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Abstract

There has been recently a striking increase in the use of propensity score methods in health

sciences research as a tool to adjust for selection bias in making causal inferences from

observational controlled studies. However, reviews of published studies that use these techniques

suggest that investigators often do not pay proper attention to thorough verification of appropriate

fulfilment of propensity score adjusting properties. By using a case study in which balance is

not achieved, we illustrate the need to systematically asses the accomplishment of the balancing

property of the propensity score as a critical requirement for obtaining unbiased treatment effects

estimates.
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Keywords: Propensity score, balancing score, treatment effect.

1. Introduction

In assessing the impact of a clinical intervention an experimental approach through the

use of a randomized trial is always regarded as a reference of optimum design leading to

the highest quality evidence if properly conducted (D’Agostino and D’Agostino, 2007;

Friedman, Furberg and DeMets, 1998). Randomized assignment of alternative interven-

tions minimizes the risk of selection bias (confounding by indication) (Walker, 1996)
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and therefore maximizes internal validity of the causal inferences. Unfortunately, many

times ethical, economic or practical reasons impede the use of this experimental design.

The effect of many interventions is instead assessed using observational studies. In

non-experimental designs it is necessary to take into account the potential existence of

selection bias due to the fact that groups to be compared are not genuinely “comparable”

(Grimes and Schulz, 2002). The treatment or intervention any individual receives can be

influenced by a mix of measurable and immeasurable factors. We might consider among

them, physician preference or belief about the specific effect of a given intervention

according to the patient profile, local clinical practice patterns or patient preferences

and values. Propensity scores (PS) techniques (Rosenbaum and Rubin, 1983) conform

a set of statistical methods devised to minimize this bias.

Although the original paper written by Rosenbaum and Rubin addressed a clinical

problem as an example of application, this method has been scarcely used in the health

sciences until the last decade. A substantial increase in researchers’ interest in and use

of this method has been recently detected (Sturmer et al., 2006).

A search of the term “propensity score” in MEDLINE and EMBASE bibliographic

databases permit us confirm this tendency and shows that the number of papers that use

this approach keeps exponentially increasing (Figure 1).

By using the PS (the conditional probability of receiving the intervention of interest

given the pre-treatment individual covariates) we reduce the multidimensionality of

the pre-intervention covariate vector to a single number (scalar) that encapsulates

all the original information. All individuals with a given PS are expected to have a

homogeneous distribution of relevant baseline characteristics, irrespective of whether or

not they have received the intervention of interest. Therefore, it is stated that, conditional

on these measured pre-intervention covariates, allocation of interventions can be thought

Figure 1: Time distribution of publications that include the “propensity score” term.
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of as a random process, similar to what happens in a clinical or community trial (Austin,

2011).

One of the theoretical foundations of the adjusting ability of the PS is that it is

a balancing score, (Rosenbaum and Rubin, 1983). It implies both, that PS achieves

homogeneous covariate distributions between groups and that given the PS, treatment

received and covariates are conditionally independent. However, in many cases, the

fulfilment of the balancing property of the empirically estimated PS is not systematically

assessed (Weitzen et al., 2004). When this is the case there is no real guarantee that the

covariates making for the PS are actually adequately balanced; this can, in turn, lead

to unfair comparisons. It has been proved (Rosenbaum and Rubin, 1983) that the PS is

a balancing score but authors warned that in certain practical conditions that balance

cannot be reached. In this article we present a case study in which proper balance

could not be achieved because of the highly deterministic nature (lack of significant

uncertainty) of the treatment assignment process. If that happens, PS-based methods

should not be used to estimate treatment effects.

Methodology

Data description

We analysed data from a clinical cohort of 4,339 neonates with respiratory problems due

to prematurity. Some of them were given pulmonary surfactant, a tensioactive substance

which improves the mechanics of breathing. Our aim was to estimate the effect of this

medical intervention on probability of death during the first 28 postnatal days.

Estimation of PS

PS is defined as the conditional probability of receiving a given treatment conditional

on the observed pre-treatment characteristics of the individual. In our step by step PS

estimation process every recorded pre-treatment covariate deemed to be important by

clinicians with regard to clinical management and treatment of breathing problems in

prematurity and/or early prognosis was first pre-selected. Separate bivariate logistic re-

gression models were then fitted to assess the relationship of each pre-selected covariate

firstly with treatment received (pulmonary surfactant) and then with outcome (death in

the first 28 days after birth). The PS is ultimately estimated from a multivariable bi-

nary logistic regression with treatment received as the dependent variable and predictor

variables selected from the previous steps. We first included all physician recommended

covariates that were shown to be associated with the outcome in previous bivariate mod-

els, irrespective of their relationship with the treatment choice (Brookhart et al., 2006).

Then, through a manual, step by step, backward approach, variables that were not sta-

tistically significant in the multivariable model were removed until the final estimation

model was obtained. Predicted probabilities from this model represent the estimated PS.
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After PS estimation, we proceeded to check for the existence and pattern of over-

lapping (common support) in PS values between individuals in comparing groups. PS

methods rely on the so-called “counterfactual or potential outcomes” framework (Oakes

and Johnson, 2006). For each individual and intervention, there are two potentially ob-

servable outcomes: one if she receives the study intervention and another if she does

not receive it. The natural effect of the intervention on the subject would be obtained

as the difference between these two potential outcomes. In practice, however, only one

outcome can be actually observed as the individual either does or does not receive the

intervention of interest. Lacking the natural reference for comparison (the same individ-

ual in the counterpart situation), we must ensure a proper comparison group exists as a

proxy for this unobservable counterfactual experience.

Ensuring that for each selected interval of PS values there are both treated and un-

treated individuals (Caliendo and Kopeining, 2008) is a required criterion that compa-

rable experience is available, enabling causal inference and estimation of intervention

effects. With real data, it is commonplace to find, especially at the tails of the PS distribu-

tion, regions where only treated or untreated individuals are found. This finding affects

comparability of groups (also referred to as positivity) and produces biased estimates,

based partly on extrapolations (Shadish and Steiner, 2010). To appraise the observed de-

gree of overlapping achieved we used descriptive statistics and graphical tools that help

inspect the empirical distributions of estimated PS among each treatment group (his-

tograms and box-plots) and took special care in inspecting the tails of the distributions.

Additionally nonparametric density estimators (kernel functions) were used to explore

and detect potential non-overlapping regions within the whole range of observed PS.

To ensure estimates based on comparable subjects (Pattanayak, Rubin and Zell,

2011), we excluded neonates from the tail areas where there was no overlapping (all

untreated neonates whose PS was smaller than the smallest PS in the treated units and

all the treated neonates whose PS was larger than the largest PS in the untreated).

Finally balancing properties of the estimated PS were assessed. This is a two-step

process: it should be first checked whether the PS is similarly distributed between

treated and untreated groups over defined regions across the PS observed range. If

this requirement is fulfilled, then assessment of homogeneity of distributions should

additionally be performed for each covariate included in the final PS estimation model

over the pre-specified regions of observed PS (Adelson, 2013). Only after these two

conditions are met we can accept the empirically estimated PS is working adequately as

a balancing score.

To do it in practice we started splitting the observed range of PS values into five

blocks of equal size (quintiles) (Rosenbaum and Rubin, 1984) and statistically tested

the balance of PS between treated and untreated within each block by the use of

nonparametric tests (Kolmogorov-Smirnov test). A statistical significance threshold of

0.01 was chosen to account for the chance effect of multiple comparisons (Benjamini

and Hochberg, 1995). If balance in PS was not achieved in a specific block, it was further

subdivided into two new blocks of the same size and PS balance between the groups was
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Table 1: Pre-selected variables and association with treatment and outcome. DR: delivery room. NEC:

necrotizing enterocolitis. RDS: respiratory distress syndrome. PIVH: peri/intraventricular haemorrage.

PDA: patent ductus arteriosus. Only statistically significant or marginally

significant associations are shown.

Variables associated with treatment Variables associated with outcome

Gestational age (week and day) ( p < 0.001) Gestational age (week and day) ( p < 0.001)

Mode of delivery ( p < 0.001) Mode of delivery ( p < 0.001)

Gender ( p < 0.001) Gender ( p = 0.033)

Multiple Birth ( p < 0.001) —

Apgar test score at 5 minutes ( p < 0.001) Apgar test score at 5 minutes ( p < 0.001)

Endotracheal intubation in DR ( p < 0.001) Endotracheal intubation in DR ( p < 0.001)

Adrenaline /Epinephrine in DR ( p < 0.001) Adrenaline /Epinephrine in DR ( p < 0.001)

Cardiac Compression in DR ( p < 0.001) —

Prenatal corticosteroid use ( p < 0.001) Prenatal corticosteroid use ( p < 0.001)

Conventional Ventilation after leaving DR

( p < 0.001)

Conventional Ventilation after leaving DR

( p < 0.001)

High Frequency Ventilation after leaving DR

( p = 0.001)

High Frequency Ventilation after leaving DR

( p < 0.001)

NEC surgery ( p < 0.001) NEC surgery ( p = 0.04)

RDS ( p < 0.001) RDS ( p < 0.001)

Pneumothorax ( p < 0.001) Pneumothorax ( p < 0.001)

Focal Gastrointestinal Perforation ( p < 0.001) —

PIVH grade 3-4 ( p < 0.001) PIVH grade 3-4 ( p < 0.001)

— Cystic Periventricular Leukomalacia ( p < 0.001)

Early Bacterial sepsis and/or meningitis Early Bacterial sepsis and/or meningitis

(before day 3) ( p < 0.001) (before day 3) ( p = 0.078)

Major Birth Defect (p = 0.08) Major Birth Defect (p = 0.025)

PDA Ligation ( p < 0.001) —

Indomethacin/Ibuprofen use ( p < 0.001) Indomethacin/Ibuprofen use ( p < 0.001)

again tested (Dehejia and Wahba, 2002; Pattanayak et al., 2011). We proceeded using

this strategy in a systematic way in an attempt to achieve proper balance (for both PS

and selected covariates) in all blocks as already described.

Results

Table 1 shows recorded pre-treatment variables and their association to treatment use

and/or the outcome of interest. Seventeen variables were identified that behaved as true

confounders (associated to treatment decision and outcome of interest). One additional

variable (Cystic Periventricular Leukomalacia) showed a strong association with death

in the first 28 days but was not related to use of surfactant. Those variables were included

in the initial, full model to estimate the PS. Four additional variables that showed only

significant association with treatment choice were not included (Brookhart et al., 2006;

Austin, 2011). The final model retained 13 variables (Table 2).
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Table 2: Variables included in the final model.

Mode of delivery

Gender

Endotracheal intubation in DR

Adrenaline /Epinephrine in DR

Prenatal corticosteroid use

Conventional Ventilation after leaving DR

High Frequency Ventilation after leaving DR

NEC surgery

RDS

Pneumothorax

PIVH grade 3-4

Indomethacin/Ibuprofen (therapeutic)

Gestational Age

Table 3: Minimum and maximum values of estimated PS

for treated and untreated groups.

min max

Untreated 0.0034 0.9970

Treated 0.0059 0.9997

Summary statistics and distributional graphics (not shown) warned about the ex-

istence of lack of overlapping between the groups in both tails of the distribution of

estimated PS. Table 3 shows minimum and maximum values of PS for both groups. As

a consequence 102 untreated neonates in the lower tail and 104 treated neonates in the

upper tail were dropped out of the analysis to obtain estimates in the common support

region. This area therefore consisted of 4,133 newborns, out of which 1,971 were given

surfactant.

A graphical display of the estimated density functions of PS for treated and untreated

individuals illustrated the fact that, even after trimming the tails, the overall degree of

overlapping was rather small over the whole range of observed PS values. Most treated

newborns had very high PS values whereas most untreated ones had very low PS values

(Figure 2).

We then split up the PS in quintiles and evaluated the extent of PS balance between

groups (Figure 3). Balance based on statistical significance was obtained only in the first

and fifth quintiles. Further splitting up the middle quintiles did not correct for the lack

of balance in these regions of the PS values. A last additional subdivision of blocks led

to a final division in ten blocks which achieved balance at a significance level α= 0.01

but still with apparent uneven distribution of groups (Figure 4).
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Figure 2: Empirical distribution of PS for treated and untreated newborns (kernel function).
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Figure 3: Box-plots of quintiles of estimated PS. Second line over x-axis shows p values

(Kolmogorov-Smirnov test of equivalence of distributions). First line, below, displays number of

untreated and treated neonates respectively for each quintile.
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Figure 4: Box-plots of estimated PS split-up in ten subgroups. Second line over x-axis shows p values

(Kolmogorov-Smirnov test of equivalence of distributions). First line, below, displays number of

untreated and treated neonates respectively for each subgroup (see text for further explanation).

We went on to assess the ability of estimated PS to balance the distributions

of individual baseline covariates between treated and untreated. Although reasonable

balance seemed to be achieved for some variables, this was not so for some others.

Figure 5 displays the comparative distribution of the variable “use of high frequency

ventilation after leaving delivery room” showing the scarce number of treated neonates

in the lower blocks and the lack of adequate balance in the sixth block (p < 0.001).

We decided not to proceed to the effects estimation stage as it was felt our estimated

PS did not fulfill the theoretical assumptions required to provide unbiased, reliable

adjusted estimates of the effect of surfactant administration on death during the first

28 days after birth.

Discussion

Given the frequent constraints to the conduct of randomized experiments in medicine,

it is increasingly common to use observational data to assess the effects of clinical or
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Figure 5: Distribution of the variable “high frequency ventilation” showing the degree

of balance achieved across the range of values of estimated PS. Above x-axis p values from exact Fisher test

are shown for each block. Above each column, number of individuals is provided for untreated (columns A)

and treated newborns (columns B).

public health interventions on relevant health outcomes. In order to minimize the risk

of obtaining biased estimates due to existence of unbalanced pre-treatment covariates

in the groups to be compared (selection bias), an array of adjustment techniques has

been devised (Gang et al., 2012). Among them those based on the PS have been gaining

increasing popularity (Sturmer et al., 2006; Klungel et al., 2004). Nowadays there are

routines in most popular statistical packages that make it easier to apply PS methods

(Klungel et al., 2004; Becker and Ichino, 2002).
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Our paper describes, using a case study, the full two-step process that should be

undertaken to appropriately check for adequate conditional balance between groups.

This process is commonly either not performed or not reported in published applications

of these methods. It additionally shows that there may be specific settings where PS

based adjustment should not be performed with the available observational data, as

the estimated PS does not meet a critical theoretical requirement, namely being a

balancing score. We comment on some of the undesired consequences of using PS based

adjustment when this requirement is overlooked.

To obtain an empirical PS estimate that behaves as a true balancing score is a

key step, dependent on several related factors that should be given proper attention.

We would like first to emphasize the need for a correct selection of the covariates to

be used in the PS estimation model. This process requires a careful combination of

clinical knowledge on the issue at hand, a clearly framed causal pathway that takes into

account all relevant information and a comprehensive consideration of the statistical

relationships among pre-selected covariates, assignment of treatment and the outcome

of interest (Brookhart et al., 2006; Bryson, Dorsett and Purdon, 2013).

One second related aspect is how to best determine that the estimated PS model

will make for an appropriate adjustment. As the PS is an estimate of the probability

that a given individual receives or not the study treatment and logistic models are com-

monly used to estimate the PS, it has been common practice to check the adequacy of

the model employing standard goodness-of-fit (GOF) diagnostics. In particular, the c-

statistic or area under the curve (AUC), an accepted measure of the ability of the model’s

predicted values to discriminate between positive and negative cases (Midi, Rana and

Sarkar, 2010), has been reported in research employing PS adjustment methods (Westre-

ich et al., 2011). High AUC values reflect good predictive performance of the estimated

PS model, but the main concern in our setting is not to predict treatment selection but to

control for confounding. Theory says that, conditional on PS (as a balancing function of

covariates), treatment assignment or choice can be thought of as a random process (con-

ditional independence assumption). If the treatment selection model has an extremely

high predictive value, as our case study exemplifies (AUC=0.96), it is difficult to accept

this assumption is met. In this model one or more factors strongly determine whether the

individual receives or not the intervention under study and therefore it is doubtful that in-

dividuals from both treatment groups are “comparable”. In this sense, the yield of a high

c-statistic in the treatment choice estimation model must raise further concern that poor

overlap between treated and untreated patients is likely to be an issue. Therefore it is now

recognized that the c-statistic should not be provided as an index supporting the quality

of the model. Several GOF statistics and graphical tools have been proposed aimed at

specifically checking the adequacy of the PS model as a balancing score (Austin, 2008a).

The degree of overlapping in PS distributions between treated and untreated patients,

the third related element, greatly influences comparability and therefore the quality of

inference about treatment effect. The positivity principle, one of the key assumptions

for causal inference (Westreich and Cole, 2010; Cole and Hernán, 2008), requires the
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existence of both treated and untreated subjects at each level of all covariates under

consideration. This should also be reflected by the existence of individuals from both

treatment groups in all regions of the PS range. However, PS estimated from models

with very high predictive abilities will often lead to rather little overlap between treated

and untreated (Sturmer et al., 2006). This suggests an inability to make fair comparisons

between treated and untreated subjects (Glynn, Schneeweiss and Stürmer, 2006). It has

further been shown that there is no association between the value of c-statistic for a

given PS model and its ability to balance prognostically important variables between

treated and untreated subjects (Austin, Grootendorst and Anderson, 2007).

In our example lack of overlap is small in the tails of PS distribution and therefore it

might be considered, at first glance, that overlap is not a big issue (Table 3). However,

as Figure 2 shows, most treated patients have very high values of PS whereas most

untreated newborns have very low values. This finding supports the notion that, based

on our observed pre-treatment covariates, there is low “randomness” (uncertainty) as to

whether the patient is to be prescribed surfactant.

Two natural negative consequences of this lack of “conditional randomness” and

subsequent absence of appropriate overlap arise: on the one hand, the need to restrict

the estimation of treatment effects to a fraction of the study sample where this overlap

holds, which in turn influences generalizability of results. On the other hand, the lack

of balance achieved by the PS which leads to biased and unreliable effect estimates

(Westreich et al., 2011).

If lack of appropriate balance in the PS is found, variables included in the PS es-

timation model should be carefully reviewed. Detailed assessment of the mechanism

relating each variable to treatment choice/assignment and the magnitude of statistical

association may help identify baseline covariates that behave as proxies of treatment

allocation. If variables of this type are identified, they must be removed from the es-

timation model and the whole PS building process should start again. Sometimes re-

finement of the functional form of the regression model estimating PS, including higher

order and interaction terms, may help achieve balance (Austin, 2011; D’Agostino and

D’Agostino, 2007). Different specifications of our PS model did not provided any real

remedy. It may be the case, though, that we have to conclude that the available observa-

tional data do not meet the required assumption of randomness of treatment assignment

conditioned on a set of observed baseline covariates. This is tantamount to saying that

these data are not adequate to obtain valid and reliable estimates of treatment effects.

This is, as far as we know, the first paper that presents a real case study where

the balancing property of PS is not achieved. In our case, it was finally agreed to

by involved clinicians that frequently treatment assignment decisions were largely

determined by implicit clinical decision rules based on general knowledge and routine

practice. Accordingly, in order to obtain valid estimates of the effect of surfactant given

to premature newborns with respiratory problems further selection of specific subgroups

and clinical scenarios where uncertainty about the beneficial effect of this treatment

holds true should be sought.
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It is expected that current growth in the use of PS methods continues as availability of

and access to electronic data is on the rise (Couper and Miller, 2008) and ease of use of

menu-driven general statistical packages also increases. There remains debate, however,

on a variety of aspects related to the use of propensity score adjusted estimates and

further research is warranted if its performance is to be maximized. We can mention,

among others, selection of the best approach to obtain estimated PS likely to achieve

balance (Imai and Ratkovic, 2014) and choice of a specific set of goodness-of-fit tools

aimed at assess extent and quality of covariate balance achieved for each different

implementation of the method (Austin, 2008a; Austin, 2009; Belitser et al., 2011).

Above all, what is of critical importance is to improve the quality and standards in

describing methods used to obtain the empirical PS and to adjust for it, as several articles

claim poor and incomplete reporting is common (Austin, 2008b; Shah et al., 2005).

Our case study highlights several important issues: a) the need for careful consid-

eration of whether information contained in available observational data allows for a

treatment effect estimation question to be adequately addressed either globally or for

some specific subgroup(s) of patients (Austin et al., 2005); b) the requirement that re-

searchers thoroughly verify that the estimated PS truly achieves balance in treatment

groups across the range of PS values as well as across levels and categories of the se-

lected pre-treatment covariates. By so doing, clinicians and researchers will ensure that

appropriate data and analytical methods are being used to obtain valid answers to fo-

cused clinical and public health questions on the causal effect of interventions. These

results should help guide clinical practice when a randomized experiment is not feasible.
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