
Abstract. A bitemporal deductive database is a deductive database that
supports valid and transaction time. A temporal integrity constraint deals with
only valid time, only transaction time or both times. A set of facts to be
inserted and deleted in a bitemporal deductive database can be done in a past,
present or future valid time and at current transaction time. The temporal
integrity constraint handling in bitemporal deductive databases causes that the
maintenance of consistency becomes more complex than another databases.
The “events method” is based on applying transition and event rules, which
explicitly define the insertions and deletions given by a database update. In the
conceptual model, we augment the database with temporal transition and event
rules and then standard SLDNF-resolution can be used to verify that a
transaction does not violate any temporal integrity constraint. In the
representational data model, we use time point-based intervals to store
temporal information. In this paper, we adapt the “events method” for handling
temporal integrity constraints. Finally, we present the interaction between the
above-mentioned conceptual and representational data models.

1   Introduction

In temporal databases, two measures of time are distinguished [SA86]: valid time and
transaction time. Valid time is the time when the fact is true in the modelled reality,
while transaction time is the time when the fact is stored in the database. In a
consensus glossary of temporal database concepts [JCG+92], a deductive database
that supports valid time and transaction time is called a bitemporal deductive database
and we denote it bt-ddb throughout the paper.

An integrity constraint is a condition that a database is required to satisfy at any
time. A temporal integrity constraint is an integrity constraint that deals with only
valid time, only transaction time or both times. A bt-ddb must be consistent, that is,
when performing a past, present or future update, that happens at some valid time
point and at current transaction time point, it is necessary to validate whether this
update violates some temporal integrity constraint, and if so the update must be
rejected. In bt-ddb and valid time deductive databases the possibility of past, present
and future valid time updates causes that the maintenance of consistency becomes
more complex than transaction time deductive databases, where only transaction time
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updates are allowed. Moreover, transaction time deductive databases only deal with
transaction time integrity constraints and valid time deductive databases only deal
with valid time integrity constraints, whereas bt-ddb can have transaction time, valid
time and bitemporal integrity constraints.

Integrity constraint checking is an essential issue, which has been widely studied
in deductive databases (see for example [BMM90] for a comprehensive state of the art
survey), but not in the field of temporal deductive databases. Although, the research
work that have been developed in deductive databases could be the basis for integrity
constraint checking methods in temporal deductive databases, as in our case. The
simplest solution to check all temporal integrity constraints after each update is highly
impractical, principally, for the high cost of reversing the update in the case that
constraints were violated. Thus, all the methods assume the consistency of the
database before an update. Events method [Oli91] is based on applying transition and
event rules, which explicitly defines the insertions and deletions given by a database
update and, of course, assume the consistency of the database before an update.

Temporal integrity constraint checking in bt-ddb is an unexplored issue, as you
can see in the most recent bibliography of this research area [TK96].

Approaches, such as [Cho92], [Cho95] or [Wüt91], use temporal logic to
formulate only transaction time integrity constraints.

[GL95] employs transition graphs to express only valid time integrity constraints.
[SK95], [Sri95] or [VDD95] utilise variants of Event Calculus to develop theirs

studies in temporal knowledge representation and reasoning.
[Ple93] formulates integrity constraints in the assertional language provided by

Telos [MBJ+90], using the thirteen temporal predicates proposed by [All83]. In
addition, [Böh94a] uses the logic-based language ChronoLog. Both of them utilise
time intervals to deal with temporal integrity constraints.

Our approach [MS96b] works with temporal integrity constraints in bt-ddb using
a first order language and storing temporal information with a time point-based
interval representation, in which intervals are just a set of points. We consider that the
user are more comfortable working with time points than time intervals and the
answers to his queries, using time points, are closer to the user expectations.

In this paper, we present our previous work  [MS96b] evolution for handling
temporal integrity constraints. We define new temporal transition rules and temporal
event rules in order to express more complex integrity constraints. In our previous
work integrity constraint definition only contain valid time references. From now on,
integrity constraints are able to have valid time, transaction time or both times
references. In the conceptual data model, temporal transition rules range over all the
possible cases, in which an update could violate these new temporal integrity
constraints. We augment the database with above-mentioned temporal transition rules
and temporal event rules and then standard SLDNF-resolution can be used to check
satisfaction of temporal integrity constraints as our previous work. In the
representational data model, we use time point-based intervals to store temporal
information. Lastly, we introduce the interaction between conceptual and
representational data models.

The paper is organised as follows. Next section defines basic concepts of bt-ddbs.



Section 3 presents the concept of transaction. Section 4 describes the conceptual data
model. Section 5 presents the temporal integrity constraint handling using the
conceptual model of section 4. Section 6 shows the representational data model.
Section 7 defines the relationship between conceptual and representational data
models. Finally, section 8 gives the conclusions and points out future research.

2   Bitemporal Deductive Databases

A bt-ddb D consists of three finite sets: a set F of facts, a set R of deductive rules, and
a set I of temporal integrity constraints. The set of facts is called the extensional
database (EDB), and the set of deductive rules is called the intensional database
(IDB). A base predicate appears only in the extensional database and possibly in the
body of deductive rules. A derived predicate appears only in the intensional database.
We assume that database predicates are either base or derived. Every bt-ddb can be
defined in this form.

Facts, rules and temporal integrity constraints are formulated in a first order
language. We will use names beginning with a lower case letter for predicate symbols
and constants and a capital letter for variables.

We consider a temporal domain t isomorphic to the set of natural numbers, over
which is defined the linear (total) order <t , where ti <t  tj means ti occurs before tj.
The set t  is used as the basis for incorporating the temporal dimensions into the
deductive database.

In this paper, we deal with stratified databases [ABW88] and, as usual, we require
the bt-ddb before and after any updates to be allowed [Llo87].

2.1  Deductive Rules

A deductive rule is a formula of the form:
p ~ L1 å ... å Ln   with n ≥ 1,

where p is an atom, denoting the conclusion, L1 å ... å Ln are literals representing
conditions. Any variables in p, L1 å ... å Ln  are assumed to be universally quantified
over the whole formula.  A derived predicate p may be defined by means of one or
more deductive rules, but for the sake of simplicity, we only show the first case in this
paper.

Condition predicates may be ordinary or evaluable. The former is a base or
derived predicate, while the latter is a built-in predicate that can be evaluated without
accessing the database.

2.2  Temporal Integrity Constraints

An integrity constraint is a closed first order formula that the database is required to
satisfy. We deal with constraints that have the form of a denial:

~ L1 å ... å Ln      with n ≥ 1,
where each Li is a literal. Any variables in L1 å ... å Ln are assumed to be universally
quantified over the whole formula.



For the sake of uniformity we associate with each integrity constraint, an
inconsistency predicate ic, and thus it has the same form as a deductive rule. We call
them integrity rules. Then, we rewrite the former denial as:

ic ~ L1 å ... å L n   with n ≥ 1.
Integrity constraints use the usual operators =, >, <, ≥, ≤ and ≠ to compare time

points and to express temporal constraints.
In [Böh94b] one can found the following taxonomy of integrity constraints for

temporal databases:
Michael Böhlen’s Integrity Constraints (IC) Taxonomy:

• Nontemporal IC
• Temporal IC

• Transaction Time IC
• Static IC
• Dynamic IC

• Transition IC
• Valid Time IC

• Intrastate IC
• Interstate IC

• Bitemporal IC
• Intraelement IC
• Interelement IC

First classification of integrity constraints partitioned them between temporal and
nontemporal. Nontemporal integrity constraints are the snapshot database constraints.
Transaction time integrity constraints are the transaction time database constraints.
Valid time integrity constraints are the valid time database constraints. Lastly,
bitemporal integrity constraints are the bitemporal database constraints.

We propose in this section the idea that all the temporal integrity constraints of
Michael Böhlen’s taxonomy are interesting to consider for bitemporal databases in
general, and bt-ddb in particular. Temporal integrity constraints in bt-ddbs deal with
only valid time, only transaction time or both times, depending on:

Ú  If the user would define integrity constraints for a definite valid time point and
the emphasis is on different transaction time points. The user defines
transaction time integrity constraints. Figure 2.1.a.

Ú  If the user would define integrity constraints for a definite transaction time point
and the emphasis is on different valid time points. The user defines valid time
integrity constraints. Figure 2.1.b.

Ú  If the user would define integrity constraints for different valid time points and
different transaction time points. The user defines bitemporal integrity
constraints. Figure 2.1.c.
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3   Transactions

The user can insert (ιp) and delete (δp) facts from an specific valid time tv to an
artificial time point that represent the end of time, denoted by forever, and only at
transaction time now. ιp(x,tv) and δp(x,tv) represent the external events given by the
update. Therefore, we assume from now on that a transaction U  consists of an
unspecified set of insertion and deletion of external events.

Example.
Suppose the transaction TR1 at transaction time 3 (now) on the bt-ddb as it is

shown in figure 3.1.:
 {ιoffered(databases,2), ιtakes(ton,databases,2), δtakes(maria,logic,2)}
Where, in the figure, for the sake of clarity, offered(C) represents the base

predicate offered(C,Tv,Tt), which expresses that "course C is offered at valid time Tv
and at transaction time T t". And takes(S,C) represents the base predicate
takes(S,C,Tv,Tt), which expresses that "the student S is enrolled in course C at valid
time Tv and at transaction time Tt".
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So this transaction does not violate any integrity constraint, at transaction time 3,
we have the bt-ddb as it is shown in figure 3.2.



1

2

3

tt

0

1 now0 2

forever

vt

tak
es

(jo
rd

i,l
og

ic)

tak
es

(m
ar

ia,
lo

gi
c)

tak
es

(ja
um

e,l
og

ic)

of
fe

re
d(

lo
gi

c)

tak
es

(jo
rd

i,l
og

ic)

tak
es

(m
ar

ia,
lo

gi
c)tak

es
(ja

um
e,l

og
ic)

of
fe

re
d(

lo
gi

c)

of
fe

re
d(

da
tab

as
es

)

tak
es

(to
n,

da
tab

as
es

)

Fig. 3.2.

Fact insertions (ιp(x,tv)) call another predicate (ιp*(x,tv,now)) that ensures the
non-existence of p(x,tv,tt) from valid time tv to forever at transaction time now.

Algorithm:
ιp(X,Tv) ~  ιp*(X,Tv,now).

ιp*(X,Tv,Tt) ~  p(x,tv,tt) not exists in the representational data model and the
insertion is allowed.

ιp*(X,Tv,Tt) ~  p(x,tv,tt) exists in the representational data model but not from a
valid time start point lesser than or equal tv to and a valid time
point end greater than tv and the insertion is allowed.

ιp*(X,Tv,Tt) ~  p(x,tv,tt) exists in the representational data model in tv, so it is
known that this predicate is already offered.

Fact deletions (δp(x,tv)) call another predicate (δp*(x,tv,now)) that ensures the
existence of p(x,tv,tt) at valid time tv and at transaction time now.

Algorithm:
δp(X,Tv) ~  δp*(X,Tv,now).

δp*(X,Tv,Tt) ~  p(x,tv,tt) exits in the representational data model from a valid
time start point lesser than tv to forever and the deletion is
allowed.

δp*(X,Tv,Tt) ~ p(x,tv,tt) exists in the representational data model but a valid time
end point exists in the valid time interval that contains tv, so it is
known that this predicate is already  finished.

δp*(X,Tv,Tt) ~  p(x,tv,tt) not exists in the representational data model, so it is
known that this predicate is not offered.



4   Conceptual Data Model

In [MS94b], we adapted the concepts of event, transition and event rules that were
formalised in [Oli89] for the events model. The events model is an approach for the
design of information systems from deductive conceptual models, and was applied in
[SO94] to address database and transaction design decisions. In [Oli89] and [SO94]
valid and transaction time are equivalent and the database can only be updated in the
current state. The integrity constraints are transaction time integrity constraints. In our
case, we explicitly distinguish between valid and transaction times and the updates
can be done in a past, present or future valid time. Moreover, we deal with temporal
integrity constraints whereas transaction time integrity constraints. In this section, we
introduce temporal events, temporal transition and event rules and the augmented
database necessary to define transaction, valid and bitemporal integrity constraints.

4.1  Temporal Events

Let D be a bt-ddb at transaction time point tt (now) before an update U, and D' the
updated bt-ddb at transaction time point tt after the update U, as one can see in figure
4.1. We assume for the moment that U consists of an unspecified set of facts to be
inserted and deleted and the bt-ddb can only be updated in the transaction time point
now.
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Fig. 4.1.

Let p(x,tv,tt) be a fact in D and let p'(x,tv,tt) denote the same fact evaluated in D'.
Assuming that p(x,tv,tt) holds in D, where x is a vector of constants, tv is a valid time
point, and tt is the transaction time point now, two cases are possible:
p'(x,tv,tt) also holds in D' (both p(x,tv,tt) and p'(x,tv,tt) are true). (1)
p'(x,tv,tt) does not hold in D' (p(x,tv,tt) is true, but p'(x,tv,tt) is false). (2)

And assuming that p'(x,tv,tt) holds in D', two cases are also possible:
p(x,tv,tt) also holds in D (both p(x,tv,tt) and p'(x,tv,tt) are true). (3)
p(x,tv,tt) does not hold in D (p'(x,tv,tt) is true, but p(x,tv,tt) is false). (4)

In case (2) we say that a temporal deletion event occurs in the transition at valid
time point tv, we denote it by δp'(x,tv,tt) and we store it at transaction time point tt as
it is shown in figure 4.2.
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In case (4) we say that a temporal insertion event occurs in the transition at
valid time point tv, we denote it by ιp'(x,tv,tt) and we store it at transaction time point
tt as it is shown in figure 4.3.
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Formally, we associate a temporal insertion event predicate ιp' with each base,
derived or inconsistency predicate p and a temporal deletion event predicate δp' with
each base or derived predicate, defined as:
∀ X,Tv,Tt (ιp'(X,Tv,Tt) ∫ p'(X,Tv,Tt ) å ¬p(X,Tv,Tt)).  (5)
∀ X,Tv,Tt (δp'(X,Tv,Tt) ∫ p(X,T v,Tt) å ¬p'(X,Tv,Tt)).  (6)
where X  is a vector of variables, Tv is a valid time point variable and Tt is a
transaction time point variable.

From the above, we then have the equivalences:
∀ X,Tv,Tt (p'(X,Tv,Tt) ∫ [p(X,T v,Tt) å ¬δp'(X,Tv,Tt)] √ ιp'(X,Tv,Tt)). (7)
∀ X,Tv,Tt (¬p'(X,Tv,Tt) ∫  [¬p(X,Tv,Tt) å ¬ιp'(X,Tv,Tt)] √ δp'(X,Tv,Tt)).                   (8)
Which relate the predicate p' at transaction time point tt after the update to the
predicate p at transaction time point tt before the update and the events given by the
transaction.

If p is a base predicate, then ιp' and δp' represent temporal external insertions and
deletions respectively.

If p is a derived predicate, then ιp' and δp' represent temporal internal insertions
and deletions respectively.

If p is an inconsistency predicate, then ιp' that occur during the transition will
correspond to violations of its integrity constraint. For example, if a given transition
induces ιic' then it will mean that such transition leads to a violation of integrity
constraint ic. Note that for inconsistency predicates δp' cannot happen in any
transition, since we assume that the bt-ddb is consistent before the update, and thus ic
is always false.



4.2  Temporal Transition Rules

Let p ~ L1, ..., Li, ..., Lm be a deductive or inconsistency rule. When the rule is to be
evaluated in the updated bt-ddb, its form is p' ~ L1', ..., Li', ..., Lm', where Li' is
obtained by replacing the predicate Q of Li with Q'. Now if we rewrite each literal in
the body by its equivalent definition, given in (7) or (8), we get a new rule called a
temporal transition rule, which defines predicate p' in the updated bt-ddb in terms of
transaction time point now-1 of the predicates appearing in the body of the rule, and
the events that occur at transaction time point now.

More precisely, if Li' is an ordinary positive literal Qi'(Xi,Tvi,Tti) we apply (7)
and replace it with:

(Qi(Xi,Tvi,Tti) å ¬δQi'(Xi,Tvi,Tti)) √ ιQi'(Xi,Tvi,Tti)

and if Li' is an ordinary negative literal ¬Qi'(Xi,Tvi,Tti) we apply (8) and replace it
with:

(¬Qi(Xi,Tvi,Tti) å ¬ιQi'(Xi,Tvi,Tti)) √ δQi'(Xi,Tvi,Tti)

If Li is an evaluable predicate, we just replace Li'(positive or negative) by its
current Li.

It will be easier to refer to the resulting expressions if we denote by:
O(Li') = (Qi(Xi,Tvi,Tti) å ¬δQi'(Xi,Tvi,Tti))  if Li' = Qi'(Xi,Tvi,Tti)

= (¬Qi(Xi,Tvi,Tti) å ¬ιQi'(Xi,Tvi,Tti)) if Li' = ¬Qi'(Xi,Tvi,Tti)
= Li if Li is evaluable

N(Li')  = ιQi'(Xi,Tvi,Tti) if Li' = Qi'(Xi,Tvi,Tti)
= δQi'(Xi,Tvi,Tti) if Li' = ¬Qi'(Xi,Tvi,Tti)

Both O(Li') and N(Li') express conditions for which Li' is true. O(Li') corresponds
to the case that Li' holds because Li was already true in the Old transaction time point
now-1 and has not been deleted, while N(Li') corresponds to the case that N(Li') holds
because it is New, induced in the transition, and false before. Note that O(Li') μ Li
and N(Li') μ ¬Li.

With this notation, the equivalences (7) and (8) become:
∀ X,Tv,Tt (p'(X,Tv,Tt) ∫ O(p'(X,T v,Tt)) √ N(p'(X,Tv,Tt))).   (9)
∀ X,Tv,Tt (¬p'(X,Tv,Tt) ∫ O(¬ p'(X,Tv,Tt)) √ N(¬p'(X,Tv,Tt))). (10)
And applying them to each of the Li' (i = 1...n) literals, we get:
       i=n
p'(X,Tv,Tt) ~  Å [(O(Li') √ N(Li')) √ O(Li')] (11)

     i=1

where the first option is taken if Li' is an ordinary literal, and the second one if Li' is
evaluable. After distributing å over √, we get an equivalent set of 2k transition rules,
each of them with the general form:
       i=n
pj'(X,Tv,Tt) ~  Å [O(Li') √  N(Li')]            with j = 1, ..., 2k (12)

     i=1



where k is the number of ordinary literals in the p'(X,Tv,Tt) rule, and
p'(X,Tv,Tt) ~  pj'(X,Tv,Tt)                             with j = 1, ..., 2k. (13)
We are conscious of the resulting amount of transition rules and we presented in
[MS96b] some simplifications to drastically reduce or eliminate them.
Note that in the case of temporal integrity constraints, ¬ici1' always holds because the
bt-ddb is assumed to be consistent at transaction time point now-1.

4.3  Temporal Insertion Event Rules

Let p be a derived or inconsistency predicate. Temporal insertion events of p were
defined in (5) as:

           ∀ X,Tv,Tt (ιp'(X,Tv,Tt) ∫  p'(X,Tv,Tt) å ¬p(X,Tv,Tt)).

And replacing p'(X,Tv,Tt) by its equivalent definition given in (13) we get:

ιp'(X,Tv,Tt) ~   pi'(X,Tv,Tt) å ¬p(X,Tv,Tt)      with i = 1, ..., 2k.    (14)

By replacing pi'(X,Tv,Tt) with its equivalent definition given in (12), we get a set of
temporal insertion events rules. They allow us to deduce which ιp' happen in a
transition. If p is an inconsistency predicate, ιp' correspond to a violation of the
integrity constraint. Note that in the case of integrity constraints, ¬ici always holds
because the bt-ddb was consistent at transaction time point now-1, and we can
eliminate this literal:

ιici '~  icii'  i=2, ..., 2k  (15)

4.4  Temporal Deletion Event Rules

Let p be a derived predicate. Temporal deletion events of p were defined in (6) as:

∀ X,Tv,Tt (δp'(X,Tv,Tt) ∫ p(X,Tv,Tt) å ¬p'(X,Tv,Tt)).

And replacing p'(X,Tv,Tt) by its equivalent definition given in (13) we get:

       δp'(X,Tv,Tt) ~   p(X,Tv,Tt) å ¬pi'(X,Tv,Tt) )      with i = 1, ..., 2k. (16)

By replacing pi'(X,Tv,Tt) with its equivalent definition given in (12), we get a set of
temporal deletion events rules. They allow us to deduce which δp' happen in a
transition. Note that in the case of integrity constraints, δicn' cannot happen in any
transition, since we assume that the bt-ddb is consistent before the update, and thus
icn is always false.



4.5  The Augmented Database

Let D be a bt-ddb. We denote the augmented bt-ddb by A(D), based in the concept of
augmented deductive database defined in [Oli91], to the bt-ddb consisting of D, its
temporal transition rules and its temporal event rules.

If SLDNF-resolution is complete for D, then it will also be complete for A(D).
[Oli91].

The augmented bt-ddb described in the previous section can be used directly to
check if a transaction produces or not inconsistencies.

Let D be a bt-ddb, A(D) the augmented bt-ddb, and TR a transaction consisting of
a set of events at valid time point Tv and at transaction time Tt. If T R leads to an
inconsistency then some of the ιicn will hold in the transition. Using SLDNF-proof
procedure, TR violates integrity constraint icn if the goal ~ιicn' succeeds from input
set A(D)  ̇TR. If every branch of the SLDNF-search space for A(D) ˙ TR ˙ {~ιicn'}
is a failure branch, then TR does not violate icn, as show in figure 4.5.

A(D) ˙̇̇̇ TR ˙̇̇̇ {{{{~~~~ ιicn' }}}}

Standard
SLDNF

 Resolution

TR violates some
 integrity constraint 

and it is rejected.

Every branch is
a failure brach.

Some branch
 succeeds.

TR does not violates 
integrity constraints and

 it is accepted.

Fig. 4.5.

More details and examples about our integrity constraint checking method in bt-
ddb for valid time integrity constraints can be found in [MS96b], that incorporates
transaction time to our previous work (see [MS94] and [MS96a]).



5   Temporal Integrity Constraint Handling

In this section, we present the idea of how these new temporal transition rules deal
with different temporal integrity constraints in bt-ddbs, using the Michael Böhlen’s
taxonomy notation.

Transaction Time Integrity Constraints.

Transaction time integrity constraints could be static or dynamic. Static integrity
constraints must hold at every transaction time point. Dynamic integrity constraints
relate and restrict arbitrary transaction time points of the transaction time axis. A
particular case of dynamic integrity constraints is transition integrity constraint that
deals with two succeeding transaction time points. Transaction time integrity
constraints only can relate past or present transaction time points. If the user expresses
some transaction time integrity constraint in terms of future time points, then it will be
converted in terms of past transaction time points. The idea of this kind of integrity
constrains is shown in figure 5.1.
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Figure 5.1.

A transaction time integrity constraint could be violated if an update at transaction
time now, insert or delete some fact that produces an external event or induces an
internal event that violate it. In transaction time integrity constraints, (7) and (8) will
be interpreted as:

∀ X,Tt (p'(X,tv,Tt) ∫ [p(X,tv,Tt) å ¬δp'(X,tv,Tt)] √ ιp'(X,tv,Tt)).
∀ X,Tt (¬p'(X,tv,Tt) ∫  [¬p(X,tv,Tt) å ¬ιp'(X,tv,Tt)] √ δp'(X,tv,Tt)).
Note that, all the possible cases that could violate a transaction time integrity

constraint are expressed in (7) and (8).
For example, ic1 ~  takes(S,C,Tv,Tt) å ¬offered(C,Tv,Tt), that is a static integrity

constraints, enforces the property that "a student S can only be enrolled in course C if
course C is offered now". We could violate it if we delete a course with students
enrolled, or if we insert a student in a course that does not exist or if we insert a
student but delete the course where the student has been enrolled. These are all the
cases that violate ic1, and all them are expressed by the temporal transition rules.

  



Valid Time Integrity Constraints.

Valid time integrity constraints could be intrastate or interstate. Intrastate integrity
constraints must hold at every valid time point. Interstate integrity constraints relate
and restrict arbitrary valid time points of the valid time axis. Valid time integrity
constraints can relate past, present or future valid time points. The idea of this kind of
integrity constrains is showing in figure 5.2.

tv

tt
now

Figure 5.2.

A valid time integrity constraint in a bt-ddb could be violated if an update at
transaction time now, insert or delete some fact that produces an external event or
induces an internal event that violate it. In valid time integrity constraints, (7) and (8)
will be interpreted as:

∀ X,Tv (p'(X,Tv,tt) ∫ [p(X,Tv,tt) å ¬δp'(X,Tv,tt)] √ ιp'(X,Tv,tt)).
∀ X,Tv (¬p'(X,Tv,tt) ∫  [¬p(X,Tv,tt) å ¬ιp'(X,Tv,tt)] √ δp'(X,Tv,tt)).

Note that, all the possible cases that could violate a valid time integrity constraint
are expressed in (7) and (8).

For example, ic2 ~  takes(S,software engineering,Tv,Tt) å takes(S,information
systems,T1v,Tt) å T1v≤Tv, that is a interstate integrity constraint, enforces the property
that "if a student S is enrolled in the course software engineering, this student cannot
be enrolled or cannot have been enrolled in the course information systems". We
could violate it if we enrol a student in the course software engineering and he/she is
enrolled or has been enrolled in the course information systems, or if we enrol a
student in the course information systems and he/she is enrolled or will be enrolled in
the course software engineering, or if we enrol at the same time a student in both
courses with a valid time for information systems previous than or equal to the valid
time for software engineering. These are all the cases that violate ic2, and all them are
expressed by the temporal transition rules.

Bitemporal Integrity Constraints.

Bitemporal integrity constraints are the most complex type of temporal integrity
constraints. They could be intraelement or interelement. Intraelement integrity
constraints only are a generalisation of intrastate respectively static integrity
constraints. Interelement integrity constraints relate and restrict arbitrary time points



of the valid time and transaction time axis. If the user expresses some bitemporal
integrity constraint in terms of future transaction time points, it will be converted in
terms of past transaction time points. The idea of this kind of integrity constrains is
showing in figure 5.3.

tv

tt

now

Figure 5.3.

A bitemporal integrity constraint in a bt-ddb could be violated if an update at
transaction time now, insert or delete some fact that produces an external event or
induces an internal event that violate it. Bitemporal integrity constraints, use all the
power of (7) and (8):

∀ X,Tv,Tt (p'(X,Tv,Tt) ∫ [p(X,Tv,Tt) å ¬δp'(X,Tv,Tt)] √ ιp'(X,Tv,Tt)).
∀ X,Tv,Tt (¬p'(X,Tv,Tt) ∫  [¬p(X,Tv,Tt) å ¬ιp'(X,Tv,Tt)] √ δp'(X,Tv,Tt)).
Note that, all the possible cases that could violate a transaction time integrity

constraint are expressed in (7) and (8).
For example, ic3 ~  many_students(C,Tv,Tt) å  ¬many_students(C,T1v,T1t) å

Tv<T1v å Tt≤T1t, that is a interelement integrity constraint, enforces the property that
"if a course C has more than one student, then this course cannot have fewer than one
student in the future". many_students(C,Tv,Tt) ~ takes(S1,C,Tv,Tt) å takes(S2,C,Tv,Tt)
å S1 ≠ S2 is a deductive rule for the derived predicate many_students(C,Tv,Tt) and
expresses that "in a course C there are many students if at least two different students
were enrolled in this course C". We could violate it if we have many students in a
course C at Tv and Tt, and we delete students just to less only one student enrolled in a
valid time greater than Tv and greater than or equal to Tt, or if we have a student
enrolled in a course C at Tv and Tt and in a transaction time greater than or equal to Tt
insert students in the course at a valid time lesser than Tv, or if at the same transaction
time we delete students from a course C at valid time Tv and insert students in a valid
time lesser than Tv. These are all the cases that violate ic3, and all them are expressed
by the temporal transition rules.

6   Representational Data Model

We adopt a closed time point-based interval model used in the valid time
representation presented in [Sar93], adding a transaction time dimension. Including
transaction time we ensure that every old state is preserved. If we store only valid



time one cannot remember if during a given period one knew another information
different from the current one. We are interested in the history of the database and we
willing to pay a high cost of the storage of old states. [Sar93] uses two segments to
representing current and history data, in which two valid time points are added, named
FROM and TO (defining a valid time interval), valid time start and end in our case.
We only use the equivalent to one segment and we add two more time points
(transaction time start and end) to represent transaction time and to define a
transaction time interval as we show in figure 6.1.

pr  (  x  ,      tvs  , tve     ,        tts  , tte      )

transaction time start point

valid time start point

transaction time end point

valid time end point

VALID TIME 
INTERVAL

TRANSACTION 
TIME

 INTERVAL

Fig. 6.1.

A fact is a ground atom. Last terms of any fact are four time points values ranging
over the temporal domain t : valid time-start (tvs), valid time-end (tve) corresponding
to the lower and upper bounds of the valid time interval and transaction time-start
(tts), transaction time-end (tte) corresponding to the lower and upper bounds of the
transaction time interval.

7   Interaction between Conceptual and Representational Data
Models

Each fact has a precise valid time-start tvs value stored from transaction time-start
tts to now (denoting the current time) or to transaction time-end tte when finally the
fact cannot be accessible from current time any more. However, the valid time-end
value tve may not be known. In this case, tve is given the default value forever
denoting an artificial time point for the end of time ready to handle future information,
but that will change to precise value tve when the user knows it.

Note that an event happens at some time instant, while we require time intervals
to express the changes produced by the transaction. Therefore, when an insertion
event ιp(x , t v )  happens in a transaction time tt we really represent:
pr(x,tv,forever,tt,now), as it is shown in figure 7.1. And when a deletion event δp(x,tv)
occurs in a transaction time tt we modify pr(x,tvs,tve,tts,now) by pr(x,tvs,tv-1,tt,now)
and pr(x,tvs,tve,tts,tt-1), as one can see in figure 7.2. When a deletion event occurs we
do not really remove information; instead we store the fact that it has existed from one
valid time to another valid time.



     Insertion event:

            ιp(x,tv)

pr(x,tv, forever,tt,now)

transaction time: tt (now)

 ιp*(x,tv,tt)

Fig. 7.1.

        Deletion event:

              δp(x,tv)

pr(x,tvs,tv-1,tt,now) and pr(x,tvs,forever,tts,tt-1)

transaction time: tt  (now)

The database has pr(x,tvs, forever,tts,now)

 ιp*(x,tv,tt)

Fig. 7.2.

8   Conclusions and Further Work

In this paper we have presented how and why applying temporal transition and
event rules is possible a complete handling of temporal integrity constraints in bt-
ddbs. We clarify that temporal transition rules are important to recognise all the
possible cases that produce violations of temporal integrity constraints. We have
described our conceptual data model and our representational data model and the
interaction between them. A graphical idea of the concepts introduced in this paper
can be seen in figure 8.1.



  ιp / δp

pr(x,tvs,tve,tts,tte)

 ιp* / δp*

Temporal Integrity 
Constraint Checking:

{{{{~~~~ ιicn' }}}}

Transaction Processing:

Conceptual Data Model:

Representational Data Model:

TR

A(D)

Figure 8.1.

Our further work consists in completing our approach for temporal integrity
constraint checking in bt-ddbs with simplifications of the event rules and more
simplifications of transition rules to increase the efficiency. To achieve this goal we
are going to study carefully the idea of temporal integrity constraint handling
presented in section 5.
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