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Abstract 

A new architecture to model and design non-linear transfer functions is presented using a new formulation for 
non-linear systems. This approach follows the guidelines of the mapping theorem due to A. Kolmogorov and it is based 
on the direct Fourier transform of the transfer function. The resulting scheme is formed by two stages; the first stage 
contains phase modulators, which, based on random sampling concepts reported by I. Bilinskis, are duplicated with 
a small perturbation in the modulation factor. This stage depends on the number of diversity data and it is independent of 
the function. The second step reduces to Volterra systems and a direct combiner of the new diversity kernels. The 
reported architecture and design seem to be able to cope with both linear and non-linear filtering problems, which can be 
considered as a formal framework for generalised signal processing. 

Zusammenfassung 

Eine neue Architektur wird mit neuer Formulierung fiir nichtlineare Systeme vorgestellt, urn nichtlineare Funktionen 
zu modeln und zu entwerfen. Dieser Antsatz folgt den Richtlinien des Theorem von A. Kolmogorov und basiert auf 
direkten Transformation Fouriers von der Funktion des Transfers. Das resultierende Schema besteht aus zwei Etappen. 
Die Erste hat Phasenmodulations, die mit einer kleinen Verzerrung im Modulationfaktor dupliziert werden. Das basiert 
auf der Auffassung der aleatorischen Stichprobenerhebung von I. Bilinskis. Diese Etappe ist auf die Nummer der 
Datenverschiedenheit angewiesen, aber ist unabhgngig von der Funktion. Die zweite Etappe beschrHnkt sich auf 
Volterras Systeme und auf eine direkte Kombination der neuen Kernelverschiedenheit. Das Ergebnis dieser zweiten 
Etappe ist dann ein Signal, so 5hnlich das Signal des gemessen Ausgang wie miiglich. Auaerdem scheint es zu sein, dab die 
verlegte Architektur und der Entwurf mit beiden linearen und nichtlinearen Filterungsproblemen benutzt werden 
kiinnen. 

Rbumi 

Cette communication prtsente une nouvelle architecture servant a rep&enter et modtliser des fonctions de transfert 
pour des systkmes non-lintaires. Cette approche utilise les principales idCes divelopp6es dans le thCortme de 
A. Kolmogorov ainsi que les transform& de Fourier des fonctions de transfert. Le schima r&&ant nCcessite deux ttapes. 

* This work has been supported by the Spanish National Research Plan, CICYT, Grant Number TIC 92-0800X05-05. 

*Corresponding author. 

016%1684/95/$9.50 0 1995 Elsevier Science B.V. All rights reserved 
SSDI 0165-1684(95)00028-3 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/46605806?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


250 A. Pagh-Zamora et al. /Signal Processing 44 (1995) 249-267 

La premiere utilise des modulations de phase oh les concepts d’echantillonnage aleatoire d&-it par I. Bilinski sont 
appliques. Ces dernitres sont reproduites avec des petites perturbations dans le facteur de modulation. Cette &tape 
depend des donnees de la diversitt mais est independante de la fonction de transfert. La seconde &tape consiste en un 
systeme de Volterra et un melange direct des noyaux de la nouvelle varittt. L’architecture et le modele adopt& semblant 
s’appliquer tant aux systemes lintaires qu’aux systemes non-lineaires et peuvent done Ctre vus comme une possibilite de 
resolution generale des problemes de traitement du signal. 

Keywords: Wiener-Kolmogorov filtering; Non-linear systems; Volterra filters; Kolmogorov mapping theorem; Fourier 
model; K-filter; System identification; Equalisation 

1. Introduction 

Non-linear signal processing has emerged in the 
last years as a specific target for signal processing 
tools, being a direct consequence of the degree of 
saturation produced in the linear signal processing 
field during the 1980’s. At the beginning, non-linear 
filtering and modelling were under the scope of the 
filtering theory and it can be said that the first 
non-linear kernels, for a generalised convolution 
integral, were reported at the same time that the 
filtering of Gaussian processes with linear filters 
and minimum square error (MSE) criteria were 
reported [28]. At the same time, three fields evol- 
ved, almost separately, finding an alternative to 
linear schemes in the three aspects which are rele- 
vant to signal processing, i.e. the architecture, the 
associated functions and the algorithms. At the 
architectural level, new schemes appeared under 
activities encompassed by neural networks [ 143. 
Concerning associated functions, higher-order pro- 
cessing was developed and proven useful to open- 
ing up new signal processing applications [21,25]. 
Finally, at the algorithmical level, the ‘Estimate and 
Maximise’ algorithm [ll, 181 is probably the most 
valuable tool for the design and learning stage of 
many of these new alternatives. 

In [22] the authors related, using the mapping 
theorem of Kolmogorov [17], the aforementioned 
efforts when the source separation problem [2,3,9, 
15,161 is faced along the main guidelines contained 
in the mapping theorem. Precisely, it is this the- 
orem which motivates this work. Starting from the 
usual architecture and framework of non-linear fil- 
tering, a new architecture formed by two processing 
stages in agreement with the theorem, is intro- 

duced. A closed formulation for the design of such 
an architecture is also presented. The objective is to 
find a procedure for non-linear filtering design from 
only short input and output records of measured 
data, without significant dependence on the input/ 
output statistics and the specific transfer function, 
either linear or non-linear, which relates both re- 
cords. 

The so-called Volterra filter is briefly outlined in 
Section 2. Section 3 introduces a Fourier repres- 
entation of non-linear transfer functions, which 
proves the efficiency associated with a previous 
transform of the Volterra processing. In Section 
4 the mapping theorem is briefly described in order 
to support the new architecture. Later on, in 
Section 5, the new K-filter is presented, where 
K stands for the Kolmogorov’s existence theorem 
that motivates this work. The architecture is de- 
scribed in detail, starting from the case of memory- 
less to generalised non-linear systems, which 
include temporal diversity of the input signal. 
Finally, in Section 6, some simulations are included 
in order to support the main points arising from the 
new proposed techniques. Although these simula- 
tions are not enough to assess the overall perfor- 
mance of the new filter, they justify the interest in 
the procedure and support the potential interest of 
future work in the reported architecture. 

2. Volterra filters 

The well-known Volterra modelling of non- 
linear systems [28] consists of a polynomial appro- 
ximation of the system response. This polynomial is 
a function of many variables depending on both 
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the order and the diversity handled by the model. 
Thus, (x(t), x(t - rl), x(t - r2), x(t - z,), . . . , 
x(t - T,)) is the data used by the model to form the 
so-called Volterra kernels, (7 t , TV, . . . , zQ) are the 
diversity parameters, and the order is the maximum 
number of diversity components forming a kernel. 
Without loss of generality, this brief review will 
focus on the case of memoryless non-linear systems 
(i.e. no diversity and order M). In this case, the 
Volterra model for a given function y = g(x) will be 

y&) = Vol[x(t), M] = ; a, JP(c). 
??I=1 

The computation of the coefficients a, can be 
carried out with minimum squares fitting or with 
a minimax criteria which are very well known tech- 
niques from the classical approximation theory for 
filter design in the frequency domain. 

The one aspect that is important to recall here is 
that most of the success of the resulting approxima- 
tion comes from the dynamic ranges of the in- 
put/output signals selected to fit the model to the 
observed data. In any case, the presence of powers 
of the input signal in the model formulation (I) 
implies severe errors whenever the input signal 
evolves over the a priori selected dynamic range, 
assumed to be [ - X,,,, X,,,] (see Fig. 1). This is 
an important drawback since most of the systems 
of interest usually present saturation in their re- 
sponse, and the kernels used in the Volterra model 
are not adequate to represent this phenomena. It is 

x(t) 

Fig. 1. Volterra modelling in saturated systems. 

possible to extend the dynamic range of the model- 
ling design above [ - X,,,, X,,,], but this will 
have a negative impact on the quality of the ap- 
proximation around the maxima of the input prob- 
ability density function (p.d.f.) (located usually 
nearby zero). Other models may be used to better 
fit the given function, but they will be at the expense 
of one of the most important features of the 
Volterra models, which is the design and learning; 
in other words, whatever the approximation is. it 
should be a linear combination of predefined ker- 
nels in order to preserve the MSE design and the 
linear learning. 

One way out to overcome, in practice, the above- 
mentioned drawback is using some data trans- 
formation T [x(t)], which will be also non-linear, 
followed by a redesigned Volterra filter. This archi- 
tecture is depicted in Fig. 2 and it requires, in 
general, some a priori knowledge of the transfer 
function to be modelled. With this approach the 
linear learning remains in terms of the new input 
data z(t). The rest of the paper is devoted somehow 
to the transformation that provides z(t) and how it 
could be selected. It should be mentioned that 
many practical models reduce T (.) to a linear- 
saturated system which avoids the previously men- 
tioned problems (Eq. (2)). 

T [x(t)1 = 

i 
x(t) - x,,, < x(t) < xmax, 
X,,,sign [x(t)] else. 

(2) 

The next section will reproduce a theorem which 
is highly related to the role and potential of the 
mentioned transforms and it is the source of all the 
new framework for system modelling reported 
hereafter. 

Concerning the case of systems with memory, it 
is important to recall that the design procedures 
reported nowadays [4], are upper bounded by tri- 
linear systems as long as the input data are Gaus- 
sian distributed. Under these premises of tri-linear 
systems and Gaussian distributed input, the use of 
the cross-correlation of the input and the output of 
the non-linearity under modelling [4,6,263, allows 
a closed design of the corresponding model. The 
rest of the paper is devoted, based on the guidelines 
provided by Kolmogorov [ 17 J, to reporting a new 
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architecture able to cope with any kind of non- 
linearity, together with a design framework based 
directly on the input/output data. 

3. The Kolmogorov mapping theorem 

In 1957 Andrei Kolmogorov [17] solved the 
13th problem of the collection that Hilbert pro- 
vided as the mathematical problems for the 20th 
century. He proved the existence of a solution, 
based on functions of a single variable, of the prob- 
lem of finding a continuous function mapping Q in- 
puts into S outputs. If x is the input vector of 
Q components x(q) (q = 1, . . . , Q), and y the corres- 
ponding output vector with S components y(s) 
(s = 1, . . . , S), the existence theorem specifies that 
the processor which maps x in y is formed by two 
stages. The first stage has a mathematical repres- 
entation given by (3), where A and the functions @(a) 
depend on the number of components Q of the 
input vector and are independent of the specific 
mapping function, and E is an arbitrarily chosen 
value. 

zk(x) = 5 lq@[x(q) + k&l + k, 
q=1 

k=1,...,2Q+l. (3) 

The second stage contains S functions cps(.) that 
produce the &h-component of the output. 

2Q+l 

Y(S) = c (P&k), s = 1, *.. 9s. 
k=l 

(4) 

This brief description of the theorem has been 
obtained from Hecht and Nielsen [14]; further 
reading of the theorem can be obtained from 
Lorentz and Kurova [lo, 19, 20, 231. These refer- 
ences shed some light on the most astonishing part 
of the theorem, which is the independence of the 
first stage functions @(*) of the specific mapping 
being implemented. 

Although no practical implementation of the the- 
orem has been reported yet, it suggests many im- 
portant advances in signal processing just following 
the guidelines contained in it as it will be seen 
hereafter. It may be argued that the final model and 
filter, to be reported herein, keep some distance 

from the formality of the theorem. In any case, it 
was really the motivation of the authors to start the 
searching of alternatives to the inherent limitations 
of Volterra modelling and Weiner-Kolmogorov 
(W-K) linear filter theory. 

At this moment, it is important to note the sim- 
ilarity between the structure depicted in Fig. 2 and 
the two-stage scheme of the Kolmogorov’s theorem 
shown in Fig. 3, for the specific case of a single- 
input/single-output mapping function. 

With independence of the second stage, our at- 
tention is focused now on the first stage, where 
a signal transformation takes place with only 
two parameters, and it seems to contain the most 
interesting part of the theorem. Related to this 
transformation, it is important to be aware of the 
robustness and the average performance of logar- 
ithmic companding for both analog and digital 
processing in audio noise reduction and coding 
systems. Furthermore, the practicality and robust- 
ness of these techniques suggest to the authors the 
potential of a logarithmic transformation in order 
to cover the role assigned by the theorem to the first 
processing stage. In consequence, the paper will 
concentrate on the use of logarithmic transforma- 
tions or, to be more specific, in phase modulated 
(PM) versions of the input signal. This kind of 
transformations will allow the connection between 

Vol (J 
y(t) 

- 

Fig. 2. Two-stage model with a pre-defined non-linear trans- 
formation followed by a memoryless Volterra system. 

x(t) 

Fig. 3. The Kolmogorov architecture derived directly from the 
theorem for an instantaneous (memoryless) mapping of x(t) 
in y(t). 
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the K-filter and both, the two-stage scheme of 
Kolmogorov’s theorem and the Fourier model pre- 
sented in short. A modelling and generalised filter- 
ing scheme following the guidelines of the existence 
theorem will be developed together with an ex- 
planation for the requirement of the 2Q + 1 
components. It will be shown that, as predicted, 
Kolmogorov’s mapping theorem represents a step 
ahead in the performance of classical Volterra 
models and Wiener-Kolmogorov linear filters. 
Starting from the so-called Fourier model for 
a memoryless non-linear transfer function, the 
Kolmogorov filter (K-filter) will be introduced and 
extended to the case of non-linear functions with 
memory. 

4. The Fourier model 

The signal y(t), equal to the function g[x(t)], can 
be represented in terms of the Fourier transform of 
g(.), denoted by G(o) (Eq. (5)). 

G(4e jfJJX(t) dw. 

As long as g(‘) is assumed periodic with a period 
2X,, larger than the dynamic range 2X,,,, the 
above integral can be represented by the Fourier 
series (Eq. (6a)), which by direct truncation leads to 
the approximation of Eq. (6b). 

y(t) = & E G(moo)ej"w~x(f), 00 G 4x0, 
Om- m 

(64 

y(t) z yp(t) = & iy G(moo)ejmo~x(f), 
Om- M 

QhJ < 711x0. VW 
The coefficients of the Fourier series develop- 

ment, G(moo), correspond to the Fourier transform 
of g(e) evaluated at multiples of the so-called princi- 
pal frequency, wo. The problem, motivated by the 
sampling of the continuous Fourier model, will be 
commented later. 

Taking into account the usual odd character of 
the mappings of interest in practical applications, 
the linear combination of exponential functions 
(Eq. (6b)) evolves to a linear combination of sine 

Fig. 4. A phase modulator (PM) followed by a Volterra filter to 
model any memoryless mapping of two signals. 

functions (Eq. (7a)). Thus, the PM modulator pro- 
posed to implement the transformation of the first 
stage of Fig. 1 leads to a real univariate function, as 
it is specified in the theorem. Furthermore, it can 
be easily shown that such a sine development 
allows a summation of infinite odd powers of the 
modulated signal. Assuming a truncated version of 
it, expression (7a) can be approximated by Eq. (7b). 

g(x) = - 9( - x) * 

v,(t) = f E IG( mooNsin CmooxWl, 
Om-1 

(74 

y,(t) 25 y,(t) = F az,+ 1 sin2”+ 1 [wax(t)] . (7’4 
n=O 

To state clearly the similarity of the Fourier 
model with the Kolmogorov structure, Fig. 4 shows 
the model described in this section (Eq. (7b)). This 
model avoids the problem of the input signal dy- 
namics and it can be encompassed as one branch of 
the Kolmogorov architecture, which somehow sup- 
ports the fitness of the pre-processing transform to 
any Volterra model. Some questions remain on the 
additional branches claimed by the existence 
theorem. This point will be explained in the next 
section, as it is related to the frequency sampling 
approximation when passing from the continuous 
formulation (general mapping definition) to the 
Fourier series. 

5. The K-filter 

5. I. The memolyless K-Jilter 

The evolution of the Fourier model to the 
Kolmogorov model (K-filter) stems from the re- 
quirement for additional branches, in order to 
better fit any mapping function. The reason for 
a second branch or path in the processor comes 
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from the potential existence of a non-zero to zero 
correspondence in the function to be modelled. The 
term a, generalises the mapping as it can be seen in 
Fig. 5. 

y.(t) = a0 + +c” azn+ 1 sin’“+ ’ [o,x(t)] . (8) 
n=O 

The problem with Eq. (8) is that it is still an 
approximation as the periodic structure of the 
model avoids the convergence to the actual map- 
ping, retaining a few samples of the actual Fourier 
transform G(o). 

An approach, reported by Bilinskis [S] some 
years ago concerning random sampling, inspired 
the solution of the sampling problem and the inclu- 
sion of the third branch claimed in the theorem. Let 
us assume that a third branch with a slightly differ- 
ent modulation frequency (o. + E) is set. The new 
frequency is set in such a manner that the coincid- 
ence between harmonics of both frequencies is re- 
duced as much as possible. With these two frequen- 
cies we may say that the frequency sampling is 
produced almost at random in G(w). In fact this is 
the important objective of the two branches and the 
perturbation parameter E, i.e. to produce a random 
sampling of the continuous function to be 
modelled. It can be said that the Volterra model in 
every branch, which generates the corresponding 
frequency scanning, can be modified in order to 
produce the random effect of the frequency samp- 
ling better. The answer is positive but the resulting 
complexity increases. Thus, assuming that in the 
band of interest, the random eflect takes place, the 

Fig. 5. Two path for generalised instantaneous x-y mapping. 

corresponding model can be formulated as 

y 6(0-COG) 1 &dt) do. i=-m 
(9) 

If Pn,(Oi) is the p.d.f. of sample Wi, then the ex- 
pected value of the model will be 

X PQ ,(mi) dmi 
11 

e jwdt) do 

1 Ptm c +a, 1 

(10) 

revealing that, as long as the superposition of the 
p.d.f. of the sampling frequency is constant, the 
expected value of the model will coincide with the 
actual transfer function of g[x(t)]. That is, the 
proposed model implements an unbiased estimator 

(Eq. (I I)). 
If 

‘c” P&zo) = ct - E[yk(c)] = y(t). (11) 
i=-00 

The resulting architecture for a finite number of 
samples (i.e. o. not too small and Volterra systems 
of finite order) is shown in Fig. 6. Note that a qual- 
ity improvement on the resulting approximation 

1 

PM Modulator Volterra N 

Fig. 6. The K-filter for a memoryless non-linear function 
y(t) = g(x(t)) (top), and the extension of the basic function to the 
coefficients computation. 
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can be obtained by decreasing oo, at the expense of 
increasing the order of the Volterra systems. It is 
also important to remark that the learning stage of 
the K-filter can be performed using gradient tech- 
niques (least-mean squares (LMS), normalised- 
LMS) in the same manner that they are applied to 
the classic Volterra models. With respect to the PM 
modulators, note that they contribute, better than 
the powers of the input signal, to enlarge the band- 
width of the new frequencies not contained in the 
input signal power spectral density. The richness of 
the outband frequency content of the output y(t) is 
associated with most of non-linear devices and sys- 
tems used in practice. In terms of convergence it is 
expected to improve with respect to single Volterra 
models, since the independence between PM 
modulators of different modulating frequencies of 
the input signal is, in general, better than using 
powers of it. An important issue that justifies the 
superior performance in terms of adaptive conver- 
gence of the K-filter versus Volterra models is that 
the fixed dynamic range of the PM diversity (i.e. 
sin (noox(t generated in the first stage, allows an 
accurate setting of the p parameter in an LMS 
algorithm. In this sense note that the power diversity 
in the Volterra case (i.e. x”(t)) poses a problem for 
the step size setting, since the dynamic range cha- 
nges dramatically from low n to the approximation 
order (high n). 

Summarising the previous paragraphs, note that 
the phase modulators produce a new diversity set 
from the original one. The perturbation parameter, 
E in the theorem, together with the modulation 
frequency are the basic parameters for the fre- 
quency scanning of the corresponding Fourier 
Transform G(w). Note that every Volterra system 
contains a finite series of smooth functions some- 
how reminiscent of the functions described in the 
previous section. The weights of the series involved 
in the Volterra systems are function dependent, as 
predicted by the theorem. In any case, it is worth- 
while to remark that the Volterra systems represent 
a specific choice for the task assigned which is to 
scan G(w) properly, in order to get accuracy in the 
resulting implementation of function g(‘). This is 
the synthesis of the existence theorem in our ap- 
proach: first step: generate transform kernels; sec- 
ond step: scan the transform domain. 

5.2. The K-jilter with memory 

To generate the K-filter to the case of non-linear 
functions with memory and without loss of general- 
ity, we will set the corresponding K-filter for a func- 
tion g(., .) of two values of the signal input, x(t) and 
x(t - z). Note that the system in (12) manages input 
data diversity, which is associated with any filtering 
scheme. 

y(r) = sCx(r), x(t - 7)l’ (12) 

The two-dimensional inverse Fourier transform 
which leads to y(t) is as follows. 

1 +co +m 
y(r) =oz _cc 

s s 
_G(ol& 

x ,jtwlX(t)+W2X(t-T)ldW1 dw,. (13) 

At this point, it is worthwhile to remark that the 
crucial issue when designing the K-filter is the way 
in which the frequency plane is scanned, which is 
associated with the random assumption. As the 
frequency plane is now two-dimensional, the explo- 
ration performed by the corresponding Volterra- 
like system has to cover the domain of both 
frequencies simultaneously. Nevertheless, before 
discussing how the randomised sampling can be 
generalised to a two-dimensional plane, it is neces- 
sary to obtain a formulation similar to the linear 
combination of powers of sine functions (Eq. (7b)) 
but in the two-dimensional case. In order to 
achieve this, a truncated version of a two-dimen- 
sional Fourier series development is proposed in 
Eq. (14), as it was done in the case of memoryless 
systems. 

1 

Yp(r) = (2X0)~m*._Mm2=_~ 
f ; G(mroo, mzoo) 

x e j[mlooxW + m2ooxU - 711 (14) 

The main frequency is chosen as oO = z/X0 
where 2X0 should be larger than the input range 

2X,,, . Then, assuming that the mapping of 
interest will have odd symmetry with respect to the 
origin, the Fourier series can be arranged in 
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a summation of sine functions. 

x sin [mloox(t) + m2w0x(t - r)]. 

(15) 

Note that it is not possible to arrange the terms 
of expression (15) in powers of sine functions, al- 
though it is required to follow the same steps as in 
the memoryless case. In consequence, we propose 
the following development in order to achieve an 
approximation of Eq. (15) in powers of sine func- 
tions. Although such a development only leads us 
to an approximation and it also seems to be quite 
heuristic, it is important since it will allow 
the connection between the K-filter and the 
Kolmogorov theorem. Thus, Eq. (15) results in 
expression (16) when it is written in terms of two 
new functions denoted by fi(m) and f2(m). 
These functions play the same role as the instan- 
taneous frequency in a phase modulation scheme, 
with index equal to the input diversity components 
(Fig. 7). On the other hand, the new coefficients a,,, 
can be directly related to the samples of the two- 
dimensional Fourier transform, G(mlwO, m200). 

(M+ 1)2- 1 

Y,@) = C win Cfi(+(O +fi(m)x(f - 41. 
m=O 

(16) 

The approximation we propose consists of sub- 
stituting the functions fi(m) and f2(m) by a first- 
order approximation which corresponds, let us say, 

fl(m) 

Maal/+ . . . . ,., . ..I ,m 

W+i 1 2(M+l) 
fz(m) 

(M+1)2 

Maoi , r Jl *m 

(M+l)2 

Fig. 7. Representation of functionsf, (m) andf2(m) versus m. 

with their unwrapped versions. 

fi(m) z moo, (174 

Thus, if only these frequencies and their har- 
monics are kept, Eq. (16) results in Eq. (18a) that 
can be already arranged in a truncated linear com- 
bination of powers of sine functions (Eq. (18b)). It is 
assumed that the number of terms in Eq. (18b) is 
much less than in Eq. (18a), with the new coeffi- 
cients c2,,,+i different from the former ones a,, 
although they are related. 

(M+lp-l 

YPW = c a,sin moox(t) + ~u,x(t - z) , 

m=O 1 (184 
Y,(l) = Yaw 

=jo ~~~+~sin’n+’ [ WO oox(t) + -x(t - 7) A4 1 , 
(18’4 

Although it will be justified in the next section, 
note that if in expression (16) the functionf, (m) had 
been applied to x(t - r) and f2(m) to x(t), expres- 
sion (18b) would have resulted in the following one: 

YPW = YdO 

= n$od,.+, sin’“+l [zx(r) + wox(t - r)]. 

(19) 

It is important to remark that, forming the in- 
stantaneous phase, the phase modulation and the 
corresponding Volterra system involve real-valued 
univariate functions as predicted by the theorem. 
On the other hand, taking into account the approx- 
imation involved in (18), which gives priority to the 
scanning associated with x(t - r) with a high 
modulation index coo/M, it is clear that in order to 
balance the role of every diversity input in the 
scanning procedure, expression (19) should be in- 
cluded in addition to (18) in the filter architecture. 
This argument, which justifies a second branch in 
the architecture, can be considered heuristic, but it 
reveals that even under strong approximations to 
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the first stage of Kolmogorov’s architecture, the 
number of outputs supplying the second stage re- 
mains unchanged. In summary, the first stage pro- 
duces the following formulation for the system un- 
der consideration: 

y,(t) = ; cZn+ i sin’“+’ [ 0,x(t) n=O i 
+ 2x@ - 7) 1 

+d 2n+ 1 sin2”+’ 
[ 

$x(t) + oox(t - 7) II . 

Once the two-dimensional Fourier series devel- 
opment has been arranged as a linear combination 
of powers of sine functions, we should face the 
problem of how the randomised sampling, men- 
tioned in the previous Section 5.1, can be general- 
ised to the two-dimensional case. The scanning of 
the 2D frequency plane that we propose can be 
done by setting two different PM modulators for 
every diversity component with frequencies equal 
to o. and (o. + E). The diversity components of the 
input signal are combined before being modulated 
and applied to the Volterra systems. Thus, the 
approximation of function (12) that the K-filter will 
perform is summarised as follows: 

Ye,*(t) = zo + i Zk(Ov (214 
k=l 

Zl@) = i co,2n+l sin2n+1 
[ 

oox(t) + Sx(t - T) , 
n=O 1 

WV 

zz(t) = ; %2n+1 

n=O 

x sin’“+’ 
[ 

(w. + &)x(t) + vx(t - z) 1 , 

cw 
z3(t) = 5 d0,2n+l sin2”+’ $x(t) + wox(t - r) , 

n=o [ 1 
(214 

W) = 2 &,a,+ I 
n=O 

x sinZ”+ 1 

[ 

(““M+ ‘) 
x(t) + (c&J + .$x(t - 7) 1 . 

We) 

This processing produces, together with the per- 
turbation, the effect of an almost random sampling 
in the 2D frequency plane. The formulation in Eqs. 
(21) provides the guidelines for higher-order sys- 
tems; these guidelines can be summarised in three 
steps. The first step contains the combination of the 
diversity components including the perturbed ver- 
sion (2Q components plus a dc level). The second 
step applies the modulators preserving the number 
of variables, 2Q + 1. Note that these two steps do 
not depend on the specific mapping to be per- 
formed. The third step is formed by Volterra sys- 
tems acting on the diversity combinations and they 
depend on the specific function being modelled. 

5.3. The formulation of the K-jilter for the general 
case 

In general, a filter maps a given data signal x(t) 
into a signal y(t), which has to be as close as 
possible to a reference d(t) in accordance with some 
distance criterion. The diversity used in the filtering 
depends on the application under analysis. In gen- 
eral, equally spaced time diversity is the most gen- 
eral (i.e. the diversity vector x, formed by x(t - 4%) 
for 4 =O, . . . , Q - 1). Also spatial, or mixed spa- 
tial-temporal, diversity is used in filtering (beam- 
forming) for narrowband or wideband array pro- 
cessing. Without loss of generality we will analyse 
the case of uniform time diversity since it is the 
most common use of W-K linear filtering theory. 

The signal y(t) can be viewed as a multivariate 
function of the diversity components (Eq. (22a)) 
and can be also expressed in terms of its corres- 
ponding Fourier modelling (Eq. (22b)). 

y(t) = sCx@), x0 - 4, ‘.. ,x0 - (Q - lb)1 , (224 

y(t) = &;,“s+,” . . . [;,Gb1, ~2, . . . ,@Q) 

x ej[olx(t)+up(t-z)+ +w,x(t-(Q- 1)r)l 

x do1 do2 ... dC!+. (22b) 

In line with what we proposed previously, the 
first stage combines the Q diversity components in 
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such a manner that it generates Q outputs. Follow- 
ing the steps already taken in the K-filter in Section 
5.3, the following combinations are proposed: 

zr(t) = sin 
[ 

o&t) + $X(t - r) + ... 

+ &x@ - (Q - lb) 
1 

, (234 

z&) = sin 
[ 

$x(t) + $X(t - r) + ... 

+ wox(t - (Q - lb) 
1 

, (2W 

. . . 

i+(t) = sin %.x(t) + w&c(t - r) + ... &fQ-’ 

+ &x0 -(Q - 1)~) 
1 

. (23~) 

The argument of the sine functions correspond to 
the first-order approximation of the instantaneous 
frequencies, obtained in the same way as it was 
done for the K-filter in the two-dimensional case. 
On the other hand, since the Kolmogorov theorem 
claims the existence of (2Q + 1) variables, we pro- 
pose to add a perturbed version of each z&), 
k = 1, . . . ,Q, with a different principal frequency 
(i.e. substituting o. by w. + E). This processing 
produces the effect of an almost random sampling 
in the Q-dimensional frequency hyperplane in the 
same way as it was proposed in the two-dimen- 
sional K-filter. Thus, the perturbed Q functions are 
chosen as follows: 

ZQ+k(t) = zk(%o=wo+c, k = 1, . . . ,Q. (24) 

Then, these 2Q functions zk(t) (k = 1, . . . ,2Q), are 
applied to a Volterra memoryless system of order 
N. Thus, the output of the Volterra system whose 
input is zk(t) is written in powers of the input: 

Yk(l) = 5 ak, 2n + lzk ‘“+l(t), k = 1, . . . ,2Q. (25) 
I#=1 

Finally, the output consists of a linear combina- 
tion of these 2Q functions together with the 

dc component denoted by y. (Eq. (26)). 

You&) = YO + : Yk(t). 

k=l 

5.4. The architecture 

(26) 

The formulation provided from Eqs. (22)-(26) 
can be summarised into three steps as it is shown in 
Fig. 8. The first step combines the Q diversity com- 
ponents generating (2Q + 1) variables: the first 
Q ones correspond to different linear combinations 
of the instantaneous phases, the second group of 
also Q variables is obtained from perturbing the 
previous ones and finally the dc level. Then, the 
second step includes the PM modulators imple- 
mented by sine functions that are applied to the 
first 2Q variables (Eqs. (23) and (24)). Finally, the 
third step is formed by the Volterra systems which 
act on the modulated signals (Eq. (25)) and the 

x(t). 

x(t 

._____--______-__________, .________________________ 
1st stage 2nd stage 

Fig. 8. The two-stage architecture of the K-filter showing from 
left to right the diversity, the diversity combiner, the modulation 
and the Volterra modules. 
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subsequent linear combination to obtain the out- 

put (Eq. (26)). 
The choice presented in (26) has been used suc- 

cessfully in the simulations, but the overall rule is 
the independence of the Volterra kernels. The prob- 
lem encountered when selecting the modulation 
frequencies is in accordance with the mapping the- 
orem, since the transforms do not depend on the 
mapping, but their design depends on the number 
of diversity data managed by the filter. If the order 
of M and Q is increased, the adequate setting for the 
modulation frequencies and perturbations in order 
to guarantee, as much as possible, the indepen- 
dence of the kernels, will be more difficult. 

The first stage of processing, which will not de- 
pend on the specific mapping, is constrained to be 
a linear combination of the diversity components 
(Eq. (3)). This stage combines the diversity set in 
order to allow a multifrequency scan with functions 
of a single variable. This is achieved by a matrix 
n (with inputs &) that combines the diversity 
components. 

L 

Q-1 

z,(t) = sin w. c &,x(t - pz) , k = 1, . . . ,Q, 
p=o 1 

(27.1) 

Q-1 

zk(t) = sin 
[ 

(w. + E) C &x(t - pr) , p=o 1 
k = Q + 1, ,2Q, (27.2) 

Parameters A,, are given by 

&O = 1, k = 1, . . ,2Q, (28.1) 

Ir.p I ~ 
1 

if &_ 1 -c &, 

‘k-p = 

i 
M 

1 if &p_ 1 = &, 

k= 1, . . . . 2Q, p=l, . . . . Q-l. (28.2) 

The outputs Yk of the Volterra systems with input 

zk for k = 1, . . ,2Q are added together to the dc 
component y. to produce the filter output as it is 
shown in (25). 

When, for the sake of generality, we include 
a weighting Ck in the addition of the Volterra out- 

puts, we have 

.h,t@) = F CkYk(t). (29) 
k=O 

This structure can be seen as the cascade of 
a non-linear system for each combined diversity 
component with an optimum linear combiner (gen- 
eralised convolution). It should be recognised as 
a step ahead in the generalised convolution the- 
orem having a strong similarity with the so-called 
Wiener and Hammerstein processors [7] that were 
applied in non-linear echo cancellation problems in 
the 1980’s [l, 301. The architecture represented by 
the K-filter is more sophisticated since it introduces 
the Hammerstein architecture at the diversity com- 
ponents level, instead of cascading a single linear 
filter with Volterra systems; this is, to the author’s 
knowledge, the first time that this architecture is 
proposed [4, 27, 311 in a formal framework design. 
It should be recognised that the so-called func- 
tional link equalisers share the same basic principle 
[8, 121; the performance of these architectures ver- 
sus conventional Hammerstein structures in digital 
communications equalisers for highly dispersing 
channels is remarkable. Also the interest of ortho- 
normal functions, connected with the Wiener func- 
tionals [24] in non-linear filtering, has been shown 
in [29] in a very elegant manner. 

Before formalising the filter design, it is impor- 
tant to remark that the architecture proposed in 
Fig. 8 perfectly agrees with the mapping existence 
theorem of Kolmogorov. First of all, it has been 
justified that 2Q + 1 transformed diversity inputs 
are needed in order to generate an almost ran- 
domised sampling in the frequency domain provid- 
ing an unbiased estimator. Furthermore, as it was 
claimed by Kolmogorov, the first two steps are 
independent of the specific mapping that the filter 
tries to emulate, whereas the second step already 
depends on it since it includes the coefficients [I,,~ 
related to the coefficients of the Q-dimensional 
Fourier series of g(x). In fact, it is worthwhile to 
remark that the mentioned architecture emulates 
perfectly the linear W-K filtering for linear system 
identification problems, and it surpasses the W--K 
performance when non-linear systems are embed- 
ded in the model of the measured signal. 

https://www.researchgate.net/publication/2996332_Nonlinear_System_Modeling_Based_on_the_Wiener_Theory?el=1_x_8&enrichId=rgreq-84f2a88a80794e4ba1ae08f18c2f1b91-XXX&enrichSource=Y292ZXJQYWdlOzIyMjMwMzEyMDtBUzoxMDEwNjY4NTUxNTc3NjRAMTQwMTEwNzYyNDgzNQ==
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5.5. The design of the K-Jilter 

In order to formalise the filter design, a diversity 
vector with (1 + 2QM) components that contains 
the phase modulated diversity inputs is introduced 
and denoted by u (Eq. (30)). 

u, = Cl U(1, 1) U(1.2) *-* U(1.M) U(2,l) U(2.2) a*. U(2,hf) 

..* u(2Q.l) U(2Q.2) ... U(2Q,M)IT. (30) 

Where the components of vector u are equal to 
expressions (31) in accordance with (27). 

qk,&) = sin 1.00 C &x0 - ~4 
[ 

Q-1 
, 

p=o 1 
k = 1, . . . ,Q, (31.1) 

[ 

Q-1 

qk,~#) = sin 1 .(OO + 4 1 &~(t - ~4 , 
p=o 1 

k = Q + 1, . . . ,2Q. (31.2) 

Thus, the output of the K-filter can be expressed 
in a vectorial way as in Eq. (32) where w denotes the 
vector of coefficients. 

Yo,tW = WT4. (32) 

A global MSE criterion for the design of the 
coefficients of the Volterra system is performed 
from the snapshots u,. If C is the corresponding 
covariance matrix andp the cross-correlation of the 
mentioned snapshots with the reference signal d(t), 
the optimum weights for each Volterra kernel are 
given by 

w=c-lp. (33) 

The matrix and vector involved are computed as 
follows: 

C = E [up:], (34) 

P = ECU, WI, (35) 

where E(e) denotes the expected value, or average 
values in the implementation of the filter. 

It should be reminded that adequate selection of 
the modulation and perturbed frequencies (o. and 
w. + E) will have a considerable impact on the 
condition number of the new diversity covariance 
data matrix C used in the design of the K-filter. In 
other words, there is no general rule to select the 

modulation frequencies, as well as the perturba- 
tions, but an MSE criteria to find the coefficients of 
the Volterra models gives priority to a good condi- 
tion number of the covariance matrix. 

The design procedure mentioned here is based 
on a pure MSE fit for the combined and PM 
modulated diversity components. Although other 
approaches may be suggested for finding the opti- 
mum weights w, the main goal of this work is to 
prove the effectiveness of the new diversity data, 
formed by the combiner plus the modulators, to 
compete with existing alternatives to model both 
linear or non-linear transfer functions. The poten- 
tial of the new architecture designed with different 
objectives other than the MSE is out of the scope of 
this paper. 

6. Simulations 

It is difficult to provide a global proof of perfor- 
mance and evaluation of the presented filtering 
architecture. Nevertheless, three examples have 
been selected to support the potential and interest 
of the signal-processing architectures reported in 
this work. The first one is the identification of 
a memoryless non-linear system by means of the 
memoryless K-filter. The second one corresponds 
to a filtering problem of a non-linear system with 
memory (Fig. 9). Finally, the equalisation of 
a digital non-minimum phase channel is included 
(Fig. 10). 

For the memoryless K-filter, the approximation 
of a non-linear memoryless transformation with 

reference 

d(t) 
al 

8 Model of the Svstem 

d(t) 

Fig. 9. The filtering problem and model used in the simulations 
in Fig. 12 and Tables 1 and 2. 
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d(k) 

W 

Fig. 10. The equalisation problem of a digital non-minimum 

phase channel. 

a transfer function between input and output data 
sequences given by (36) has been selected. Figs. 
1 l(a) and 1 l(b) show the actual transfer function in 
solid line assuming that the input signal is limited 
to the range [ - 1, 11. 

g(x) = [l - e-xZ’o.05] sign(x), 

x E c - XIII,,, Xrnml . (36) 

Two different approximations have been con- 
sidered in order to compare the results: first, the 
approximation achieved by a memoryless Volterra 
filter (polynomial model) of order 20 and second, 
the approximation obtained by a memoryless K- 
filter with two PM modulators and ten coefficients 
each one. These transfer functions, respectively 
shown in Figs. 1 l(a) and 1 l(b), have been achieved 
after a training period of adaptive computation in 
which the coefficients of the respective model are 
updated by means of the standard LMS algorithm 
with a step-size parameter equal to p = 0.1. The 
input sequence is a realisation of 512 samples of a 
uniform distributed random process with the same 
dynamic range of the non-linearity being modelled, 
that is, [ - 1, 11. For the K-filter, a modulation 
frequency of o. = 7c/2Xmar and a perturbation 
parameter equal to E = oo/10 have been selected. 

Note that with the same computational load 
(both filters have the same number of coefficients) 
the approximation obtained by the K-filter is better 
than the one achieved by the Volterra one. This can 
be realised by observing the behaviour nearby the 
(0,O) point and the flatness of the K-filter response 
for input dynamics above 0.5. The differences be- 
tween the approximations achieved by the K-filter 
(Fig. 1 l(b)) and by the Volterra filter (Fig. 1 l(a)) are 
basically due to the cross-correlation among the 
Volterra kernels in the Volterra model, and also to 

the difficulties associated with the optimum setting 
of the step-size parameter of the LMS algorithm for 
the Volterra kernels. Thus, since all the kernels of 
the K-filter have the same dynamic range and they 
are less correlated than in the Volterra model, the 
K-filter represents a better approach than the 
Volterra model. On the other hand, it is important 
to remark that this superiority of the K-filter has 
been tested for different orders and non-linearities. 

In order to test the K-filter with memory, the 
authors have selected the inversion problem (Fig. 9) 
of a non-linear system with memory that emulates 
a communication channel with non-linear amplifiers 
at both sides, at the transmitter and at the receiver. 

The reference signal is obtained by passing 
256 samples of a normal distributed noise through 
a filter with the following transfer function: 
H,(z) = (1 + z -‘)/(l - 0.98~~‘). Thus, the result- 
ing signal is a low pass normally distributed noise. 
Then, this signal is driven into a non-linear device 
with an input/output transfer function denoted 
by y = g,(x) = x + 0.6sign(x)x2, which emulates 
the non-linear behaviour of the amplifier located 
at the transmitter. Next, the signal supplies a 
linear system with a transfer function given by 
H,(z) = (OS + 2z- ‘) that represents the commun- 
ication channel. Following this linear system, a 
second non-linearity is set with a transfer function 
equal to y = gZ(t) = x + 0.8sign(x)x2 -t+ 0.4x3 in 
order to include the non-linear amplifier at the 
receiver. Finally, a - 35 dB additive Gaussian 
noise was added at the output. In summary, the 
K-filter has to reproduce a low pass reference signal 
that passes the cascade of the first non-linearity 
(transmitter amplifier), the band-pass linear system 
(communication channel), the second non-linearity 
(receiver amplifier) and the additive Gaussian 
noise, only by means of the output signal of the 
whole system. 

The filters under test are a linear Wiener filter of 
order 10 (FIR filter), a K-filter (10, 1) (a temporal 
diversity vector of dimension 10, i.e. Q = 10 
(Eq. (30)) and a Volterra filter of order 1, i.e. M = 1 
(Eq. (30)) and another K-filter (10, 5). It is impor- 
tant to remark that these K-filters have two 
branches for each diversity component (Fig. 8) and 
that the principal frequency and the perturbation 
parameter have been chosen as before, i.e. 
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Voiterra model: Adaptive computation from uniform pctf of 512 samples 
1 ! 1 1 1 1 I 1 

, 
1 
1 

1 

I I h I 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 I 

(b) Input 

Fig. 11. Adaptive (LMS) computation of the transfer function from 512 samples of the output data with a uniformly distributed random 
input. (a) Actual transfer function (solid line). Approximated transfer function by a memoryless Volterra filter (polynomial filter) of order 

20 with p = 0.1 (dashed line). (b) Actual transfer function (solid line). Approximated transfer function by a memoryless K-filter 

6% = n/2x,.,, E = oO/lO) of order 10, i.e. M = 10 in Eq. (7a) with p = 0.1 (dashed line). 

00 = 7v2xmax and E = wo/lO. Figs. 12(a)-(c) show the K-filter. The mean residual power normalised 
the corresponding plots where the actual reference at the power of the reference of 30 independent 
can be compared with the output of each proposed realisations for different data record lengths are in 
filter. A visual inspection reveals the superiority of Table 1. The values in brackets correspond to the 
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standard deviation (a) with respect to the mean example, a K-filter with lo-perturbed branches (20 
value. PM modulators) performs much better than an- 

It is also important to remark that we cannot other K-filter with 20 diversity components but 
remove the perturbation branches since, for with a single PM modulator per branch or even 

Reference(solid) Output(dashed). Wiener(l0) 

-0 

(b) 

1 

t 

50 100 150 200 250 
Samples 

Aeference(solid) Output(dashed). K-fiiler( 10,l) 
I I I I 1 

50 
1 I I 

100 150 200 250 
Samples 

Fig. 12. Representation of a 256 samples of reference data (solid line) and the approximation achieved by the corresponding filler 

(dashed line) with an SNR of 35 dB. (a) Reference data (solid line). Approximated output by a Wiener (FIR) filter of 10 coefficients 

(dashed line) (25.3% of residual power/reference power). (b) Reference data (solid line). Approximated output by a K-filter (10, 1) 

(Ul = n/2x,,,, E = w,JlO), i.e. 10 components of diversity and Volterra filters of order 1 (dashed line) (12.9% of residual power/reference 

power). 
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Reference(soM) Output(dashad). K-fiHer(10.5) 
! I I 1 

I I 

50 100 150 200 250 
(c) Samples 

Fig. 12 (c) Reference data (solid line). Approximated output by a K-filter (10, 5) (oO = n/2X,,,,,, a = o,/lO), i.e. 10 components of 
diversity and Volterra filters up to order 5 (dashed line) (3.8% of residual power/reference power). 

Table 1 
The mean residual power normalised at the power of the refer- 
ence of 30 independent realisations for different data record 
lengths and for three different models used in the non-linear 
filtering problem (Wiener (lo), K-filter (10,l) and K-filter (10,5)). 
The model of the system that is filtered is a non-linear system 
with memory (Fig. 9). The values in brackets correspond to the 
standard deviation (o) with respect to the mean value 

Data 
record 
length 

256 
512 

1024 
2048 

Wiener (10) 

22.2% (5.6) 
24.4% (5.2) 
24.3% (4.5) 
24.6% (3.6) 

K-filter (10, 1) K-filter (10, 5) 

10.9% (3.0) 7.2% (4.4) 
12.9% (4.6) 3.1% (1.2) 
12.5% (3.4) 3.1% (0.8) 
12.5% (1.4) 3.7% (1.2) 

better than one K-filter with 10 diversity compo- 
nents with a single PM modulator. That is, a K- 
filter (20, 1) and a K-filter (10, 1) with one branch 
per diversity component (o. = 7r/2X,,,) have a re- 
sidual power of 16.9% (a = 4.8) and 17.6% 
(cr = 5.4) respectively, whereas the K-filter (10, 1) 
with two branches per diversity component 
(o. = x/2X,,, and E = w&O) has a residual power 

of 12.4% (a = 3.43) for the same reference and 
observed data of 1024 samples length (30 realisa- 
tions). Note that the procedure works properly 
without requiring long data records, as it does for 
other design alternatives which use higher-order 
moments (order four for tri-linear systems). The K- 
filter design is a deterministic tool which performs 
very well for short data records. 

A valuable feature of the K-filter is its ability to 
cope with the linear case. The same experiment for 
the second example where no non-linearities were 
present in the model, has been reproduced. In this 
case the observed data is an AR filtered version of 
the reference and the residual error powers are in 
Table 2. These results reveal that the PM modula- 
tors produce valid diversity data even when the 
model to be identified is linear, adding robustness 
to the K-filter to cover any filtering situation. 

Before concluding this section, the performance 
of the K-filter in the problem of equalising a non- 
minimum phase channel is considered. This is 
a widely used problem in non-linear signal process- 
ing since, as it will be seen after, a non-linear struc- 
ture is required to equalise this kind of channels. 
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In digital communications where the receiver has 
to decide between two possible values, the equaliser 
can be seen as a filter that implements a boundary 
in the input data space in such a way that, when the 
input data vector is at one side of the boundary, the 
equaliser decides one value and vice versa. As it is 
well-known, the most commonly used architecture 
to equalise a channel is a FIR filter, which is only 
able to implement a linear boundary in the input 
data space. It can be demonstrated [13] that when 

Table 2 

The same as in Table 1, but in this case the model of the system 

that is filtered is a linear system (Fig. 9) since the non-linear 

amplifiers at the transmitter and at the receiver have been 

avoided 
_ 

Data 

record 

length Wiener ( 10) K-filter (10, 1) K-filter (10, 5) 

256 1.35% (0.57) 1.38% (0.64) 1.17% (0.67) 

512 0.98% (0.36) 0.98% (0.32) 0.86% (0.35) 

1024 0.81% (0.17) 0.80% (0.17) 0.79% (0.17) 

2048 0.76% (0.14) 0.76% (0.02) 0.76% (0.20) 

the channel is non-minimum phase, a non-linear 
boundary is sometimes required and, thus, a FIR 
filter is not suitable to separate properly the input 
data even in the absence of noise. It is in this point 
where a non-linear structure as the K-filter can be 
used to equalise the channel in a similar way as the 
multilayer perceptron [13] or a model based on 
functional-link [12] have been proposed. 

In the concrete problem that the authors pro- 
pose (Fig. lo), the input consists of a binary polar 
signal { f 1) that is driven into a non-minimum 
phase channel with a transfer function equal to 
H,(z) = (0.5 + z-l) and followed by an additive 
Gaussian noise of - 20 dB. The non-linear 
equaliser proposed is a K-filter (2, 2) with two 
PM modulators per input diversity component 

(WI = 42&n,, and E = o&O), followed by a deci- 
sion circuit implemented by a sigmoid function of 
the type tanh(.) (Fig. 10). 

Fig. 13 shows the resulting boundary performed 
by the K-filter after a training sequence of 200 
symbols in which the coefficients of the K-filter 
have been updated with the LMS algorithm with 
a step-size parameter equal to p = 0.1 (the error 

Decision Map. K-filler(2.2) 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 
x(k) 

Fig. 13. Representation of the input data space, x(k) versus x(k - l), with an SNR of 20 dB. Input data of the equaliser when { - 1} was 

emitted (crosses) and { + 1) (circles). The solid line shows the boundary implemented by a K-filter (2,2) (oe = n/2X,*,, E = o,,/ 10) after 

an adaptive training sequence of 200 symbols, being the weights updated by the LMS algorithm with p = 0.1 
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signal is the difference between the real symbol the fact that an optimum choice for parameter 
emitted and the output of the decision circuit). selection is not provided, the importance of the 
During this training period the K-filter has made architecture and the relevance of the Kolmogorov’s 
9 errors concentrated on the first 25 emitted sym- theorem were considered the main objective of this 
bols. This confirms the great ability of the K-filter work. Future work on the application of this archi- 
to learn. Although the K-filter does not achieve the tecture to optimum combiners for mobile antennas 
optimum boundary, the result obtained with such scenarios will be carried on, since the presence of 
a small number of symbols is encouraging to go on non-linearities are very common in the spread de- 
to further works. lay model assumed for the received snapshot. 
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