported estimates and the way out to obtain new ones. Finally, 
and as the second approach of high interest in spectral estimation, 
the design and extensions of data-dependent filters for spectral 
estimation is reported. 

I. INTRODUCTION 

During the last decade a lot of work 
has been done in the field of spectral 
estimation. But it seems to me that 
there are not many reported works which 
can provide an adequate framework for 
the topic. In fact, some papers repor
ted as tu't.orials or with some tutorial 
value look like as a collection of 
methods with a questionable rank for 
them; based in very concrect examples 
from concrect signals that, of course, 
does not make valuable the classifi
cation. For interested readers in 
spectral estimation usually each signal 
or signals under analysis represents a 
new problem, in such a way that a very 
expert answer for a spectral estimation 
problem w:ill be something like ''tell me 
what you need and I would tell you what 
is the best solution''· There are two 
topics which are very important now
days, one is a general framework to 
encompass most of the reported me
thods; and, in this way, providing 
certain knowledge about how to derive 
new estimates. The second one concerns 
with obje't.ive measures of quality, dif
ferent from correlation bias, resolu
tion, etc., that will tell us the 
overall performance that the estimate 
yields. 

This paper will address the first item 
by describing the variational approach 
for spectral estimation both in the 
frequency domain and in the time 
domain. A brief introduction about 
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non-parametric pt;'OCedures is included 
dUe to its interest in estimating the 
prior information in a spectral esti
mation pro·cedure (i.e. the autocorre
lation function or the averaged 
periodogram function). The variational 
approach in frequency and in the time 
domain will follow in sections Ill and 
IV. 

No figures or examples are included and 
refer~nce list has been minimized in 
accordeilce to the main objective of 
this work, which is not to report any 
proced-ure or any concrect reference to 
already reported methods. 

Il. NON-PARAMETRIC SPECTRAL ESTIMATION 

Regardless this work was done thinking 
in parametric spectral estimation, 
non-parametric procedures deserves an 
important consideration, since they 
could be viewed as a prior-estimation 
step in all the techniques which starts 
from an estimate of the data autocorre
lation function. It is important to 
notice that this first step, in gene
ral, should not be considered as a 
data reduction stage, in the sense that 
we could obtain the same number of data 
samples of the a.c. f. than we have in 
the data sample record. All the a.c.f. 
lags contain potential information to 
be used in the spectral estimation 
procedure. Of course, it is easy to 
conclude that the high variance, 
associated to the a.c.f. 



308 M.A. Lagunas 

values obtained in a N to N computation 
basis from the N data samples, will 
promote a low statistical stability of 
the resulting estimate; but, when the 
main concern is resolution, even as a 
cosmetic factoi as in angle of arrival 
detection ,or Pisarenko like methods, 
long correlation sequences should be 
used at the expense of a poor quality 
in the stabily sense. 

At his point is word to take in mind 
that the claimed superior quality of 
direct data methods over correlation 
methods refers only with linear systems 
models of the procedure. In other 
words, minimum phase properties of the 
model, analysis/synthesis problems, or 
any other constraint related with 
deterministic signal generation models 
will produce the difference between the 
two approaches. In a general contest, 
and having available the currently 
reported algorithms, correlation based 
aethods can provide at least the same 
performance that direct data methods. 

Furthermore, in may cases the average 
involved in computing the a.c.f. 
estimate could be the best candidate 
for a first step noise reduction. 

Thus, focus sing the problem of an 
estimate for the autocorrelation 
function in a spectral estimation 
problem, or the cross-correlation 
function in a cross-spectrum procedure, 

.the WOSA estimate have to be mentioned. 
As it is well-known by the reader this 
procedure reported by Welch many years 
ago consist in a partitioning of the 
original data record x(n) (n=O, N-1) in 
records of length M, overlapped over D 
samples and weigthed by a data window 
w (n) if desired ••• Then we could 
d:-fine '*' (n) and 1' (n) as indicated in 
(1). q q 

M 
~ {n)sx(q(M-D)+n)w (--+n) n=1,M 

q X 2 

)I {n)= 
q 

M 
y{q(M-D)+n)w (--+n) 

y 2 

o elsewhere. 

n=l ,M 

(1) 

The WOSA cross or (y equal to x) 
autospectrum estimate is computed as 
shown in (2). 

X *{l).Y {1) 
q q 

(2) 

Where, K is a factor, depending on the 
overlappfng length D and windows w (.) 
and w (.), and it is set in ordef to 
removl the bias; X (1) is the! L points 
DFT of the origin\.! M points length 
sequence ~ (n) padded with L-M zeros if 
desired; &nd Q the number of records 
obtained from the original records of N 
samples each. 

At this point two things deserve more 
attention, one is a formal question, 
the other is a natural but not usual 
extension of (2) which produce~ 
additional averaging highly desired in 
parametric methods for very short data 
records. The formal question is about 
the constant K

0
• This constant does not 

remove the bias of P(w) with respect 
the actual cross or autospectrum (let 
us say it is Sx(w). P(w) is always 
biased since its expected value is a 
convolution of the effective lag window 
with the true power spectrum density. 
Constant K

0 
is set just to constraint 

that the inverse Fourier transform of 
P (1) will be the zero lag value of 
t~J initial the c.c. f. or the a.c. f. 

The second question is the so-called 
STUSE method 11]. Bassically, it can be 
stated as that, there are not any 
problem in considering tre crossproduct 
of X *(1) with Y (1) in the averaging 
proc~ss, wheneverp a delay correction 
factor is used prior the term is 
included in (2). Thus a more general, 
and lower variance than (2), estimate 
is (3), where these new terms are under 
con'siderat ion. 

1 
p (1)=--

xy K 
0 

E X *(1)Y {1). 
p,q=l,Qq p 

2 rr1 
.exp(-j---(p-q).(N-D)) 

L 

( 3 ) 

Once P (1) is obtained, the IDFT of it 
will ~~ovide the desired estimate of 
the cross-correlation or the autocorre
lation function. A quadratic window or 
lag-reshape methods could be used if 
desired in this first step of our 
parametric estimate algorithm. I would 
like to recall the importance of the 
STUSE method when compared with 
classical WOSA method chiefly when the 
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number of samples for r (n) or r (n) 
to be used in the param~tric proc~~ure 
is high when compared with the data 
record length N. 

To end with this section, I would like 
to insist in that all the information 
is in P (1) or P (1) 1=0, L-1; and 
any pro1:tdure whf!h do not use the 
overall L samples will miss something 
in the way out to obtain the final 
spectral estimate. Of course this 
statement does not mean that all the L 
samples of P (1) or the associated 
r (n) have txd play the same role in 
t~l parametric spectral estimation 
technique. It is just to ask for the 
importance of functions, which cons
training the spectral estimation 
procedure, describe the global behavior 
of the cross or autocorrelation 
sequence. 

Ill. VARIATIONAL APPROACH FOR SPECTRAL 
ESTIMATION 

One of the most powerful! tool to 
derive parametric models for power 
spectrum estimates is to set some 
objective function ~(S (w)) or ~(S ), 
and minimize or maximiz~ this objectfve 
constrained by the relevant information 
we have available from the prior-esti
mate Px(w), in many cas~s the signal 
periodogram or the STUSE estimate. 

It could be infered that two important 
decisions have to be taken under such 
approach. The first one deals with the 
objective function ~(Sx). The most 
familiar one is the entropy as shown in 
( 3 ) 0 

i! = 
0 

2TI f
TI Ln S (w) 
-TI X 

dw (3) 

Which corresponds to the exact 
expression of it when x(n) (n=O,N-1) 
belongs to a gaussian and stationary 
random process. This is a nice justi
fication with an adequate and theore
tical mathematical background to the 
wide use of the entropy as Objective in 
spectral estimation. Many words can be 
written in this topic about the 
important role of entropy in spectral 
estimatiOn. Any case, I prefere to pay 
attention to its features when the zero 
lag correlation constraint is set. When 
H is maximized under the constraint 
(ft), the resulting estimate is a flat 
estimate. 

1 

2TI I
TI 1 

S (w)dw=r (0)•--. 
-TIX X 2TI In P (w)dw (4) 

-TI X 

This is, as concerns with a general 
background, a desired feature of the 
objective, (i.e. it produces a maximum 
flatness estimate coherent with the 
constraints). In other words, maxima 
and minima in the estimate will depend 
on the constraints because the 
objective under the power constraint 
will try to relent· a peaky behavior in 
the estimated power density. Once the 
entropy is viewed in this waY, it is 
clear that other objectives could 
deserve attention. A brief list of them 
could be the following one: 

fexp S(w) dw (5-a) 

!S (w) Ln S(w) (5-b) 

!Sn(w) dw for nfl,O not nece 
ssarily an integer number. -(5-c) 
An special case of interest 
is nc2 

I 
dS 2 ( --) dw 
dw 

( 5-d) 

Further discussion about these 
objective functions needs the 
constraints we desire to set to the 
desired spectral estimate in order to 
be included in finding a maximum or 
minimum of these objectives. To better 
report the role of the constraints is 
worthwhile to solve the general problem 
of an objective with some constraints. 

objective f~(S)dw (6-a) 

constraints f~(S)ejqwdw•p /q/<Q (6-b) 
q 

Note that finding the constraints 
does not face any problem since they 
can be computed from the periodogram 
Px(w) as in (7) using the same function 

f(.) we used in (6-b). 

Pq= J(li(P(w))ejnwdw ; /q i<Q (7) 

Now, forming 
multiplier A 

q 

the Lagrangian £ with a 
for every constraint,(6) 

results; 

seting derivative of the 
with respect to S equal 
estimate is obtained as a 
the Lagrange parameters. 

Lagrangian 
to zero, the 
function of 
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d £ 
E I< ejqw~(S)•O 

[q [<Q q 
(8) • ~(S)-

dS 

or 

~(S) 

hs) 
(9) 

Before to go further in the discussion 
the reader should remind that (8) must 
be changed when the objective is as 
(5-d) or 0 depends on high order 
(greather than zero) derivatives. 

Thus (9) reveals that when correlation 
lags without missing points are set as 
constraints in the variational 
procedure, i.e. 0(S)=S(w) and ¥Cs)=l 
and p =r the data autocorrelation 
lags, a0ny 0 of the previous objectives 
will produce a polynomial modeling or a 
linear model in the inverse Fourier 
domain, for the derivative of the 
objective function. 

Case 1 (5-a) S(w)•Ln<A(w)) 

the correlation is extrapolated 
from the cepstrum of A(w). 

Case 2 (5-b) S(w)•exp (A(w)-1) 

the cepstrum of the estimate is 
of finite length equal to the 
number of correlation cons
traints. 

Case 3 (5-c) 
)<(w) 1/n-1 

S(w)c (----) 
n 

for n=2 an all-zero or MA model 
results as a structural cons
traint for'the desired estima
te. This is the formal way to 
justify the B-T estimate, be
cause p =r • This proves that 

the B-Clr e\timate is a minimum 
energy for the extrapolated 
a.c.f~ This is a trivial con
clusion but alow to include the 
prior-estimate B-T in this fra
mework. 

Case 4 (3) Classical Burg estimate 
with an AR model as structural 
constraint for the resulting 
estimate. S(w)=l/ A(w). 

From the previous paragraphs it results 
clear that any claim, in a realistic or 
practical approach, about the adequate
ness or not of a given objective has no 
sense without knowing the set of cons
traints we are going to use. 

The variety of models or structural 
constraints for the estimate provides 
support to the idea that constraints 
deserves more attention that the 
objective itself in a variational 
approach for parametric spectral 
estimation. 

Thinking deeply in the role of cons
traints in these techniques, we can 
conclude that, when selecting then, we 
are facing the hard problem, or taking 
the hard decision, about wheter or not 
the kind and number of constraints, we 
set in the procedure, reflects the 
overall knowledge we have from the data 
record sample. x(n); n=O, N-1. 

It is worthwhile to note that the 
number of .constraints we use, is usual
ly less than the number of data samples 
N. It could be said that the number of 
independent samples in the data record 
is probably less than N. In other 
words, that Q data constraints 
summarize quite well all the 
information of the original data sample 
and, as a consequence, we can be 
confident with the selected data 
constraints. Thus there is an 
uncetainly that could be stated as 
follows: When the first Q data autoco
rrelation lags are all the information 
we need from the data sample in order 
to obtain the actual density estimate? 
or, taking in mind that the second 
order information r steems from an 
estimation procedure ,q a close estimate 
to the actual spectrum results.? 

The answer for this question is just 
that we are doing rigth whenever the 
structural form of the estimated 
presented above as cases 1, ••• ,4 are in 
fact valid for the actual estimate 
(i.e. selecting case 1; when a finite 
order MA model for exp(S(w)) obeys to a 
correct assumption for the actual power 
density spectrum of the random process 
to which data record x(n) belongs). 

When there is not prior knowledge about 
the signal model it is clear that as 
much information we reflect in the 
constraints better the performance of 
the procedure will be. This last 
sentence points out that, once a given 
objective has been selected, correla
tion constraints are not the only 
choice to form them in a variational 
procedure. Other second order informa
tion like real cepstrum o third order 
functions can be set as constraints in 
addition to the correlation ones in 
order to improve the resulting quality 



The variational approach in spectral estimation 311 

of the associated spectral estimate. At 
the same time, it looks realistic to 
include more data constraints to the, 
lets say, a successive correlation 
lags, when it is clear that high 
correlation lags behavior play an 
important role in some interesting 
features of the spectral estimate as 
resolution or bias. Also the problem 
addressed in )2) , 13 I are interesting 
at this point. 

One of the most interesting cases under 
such philosophy is the inclusion of 
cepstrum and correlation constraints in 
maximum entropy problem 14/ The 
problem is stated as it is shown below: 

Maximize f Ln S(w)dw for S(w) 

constrained to 

/S(w)exp(jnw)dw•r(n); lni'Q 

and 

/Ln S(w)exp(jmw)dw•c(m); lmi~P 
m,<O 

The Lagrangian is 

Ln S. (1+ L 11 .exp(jmw)) + 
m,&O m 
lmi~P 

+S(w) (( E An·•xp(jnw))l 
I ni~Q 

( 10) 

(11) 

Seting derivation with respect S(w) 
equal to zero the new estimate results; 

S(w) 
1+ E ]..Jm.exp(jmw) 
--------------- (12) 

L:An .exp(jnw) 

Where the reader can see that all the 
classical models for spectral 
estimation, i.e. AR., MA and ARMA, can 
be encompassed in this framework. 

Anycase the impOrtant conclussion is up 
to what degree a free look of the 
variational procedure can open new ways 
to perform well supported parametric 
spectral estimation. It is worthwhile 
to note that parametric modelling is a 
concept that, as concerns with spectral 
estimation cannot be longer applied 
only to the zero-pole modelling of the 
power spectrum. Let see an example of 
this statement. Let us suppose the 
following problem. 

Maximize fs(w)Ln S(w)dw for S(w) 

constrained to 

/S(w)Ln S(w)ejnwdw; lni,<O, ~P 

/5(w)ejmwdw; lmi~Q 
(13) 

The solution arises to an ARMA (P,Q) 
model for the real cepstrum of the 
resulting estimate._ In general, an ARMA 
model results for ~(S(w)) whathever we 
set P constraints on ~(S(w)) and Q 
correlation constraints. In reference 
)4) it can be viewed that, in the same 

way that correlation constraints 
provides information about poles of the 
spectral density, cepstrum, constraints 
provides information about the zero 
location. 

Finally it is interesting to remark 
that the solution of (10) faces a 
non-linear problem when solving for 
parameters An and l.lm from the initial 
constraints. But, wlien the additional 
constraint of minimum phase for both 
denominator and numerator of the ARMA 
model involved is assumed, thus the 
parameters A m and ]..Jn can be found from 
an eigenvector formulation of mixed 
first and second order information of 
the in! tial data sam.ple J 5 I. 

IV. BANK FILTER APPROACH 

In this section it will be described 
the bank filter approach for spectral 
estimation. In some sense this approach 
can be viewed as an extension of the 
variational approach repor.ted in 
section Ill to the time domain problem. 

To start with, let us suppose that we 
are interested in designing a FIR 
filter which its impulse response will 
be denoted as w in a vectorial 
notation. The components of such vector 
w(q) are the corresponding impulse 
response at time sample q.T, being T 
the sampling period. Thus, the filter 
output also named as the residual 
output c(n) obeys (14), where ~n is the 
current data vector with components 
x(n), x(n-1) , ••• ,x(n-Q) being Q+1 the 
filter length. 

c(n) = wT.x 
- -n 

(14) 

Facing the design of w for spectral 
estimation purposes, there is a prior 
decision concerning whether the 
residual £ (n) or the filter w have to 
retain the information conce;ning the 
power density of the data input x(n) 
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(n•O, N-1). To be more concrect in any 
linear, or even non-linear·, processing 
of x(n) producing a quasi-white 
residual E(.) the traa;fer function of 
the DSP performed retains all the 
information, including the complete 
second order information, (i.e. the 
power spectrum), of the input sequence. 
Under this framework are included all 
the first order modelling procedures 
MA, AR or ARMA; because all of them 
form the spectral estimate from the 
transfer function of the associated 
DSP. 

The second framework, which will 
deserve more attention herein than the 
previous one, consists in measuring the 
power of the input signal x(n) inside a 
frequency beam, with central frequency 
and bandwidth determined by the filter 
w. Once the power of e: ( n) is measured 
as a function of the filter central 
frequency w and the frequency 
bandwidth B (~ ) , the power level and 
the power dlnsfty spectrum S(w

0
) can be 

formulated as (15). 

E (E
2 (n)) 

P(w 0 )/Bw(w 0 ) 

(1 S-a) 

( 15-b) 

It results clear that the quality in 
resolution and bias of the resulting 
estimate S(w

0
) will depend mainly in 

the leakage introduced by the bandwidth 
B (w

0
). In other words the filter !. 

wf11 be a pass-band filter with a 
bandwidth as narrow as possible and 
distorsionless in the frequency band 
where the filter is steered. To design 
the filter there are many non-data-de
pendent choices; these choices are 
listed below and they indlude the most 
classical procedures for spectral 
analyzers used in acoustics, vibration 
analysis, hi-fi design testing, etc. 

a) Fixed bandwidth fiiter analysis 
bank. 

b) Octave filter bank. 
c) Sequential spectrum analyzers. 

In c) a chirp signal is multiplied by 
the input sequence and a fixed 
high-quaity low pass filter provides 
the residual that, after a quadratic 
detector, gives the power level P(w ) 
which coincides with S(w ) without t~e 
constant bandwidth of ~he low pass 
filter. It is worthwhile to mention 
that the energy-time delay estimation 
technique could be encompassed under 
this kind of techniques 16 1. 

The design of filter w is obtained from 
mtni-mizing the output-power P(w

0
) = 

w .R.w under user selected constraints 
in Order to guarantee that distorsion 
and leakage are under adequate levels 
always limited by the a priori cons
tTained FIR length Q(i.e. 
w :::(w(O),w(l), ••• ,w(Q-1)). The most 
familiar constraint is to set a given 
value for the filter response at thT 
central frequency w • Using vector S 
as (1, exp(-jw

0
), •• ?, exp(-j("Q-1)w

0
)), 

this constraint can be formulated as it 
is shown in (16), 

ST w = 1 (16) 

a OdB response at the central frequency 
w

0
• When additional constraints are 

used, like first or high order deriva
tions of the main lobe, the constraints 
can be formulated as (17) where c 
reflects them in a matrix formulation": 
Of course the rank of c have to be less 
than Q. 

c.w ::: f (17) 

After setting Lagrange multipliers for 
(17) 

setting derivative with respect w 
to zero 

and using the constraint equation 

A= (c.R-1.cT)-1.f 
=:::; = -

Thus the optimum vector filter is: 

-1 T -1 T -1 
!.opt""~ ·~ <~-~ ·~ ) ·i 

equal 

(18) 

The residual power, 
level estimate is: 

i.e. the power 

T T -1 T -1 
!.opt ·~·!.opt=i (~·~ •,;,) ·i=P(w0 )(19) 

Note that all this formulation firstly 
reported by Frost 8 could be viewed 
as the variational approach for 
spectral estimation in the time domain. 

In order 
estimate, 
bandwidth 

to get the final spectral 
a c~iteria to estimate the 

of the analysis filter w has 
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to be selected. It is important to note 
that because c and/or f depend on the 
central frequency the filter is steered 
P(w ) and the spectral estimate will be 
no ~onger the same as they are, in an 
equal bandwidth analysis scheme. One 
interesting and easy to compute band
width is the so-called equal area 
constraint )7). In other words, select 
B (w ) for filter ~ (frequency response 
w't'wl~ as 

W(w ).B (w )•!JW(w) J2 dw=wT.w 
0 w 0 - -

(20) 

This thoice will produce the following 
estimate 

Last formula for the scalar case of 
( 16) will produce the already reported 
normalized maximum likelihood spectral 
density estimate )9). 

(22-a) 

It is very important to remark that the 
spectral estimate in (22-b) has very 
good resolution at the same time that 
yields the low side-lobe feature of 
classical maximum likelihood estimate 
reported by Capon. Also it is worth to 
remain that the spectral density 
estimate could be applied in angle of 
arrival estimation or beamforming in 
non-equally spaced arrays as well as in 
two-dimensional problems like radar or 
sonar applications )9). 

Two extensions are important around the 
estimate which appears in (22-b). First 
one is the so-called power estimates 
which is a family of spectral estimates 
which steems from generalizing the 
mentions! estimate as it is shown in 
(23} !to J. 

(23} 

It is easy to check out that n=O pro
vides the B-T spectral estimate, n=l 
the classical MLM estimate and n=2 the 
reported estimate. Going on in increa
sing the power of the estimates will 
perform reduction of R to its noise 
sub space' and, as a result' the 
spectral estimate for high q will be 
quite similar to SVD methods. All the 
estimates have convergence to the 
actual power density estimate in the 
distributional sense, and also for any 

q they are homogeneous. Also note that 
these estimates can b~ obtained from an 
o~jefitive based on Rn (i.e~ minimize 
! ·!··~with the OdB constraint). 

The second application of interest of 
the background provided in the presen
tation arising to the spectral estimate 
of (22-b) is its use in the cross-spec
trum problem. Being !!.x and w the two 
filters for chanel x and 7hanel y, 
steered at the same frequency and, 
designed under the same constraints 
set, the cross-power level could be 
measured as: 

P (w ) = E(e *(n) e (n)) xy o x y 

and using the reduced expressions of ex 
and e for a single or scalar cons
traint~ the following estimate results 
ill!. 

STR -lR R -IS 
P (w ) = --~-=~--=~z~Z--~--

xy o (STR -lS)(STR -IS) 
-=x--=y-

(24) 

Using ~ow the cross-bandwidth estimate 
as !!.x ·~ =Bx (w ) , the cross-spectrum 
estimate 1-s o=hta'ined. 

STR -lR R -lS 
s (w ) • ~-~~--~~Z~X--~ 

xy o STR -lR -1 5 - -x -y -

(25) 

This estimate is a high performance 
cross-spectrum estimate which performs 
much better that theTwell known cross
spectrum estimate S R S. Its use in 
broad-band beamformingx;rovides excel
lent results and supports the potential 
of data-dependent filter analysis all 
the fields of spectral estimation 
(1D;2D and multichanel problems). 

V. CONCLUSIONS 

The interesting alternative ~rovided by 
the STUSE method in order to obtain 
good estimates of the data periodogram 
P(w), extending the very well known 
WOSA procedure. This approach opens new 
posibil~ties to obtain reliable prior 
estimate P(w) for variational procedu
res of spectral estimation. This work 
reported by Mathews and Youn is a 
valuable toOl to enhance the best of 
the herein described frameworks for 
spectral estimation. 

Using the variational formulation 1 the 
importance of objectives in controling 
the structural model associated to the 
resulting estimate together with the 
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constraints is repor~ed. It was pointed 
out that the most important role of the 
constraints we use in the procedure, is 
just to be sure enougth that all the 
information of tnterest is included in 
the mathematical formulation of the 
procedure. That is very important 
mainly because may authors use to pay 
more attention and efforts in finding 
new objectives. If the information 
provided is the same (i.e. correlation 
constraints) to different objectives, 
we will expect very small differences 
between the estimates, most of the 
times I like to name them as cosmetic 
modifications, if the structural model 
is not the adequate for the signal 
under processing. In summary, new 
trends in spectral estimation will 
devote more efforts in the constraints 
than in the objectives. 

In the time domai~ variational problem, 
data-dependent filters are depicted as 
a general spectral estimation problem. 
This framework is non-parametric in 
nature ; and we will expect an 
excellent performance for any signal or 
problem, at least from my experience 
using these methods in practical 
environments. In other words, these 
methods perform quite well no matter 
the signal model and regardless if the 
problem is 1-D, 2-D, narrowband 
beamforming for non-equally spaced 
arrays, broadband beamforming and 
cross-spectrum or spectral matrix 
estimation. 
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