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ABSTRACT 

When computing the radiometric resolution of an 
interferometric radiometer the correlation among the 
errors of different baselines is usually assumed 
negligible. ln this way: a) the radiometric sensitivity 
turns out to be pixel independent (except for antenna 
pattern effects), and h) the error of the average of P 
redundant baselines is reducedl by a factor of (P)112• 

While this may be the case in radioastronomy 
applications, for an on-bowd imstrument where all the 
baselines are measured at the same time interval the 
errors will actually be correlated. This has two effects: 
a) The radiometric resolution c hanges from pixelto pixel 
and b) the radiometric resolution improvement 
introduced by redundance is reduced as compared with 
the case of independent errors. In this paper this 
correlation is computed and the results obtained are 
applied, first, to a fully redundant (all possible baselines 
are actually measured) filled linear array to analyze the 
actual radiometric improvement, and , next, to the same 
array without redundance to investigate the dependence 
of sensitivity on pixel information. 

l. INTRODUCTlON 

The starting point is the equation relating the mutual 
coh er ence function V(u,v;t) of the outputs of two 
antennas. s,(t), s

1
(t), to the brightness temperature T8 in 

a nearly ideal interferometer formed by identical 
antennas. identical transmission channels and ideal 
correlators [1], (2], [3]: 

( . If T. (Lfl) V U,V;"C) =<s1 (t+"C)s1 (t:)>:K 

~ 

IFn (( '1l) 12 1 ( "C - u(;;n) e-J...,.Iu(•"''ld(dfl 

=xj[TICTI>l(T- u~;? )e -.1h <ul•"''ld{dt) 

(1) 

where K is a constant, F. is the normalized voltage 
antenna pattern, (~.11) are the directing cosines (referred 
to boresight). 

1' ( t) "'6-.tz.~••JIHn (£) lzeJ...,.l<d£ (2) 
0 

H,(f) is the channel band-pass normalized transfer 
function and we have introduced, for notation simplicity, 

the modified temper ature T. Since fringe-washing 
affects the spatial resolution in directions off-boresight 
and is irrelevant for this paper 's subject, we will ignore 
its effects in (I) and write: 

V(u, VJ "C ) • V(U, v;O)i'("C) A V(u, V) ! ( "C ) (3) 

V(u,v) is most often called the 'visibility function· . 

In the presence of noise n,(t) in the transmission 
channels (additive Gaussian noise) these expressions do 
not change, except lhe baseline u=v=O: 

V"(u,v) c< (s1+n1)(sj•nj)>=V(u,v) (4 ) 

vn(o, 0) = <ls1 12>+<ln1 12> = V(O, 0) +<lnl2> 
Note that for an ideal band-pass filter of pass-band B: 

!(t) • sinc(Bt) (5) 

With M visibility samples equispaced over a rectangle 
we compute the following estimation of the modified 
temperature (rectangular window): 

K'l'((.,fln) =~~ V(u1, vk) e12>lu,(.••oo'l· 16. u6 v 

=> .[Mrlv6 u6v 

(6) 

where r 1 is the inverse 2-D discrete Fourier transform 
matrix (OFT). 

2. IMAGE SENSITIVITY 

Since the visibility samples have errors we actually 
measure: 

0(u1 , vt) = V(u1 , vt> +b. V(u1, vk> (7) 

The errors 6V(u,, vJ in turn produce errors on the 
estimated temperature given by the matrix equation: 

KA'l' • .fM r 1 A V 6. u6. v 

If we defme the average temperature error by: 

«2 (T) " ~< lb.TI2 > =(Au:vr<IAV12 > 

·( A~~r~~ < IAV(UJ• v.) 12> 

(8) 

(9} 

then, when considering only the errors produced by the 
finite integration time T.,. we have: 
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(10) 

e (T) • V11 (0,0) ~ uAv ~ H 
K BT1,.t 

where: 

V"(O,O) • KT.Vfi •KT•Y•O" (11) 

with n., the antenna pattern solid angle and T,>. the 
system equivalent temperature defmed as the scene's 
average brightness temperature plus the channel's 
equivalent noise temperature: 

(12) 

Therefore: 

e(T) "' ~u~v~ H (13) 
T•Vf1 BT1 ,.. 

For a radiometer with Nyquist sampling in the (u,v) 
plane, t.u=t.v=0.5, and t.ut.v=0.25. 

3. BASELINE REDUNDANCY 

If a (u,v)-point visibility is measured by P baselines (that 

is, if is P-fold redundant), each yielding a value ~~< , 

we can take its average and then: 
, 

~v· .!.I;4v1 , <I~VI2> • ..!.. ')'')'<AV1~Vk> p 1 p>~~ 

(15) 

At this point it is usuaUy assumed that the errors of 
different baselines are uncorrelated, while the errors of 
each baseline arc easily computed [2): 

(16) 

lt turns out that, when the baselines are measured over 
the same time interval, these errors can be strongly 
correlated, and its computation is this paper's main 
result. 

Let us consider (fig. I) four antennas labelled (1,2,3,4). 
Antennas (3.4) produce the following visibility sample 
by integration in the time interval (t, t+ T ...): 

~,.(t) • Jatc:- p) ls1 (p)+n1 (p) ) 

Is; ( p) ·~ ( p) 1 dp 

(17) 

where s, refers to the signal captured by the antenna and 
n1 to the noise introduced by the amplifying/down­
converting chain, a(t) is the correlator's low-pass filter 
impulse response and the integrals extend lO the interval 
(-oo, oo) whenever not explicitly stated. Similarly, 
antennas ( 1,2) produce, in the delayed time interval (l+'t, 
t+'t+ T ,.): 

~u ( C:•T) "J IJ ( t•T - o ) (s1 (o) •n, ( o )) 

rs; (o) •n; ( o ) 1 do 

4~ 
3 ~ lntegratlon Interval: 

(t, t+11nt) 

2~ 
1 

" a(t) 
H(f) 

(18) 

Fig. 1.- Two baselines measured with the same 
integration time T .... one of them delayed 't. 

Let us compute their correlation: 

Rtcnltcw ( T) • <~u ( t+T) Q;. ( C:) > ,. J Ja ( t-p) 

a (t+T-o ) < ls,•n,J lsi•n;J ls;+n;J ls.•n. J>dpdo 

(19) 

{the arguments on the s,, n, have been omitted for 
brevity). Since both the s, and the n, are complex z.ero 
mean Gaussian random processes with circular joint 
Gaussian statistics ( 1 ): 

(20} 
<s1s;s;s.> • <s,si><s;s.>•<s,s;><sis.> 

and, furthennore, each n1 is uncorrelaced with the 
remaining processes, ( 19) becomes: 

R~1121 ~cu1 • J J a l c: - p) a ( t+T-o) 
(21) 

[V12 v;. •Vu v;.1r (p - o) 111 dodp 

Note that the low-pass fLit.er has an integration time of 
the order of ls. while if 8 · 20 MH.z. lJB .. sx w·•s; 
therefore, in (21) a(t-p) a(t+t-o) vary very slowly as 
compared to lr{p-<)1 and we can approximate: 

f(T) • s.1nc(8T) • j& (T) 

If for the low-pass filter we assume: 

jA (f) la • 

then: 

1 if lfl< TJnt 
2 

0 .1f lfl> TJnt 
2 

(22) 

(23) 

,.,. Vu v;. ( t ) (24) R~1111 ~U•I • V12 vu • ~ s.1nc y-
Jnc: Jnt 

We finaUy fmd for the cross-correlation of the errors: 



RAvtl> IAvt>• l ( "C ) "'Re~tull'll•l (t) -v,.v;;. 

.. Vu v;. si.nc(-T-) 
BT1" < T1,c 

(25) 

This expression is still valid if the two baselines share 
an antenna, or even both of them (in this lauer case we 
recover the expresi6n for the baseline noise) if whenever 
in the expression it appears V(O.O) its value is replaced 
by V"(O.O) as given by (4). 

In an actual on-board interferome.ter like MIRAS all 
baselines are measured in the same time interval and 
t=O. 

4. EXAMPLE: ONE-DIMENSIONAL RJLL Y 
REDUNDANT ARRAY 

By this we will understand a linear array formed by N+ 1 
equispaced antennas (numbered from 0 to N) where all 
possible baselines are measured. The available visibility 
samples are V(~u). m=0.±1,±2, ... ±N, but since V(­
mt.u) = v·(mt.u) we will examine only those with m~. 
For simplicity ideal (noise-free) channels will be 
assumed. 

Let us call V t(mt.u) the visibility sample measured by 
the baseline formed by the pair of antennas (k, k+m). 
Since k+~ the range of k is given by k=0,1,2, .. .N-m. 
and the sample redundancy is N-m+ 1. Therefore, if we 
define the average value: 

, .. 
V(m.iu): -N 1 l' VJt(/llL\u) 

-m•1~ 

its error comes given by: 

A ~~ IV(k- 1) 12
, (A= - 1-) 

(N-m+1)'~ ~ BT1"c 

(26) 

In the last sum the term V(k-1) with k-l=p~ appears N­
m+l-p times and since IV(-p)l = IV(p)l we can write: 

< l.i V(mAu) lz> 2 A 
( N-m+1) 2 

[ (N-m+1) v 2 (0) +2~ (N-m+l-kl jv(JcAul 121 
~ 28) 

This expression's fl.rst term corresponds to its value 
when the errors are assumed uncorrelated; also, it 
corresponds to a scene where all V(m~u) but V(O) 
would vanish, that is. a constant modified temperature 
scene. We can then affum that this latter scene 
minimizes the average error, which is the one obtained 
when the correlation among errors is neglected. 

On the other hand, (28) attains its maximum value 
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(worst case) when all IV(mt.u)l = V(O): that is, when the 
scene is formed by a delta function (a highly improbable 
scene indeed) . 

The expected error vector is then: 
, 

<l.iVI2> "' E <IAV(m.iu) 12 > __ , 
(2.9) 

N 

= <J.iv(O) J2 >+2E <JAV(mAul J
2 > 

• • 1 

By substitution of (28) and after some mathematical 
manipulations this transforms into: 

N H 

<IA V12> = A~>!!tJV!kAu) 12 • a 0 = .....!_.E - 2-
o N+l ,..1 N- m+l 

N+1-k N· k N- m+1-k 
41 "2 (N+1)2+4~ (N-m+1)>' k=l,2, .. . N 

(30) 

For example, if we consider the case N=43. the 
following values are obtained: 

TABLE 1. COEFFICIENTS at FOR A FULLY 
REDUNDANT LINEAR ARRAY WITH 44 
ANfENNAS 

8.7227245e+OOO 
6.9789910e+OOO 
4 .5058663e+OOO 
3.1618402e+OOO 
2.2856527e+OOO 
1.6666598e+OOO 
l.2105760e+OOO 
8.669965le-OOI 
6.0579864e-OOI 
4.0753858e-OOI 
2.5893408e-OO 1 
1.5050835e-OOI 
7 .5262459e-002 
2. 7880408e-002 
4.2294472e-003 

1.0956630e+OO I 
5.934616le+OOO 
3.9826025e+OOO 
2.8320917e+OOO 
2.0567399e+OOO 
1.4996016e+OOO 
1.0853293e+OOO 
7.7190043e-OOI 
5.3347290e-OOI 
3.530 1698e-OO I 
2.1871520e-001 
1.2203115e-OO I 
5.6597187e-002 
1.7536909e-002 

1.0330579e-003 

It can be shown that: 

If 

~at =2N+1 

8.4678103e+OOO 
5.1402412e+OOO 
3.5409713e+OOO 
2.5423433e+OOO 
l.8514958e+OOO 
1.3481684e+OOO 
9.7116289e-001 
6.8506882e-00 1 
4.6754716e-001 
3.0359741e-OO 1 
1.8265865e-OO I 
9.7014150e-002 
4.0853756e-002 
9.6934103e-003 

(31) 

We can now establish the following for the example 
above: 

-In the absence of redundance: 

(32) 
<IA VJ>>l/>., 2N+1V(O,O).,. 9.327V(O,O) 

BTJM ~ . 

-Fully redundant array, constant modified temperature 
scene (uncorrelated errors): 
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<IAvtz>>/2 .,~ 110 V(O,O): ~V(O,O~JJ) 
BTJ nt .[l!fl'i;;; 

That is. a 30% of the value without redundance. 

-Fully redundant array. delta-function scene (fully 
correlated errors, worst case): 

<BAV'Il>l/z ·~ !:a,. V(O,O) • 
BTJnt 

• 9.327V(O,O) 
.f11'l'j; 

(34) 

Note that in this case, jn view of (31), we have 
recovered the value of the non-redundant array: a logical 
conclusion since, if all the errors are completely 
correlated, redundance does not add any information. 

For a more realistic scene, intermediate values between 
those of (33) and (34) are to be expected. As an 
eltample, we construCted the brightness temperature 
distribution of fig. 2, wich shows a sharp transition to 0 
K (cold sky) and other jumps ranging from 40 to 100 K , 
together with some rapid fluctuations to introduce higher 
frequency components. With this distribution and an 
antenna pattern given by: 

F,(8) • (cos8>"'• (l-(2) 0 ·n, -x/u. e :o:rr/2 

(35) 

it is found that the actual average temperature error is a 
16% higher than that computed assuming uncorrelated 
errors. 

Brightness te~ 

100 

o~----~------------------1 lln(thela) 

Fig. 2.- One-dimensional temperature distribution 
used as eltarnple. 

5. GLOBAL vs. LOCAL SENSITIVITY 

In section 2 we defined the average temperature error 
with help of the norm-preserving property of Fourier 
transform (Parseval's), eqn. (9). If we are interested in 
the expected error of an specific pixel we have to 
compute (a square grid is assumed for simplicity): 

<A V(u1, vk) A V" (ur• v.>) w•lJ·rl•nlk·•l 

and tlle correlations among errors appear again. If we 
neglect tllem cqn. (9) is recovered: that is, the 
approximation of uncorrelation gives for each piltel a 
temperature error which is constant and equal to the 
correct average value. 

Note that computation of (37) requires, in view of (25). 
a knowledge of the spatial position of the antennas 
forming each baseline. that is, a knowledge of the 
specific radiometer configuration, what makes it 
impossible to proceed with a general analysis. We return 
therefore to a linear array with N+l antennas and 
arbitrarily agree that baseline V(m6u). m>O. is measured 
only once with antennas (O.m) (zero redundance array). 
This will be denoted with subindelteS referring to the 
antennas: 

V(mAu) • <s0s; > • v.,., V(-mAu) = Va., {38) 

We can now write: 

K , 
-r-A'l' <mAO · EA V(nAu)w..,• 
Do u _, 

, , 
~ c.,A VOIIw - + ~ c,A v.;, ... --. to= i. tnoo = 1 

(39) 

Now <16T(m6~)1~ can be computed if, in view of (25), 
we note that: 

<A V~V"oq> •A V(O) V"[ (q - p ) Au), 
(40) 

<A V..,A Voq> • A V(qA u) V(pA u) 

(constant A as in (27)). The following expression is 
obtained: 

, , 
cl <T. l • < I A1' (mA~ ) 12> "E :£ ~e0.V{O) 

0 0 (41) 

V( (p - q ) A u] w•tJ>-o~ +real [t eJ> V(pA u) w""'r 
with D a constant. This expression is computed for the 
temperature distribution of fig. 2, again assuming noise 
free channels, and the results are shown in figs. 3 and 4. 
Note in fig. 3 that the errors of the modified temperature 
(lower line, arbitrary scale) seem to follow the profile of 
the recovered values of this laner (upper line). This 
result is not accidental: for the linear array under 
consideration it can be shown that: 

c2 CT.> • A(2N+llT.wvT <mAO (A u) 2•r., (42) 



where f,.. contains a constant pan and another pan 
dependent on the derivative of the modified temperature. 
In the examples worked out f., turned out to be much 
smaller than the other term. 

ln fig. 4 the e rror of the brightness temperature, along 
with the recovered value of this latter, is represented. It 
can be seen that this increases sharply when approaching 
the field of view limits,ll;l=l. In facr.. according to (42): 

e (T ) ·~IT) -/1-!II!A()z • 
lh .. IF,(~) 12 

(43) 

250 

150 

~~--------~~-----------·1 lln(e) 

Fig. 3.- Recovered modified temperature and 
associated error (lower curve. arbitrary scale). 

Bllghtnen temperature 

150 

50 

~~-----------------------., aWI(e) 

Fig. 4.- Recovered brightness temperature and 
associated error (arbitrary sc.ale). 

6. REDUNDANCY ON MIRAS AND ITS EFFECTS 
ON RADIOMETRIC RESOLtmON 

MIRAS has a very low degree of redundancy [4). If we 
disregard the three central elements introduced for the 
purpose o f phase calibration, only baselines between 
antennas on the same arm can be redundant. By the zero 
baseline we will understand that corresponding to 
u=v=O. which in Miras is non-redundant. 
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Since we are considering a slnlcture with 3 arms, each 
with N=43 elements, plus a central element. we will 
have: 

-Total number of baselines: 3N(3N+ l )/2+1 = 8386 

-Non-redundant baselines= non-redundant (u,v)-points: 
3N1+3+1 = 5551 (three are formed by the central 
antenna and those at the ends of the arms and one is the 
zero baseline) 

-Redundant (u ,v)-points: 3(N-l) = 126, with different 
degrees of redundancy. 

-Total number of (u.v)-points: 3~+4+3(N-1) = 
3N2+3N+ l = 5677 

When we consider the Hermitian property every (u,v)­
point is actuaUy duplicated, but we stick to the previous 
figures which are more meaningful in terms of number 
of correlators. 

If all (u,v)-points are measured only once, the norm of 
the visibility error- vector is: 

<IAVI2 >. E E <IAV(u • • v,) 12> • B5 6T7 7 vnz (0 . 0) 
J nt 

(44) 

Let us now consider redundance. For each arm let 
V(mt.u) be the visibility function correspond ing to the 
baseline for-med by two antennas separated by m basic 
spacings (0.89A.). If all possible baselines produce a 
visibility sample, V(m~u) has a redundacy (N-m+ I). 
Therefore, the errors of the 126 previously non· 
redundant (u ,v) -points: 

(45) 

have to be replaced by (assuming uncorrelated errors): 

3 V
112

(0,0) E-1- . 
BT1,. • • 1 N· m•l 

3 [C- l+ln(N) I vnZ(O,Ol • ~ V"~ (O,O) 
BT11,, B T1,, 

(46) 

where C=Euler's constant=0.5772. That is, with full 
redundancy in the arms of the interferometer the norm 
of the error vector becomes: 

<lA VI!..,> · EE <IAV(u • • VD) 12 > .. 

~V"'(O,O) 
BTsnt 

(47) 

and therefore. the resolution improvement is given by: 

(48) 
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That is, the average temperature resolution improvement 
contributed by the 2709 redundant complex correlators 
(from a total of 8386) is just a 1.0%. 

(Recall that in lhe above computations the presence of 
three extra antennas at the center of the inte.rferometers 
introduced for phase calibration has not been 
considered). 

7. CONCLUSIONS 

It has been shown that the correlation among lhe errors 
of the visibility samples taken in the same time interval 
modifies the resolution improvement obtained through 
baseline redundance and makes the temperature 
resolution pixel-dependent. In lhe first case the effect is 
moderate: according to the one dimensional simulations 
performed. in actual earth remote sensing scenes the 
correction will probably not exceed a 20%. In the case 
of radiometric resolution, the expressions derived for the 
error's correlation allow the computation of the errors of 
each pixel of a given scene. It has been shown that these 
errors are aproximately proponional to the square root of 
the pixel modified temperature, and, when considering 
the brightness temperature, the errors increase sharply 
towards the borders of the field of view. 

At present. computation of lhe local radiometric sensi-

tivity of tw~dimensional arrays (in panicular. MIRAS) 
is being performed. 
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