

Complex Systems Informatics and Modeling Quarterly

CSIMQ, Issue 5, December 2015/January 2016, Pages 14-25

Published online by RTU Press, https://csimq-journals.rtu.lv

http://dx.doi.org/10.7250/csimq.2015-5.02

ISSN: 2255-9922 online

A Formal Method for Conceptual Fit Analysis

Antoni Olivé

Department of Service and Information System Engineering

Universitat Politècnica de Catalunya – Barcelona Tech, Spain

antoni.olive@upc.edu

Abstract. One criterion that has received little attention in Commercial-off-the-

shelf (COTS) systems selection is what we call conceptual fit. The criterion

assesses the fit between the conceptual structure of the user requirements and

that of a candidate system. In this paper, we evaluate the fit in terms of the

existing misfits. We formally define the notion of conceptual misfit and we

present a method that determines the conceptual misfits between the user

requirements and a set of candidate systems. The method consists of defining a

superschema, expressing the user requirements and the implementation of the

candidate systems on the basis of that superschema, and the automatic

computation of the existing conceptual misfits. The method has been formalized

in UML/OCL. We show how our method improves on existing conceptual fit

analysis methods for COTS selection.

Keywords: COTS selection, Conceptual Fit, Conceptual Modeling.

1 Introduction

Nowadays, organizations often build their information systems by customizing and/or integrating

Commercial-off-the-shelf (COTS) systems [1]. In most cases, there are several alternative COTS

systems that could be used to build an information system. Selecting the most convenient COTS

system for a particular situation has become a critical activity in information systems

engineering.

In general, COTS systems selection is a difficult decision for an organization due to the

diversity of those systems, the possible large number of candidates, the large number of technical

and non-technical characteristics that must be taken into account, and the possible high impact of

the decision on the future activities of the organization [2].

The difficulty, frequency and practical significance of COTS systems selection justify the

large volume of research work devoted to it and the large number of selection methods that have

been proposed so far. Early published works date back at least to 1995 [3], and it is still an active

research area. See [4], [5] for recent surveys on this topic.

COTS system selection essentially consists in evaluating user requirements with respect to

characteristics of candidate systems. The evaluation is performed by defining a set of criteria,

assessing the importance of each criterion for the users and the degree to which the criterion is

satisfied by a system. Evaluation criteria must be customized for each selection situation [3]. The

criteria taken into account usually include functionality, quality attributes, architecture, costs and

risks.

One kind of criterion that has received little attention is what we call conceptual fit. It is

similar to what is called domain compatibility in Systematic Process for Reusable Software

Components Selection (OTSO), which refers to how well a system and its features map into the

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/46605696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

15

terminology and concepts of the domain [3]. It is also similar to what is called suitability of data

in the GOThIC method, which evaluates how a particular system represents the data of a UML

class or association of a common domain model [6].

This paper analyzes the conceptual fit between user requirements and COTS systems. We

formally define the notion of conceptual misfit and we present a formal method that determines

the existing conceptual misfits between a set of user requirements and a system. The absence of

conceptual misfits indicates a perfect conceptual fit. We propose conceptual fit as a criterion to

be used for COTS selection because it enables an early discrimination between candidate

systems, which reduces the effort of the selection [7]. It can be taken into account in almost all

existing selection methods.

Our notion of conceptual misfit has been inspired in the ontological expressiveness analysis

[8], in the fitness relationship between a business and the system which supports it [9], and in

CASSM, an analytical usability evaluation method of interactive systems that focuses on

conceptual fit [10].

The structure of the paper is as follows. The next section formally identifies the different kinds

of conceptual misfits that may exist between a set of user requirements and a COTS system.

Section 3 formalizes the general problem of evaluating the conceptual fit of a set of user

requirements and a set of COTS systems. In Section 4 we describe the method we propose for

solving that problem. Section 5 analyzes how conceptual fit could be integrated into three

existing COTS selection methods. Finally, Section 6 summarizes the conclusions and points out

future work.

2 Conceptual Fit

By conceptual fit we mean the fit between two structural conceptual schemas. In our context, one

conceptual schema is that of the user requirements and the other one is that of a particular COTS

system. For the purposes of this paper, we will assume simple structural conceptual schemas

consisting only of entity types, ISA hierarchies, attributes and binary associations. We assume

that n-ary associations and association classes have been decomposed into their equivalent

classes and binary associations [11].

Figure 1 shows the metamodel M in UML of the schemas that we consider in this paper.

Entity types have a name, and may have sub/supertype associations between them. An abstract

entity type is a derived entity type whose population is the union of that of its subtypes. An entity

type is singleton if it has only one instance; otherwise it is assumed that its cardinality is

unconstrained. Entity types may have attributes, which are properties. Properties have a

minimum and a maximum cardinality, and a type. Cardinalities may be zero, one or

unconstrained. Associations have two ordered participants, each of which is a property, as

before.

Figure 1. The metamodel of the schemas considered in this paper

Assume now that we have two schema instances of M that we call U
S
 (for user requirements)

and Sj
S
 (for COTS system j). We are interested in knowing how well the schemas U

S
 and Sj

S
 fit

16

each other. To this end, we try to see whether there are misfits between them. Based on the

simple metamodel M we identify three kinds of misfits in the schema elements, which we call

deficits, incompatibilities and excesses, and that we define in the following subsections. Of

course, in a more complex metamodel, additional misfits could be identified. The idea is that the

degree of fit of U
S
 and Sj

S
 is inversely proportional to the number of misfits, the maximum being

the absence of them.

We illustrate the analysis by means of examples from the domain of e-commerce platforms

that we have used in our experiments. The domain consists of three content-management

systems (osCommerce [12], Magento [13], CS-Cart) and Amazon webstore.

2.1 Entity Type Misfits

We say that there is an entity type deficit between U
S
 and Sj

S
 with respect to (wrt) E if E is a

concrete entity type of U
S
 but E is not an entity type of Sj

S
. Note that we consider only the

concrete entity types of U
S
 because these are the ones of interest to the users.

For example, if U
S
 includes the concrete entity type Bundle then there is an entity type deficit

between U
S
 and osCommerce wrt to Bundle because that system does not include Bundle. It is

not possible to define instances of bundles in that system.

There is an entity type cardinality incompatibility between U
S
 and Sj

S
 wrt E if E is a concrete

entity type of U
S
 and an entity type of Sj

S
, but E is unconstrained (not a singleton) in U

S
 and a

singleton in Sj
S
. Both U

S
 and Sj

S
 have the entity type E but, in U

S
, E may have several instances

while only one instance is allowed in Sj
S
.

For example, if U
S
 requires an unconstrained concrete entity type Store, then there is an entity

type cardinality incompatibility between U
S
 and osCommerce wrt to Store, because Store is a

singleton in osCommerce. An e-shop may not have several stores in osCommerce.

We say that there is an entity type excess between U
S
 and Sj

S
 wrt E if E is a concrete entity

type of Sj
S
 but E is not an entity type of U

S
. In this case, Sj

S
 includes an entity type that is not of

interest to U
S
. For example, Magento includes the concrete entity type GroupedProduct. If this

type is not required by U
S
 then there is an entity type excess.

2.2 Attribute Misfits

There is an induced attribute deficit between U
S
 and Sj

S
 wrt A if A is an attribute of the concrete

entity type E in U
S
 and there is an entity type deficit between U

S
 and Sj

S
 wrt E. In this case, the

deficit is induced by the entity type deficit. For example, if U
S
 includes the attribute price of

Bundle, then there will be an induced attribute deficit with all systems whose schema does not

include Bundle.

There is an attribute deficit between U
S
 and Sj

S
 wrt A if A is an attribute of the concrete entity

type E in U
S
, Sj

S
 includes E, but Sj

S
 does not include A.

There is an attribute cardinality incompatibility between U
S
 and Sj

S
 wrt A if A is an attribute of

the concrete entity type E in U
S
, Sj

S
 includes A, but the cardinalities are incompatible. An

incompatibility arises when the minimum cardinality in U
S
 is zero and one in Sj

S
, or when the

maximum cardinality is unconstrained in U
S
 and one in Sj

S
. An example of this misfit occurs

when users require that SaleableItem may have several images (unconstrained attribute) and a

system (such as osCommerce) allows at most one.

There is an induced attribute excess between U
S
 and Sj

S
 wrt A if A is an attribute of the

concrete entity type E in Sj
S
 and there is an entity type excess between U

S
 and Sj

S
 wrt E. In this

case, the excess is induced by the entity type excess.

There is an attribute excess between U
S
 and Sj

S
 wrt A if A is an attribute of the concrete entity

type E in Sj
S
, U

S
 includes E, but U

S
 does not include A. In this case, Sj

S
 includes an attribute that

is not of interest to U
S
.

17

2.3 Association Misfits

There is an induced association deficit between U
S
 and Sj

S
 wrt R if R is an association between

the concrete entity types E1 and E2 in U
S
, and there is an entity type deficit between U

S
 and Sj

S

wrt E1 or E2. In this case, the deficit is induced by the entity type deficits.

There is an association deficit between U
S
 and Sj

S
 wrt R if R is an association between the

concrete entity types E1 and E2 in U
S
, Sj

S
 includes E1 and E2, but Sj

S
 does not include R.

There is an association cardinality incompatibility between U
S
 and Sj

S
 wrt R if R is an

association between the concrete entity types E1 and E2 in U
S
, Sj

S
 includes E1 and E2, but the

cardinalities of one of its participants are incompatible. An incompatibility arises when the

minimum cardinality in U
S
 is zero and one in Sj

S
, or when the maximum cardinality is

unconstrained in U
S
 and one in Sj

S
.

For example, consider the association SaleableItem – Category. If U
S
 requires that an item

may have several categories, then there will be an association cardinality incompatibility with

Amazon webstore, because it only allows one.

There is an induced association excess between U
S
 and Sj

S
 wrt R if R is an association between

the concrete entity types E1 and E2 in Sj
S
, and there is an entity type excess between U

S
 and Sj

S

wrt E1 or E2. In this case, the excess is induced by the entity type excess.

There is an association excess between U
S
 and Sj

S
 wrt R if R is an association of the concrete

entity types E1 and E2 in Sj
S
, U

S
 includes E1 and E2, but U

S
 does not require R.

3 Determining the Conceptual Fit for COTS Selection

The general problem of determining the conceptual fit can be defined as follows:

Given:

 The user requirements U of a system in some domain and

 A set S1,…,Sn of n candidate COTS systems in that domain.

Determine:

 The conceptual misfits (deficits, misfits and excesses as defined in the previous section)

between U and each of the S1,…,Sn.

Conceptual fit analysis can be performed considering the complete set of user requirements U

and of the candidate systems S1,…,Sn, or considering only a fragment of them. The latter

possibility is likely to be of much more practical interest in most cases.

The set of conceptual misfits found can be used as a basis for selection. If there are no misfits

between U and Sj, then there is a perfect fit between them.

If there are one or more deficits or incompatibilities between U and Sj, then the selection of Sj

would require either the change of the user requirements U (changing their intended way-of-

working) or, if possible, a customization of Sj for the user (customizing existing systems to

accommodate users’ requirements) [14].

If there are one or more excesses between U and Sj, then the selection of Sj would imply both a

potential value and cost. The value is the set of additional features that are not needed now, but

that may be of interest in the future. The cost is the need of dealing now with the unneeded

features related to those excesses, and the need of the corresponding resources.

If all misfits had the same cost, measured by the cost of changing requirements, the cost of

customization or the cost of the unneeded features then, ignoring the potential value of excesses,

the preferred system according to the conceptual fit criterion would be the one with a minimum

number of such conceptual misfits. In practice, however, it is likely that users find some misfits

costlier than others and therefore some weighting and judgment will be required.

18

4 A Method for Determining the Conceptual Fit

A straightforward approach to the solution of the general problem of determining the conceptual

fit would be to consider each Sj (j = 1,…,n) separately, and determine the conceptual misfits

between U and Sj as indicated in Section 2. This may be the only available solution in some

contexts, but it is very costly. It requires knowing the n conceptual schemas and evaluating U wrt

each of those schemas. When the number n is large and/or the conceptual schemas are large, the

evaluation effort may be large too.

However, in a context where the selection process must be performed several times with the

same set of candidate systems S1,…,Sn, with different user requirements U, then a better solution

would be to build an intermediate superschema S. That superschema S should integrate the

schemas of S1,…,Sn in a way such that U and each of the S1,…,Sn could be formally defined in

terms of S. When this is possible, we will show that then the conceptual misfits of U and each of

the S1,…,Sn could be computed automatically. Note that S and the definition of S1,…,Sn in terms

of S must be done only once per domain and that they are reused in all selection processes in that

domain.

A similar idea was proposed in the Domain-based COTS product selection method (DBCS)

[15] where a “domain model” is the common reference for the system to be developed and the

existing COTS systems.

In the context of schema translation, a similar idea was proposed in MIDST [16] where there

is a supermodel, such that each model is a specialization of the supermodel and a schema in any

model is also a schema in the supermodel.

Based on the above idea, the method we propose consists of four parts:

 A superschema S that is a union of all schemas S1,…,Sn in a given domain.

 The definition of the schemas S1,…,Sn in terms of S.

 The definition of conceptual user requirements U in terms of S.

 The (automatic) computation of the misfits between U and S1,…,Sn.

We describe these parts in the following.

4.1 The Superschema

In our method, the superschema S is an instance of the metamodel shown in Figure 1 for a

domain D such that S includes the schemas of all existing COTS systems S1,…,Sn in D.

By inclusion of schemas we mean that S comprises all concrete entity types, attributes and

associations that are totally or partially implemented in S1,…,Sn. On the other hand, the

cardinalities of the attributes and associations in S must not be incompatible with those that are

implemented in S1,…,Sn.

Note that the superschema we propose is similar to the “reference models” used in

professional organizations as “an abstract framework for understanding significant relationships

among the entities of some environment, and for the development of consistent standards or

specifications supporting that environment.” One of the most prominent examples of a reference

model is the HL7 RIM

4.2 Defining Conceptual Schemas of COTS Systems in Terms of the Superschema

For the purposes of conceptual fit analysis we need to know for each Sj (j = 1,…,n):

 The entity types of S implemented in Sj and their corresponding cardinalities. We are

interested only in the entity types that are concrete in Sj. If Sj implements all subtypes of

an abstract entity type E in S, then Sj also implements E.

19

 The attributes and associations of S implemented in Sj and their corresponding

cardinalities.

Figure 2 shows the extension of the metamodel defined in Figure 1 needed to represent the

part of S that is implemented by Sj. A COTS system is assumed to implement a set of concrete

entity types (with a cardinality of type EntityTypeCardinality, which may be Singleton or

Unconstrained), a set of attributes and a set of associations.

Figure 2. Extension of the metamodel of Figure 1 with COTS implementation of a superschema

Note that if S includes an abstract entity type E with subtypes E1,…, Em and E has an attribute

A, then a system Sj that implements two or more of those subtypes could implement A differently

in each case. Our metamodel of Figure 2 takes this possibility into consideration by indicating in

AttributeImplementation the implemented entity type. A similar reasoning applies to the

association participants.

The definition of a COTS implementation can be superschema-driven or system-driven. In the

former, the elements of S are taken in some convenient order, and for each of them it is checked

whether or not it is implemented by the system. If the element is a concrete entity type that is not

implemented by Sj then there is no need to check the implementation of its attributes and

associations. Note that in order to use this process the conceptual schema of Sj needs not to be

explicit; what is needed to be known is what entity types, attributes and associations of S are

implemented in Sj.

In the system-driven process, the elements of the conceptual schema of Sj are taken in some

convenient order, and each of them is mapped to S. To use this process the conceptual schema of

Sj must be explicit.

4.3 Defining Conceptual User Requirements

For the purposes of conceptual fit analysis of U we need to know:

 The entity types of S required by U and their corresponding cardinalities. We need to

know only the entity types that are concrete in U. If U requires all subtypes of an abstract

entity type E in S, then U also requires E.

 The attributes and associations of S required by U and their corresponding cardinalities.

Figure 3 shows the extension of the metamodel defined in Figure 1 needed to represent the

user requirements in terms of S. It is nice to see that the extension has the same structure as that

of Figure 2. An instance of UserRequirements consists of a set of concrete entity types (with a

cardinality that may be Singleton or Unconstrained), a set of attributes and a set of associations.

20

Figure 3. Extension of the metamodel of Figure 1 with user requirements

Note that similarly to the previous case, if S includes an abstract entity type E with subtypes

E1,…, Em and E has an attribute A, then if U requires two or more of those subtypes, it could

require A differently in each case. The same applies to association participants.

As in the definition of the implementation in COTS systems, the definition of user

requirements can be superschema-driven or requirements-driven. In the former, the elements of

the superschema are taken in some convenient order, and whether or not it is required by the

users is checked for each of them. If the element is a concrete entity type that is not required then

there is no need to check the requirement of its attributes and associations. Note that in order to

use this process the conceptual schema of the user requirements needs not to be explicit; what is

needed to be known is what entity types, attributes and associations of S are required.

In the system-driven process, the elements of the conceptual schema of U are taken in some

convenient order, and each of them is mapped to S. To use this process the conceptual schema of

U must be explicit.

4.4 Computing Misfits

In our method, once we have defined the instance of M (Figure 1) corresponding to the

superschema S for a domain D, the instances of the candidate COTS systems S1,…,Sn in D and

their definitions in terms of S (Figure 2), and the instance of the user requirements U and its

mapping to S (Figure 3) we can then automatically compute the misfits between U and S1,…,Sn.

In what follows we explain the details of the computation in terms of the UML schemas shown

in Figure 2 and Figure 3 and we give the formal definition of the misfits in OCL.

Entity type deficit. Let E be an entity type required by U. There is a deficit of E in Sj if E is not

implemented in Sj. E can be implemented in Sj directly or by exclusion. There is a direct

implementation when E is also an entity type of Sj.

There is an implementation by exclusion when there is an entity type E’ implemented by Sj

such that E’ is a supertype of E, E1,…, Ep (p > 0) and E1,…, Ep are not required by U. The

exclusion of E1,…, Ep by U implies that the population of E and E’ will always be the same, and

therefore E’ can implement E in Sj. For example, assume that S includes the entity type Vehicle

with subtypes Motorcycle and Car, that U requires only Motorcycle, and that Sj implements

Vehicle, but none of its subtypes. In this case, Motorcycle can be implemented by Vehicle in Sj.

The formalization in OCL is:

context EntityTypeRequirement::isDeficit(c:COTS):Boolean

body isImplementedBy(c).isUndefined

21

where isImplementedBy(c) is defined in the same context by:

isImplementedBy(c:COTS):EntityTypeImplementation

body
if directImplementation(c)->notEmpty then

directImplementation(c)->any(true)

else

if implementationByExclusion(c)->notEmpty then

 implementationByExclusion(c)->any(true)

else oclUndefined(EntityTypeImplementation)

endif

endif

and such that directImplementation and implementationByExclusion are:

directImplementation(c:COTS):Set(EntityTypeImplementation)

body c.entityTypeImplementation ->

select(ei|ei.implementedEntityType = self.requiredEntityType)

implementationByExclusion(c:COTS):Set(EntityTypeImplementation)

body self.requiredEntityType.parent.entityTypeImplementation->

select(ei|ei.cOTS = c and ei.implementedEntityType.child->

forAll(e|e.entityTypeRequirement->

select(er|er.userRequirements = self.userRequirements)->isEmpty))->

asSet()

Entity type incompatibility. Let E be an unconstrained entity type required by U. There is an

incompatibility when E is implemented by a singleton entity type in Sj. The OCL formalization

is:

context EntityTypeRequirement:: isIncompatible(c:COTS):Boolean
body cardinality = EntityTypeCardinality ::Unconstrained and

isImplementedBy(c).cardinality = EntityTypeCardinality::Singleton

Entity type excess. Let E be an entity type in Sj. There is a misfit of this kind when E does not

implement any entity type in U. In OCL:

context EntityTypeImplementation::isExcess(u:UserRequirements):Boolean

body not u.entityTypeRequirement ->

exists(er|er.isImplementedBy(self.cOTS) = self)

Induced attribute deficit. This happens when U requires an attribute of entity type E and there

is an entity type deficit between U and Sj wrt E. In OCL:

context AttributeRequirement::isInducedDeficit(c:COTS):Boolean

body requiredEntityType.entityTypeRequirement->

exists(er|er.userRequirements = self.userRequirements and

er.isDeficit(c))

Attribute deficit. This happens when U requires an attribute A of an entity type E that is

implemented in Sj, but that implementation does not include A. In OCL:

context AttributeRequirement::isDeficit(c:COTS):Boolean

body requiredEntityType.entityTypeRequirement->

exists(er|er.userRequirements = self.userRequirements and

 er.isImplementedBy(c).isDefined)

and self.isImplementedBy(c).isUndefined

where isImplementedBy(c) is defined in the same context by:

isImplementedBy(c:COTS):AttributeImplementation

body

let ai:Set(AttributeImplementation) =

c.attributeImplementation->

select(ai|ai.implementedEntityType = self.requiredEntityType)

in

if ai -> notEmpty then ai->any(true)

else oclUndefined(AttributeImplementation)

22

endif

Attribute cardinality incompatibility. This happens when the cardinalities of an attribute

required by U are incompatible with those of its implementation in Sj.

context AttributeRequirement:: isIncompatible(c:COTS):Boolean
body (minCardinality = Cardinality ::isZero and

isImplementedBy(c).minCardinality = Cardinality::isOne) or

(maxCardinality = Cardinality ::Unconstrained and

isImplementedBy(c).maxCardinality = Cardinality::isOne)

Induced attribute excess. Let A be an attribute of a concrete entity type E in Sj. There is a misfit

of this kind when E is an entity type excess for U. In OCL:

context AttributeImplementation::isInducedExcess(u:UserRequirements):Boolean

body implementedEntityType.entityTypeImplementation->

exists(ei|ei.cOTS = self.cOTS and ei.isExcess(u))

Attribute excess. Let A be an attribute of a concrete entity type E in Sj. There is a misfit of this

kind when E is an implementation of an entity type required by U but A is not implemented.

context AttributeImplementation::isExcess(u:UserRequirements):Boolean

body implementedEntityType.entityTypeRequirement->

exists(er|er.userRequirements = u and

er.isImplementedBy(self.cOTS).isDefined)

and not

u.attributeRequirement->exists(ar|ar.isImplementedBy(self.cOTS) = self)

Induced association deficit. There is misfit of this kind when U requires an association R

between the concrete entity types E1 and E2 and there is an entity type deficit between U and Sj

wrt E1 or E2.

Association deficit. There is misfit of this kind when U requires an association R between the

concrete entity types E1 and E2 that are implemented in Sj, but Sj does not include R.

Association cardinality incompatibility. This happens when the cardinalities of an association

required by U are incompatible with those of the implemented association in Sj.

Induced association excess. Let R be an association between the concrete entity types E1 and E2

in Sj. There is a misfit of this kind when E1 and E2 are an entity type excess for U.

Association excess. Let R be an association between the concrete entity types E1 and E2 in Sj.

There is a misfit of this kind when E1 and E2 are implementations of entity types in U but R is

not.

5 Integration into Existing COTS Selection Methods

In principle, conceptual fit analysis could be integrated into (almost) all existing COTS selection

methods. In what follows, we indicate how this could be done in three methods that explicitly

consider something similar to our conceptual fit: OTSO [3], CAP [17], and GOThIC [6].

OTSO. This method classifies the selection evaluation criteria into four main areas: functional

requirements, product quality characteristics, strategic concerns, and domain and architecture

compatibility. Domain compatibility refers to how well the candidate system and its

features map into domain terminology and concepts. OTSO provides a template for the

definition of criteria although no specific criteria are suggested. Each criterion must indicate how

to measure the degree to which a system satisfies the criterion, and a baseline, which is the

minimum value that must be achieved.

23

Conceptual fit analysis could provide two concrete evaluation criteria to OTSO, which may be

called Conceptual deficits and incompatibilities and Conceptual excesses. Both correspond to the

OTSO evaluation criteria area of domain compatibility. The first would be defined by the list of

the conceptual deficits and incompatibilities that are not allowed by the user requirements. The

baseline for this criterion would then be the absence of all misfits in the list. The Conceptual

excesses criterion would be implicitly defined by the list of all possible conceptual excesses, as

defined in Section 2. The baseline for this criterion would also be the absence of excesses.

CAP. The core part of the measurement and decision-making procedure of CAP is its

evaluation taxonomy, which comprises a set of more than 100 pre-defined quality metrics. The

definition of each quality metric indicates how to measure the degree, to which a system satisfies

the metric, and the scale of the measure. The taxonomy is organized in a four-level tree. The first

level is identical to the four areas of OTSO. The second level includes Domain compatibility, but

there are no specific refinements on this level of the taxonomy.

As in the case of OTSO, conceptual fit analysis could provide the same two concrete

evaluation criteria to CAP: Conceptual deficits and incompatibilities and Conceptual excesses.

The measure could be the number of (possibly weighted) misfits.

GOThIC. The basis of this method is a large domain model which includes all relevant

attributes for the selection of COTS in that domain. In particular, the domain model assumes the

existence of a structural conceptual schema (UML class diagram), which is the equivalent to our

superschema. From this schema the method derives, for each class or association appearing in it,

a quality attribute with an ordinal metric which can take three values: Satisfactory, Acceptable

and Poor. For a given class or association and system, the value corresponds to the degree with

which the system satisfies the user requirements with respect to that class or association.

Conceptual fit could be easily integrated into GOThIC. The quality attributes derived from

classes and associations would remain the same, but the values of their ordinal metric would now

be Absence and Presence of misfits (deficit and/or incompatibilities), instead of the rather

subjective current values. These values would be automatically computed from the definition of

the superschema implementation (Figure 2) and of the user requirements (Figure 3). Moreover,

the evaluation of the user requirements wrt those quality attributes for each system would now be

objective.

6 Conclusions

We have proposed a new criterion for COTS systems selection, which we call conceptual fit. The

criterion assesses the fit between the conceptual structure of a given system and that of the user

requirements. We have identified three kinds of misfits in the schema elements, called deficits,

incompatibilities and excesses. The idea is that the degree of conceptual fit is inversely

proportional to the number of misfits, the maximum being the absence of them.

We have formally defined the general problem of evaluating the conceptual fit between the

user requirements and a set of COTS systems in some domain, and we have proposed a new

method for its solution. The method consists in defining a superschema, the definition of the

conceptual schemas of the candidate systems and of the user requirements to that superschema,

and the automatic computation of the conceptual misfits. We have formalized the method in

UML and OCL.

The main effort required by our method is the development of the superschema and the

definition of the candidate systems in terms of it. However, this must be done only once per

domain (such as online shops) and the result could be reused in all COTS selections of a domain.

This fact opens the possibility for professional organizations, consulting companies, and so on to

make that effort and make the results available to all interested information systems developers.

In principle, the conceptual fit criterion could be taken into account by almost all existing

selection methods. We have shown its integration into three existing selection methods.

Although it has not been shown in the paper, we conjecture that conceptual fit could be taken

24

into account in the early stages of product selection, because it enables an early discrimination

between candidate products. In particular, it is likely to be useful in methods such as PORE [18]

that propose an iterative selection approach.

The work reported here can be extended in several directions. We mention two of them here.

The first is to take into account more conceptual constructs than those considered in the

metamodel of Figure 1, such as data types or enumerations, or behavioural constructs [14].

Second, the method should be tested in real-world projects of COTS selection in order to

experimentally confirm its cost effectiveness in practice. Ideally, the projects could be developed

in one of the domains for which there is already a superschema, such as the reference model HL7

RIM in the health care domain.

Acknowledgments

This work has been partly supported by the Ministerio de Economía y Competitividad and

FEDER under project TIN2008-00444, Grupo Consolidado, and by the Secretaria d’Universitats

i Recerca de la Generalitat de Catalunya.

References

[1] L. Brownsword, P. A. Oberndorf, and C. A. Sledge, “Developing New Processes for COTS-Based

Systems,” IEEE Software, vol. 17(4), pp. 48-55, 2000. Available:

http://dx.doi.org/10.1109/52.854068

[2] M. Feblowitz and S. J. Greenspan, “Scenario-Based Analysis of COTS Acquisition Impacts,”

Requirements Eng., vol. 3(3/4), pp. 182-201, 1998. Available:

http://dx.doi.org/10.1007/s007660050004

[3] J. Kontio, “OTSO: A Systematic Process for Reusable Software Component Selection,” University

of Maryland Technical Reports. College Park, University of Maryland. CS-TR-3478, UMIACS-TR-

95-63, 1995.

[4] R. Land, L. Blankers, M. R. V. Chaudron, and I. Crnkovic, “COTS Selection Best Practices in

Literature and in Industry,” in Hong Mei, Ed., ICSR 2008. LNCS 5030, pp. 100-111, Springer,

Heidelberg, 2008. Available: http://dx.doi.org/10.1007/978-3-540-68073-4_9

[5] F. Tarawneh, F. Baharom, J.Hj. Yahaya, and F. Ahmad, “Evaluation and Selection COTS Software

Process: The State of the Art,” International Journal on New Computer Architectures and Their

Applications, vol. 1(2), pp. 344-357, 2011.

[6] C. P. Ayala and X. Franch, “Domain Analysis for Supporting Commercial Off-the-Shelf

Components Selection,” in D.W. Embley, A. Olivé, and S. Ram, Eds., ER 2006, LNCS 4215, pp.

354–370, 2006. Available: http://dx.doi.org/10.1007/11901181_27

[7] N. A. M. Maiden, C. Ncube, and A. Moore, “Lessons Learned During Requirements Acquisition for

COTS Systems,” Comm. ACM December vol. 40, no. 12, pp. 21-25, 1997. Available:

http://dx.doi.org/10.1145/265563.265567

[8] Y. Wand, “Ontology as a foundation for meta-modelling and method engineering,” Information &

Software Technology, vol. 38(4), pp. 281-287, 1996. Available: http://dx.doi.org/10.1016/0950-

5849(95)01052-1

[9] A. Etien, C. Rolland, “Measuring the fitness relationship,” Reqs Eng, vol. 10(3), pp. 184-197, 2005.

Available: http://dx.doi.org/10.1007/s00766-005-0003-8

[10] A. Blandford, T. R. G. Green, D. Fursniss, and S. Makri, “Evaluating system utility and conceptual

fit using CASSM,” Int. Journal of Human–Computer Studies. vol. 66. pp. 393-409, 2008. Available:

http://dx.doi.org/10.1016/j.ijhcs.2007.11.005

http://dx.doi.org/10.1109/52.854068
http://dx.doi.org/10.1007/s007660050004
http://dx.doi.org/10.1007/978-3-540-68073-4_9
http://dx.doi.org/10.1007/11901181_27
http://dx.doi.org/10.1145/265563.265567
http://dx.doi.org/10.1016/0950-5849(95)01052-1
http://dx.doi.org/10.1016/0950-5849(95)01052-1
http://dx.doi.org/10.1007/s00766-005-0003-8
http://dx.doi.org/10.1016/j.ijhcs.2007.11.005

25

[11] A. Olive, “Conceptual Modeling of Information Systems,” Springer, Berlin 2007. Available:

http://dx.doi.org/10.1007/978-3-540-39390-0

[12] A. Tort, “Esquema conceptual de l’osCommerce,” Master thesis. [Online]. Available:

http://upcommons.upc.edu/ pfc/handle/2099.1/5301?locale=en, 2007

[13] A. Ramirez, “Esquema conceptual de Magento, un sistema de comerç electronic,” Master thesis.

[Online]. Available: http://hdl.handle.net/2099.1/12294, 2011

[14] I. Reinhartz-Berger, A. Sturm, and Y. Wand, “Comparing functionality of software systems: An

ontological approach,” Data Knowl. Eng., vol. 87, pp. 320-338, 2013. Available:

http://dx.doi.org/10.1016/j.datak.2012.09.005

[15] K. R. P. H. Leung, and H. K. N. Leung, “On the efficiency of domain-based COTS product selection

method,” Information & Software Technology, vol. 44(12), pp. 703-715, 2002. Available:

http://dx.doi.org/10.1016/S0950-5849(02)00118-0

[16] P. Atzeni, P. Cappellari, R. Torlone, P. A. Bernstein, and G. Gianforme, “Model-independent

schema translation,” VLDB J., vol. 17(6), pp. 1347-1370, 2008.

[17] M. Ochs, D. Pfahl, G. Chrobok-Diening, and B. Nothhelfer-Kolb, “A COTS Acquisition Process:

Definition and Application Experience,” 11th ESCOM Conference, pp. 335-343, 2000.

[18] N. A. M. Maiden and C. Ncube, “Acquiring COTS Software Selection Requirements,” IEEE

Software, vol. 15(2), pp. 46-56, 1998. Available: http://dx.doi.org/10.1109/52.663784

http://dx.doi.org/10.1007/978-3-540-39390-0
http://dx.doi.org/10.1016/j.datak.2012.09.005
http://dx.doi.org/10.1016/S0950-5849(02)00118-0
http://dx.doi.org/10.1109/52.663784

