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Abstract

A synergetic approach for the estimation of stable boundary-layer height (SBLH) using lidar and microwave

radiometer (MWR) data is presented. Vertical variance of the backscatter signal from a ceilometer is used as

an indicator of the aerosol stratification in the nocturnal stable boundary-layer. This hypothesis is supported

by a statistical analysis over one month of observations. Thermodynamic information from the MWR-derived

potential temperature is incorporated as coarse estimate of the SBLH. Data from the two instruments is adaptively

assimilated by using an extended Kalman filter (EKF). A first test of the algorithm is performed by applying it

to collocated Vaisala CT25K ceilometer and Humidity-and-Temperature Profiler (HATPRO) MWR data collected

during the HD(CP)2 Observational Prototype Experiment (HOPE) campaign at Jülich, Germany. The application

of the algorithm to different atmospheric scenarios reveals the superior performance of the EKF compared to a

non-linear least-squares estimator especially in non-idealized conditions.
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I. INTRODUCTION

Continuous estimates of the Atmospheric Boundary Layer Height (ABLH) are needed for several

applications ranging from weather, avionics and air-quality and dispersion models. The development of

Atmospheric Boundary Layer (ABL) over a diurnal cycle is a local as well as regional phenomenon

and shows a typical behaviour under clear-sky and low synoptic conditions. During daytime, the ground-

surface absorbs solar radiation, and as a result, near-surface air warms up and initiates convective motions

leading to well mixed conditions in the Convective Boundary Layer (CBL). The CBL, also called Mixing

Layer (ML), reaches its maximum height in the afternoon. At the top of CBL, the Entrainment Zone (EZ)

acts as a buffer between the CBL and the Free Troposphere (FT) above. When the sun sets, turbulence

decreases and radiative cooling causes the development of a Stable Boundary Layer (SBL) close to the

surface. The remnants of the CBL with the associated well mixed pollutants form the Residual Layer

(RL) on top of the SBL which is characterized by weak intermittent turbulence [1], [2], [3].

The structure of the Nocturnal Boundary Layer (NBL) mainly depends upon three underlaying physical

processes namely, turbulent mixing, radiative cooling and heat exchange with the soil [4], [5]. The type

of the NBL which develops at a particular location and time depends upon the relative strength of these

processes and, therefore, there can be three types of the NBL: fully turbulent (also known as the night-time

ML), intermittently turbulent, and non-turbulent (also known as the SBL). Fully turbulent NBL occurs

when the wind shear becomes the dominant force, whereas in the case of the non-turbulent NBL or SBL

[6], [7], radiation and heat exchange with the soil become dominant and the turbulence is almost non-

existent resulting in horizontal stratification of the aerosols in the atmosphere through a process known

as fanning [1]. The intermittently turbulent NBL occurs when there are alternating cycles of turbulence

and non-turbulence.
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From the modelling perspective, it is a big challenge to capture these three types of NBL. Whereas

models do capture the turbulence and related mixing processes quite well, the modelling of stable boundary

conditions is still poor [8]. Nevertheless, the accurate modelling of the SBL is highly important for correctly

predicting night-time temperatures and the dispersion of pollutants and, therefore, it is of much interest

and relevance in the ABL research community to study the SBL and its correct estimation [9].

Measurements of ABLH make use of the typical vertical structures of temperature, humidity, wind and

aerosol. While aerosol distribution as probed by ground-based lidars is well suited for the estimation of

the Convective Boundary Layer Height (CBLH), the estimation of the Stable Boundary Layer Height

(SBLH) is more complex. Many of the techniques presented for the lidar data are a variant of the gradient

detection method [10], [11] and, therefore, suffer from multiple-aerosol layers attribution problems. This

means that under the conditions of multiple aerosol layers in the boundary-layer these methods are limited

in terms of providing a consistent solution due to their non-adaptive nature and lack of physical basis

for layer attribution. Some more advanced techniques such as the “Peaks” and “Wavelets” [12], which

utilize advanced signal processing, and the Bayesian Selective Method (BSM) [13], which combines data

from lidar, a physical boundary-layer model and a climatological data-set in a statistically optimal way, do

improve the estimation performance. However, they are still limited by the starting height of full overlap

of lidar and the unavailability of lidar data under cloudy and rainy conditions. Furthermore, cooling leads

to a higher relative humidity and since the size of the aerosols varies with the moister content [10] due

to hygroscopic effects, the higher backscatter coefficient is linked to a higher amount of humidity in the

atmosphere.

Most of the previous work for SBLH estimation from temperature data are based on the measurements

from Radiosonde (RS) [6], [7] mainly exploiting temperature profiles. Though Microwave Radiometer

(MWR) can provide continuous time series of temperature profiles [14], few studies have exploited

these data for SBLH estimation. Recently, an approach based on the gradient of the retrieved-potential

temperature from a MWR been presented by [15]. One of the main limitation of MWRs is their low
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vertical-resolution, thereby the large uncertainty associated with the estimates. Moreover, the temperature

profile is over-smoothed especially at higher altitudes, hence missing important features within the retrieved

profiles. As a result, MWRs are unable to give accurate indication of the SBLH and the residual boundary-

layer height.

Departing from these previous efforts to estimate the SBLH, in this paper we present a combined

lidar-MWR approach using an Extended Kalman Filter (EKF). The approach is based on the hypothesis,

whereby stable aerosol layer corresponds to a minimum variance region (MVR) in the variance profile of

the lidar backscatter signal. The hypothesis is based on the fact that during the stable conditions prevailing

in the night-time, with minimal to nil convection, and in the absence of mechanical turbulence, which

usually results in horizontal stratification of the aerosol layers [1], [13], [11], [16], the backscatter signal

remains almost constant across the layer’s vertical span. This minimum variance-behavior is opposite to

the maximum variance behavior defining the EZ and CBL [17], [18].

As discussed earlier, MVRs are not unique due to the presence of multiple layers of aerosols. Moreover,

MVRs also get corrupted by the instrument noise (added to the backscatter signal) essentially distorting

its shape. In order to overcome the limitations associated with the use of MVRs from the lidar backscatter

data alone, the proposed approach is based on the synergy between the lidar and the MWR, whereby the

MWR plays a role of layer attributor. Nevertheless, the boundary containing the temperature inversion

information should be sufficient to correctly segregate the most relevant MVR within the lidar backscatter

variance profile. An estimation algorithm based on an EKF is then applied on the selected MVR to

calculate the SBLH with low uncertainty. Unlike the Bayesian Selective Method mentioned earlier, the

use of EKF provides statistically optimal estimates by minimizing the mean-square-error over time without

the need of averaging the observation data.

This paper is organized as follows: Sect. II contains a brief summary of all the instruments and

dataset used in this work. Sect. III formulates the SBLH estimation problem and related estimation

algorithm. Sect. IV discusses the prototypic test cases and the retrieved SBLH estimation results. Finally,
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the conclusions are presented in Sect. V.

II. INSTRUMENTS AND DATA-SET

The instruments used in this work include a ceilometer, a MWR, and a RS. In the following, a

summary of each instrument is given. In order to successfully cross-examine data and/or to assimilate it

synergistically, collocated measurements taken in April/May 2013 at the Jülich ObservatorY for Cloud

Evolution (JOYCE) [19] in Jülich, Germany are used for case studies and statistical analysis.

A. Instruments

Ceilometer - A ceilometer is a single-wavelength optical instrument which measures the cloud-base

height. It works on the principle of LIght Detection And Ranging (LIDAR), essentially measuring the

backscattered light, after the emission of a laser pulse. The time of flight of the backscattered pulse

is used to determine the distance to the target/height distribution of the atmospheric scatterers. Under

relatively clear atmospheric conditions (typically, optical thickness, τ < 1), the range-corrected intensity

of the backscattered lidar signal is essentially proportional to the aerosol/molecular concentration of

the atmospheric mixture. Though ceilometry refers to “cloud height and extent” and former ceilometer

instruments were initially designed for cloud-base height detection only, today, modern ceilometers can

detect the ABLH, and cloud base height. In case of semi-transparent clouds multiple layers can be

observed. The ceilometer used in this work is the Vaisala CT25K [20], [19]. The transmission wavelength

of this instrument is 905 nm with a pulse repetition frequency (PRF) of 5.6 kHz. Under clear-sky conditions

the typical sounding range of the instrument is roughly from 60 to 7,500 m with a range resolution of 30

m and time resolution of 15 seconds. The receiver field-of-view (FOV) is 0.66 mrad. Since this ceilometer

is a mono-axial system (laser and receiving telescope optical axis coincide) its minimum sounding height

of approximately 60 m is caused by the near-range saturation effect. The instrument software provides

profiles of the attenuated backscatter coefficient βatt as an output.
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MWR: Humidity and temperature profiler (HATPRO) - The Radiometer Physics GmbH (RPG) HATPRO

[21] is a MWR, capable of profiling temperature and humidity with high temporal and limited spatial

resolution. The receiver of HATPRO has two filter banks, each with 7 channels, in the 20 − 30 GHz,

and 50 − 60 GHz bands, respectively. It works in two scanning modes, zenith-pointing mode for full

tropospheric profiling (range up to 10 km, vertical discretization of 150 − 250 m), and boundary-layer

scanning mode (6 elevation angles, range upto 1000 m, vertical discretization 50 m). The time resolution

of the measurements is about 2.70 minutes. The limited vertical-resolution of the MWR-retrieved quan-

tities (e.g., physical temperature) is inherently due to having less degrees of freedom than the available

measurement channels. Thus, for temperature retrieved profiles only about four pieces of independent

information are available [22]. Therefore, the true vertical resolution on the inverted products (“clean-

data” spatial resolution) is much lower than the vertical discretization of the retrieved temperature profile.

Compared with radiosondes Löhnert and Maier (2012) show random differences between MWR and RS

down to 0.5 K in the lower boundary-layer increasing to 1.7 K at 4 km height.

RadioSonde - A RS is an in situ instrument which is capable of measuring temperature, pressure, and

relative humidity (RH) in the atmosphere up to about 30 km by vertical sounding. It is launched through

a large balloon inflated with hydrogen or helium gas. During its flight up to 30 km height, it can drift

more than 200 km away from above the point of its launch though the horizontal displacement within the

ABL is not significant for practical purposes. Nevertheless, the vertical profiles of atmospheric parameters

measured by the RS are still considered a de facto reference or physical truth for the remote sensing

purposes. During the measurement period 226 soundings of Graw DFM-09 have been performed and

used among others for a water vapor inter-comparison study [23].

Fig. 1 illustrates the development of the ABL on 24.04.2013 via the observed potential temperature

and backscatter time-height structure over the full diurnal course. Because this day was characterized by

weak synoptic forcing and nearly no clouds, ABL development is close to the idealized cases described

in the introduction. Since the SBL prevailed until about an hour past sunrise, the aerosol mixing process
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did not start until about 06:00 UTC when the convection became significant and the convective ML

developed. This can well be seen by the neutral conditions, i.e. vertically constant potential temperature.

Around sunset (18:30 UTC) mixing recedes and thus aerosol stratification occurs. The extent of aerosol

stratification in the SBL is directly linked to the amount of thermal stability in the boundary-layer. Case

studies from this day are shown in Sect. IV.

CT25k is an old first-generation ceilometer by Vaisala with low pulse energy (1.6 µJ/pulse) and low

pulse repetition rate (4369 Hz) as compared to modern second-generation systems such as CL31 with

slightly lower pulse energy (1.2 µJ/pulse) but with almost double pulse repetition rate (8192 Hz) [16].

This explains a poorer SNR from the CT25k side, which causes that the structure of the boundary layer

at higher altitudes especially the top of the mixing layer during the day-time is not clearly identifiable

(e.g., blurred noisy pattern between 5-18 UTC and 0.5-1.5 km in height).

III. ADAPTIVE SBLH DETECTION METHOD

In Sect. III-A, the formulation of an inverted Gaussian-like model profile representative of an idealized

MVR for stable aerosol layer in the night-time is presented. The model profile is used to adaptively

fit the height-dependent variance profile of the measured lidar data. In Sect. III-B, the EKF is chosen

as the adaptive estimator because it minimizes the mean-square-error over time and thus it assimilates

the temporal information of the signal optimally. For comparison, a simplified non-linear least-squares

(NLSQ) formulation is also presented. The methodology to obtain coarse SBLH estimates from the MWR

is described in Sect. III-C. Sect. III-D presents the synergetic MWR-lidar approach to combine data from

the two instruments.

A. SBL problem formulation based on lidar data

During the night time, especially when there is minimum to nil convection and the turbulence due to

mechanical wind shear is negligible, a SBL develops near the ground surface. As a result, in the absence

of any external forces, aerosols in the atmosphere gets stratified in a layered fashion. This layering of
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aerosols can result in a single or multiple layers depending on the location and type of the atmospheric

aerosols.

Each layer of aerosols is seen in the backscattered lidar signal with time as a strong, and more or less

constant, backscatter signature within the layer boundaries. As a result, regions with a relatively constant

backscatter level in the height-dependent backscatter profile correspond to MVRs in the backscatter

variance profile. MVRs mark a sharp decrease in the variance of the backscatter signal as compared

to the variance levels below and above a layer.

For estimation purposes, a MVR is modelled by an inverted Gaussian-like function as shown in Fig. 2

[24]. The bulk of the inverted Gaussian bell lies in the height interval
[
z
′
1, z

′
2

]
whereas its ending tails lie

in the range intervals
[
z1, z

′
1

]
, and

[
z
′
2, z2

]
, characterized by an approximately constant high variance level.

The inverted Gaussian-like profile shown corresponds to an idealized aerosol layer which is represented

as a uniform backscatter signal across its vertical extent. The center of the idealized bell represents the

height of the SBL and its spread or standard deviation roughly corresponds to the width of the aerosol

layer. The constant variance levels of the Gaussian model correspond to the background variance outside

of the aerosol layer. Mathematically, the backscatter model variance is formulated as

h(x) = Be−
1
2 [b(z−zSBL)]

2

+ d, (1)

where x = [zSBL, b, B, d]T is the state vector, z is the height vector, zSBL is the SBLH, b = 1
σ

(σ being the

standard deviation of the Gaussian distribution) is the width parameter, B is the variance amplitude, and

d is the background variance level. These four parameters will be estimated either adaptively by using an

EKF or non-adaptively by using a NLSQ (see Sect. III-B). As customary, bold font is used to represent

vectors.

Lidar data pre-processing - The range-dependent background-subtracted received lidar signal is given

by

Q(z) = P (z) + n(z), (2)
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where P (z) is the ideal (i.e., noiseless) lidar power return and n(z) is the observation noise. The lidar

power return is given by the single-scattering elastic lidar equation [25],

P (z) =
C

z2
β(z)T 2(z), (3)

where β(z) is the range-dependent volume backscatter coefficient of the atmosphere (m−1sr−1), T 2(z) =

e−2
∫ z

0
α(z′)dz′ is the two-way path atmospheric transmittance, and C is the system constant (Wm3). The

quantity β(z)T 2(z) is known as the attenuated backscatter coefficient,

βatt(z) =
z2

C
P (z). (4)

Under moderate-to-clear atmospheres and lidar sounding paths roughly below 3 km, the transmittance

term can be assumed close to unity and, therefore, βatt(z) ∼= β(z) [16], [26]. In the following, the term

β(z) will be used to refer to the ceilometer attenuated backscatter or simply “the backscatter”.

The noisy attenuated backscatter coefficient, β′(z), in response to a measured (i.e., noisy) lidar signal,

Q(z), can be obtained from Eq. 4 by substituting Q(z) (Eq. 2) in place of P (z). It follows that

β′(z) = β(z) + v(z), (5)

where β′(z) is the noisy attenuated backscatter coefficient, β(z) is the noiseless attenuated backscatter

coefficient, and v(z) = z2

C
n(z) is the range-corrected noise scaled by the ceilometer system constant, C.

Fig. 3a shows the basic signal-processing block diagram to estimate the backscatter variance profile,

V̂β(z), from the noisy attenuated backscatter coefficient profile, β′(z). The first step in the processing of

β′(z) is to denoise it by low-pass filtering (LPF). This gets rid of the high-frequency content of β′(z), which

is associated to instrumental noise, while retaining the low-frequency content. The later is associated to

the noiseless atmospheric backscatter, β(z), and related low-frequency atmospheric fluctuations of interest

for this study. Formally,

β̂(z) = β′LP (z), (6)

where a hat “̂.” indicates “estimate of” and subscript “LP” indicates low-pass filtering.
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The LPF is implemented by using a moving-average filter with a rectangular window length, w. The

appropriate window-length is obtained by monitoring kurtosis (K) of the residual high-frequency noise,

v̂(z) = β′(z)− β′LP (z), (7)

as signal-processing indicator. Thus, the window-length yielding a kurtosis figure closest to 3 (K=3 for a

pure Gaussian random process) [27] is chosen as the filtering window-length.

Fig. 3b1 shows plots of the measured noisy backscatter, β′(z), along with the estimated backscatter

profile, β̂(z), for different window lengths. The estimated backscatter profile using the largest window

length (300 m) becomes over-smoothed and, as a result, misses detailed atmospheric features. Likewise,

the residual high-frequency noise, v̂(z) (Fig. 3b2) is far from the typical shape of a Gaussian process

as evidenced by an asymmetric distribution of positive/negative noise spikes (K=2.2). On the contrary,

the shortest window length tested (60 m) significantly leaks noise into β̂(z) and also yields K=2.2. A

window length of 150 m gives the best results for β̂(z) as it filters most of the high frequency instrumental

noise along with preserving the atmospheric features of the signal and yielding a fairly symmetric noise

distribution for the residual noise with K=3.1 (i.e., approximately Gaussian).

The next processing step to estimate the height-dependent variance profile in Fig. 3a is associated to

the atmospheric backscatter, V̂β(z), given the estimated backscatter profile, β̂(z). At this point we use that

V̂β(z) ∼= Vβ̂(z), (8)

where Vβ̂(z) represents the vertical variance of β̂(z) (see block diagram in Fig. 3a). For simplicity, the

window length associated to this moving-variance calculation centered at height z has been kept the same

as that of the denoising LPF. Fig. 3b3 shows the variance profile calculated using the selected window

length of 150 m. Example variance profiles (Fig. 4a) reveal the occurrence of up to two to three MVRs

within one profile. During the course of two hours in the evening of 24.04.2013 MVRs between 300-600

m can be detected.

In order to further investigate and validate the existence the of MVRs and to prove their relation with
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the nocturnal SBL, a data-set of 28 days from HD(CP)2 Observational Prototype Experiment (HOPE)

campaign starting from 15.04.2013 until 14.05.2013 is used. Cloudy and rainy conditions are filtered out

with a resolution of 30 min. Vertical variance of the filtered backscatter data in the first km in height

is calculated and averaged over bins of 30-min in time and 200-m in height. MVRs within each time-

height bin are determined by the local minima in the averaged vertical variance profiles. Considering

up to two MVRs in one profile, the diurnal cycle of frequency of occurrence (Fig. 4b) reveals frequent

MVR occurrence in the altitude range between 200 and 800 m during night-time which fades out towards

daytime. The similarity of the MVR diurnal cycle with the typical behaviour of the SBL supports our

hypothesis to use MVRs as proxy for SBL.

B. The extended Kalman filter approach

The use of EKF for the ABLH builds on the previous works of [28], [29] for the estimation of

atmospheric optical parameters from the backscatter lidar signal. Later, [26], [30] have used an EKF

based on an erf-like model to describe the ML-to-EZ transition for the estimation of the Mixing Layer

Height (MLH). From this background, the four characteristics parameters of model Eq. 1 are assembled

into the state vector,

xk = [zSBL,k, bk, Bk, dk]
T , (9)

which is to be estimated at each successive discrete time, tk.

An EKF is essentially based on two models, the measurement model, and the state-vector model:

Measurement Model - The measurement model relates the atmospheric state vector, xk, to the mea-

surement vector, zk,

zk = h(xk) + vk, (10)

where h is the SBL measurement function given by Eq. 1, and vk is the observation noise which consists

of measurement noise as well as modelling errors. In Eq. 10 above, zk refers to the observables formed
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from the estimated backscatter variance (Eq. 8) at each time tk, that is,

zk = V̂β(z)
∣∣∣∣
t=tk

=
[
V̂β(z1), V̂β(z2), . . . , V̂β(zN)

]
k
. (11)

At this point it is worth noticing that while z stands for the height variable, zk and ẑk are the actual and

the estimated observation vector (also called measurement vector).

In the extended Kalman filter (EKF), the non-linear model function h is linearized by calculating its

Jacobian (or observation matrix Hk) with respect to the state vector. The filter output at time instant k

can then be written as

ẑk = Hkx̂
−
k , (12)

where

Hk(z; x) =

[
δh(z)

δzSBL

δh(z)

δb

δh(z)

δB

δh(z)

δd

]∣∣∣∣∣∣
x=x̂−

k

,

=

[
H1
k H2

k H3
k H4

k

]
N×4

, (13)

and

H1
k(zSBL, b) =

δh(z)

δzSBL
(14)

= Bb2 (z − zSBL) e−
1
2 [b(z−zSBL)]

2

, z ∈ [z′1, z
′
2], (15)

H2
k(zSBL, b) =

δh(z)

δb
(16)

= −Bb (z − zSBL)2 e−
1
2 [b(z−zSBL)]

2

, z ∈ [z′1, z
′
2], (17)

and

H3
k(B, d) =

δh(z)

δB
(18)

= e−
1
2 [b(z−zSBL)]

2

, z ∈ [z1, z
′
1) ∪ (z′2, z2], (19)

H4
k(B, d) =

δh(z)

δd
= 1, z ∈ [z1, z

′
1) ∪ (z′2, z2]. (20)
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In Eq. 12, above, x̂−k is the state-vector estimate prior to assimilation of the measurement at time tk and

ẑk is the “projected” measurement estimate from the filter.

Range intervals [z′1, z
′
2] and [z1, z

′
1)∪(z′2, z2] respectively define the measurement-model “fitting” ranges

inside and outside the MVR (Fig. 2). In order to assimilate the thermodynamic information of the SBL,

outer boundaries z1 and z2 are assessed synergetically from MWR estimates of SBLH (see Sect. III-C).

State-vector model - The state-vector model essentially describes the temporal projection of the state-

vector at each successive time tk through the recursive equation,

xk+1 = Φkxk + wk, (21)

where Φ is the transition state matrix (4 × 4) and wk is the state-noise vector with covariance matrix

Qk = E
[
wkw

T
k

]
. A simple Gauss-Markov model, with Φ = I (I is the identity matrix), can be set as the

transition matrix.

The Kalman filtering recursive loop requires three inputs related to the state-vector model: (i) an initial

guess of the state-vector, x̂−0 = [zSBL,0, b0, B0, d0]T , (ii) an estimate of the initial a priori covariance

matrix, P−0 = E
[
e−0 e−T0

]
where e− = x0− x̂−0 is the a priori error, and (iii) an estimate of the state-noise

covariance matrix, Qk = [wkw
T
k ].

The initial a priori error covariance matrix, P−0 , and state-noise covariance matrix, Qk, can be set

as static diagonal covariance matrices of the form, P−0 = diag
[
σ2
e,zSBL

, σ2
e,b, σ

2
e,B, σ

2
e,d

]
and Qk = Q =

diag
[
σ2
zSBL

, σ2
b , σ

2
B, σ

2
d

]
where σX and σe,X , X = (zSBL, b, B, d), are the standard deviations of the state-

vector parameters and of the a priori error on the initial guess, respectively. Subindex “e” stands for

“error”. These formulations for matrices P−0 and Qk are simple enough and conveniently model all

the case examples (SBL or nocturnal) analyzed in Sect. IV. Moreover, σX and σe,X are represented as

proportional to the initial guess x̂−0 via factors µQ and µP , respectively. Therefore,

(
σe,zSBL , σe,b, σe,B, σe,d

)
= µP

(
zSBL,0, b0, B0, d0

)
,

(
σzSBL , σb, σB, σd

)
= µQ

(
zSBL,0, b0, B0, d0

)
(22)
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or simply Q0 = diag
[(
µQx̂−0

)2
]

and P−0 =
[
diag

(
µP x̂−0

)2
]
. The scaling factors µQ and µP are user-

defined parameters. For example, setting µQ and µP as 0.1 means the margin of uncertainty associated to

x̂−0 is 10% and the change in x̂k from time instant k to k+ 1 is expected to be within 10% of the values

of x̂k at time k.

Observation-noise modelling - The observation noise, vk, is modelled by the noise covariance matrix,

Rk = E
[
vkv

T
k

]
, where E[.] is the expectancy or ensemble operator and vk is the N-component vector

associated to heights, zi, i = 1, . . . , N . This matrix, Rk, informs the filter about the quality of the

observables, zk, which is a crucial input to the filter in order to assimilate the information conveyed

by each new observable at each time step tk.

One difficulty in the estimation of noise covariance matrix is the need of an ensemble of measurements.

In off-line processing applications this difficulty can easily be circumvented by accessing at each time

tk a time window comprising past and future measurements, zk, from the recorded data with stationary

statistics. In an on-line processor this implies an estimation delay equal to the time length of the “future”

measurements accessed. In this work we resort to offline processing and stationary statistics. The hypoth-

esis of stationary statistics is a realistic one in stable boundary-layer estimation since in the absence of

any mixing process the aerosols tend to remain still aloft for longer periods and hence, the backscatter

signal remains approximately constant with time. Therefore, temporal variations on the vertical profiles of

Vβ̂(z) on shorter time-scales (e.g., 2 min) provide an estimate of the noise covariance matrix. Formally,

R̂k = diag
[
σ2
n(z1), . . . , σ2

n(zN)
]
tk

(23)

with

σ2
n(zi)

∣∣∣
tk

= V
[
zi,k

] ∣∣∣
Ik
, Ik = [tk−M , . . . , tk, . . . , tk+M ] , (24)

where zi,k is the i-th component of the measurement vector, zk, at time tk, which according to Eq. 8

represents the estimated backscatter variance at height zi, that is, zi,k = V̂β(zi). In Eq. 24 above, Ik is

the time interval defining the ensemble time window. For example, assuming ceilometer data with 15-s
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temporal resolution, a time ensemble of 8 records translates into a 2-min stationary time window (as is

the case used here).

Nonlinear Least Squares Approach (NLSQ) - Alternative to the EKF, a non-adaptive NLSQ solution

is also considered [31]. In the non-adaptive approach, the atmospheric state-vector, xk, is estimated at

each time tk by using only the present-time measurement, zk, therefore, disregarding past information.

For each lidar measurement, zk, at time, tk, the NLSQ solution for the model parameters is found by

minimizing the quadratic norm of the error function between the observation vector, zk, and the model

output, ẑk = h
(
x̂LSQk

)
,

ε
(
xLSQ
k

)
= zk − h

(
x̂LSQk

)
, (25)

with respect to the state vector, xk. That is,

min
{∥∥∥∥ε (xLSQk

)∥∥∥∥2
}∣∣∣∣∣∣

xk=[zSBL,k,bk,Bk,dk]

. (26)

C. Coarse SBLH estimation from MWR data

In order to assimilate the thermodynamic information about SBL into the EKF formulation (Sect. III-B),

potential temperature retrieved from the brightness temperature measured by the MWR is used for coarse

SBLH estimates [24], [32]. Under stable conditions, the potential temperature increases until at a height

where neutral conditions are met with a constant potential temperature. The transition from the SBL to

the RL is typically rather smooth and thus a clear boundary between the two regions is challenging to

define. Here, it is pertinent to mention that the top of the SBL is slightly higher than the surface-based

temperature inversion which becomes evident in a potential temperature profile as the region where its

slope is almost zero. The SBLH is therefore defined as the height where the temperature lapse-rate is

adiabatic signifying neutral condition (∂θ̄
∂z

= 0, see inset in Fig. 5a) [1], [33], [15].

In order to estimate SBLH and its uncertainty range from potential temperature profiles from MWR

five idealized potential-temperature profiles [1] are fitted to them. The idealized profiles are based on

two key parameters θ̄0 and θ̄s, which are the RL and near-surface potential temperature, respectively.
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TABLE I: Five idealized physical profiles for the SBL. Potential temperature is in the units of Kelvins

(K) and height in meters (m).

Profile Equation Input Param. Primary solving param. Auxiliary solving param.

Stable mixed θ(z) =


θs, for z ≤ h

θ0, for z > h

θs h, θ0 -

Linear mixed θ(z) =


(
1− z

h

)
θs +

z
h
θh, for z ≤ h

θ0, for z > h

θs h, θ0 θh

Linear θ(z) =


θs + (θ0 − θs)

z
h
, for z ≤ h

θ0, for z > h

θs h, θ0 -

Polynomial θ(z) =


θ0 −

(
1− z

h

)α
(θ0 − θs) , for z ≤ h

θ0, for z > h

θs h, θ0 α

Exponential θ(z) = θ0 − (θ0 − θs) e
− z
H∆θ θs h, θ0 H∆θ

The idealized profiles incorporate the SBLH, noted here as h, and θ0 as the main parameters along with

auxiliary parameters. Tab. I summarizes a reformulation of these five idealized profiles in terms of the

measured potential temperature and the parameters to be estimated.

From these profiles the problem of SBLH estimation from MWR data can be stated as a LSQ problem

as follows: Given (i) the profile of the raw potential temperature (i.e., the retrieved potential temperature

from MWR measurements), in what follows, θMWR(z) and (ii) the surface potential temperature θs from

MWR, one wishes to estimate (a) the model SBLH, h, and (b) the model RL potential temperature, θ0,

using the objective function

min
{∥∥θMWR(z)− θ (z, θs, ~xk)

∥∥2
} ∣∣∣∣

~x=[h,θ0,aux]
. (27)

In Eq. 27, ~x is the objective vector which is to be solved, and “aux” denotes the auxiliary solving

parameters of Tab. I such as temperature jump at the top of the SBL, θh, for the linear-mixed model, the

model order, α (typical value of 2 − 3), for the polynomial profile, and integral depth scale within the
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SBL, H∆θ =

∫ h
0

[θ0−θ(z)]dθ
θ0−θs , for the exponential profile.

MWR data processing - The MWR-retrieved potential temperature profiles, θMWR,ret(z), are non-

uniformly sampled along the height dimension due to the coarse vertical resolution of the instrument, which

decreases with height. As a first processing step, θMWR,ret(z), is interpolated to obtain a uniformly sampled

profile, θMWR(z). It is pertinent to mention here that this interpolation step does not alter the inherent

height-varying resolution of the potential temperature data retrieved from the MWR measurements. For

interpolation purposes a cubic spline interpolation is used. The second processing step is fitting the five

SBL profiles of Tab. I to the uniformly-sampled potential temperature, θMWR(z), profile by using the

NLSQ approach discussed in Sect. III-B. The best fitting profile is selected based on a minimum mean-

square-error (MSE) criterion.

Fig. 5a shows the MWR-retrieved potential temperature profile (blue crosses), θMWR(z), from the

HOPE campaign data, 24.04.2013 at 21:00 UTC. The fittings from the five idealized profiles, of Tab. I,

are also plotted. The polynomial and the exponential profiles provide best fits with a minimum root-mean-

square-error of 0.15 K and 0.29 K, respectively. Note, that even the best-fit idealized profiles significantly

deviate from the retrieved potential temperature at the heights of RL as the real atmosphere hardly ever

behaves in an idealized way. Furthermore, the coarse vertical resolution and limited accuracy of the MWR-

retrieved temperature profile contribute to the uncertainty ∆zMWR especially at higher altitudes where the

information content degrades.

The uncertainty associated to the MWR-derived SBLH estimate results from (i) the measurement uncer-

tainty of the brightness-temperature and (ii) the ill-posed retrieval problem. Therefore typical instrument

uncertainty is included in the development of the retrieval algorithm that is used to convert brightness

temperatures into temperature profiles. Here a statistical retrieval algorithm trained on a long-term data

set of representative atmospheric profiles following the procedure outlined by [14] and [22] is employed.

By testing the performance of the algorithm on a synthetic test data set the altitude dependent uncertainty

ε(z) can be derived which varies between 0.44 K on the ground and 1.20 K at 2 km. The increase in ε(z)
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TABLE II: Discretization of vertical grid.

height [m] discretization step [m]

0 ≤ z ≤ 250 50

250 < z ≤ 700 75

700 < z ≤ 1000 100

with height is a consequence of the low degrees of freedom in the measurement data [22]) and reflects that

the true vertical resolution of the retrieved potential temperature profiles is coarser than the discretization

grid selected -a subjective choice from the user’s side.

To estimate the SBLH uncertainty, ∆zMWR,meas, associated to the retrieved potential-temperature profile,

θMWR(z) (Fig. 5a), we apply the SBLH-model-fitting procedure described above, not only on θMWR(z)

but also to the upper and lower error-bound profile for the potential temperature θMWR(z)± ε(z), in order

to estimate the impact on Fig. 5b).

The discretization grid of Tab. II, which has been used to retrieve the temperature data for this work,

follows this resolution-decreasing behaviour with height and it is, therefore, proportional to the real

resolution of the data albeit the true exact values are not known. Here, for simplicity, ∆zMWR,res, has

roughly been approximated by the discretization step of Tab. II at the estimated SBLH.

After the perturbational procedure and taking into account the uncertainty due to the low vertical

resolution, the upper and lower bounds of the estimated SBLH can be written as

ĥu,lMWR = ĥfitMWR ±∆zMWR, (28)

where superscript “u” and “l” stand for “upper” and “lower” error bounds, respectively, and |∆zMWR| =

|∆zMWR,res|+ |∆zMWR,meas| is the estimated error including the height discretization uncertainty.

Fig. 5c shows four potential temperature profiles with a time-spacing of 30-min for the time interval

21:00-22:30 UTC from real measurements. For each profile the error-bar is based on the ∆zMWR,meas

meaning the actual error-bars will be even bigger when ∆zMWR,res is taken into account for each profile.

The error-bars thus define the EKF fitting ranges in the form of coarse SBLH estimates.
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TABLE III: Statistics relating the thermodynamic SBL determined from potential temperatue retrieved

from MWR and MVRs.

- total count percentage

Total 30-min bins 488 100

Only one MVR inside MWR error-bar 264 54.1

Two MVRs inside MWR error-bar 26 5.3

No MVR inside MWR error-bar 62 12.7

MVRs do not exist 136 27.9

D. Lidar-MWR synergy for SBLH estimation

In order to study how the SBLH height range given by the MWR-retrieved potential temperature

is related to MVRs within the variance profile of the lidar backcatter data a statistical assessment was

performed (Tab. III). Over the study period (15.04.2013-14.05.2013) 488 30-min averaged variance profiles

with corresponding MWR observations exist during night-time, i.e. between 20:00 and 06:00. By counting

the number of MVRs within the uncertainty range defined by the MWR error-bar, ∆zMWR(z), it is

evidenced that in almost 54% of cases a single MVR falls within the MWR error bar. For 26% of cases

two MVRs lie within the MWR error-bar. No MVR was present inside the MWR error-bar for about 12%

and MVRs did not exist for about 28% of cases.

When a single MVR falls within the MWR error-bar, which is the case for 54% of cases, it becomes

straightforward to determine a fine estimate of the SBLH without the need to perform further processing.

However, the situation gets complicated when more than one MVRs lie within the MWR error-bar or

no MVR lies in the MWR error-bar or MVRs do not exist at all. In such cases, previous time estimates

of SBLH can be utilized to come-up with an SBLH estimate for the present time. The Kalman filter

provides a convenient framework for such kind of estimation problems where already small fluctuations

(the MVRs) must adaptively be estimated and time track under random environments (i.e., the vertical

profile of the variance evolving with time as a random process) and where information from previous
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time records must be assimilated. In the following a formulation, to determine the EKF fitting ranges, for

the synergy between the MWR coarse estimate of the SBLH and the width of MVR from the previous

time instant is presented.

At each time instant, tk, estimation range boundaries z1,k, z′1,k, z′2,k and z2,k (Sect. III-B and Fig. 2) are

determined by using a combination of the MWR SBLH estimates as well as the shape of the minimum-

variance region from the previous time step, tk−1. The following adaptive search boundaries are proposed



z1,k = ĥlMWR,k

z
′
1,k = ẑSBL,k−1 −∆hlk

z
′
2,k = ẑSBL,k−1 + ∆huk

z2,k = ĥuMWR,k.

(29)

In Eq. 29 the MWR coarse SBLH search interval (refer to Fig. 2) is defined as

IMWR,k =
[
ĥlMWR,k, ĥ

u
MWR,k

]
, (30)

and zSBL is the fine SBLH estimated from the EKF/NLSQ, and hence, the solution of the estimation

problem.

Besides, the time-resolution of the MWR is lower than that of the ceilometer (a factor of 10 in this case),

which means that IMWR,k changes every 10 ceilometer time records. Therefore, to match the time-stamps

and to obtain a one-to-one correspondance, IMWR,k are interpolated according to the ceilometer time-

stamps. In Eq. 29 the MVR-search range,
[
z
′
1,k, z

′
2,k

]
, is estimated from the SBLH estimate at previous-step

plus/minus an incremental height ∆huk/∆h
l
k, respectively, which define the upper (“u”) and lower (“l”)

MVR search bounds. In order to comply with the constitutive relation, z′1 > z1 and z2 > z
′
2 depicted in

Fig. 2, the upper and lower search bounds
[
z
′
1,k, z

′
2,k

]
are computed at the 1σ width of the MVR (parameter

b in Eq. 1) and constrained by the maximum allowable upper/lower heights bl/umax (consequence of the
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geometry of Fig. 2). Formally,

∆hlk = max
(
bk−1, b

l
max

)
,

∆huk = max (bk−1, b
u
max) , (31)

where

blmax = ẑSBL,k−1 − hlMWR,

bumax = huMWR − ẑSBL,k−1. (32)

In Eq. 32 above bl/umax define the maximum distance (i.e., height in Fig. 2) from the estimated SBLH, ẑSBL,

to the lower search bound, hlMWR, and the maximum distance from the upper search bound, huMWR, to

the estimated SBLH, ẑSBL. A pictorial representation of Eq. 31 and Eq. 32 variables is given in Fig. 2.

The recursive scheme of Eq. 29 thus allows to conveniently merge thermodynamic information about

the SBL from the MWR-derived potential temperature with information about aerosol stratification pro-

vided by the lidar. Thus, whereas the MWR plays two important roles: 1) providing the correct aerosol

layer attribution, and 2) defining coarse estimation search ranges (z1,k and z2,k), the lidar provides a

highly-resolved estimate of the SBLH corresponding to the center of the aerosol layer identified by the

thermodynamic stability information from the MWR.

IV. RESULTS AND DISCUSSIONS

In this work, data collected during the HOPE campaign at Jülich conducted during April 02-July 24,

2013 is used. Measurements from CT25K ceilometer and Humidity And Temperature PROfiler (HATPRO)

MWR (Sect. II) are used to estimate the SBLH under different atmospheric scenarios. First, the algorithm

is applied to night-time data from 24.04.2013 (Fig. 1), i.e. a clear-sky day with classical boundary layer.

Second, the performance is evaluated for a two hour case study from 29.04.2013 with a weakly stable

nocturnal boundary layer and low aerosol amount. SBLH estimates from the EKF and NLSQ estimates

are compared to assess their different performance.
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24.04.2013 - At midnight the temperature profile (Fig. 1) reveals stable conditions. Together with the

high aerosol backscatter signal in the SBL that reaches heights up to 600 m (Fig. 6a) this indicates a

well developed stable boundary layer between mid-night and sunrise (around 4:30 UTC). Both EKF and

NLSQ estimate SBLH between 400 and 600 m with good agreement among each other though EKF

SBLH estimates are much smoother due the assimilation of the information from past estimates.

The benefit of EKF becomes more pronounced when the period past sunset (around 19:30) is considered

from 21:00-24:00 UTC. As the surface of the Earth becomes gradually cooler, convection ceases and

atmospheric stability increases affecting successively higher altitudes. Initially aerosol is not accumulated

in the SBL and the backscatter return from the RL is still significant when compared to SBL. This is in

contrast to the previous period between midnight and early morning when aerosol had accumulated in

the SLBH during the course of the night and the backscatter signal in the RL was lower. Thus, Fig. 6b

shows that although there is a higher aerosol backscatter signal from the lower heights, a considerable

amount of aerosols are still trapped in the RL. Fig. 6b also compares the SBLH estimates obtained from

the synergetic lidar-MWR approach of Sect. III-D from EKF and NLSQ estimators. Comparison between

EKF and NLSQ SBLH estimates shows that the NLSQ fails most of the time. This is due to the non-

adaptive behaviour of the NLSQ estimator which causes that when it is confronted with different MVRs

within the “coarse search” boundaries marked by the MWR, the NLSQ can not disambiguate which one to

choose. In these situations, the NLSQ just provides the least-squares-error (LSQ) solution averaged over

all the MVRs in the estimation range. In contrast, the EKF conveniently provides a reasonable solution

averaged under a criterion of minimum MSE over time due to its assimilation of past temporal information

(covariance). Furthermore, good agreement with the radiosonde at 23:00 is evident.

29.04.2013 - The period between 22:00-24:00 UTC provides a more challenging case from the signal-

processing point of view in which the variance (an already small quantity as mentioned in Sect. III-A)

must be estimated from the backscatter returns (the signal component) in response to an atmospheric scene

nearly depleted of aerosols (weakly stable nocturnal boundary layer). Thus, Fig. 6c shows that aerosols
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in the lower height, where usually a stable boundary layer is developed by this time of the day, provide

much less backscatter signal as compared to higher heights belonging to the residual layer (such kind of

situations usually prevail when thermal emission from the Earth surface is slow or there is a cloud cover

trapping the surface heat in the atmosphere or a cleaner airmass is advected due to synoptic conditions

at the location of measurements). In the case of Fig. 6c the spatial variance of the backscatter signal

(estimated via the approximation of (Eq. 8) becomes a weak “tracking” indicator of the SBLH because

the variance is in fact estimated from signal samples approaching zero (i.e., the backscatter returns in

a SBL virtually depleted of aerosols) and the existence -and correct detection- of MVRs is inherently

linked to the stratification of aerosols. Therefore, this is a “complex” estimation problem characterized

with very low SNRs, where the role of the MWR becomes even more critical and where SBLH estimates

largely benefit from “a priori” information coming from potential temperature data. Obviously, NLSQ

estimator (non adaptive) fails almost at all the times. However, the EKF still provides reasonably good

SBLH estimates thanks to the assimilation of MWR and past temporal information.

Main limitations of the technique presented in this work encompass both instrumental and environ-

mental limitations: (i) Concerning instrumental limitations, the partial overlap of the lidar (also known as

laser-telescope cross-over function), which is the case for bi-axial lidar systems, distorts the attenuated

backscatter profile at low heights. Therefore, the technique only works for SBL heights which are above

the range of full overlap of the system. Since the CT25k is a mono-axial system with its first range

gate starting at around 60 m, this instrumental limitation does not arise in this work. (ii) Concerning

environmental conditions, it must be said that typically, the SBL height is not more than one km [1],

which means that the technique presented here will, almost always, be of application along the first km

of the vertical lidar profile. Yet, the existence of stable atmospheric conditions is always a pre-requisite

since the stratification of aerosols occurs only under SBL. In fact, aerosol load will ultimately condition

the quality of filter convergence since aerosols are needed as tracers of the atmospheric phenomenon

under study. Though this is still a matter of research, comparatively, the EKF has successfully estimated
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the SBLH in the study case of Fig. 6c (low aerosol load) with a contrast backscatter level in the SBL

as low as 0.3-0.6 a.u. (heights interval 274-574 m) as compared to a free-troposphere level of almost 0

a.u. at 2 km. In the study case of Fig. 6b (high aerosol load, nocturnal case) the backscatter level lies

between 0.7-1.0 a.u. In terms of thermodynamic stability detected by the MWR, elevated inversions are

a challenge for detection.

V. CONCLUSIONS

An adaptive solution based on synergetic use of data from a lidar-ceilometer and a MWR has been

presented. Vertical variance of the attenuated backscatter signal from a (Vaisala CT25K) ceilometer has

been used as an indicator of the aerosol stratification in the nocturnal stable boundary layer. Minimum

variance regions within the vertical variance profiles have been modelled by an inverted Gaussian-like

function and model parameters including the sought-after SBLH have adaptively been estimated by using

an EKF. Coarse SBLH estimates from MWR-retrieved potential temperature observations have been

assimilated for aerosol layer disambiguation and to incorporate information about the thermodynamic

stability of atmosphere.

Physical/signal-processing steps can be summarized as follows: First, the vertical variance of the

ceilometer backscatter signal is estimated by using a moving-average filter (150 m rectangular window)

as de-noising step. The correct filter window length is obtained by monitoring statistical properties of

residual instrumental noise. By this means, minimum variance regions (MVRs), which are indicative of

the stratification of aerosol layers in the nocturnal stable boundary-layer, are evidenced in the vertical

moving variance profiles of the denoised backscatter signal. The existence of MVRs and their correlation

with the SBL has been further investigated by processing one month data from HOPE campaign. After

screening for clouds and rain, the vertical variance calculated and averaged for 30-min in time and 200-m

in height bins. Counting the MVRs falling inside the error-bar defined by MWR, it was observed that for

about 54% of cases a single MVR and for about 5% of cases two MVRs were present inside the MWR

error-bar. Whereas, no MVRs lied inside MWR error-bar for 13% of cases, the MVRs did not exist at all
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for about 28% of cases.

MVRs are modelled by using an inverted Gaussian-like function with the SBLH as key parameter of

the state-vector model. The state vector is adaptively estimated by using an EKF whose search boundaries

are defined from the MWR “coarse” SBLH estimates and the 1σ width of the time-adaptive Gaussian

model.

The synergetic approach has been applied to measurements from the HOPE campaign at Jülich,

Germany. Three atmospheric scenarios have been presented: 1) An early morning scenario of SBL with

deep stratification of aerosols and thermodynamic stability in the atmosphere; 2) An evening case where

the SBL just starts developing from the Earth surface; 3) And a complex case with shallow stratification

of aerosols in the atmosphere. Results from these three cases have shown that the proposed synergetic

approach performs well for the different time intervals of the day as well as under different “nocturnal”

atmospheric conditions.

Future work of this prototype algorithm is to involve long-term measurement data as well as more

complex atmospheric scenarios whereby the nocturnal boundary layer is intermittently turbulent. More

sensitive ceilometer instruments such as the CL31 and CL51 can provide better information about the

aerosols stratification and could reveal fine structures in the SBL. Moreover, better processing of the

MWR data for SBLH estimates with lower uncertainty could provide better results for complex cases.

The ultimate goal of this preliminary study is to develop a synergetic retrieval algorithm for full diurnal

cycle of the ABLH over the course of the day.
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Fig. 1: Measured aerosol backscatter and potential temperature data from 24.04.2013, Jülich, Germany.

Vertical arrows mark the sunrise and sunset times. (a) Colorplot of the backscatter profiles measured by

the Vaisala CT25k ceilometer. (b) Colorplot from the MWR-retrieved potential temperature data.
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Fig. 2: Backscatter model variance profile: Conceptual sketch of a minimum variance region (MVR)

modeled by an inverted Gaussian function along with fitting boundaries, z1, z′1, z′2, and z2. The inverted

Gaussian bell on the right shows a MVR within the height interval,
[
z
′
1, z

′
2

]
. The center of the MVR

corresponds to the SBLH given by zSBL and its width is represented by parameter b. Parameter “d” stands

for the background variance and parameter “B” indicates the variance amplitude above the background.
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[
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′
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]
U
[
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′
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]
corresponds to the tail of the Gaussian outside the MVR. On the right, the

fitting boundaries are labelled in terms of the parameters hu,lMWR, ∆hu,lk , and bu,lmax (see Sect. III-D).
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Fig. 3: Ceilometer signal-processing. (a) Block diagram to estimate the variance profile associated to the

atmospheric backscatter, Vβ̂(z). (b) Selection of the vertical smoothing window length and calculation

of the backscatter variance, 24.04.2013, 21:00 UTC. (1) Vertical profiles of the de-noised backscatter

coefficient, β̂w(z), for different window lengths, w = 60 m (black line with circular markers), 150 m

(red dashed line), and 300 m (green trace with dot markers) (rectangular-window smoothing as low-

pass filter (LPF)). (2) High-pass residual noise, v̂w(z), for the different window lengths chosen. (3)

Estimated variance, V̂β(z), for window length chosen (150 m) with two MVRs between the height ranges

of approximately 300− 500 m and 550− 900 m.
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Fig. 4: (a) Vertical variance profiles based on the ceilometer measured aerosol backscatter data showing

MVRs in the height range of 300 − 600 m, 24.04.2013, 21:00-22:30 UTC. (b) Diurnal cycle of MVR

occurrence based on one month of observations in April/May 2013. Number of MVR occurrence within

1 hr and 200 m is color coded. Vertical arrows mark the mean sunrise and sunset times.
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Fig. 5: MWR signal-processing. (a) Estimation of the SBLH from MWR data and potential temperature

model profiles (Tab. I). (Blue crosses) Measured MWR-retrieved potential temperature, θMWR(z). (Solid

color traces, see legends) Model profiles according to Tab. I. (b) Potential-temperature perturbed-error

profiles, θMWR(z) + ε(z) (upper error bound, dashed red), θMWR(z) (nominal profile, solid blue here

and blue crosses in Fig. 5a), and θMWR(z) − ε(z) (lower error bound, dotted red), used to estimate the

errorbars associated to the MWR-retrieved potential temperature profile, θMWR(z). (c) Time-snapshots of

MWR-retrieved potential temperature profiles with uncertainty due to measurements errors, (Eq. 28) at

four time-instants from 24.04.2013, 21:00-22:30:00 UTC.
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(a) (b)

(c)

Fig. 6: Test cases based on data from HOPE campaign at Jülich, Germany. (a) Colorplot of the ceilometer

backscattered signal for 24.04.2013, 00:00-04:30 UTC measurements along with SBLH estimates from

the EKF and the NLSQ approaches. (b) Colorplot of the ceilometer backscattered signal for 24.04.2013,

21:00-24:00 UTC measurements along with SBLH estimates from the EKF and the NLSQ. SBLH estimate

from the radiosonde (black square) launched at 23:00 is also shown. (c) Colorplot of the ceilometer

backscattered signal for 29.04.2013, 22:00-24:00 UTC measurements along with SBLH estimates from

the EKF and the NLSQ. (All panels) MWR-EKF search ranges [z1,k, z2,k] (Eq. 29 and Fig. 2) are plotted

as gray vertical bars.


