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ABSTRACT

An adaptation of the proximal algorithm for the traffic assignment problem under a
user equilibrium formulation for a general asymmetric traffic network is presented in
this paper. It follows the recently published results of Pennanen regarding conver-
gence under non monotonicity. As it is well known the problem can be formulated as
a variational inequality and the algorithmic solutions developed up to date guarantee
convergence only under too restrictive conditions which are difficult to appear in prac-
tice. In this paper it is also discussed the possibility of including the algorithm on a
demand adjustment problem formulated as a bilevel program with lower level traffic
equilibrium constraints expressed as a variational inequality.

Keywords: Traffic assignment, variational inequality, proximal point algorithm,
bilevel programming, demand adjustment.
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1. Introduction

The traffic assignment problem is one of the core problems in the transportation
planning process. Given a transportation network, and certain assumptions of the
route choice behaviour of the tripmakers, the traffic assignment problem consists
on assigning traffic onto the network, so as to fulfill demand for transportation
and to minimize some merit function, related to the behavioural assumption made.
Several assumptions on the route choice behaviour have been made. However, the
most natural assumption is that each driver chooses the shortest perceived route to
his/her destination under prevailing traffic conditions. The result from a generalized
decision like that made by all the travelers yields a situation in which no driver can
reduce his/her journey time by choosing another route. This is the user optimal
criteria for route choice. Wardrop [29] was the first to state this route choice criteria.

The asymmetric traffic assignment problem (i.e. when there are link flow interactions
on the link travel costs) was first formulated as a variational inequality problem by
Smith [28] and a number of algorithms emerged to solve the resulting formulation
and basically the convergence of all them required at least the strong monotonicity of
the link travel costs. The proximal point method of Martinet [20] and its application
by Rockafellar in order to develop the method of proximal multipliers has been the
subject of study of many researchers that apply it on a variety of problems. The
recent work of Pennanen [24] has shown that these methods present local convergence
under some weaker conditions that the ones stated on previous works.

On the other hand, updating an obsolete origin and destination matrix of trips within
a transportation area, using available information, is a very common problem in traf-
fic and transportation planning. For traffic networks, a source of information of a
relatively moderate cost are traffic counts on a subset of links of the traffic network.
The paper is organized as follows. Following these paragraphs, in Subsection 1.1
the basic formulations and notation used to described the user equilibrium in traffic
networks is presented. In Section 2, the variational inequality formulation is devel-
oped, reproducing already known results mainly due to Smith [28] for existence and
uniqueness of solutions. In Section 3 the convergence conditions of many algorithms
for solving the variational inequality formulation of the traffic assignment problem
are revisited (linearization methods, projection methods and diagonalization meth-
ods and simplicial decomposition methods). Section 4 describes recently developed
convergence conditions for the proximal point algorithm for inclusions due to Pen-
nanen [24]. His results basically state that the convergence can be achieved even if
the application map of the inclusion is hypomonotone, while up to date conditions
ensured convergence only under maximal monotonicity conditions. In Section 5, the
application of the proximal point algorithm for the demand adjustment problem is
shown; where the problem is formulated as a bilevel program in which the lower
level (the traffic assignment problem) takes the form of a variational inequality in
which the link travel costs are strongly monotone.
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1.1 Formulations

The development of general cost functions was due to the unrealistic assumption
that the travel time on a link is independent of the flow on other links. One just has
to imagine traffic near a turning intersection or a narrow two-way street to realize
this. One reason for the late development of models incorporating more general cost
functions has been the difficulty of catching a realistic cost relationship.

Let us consider the Wardrop’s user equilibrium, as it is discussed by authors as
Smith and Heydecker in references [28] and Heydecker [18]:

A traffic distribution is a Wardrop equilibrium when no driver has a less
costly alternative route.

Assume a transportation network G with a single mode of transit and fixed demand D.
Consider a specific origin destination pair (i, j) and let Rij be the set of available
paths joining OD pair (i, j). The route flow vector h induces flows va on each link
a∈A given by the expression,

va =
∑

(i, j)∈C

∑

r∈Rij

δar hijr (1)

where δar = 1 if link a belongs to path r; and δar = 0 otherwise. In words, va is
the sum of flows hijr on all paths r, over all OD pairs (i, j).

Let v denote the vector of arc flows and let ∆ denote the link path incident matrix.
Then in vector form, link flows and path flows are related by the following expression

v = ∆ h

Let each unit of flow on link a incur a travel cost ca (v) which depends upon the
vector v of link flows in the network. In the separable traffic assignment problem,
the cost on a link depends solely upon the flow va on that link, in which case it
usually increases with increased levels of the link flow.

If we assume that the cost on any path of the network, as a function of path flows,
is the sum of travel costs on the links of that path, then

Cijr =
∑

a∈A
δar ca(va)

We refer to this form of route costs as an additive model . Stating this relationship
more compactly in vector form, we obtain

C(h) = ∆> c(v),

where > denotes transposition.
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In this expression, C(h) = ( Cijr(h) ) is a vector-valued function specifying the
travel costs on each path r and c(v) is a vector valued function whose components
specify the link travel costs. The route travel costs Cijr(h) on each route r joining
an OD pair (i, j) defines the least travel cost uij over all paths joining that OD pair.
This is

uij ≡ min
r∈Rij

Cijr (h)

These least travel costs certainly provide a reference point against which to measure
any route’s ability to attract trips. If different routes are used for a given OD pair
(i, j), the travel cost of the routes used is uij, and Wardrop’s equilibrium may be
rewritten as

hijr > 0 ⇒ Cijr = uij

hijr = 0 ⇒ Cijr ≥ uij

or equivalently as

hijr · (Cijr − uij) = 0 ∀ r∈Rij ; ∀ (i, j)∈C (2)

Cijr − uij ≥ 0 ∀ r∈Rij ; ∀ (i, j)∈C (3)∑

r ∈Rij

hijr = dij ∀ (i, j)∈C (4)

hijr ≥ 0 ∀ r∈Rij ; ∀ (i, j)∈C (5)

uij ≥ 0 ∀ (i, j)∈C (6)

2. Variational Inequality Formulation [TAP-VI]

Wardrop conditions for the general traffic assignment model can be reformulated
into three main types of equivalent problems: variational inequality formulations,
nonlinear complementary formulations and fixed point formulations. The variational
inequality formulations became very popular, due to the large literature devoted to
VIP , compacteness for writing and flexibility in choosing the ground set X.

Theorem 1.1 Wardrop conditions for user equilibrium are equivalent to the follow-
ing variational inequality formulation, defining the general traffic assignment prob-
lem [TAP-VI] ,

Find h� ∈ H s. t. C(h�)>(h − h�) ≥ 0 ∀ h ∈ H (7)

and

H def
= { h | ∑

r∈Rij

hijr = dij, hijr ≥ 0, ∀ r∈Rij , ∀ (i, j)∈C } (8)
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It should be noted that the variational inequality formulation [TAP-VI] is inde-
pendent of the form of the cost functions Cijr(h), this is, the travel cost on a route
needs not to be additive. The additivity property is assumed to hold when developing
algorithmic approaches. There are two main reasons for this:

1. Under the non additive assumption there does not exist a transformation of
the above arc route formulation of [TAP-VI] in terms of arc flows.

2. On working with large networks, as our case, the arc route formulations of
traffic assignment models involves very large scale problems, and it has been
preferred to remove the extra size due to the route flow model and concentrate
efforts on solving the aggregated arc flow model.

We state the arc flow variational inequality formulation for the traffic assignment
problem when travel costs on a route satisfy the additivity property. This formula-
tion is studied below and serves as the basis for developing algorithms to compute
equilibrium solutions to [TAP-VI] .

Find v∗ ∈ V s. t. c(v∗)> · (v − v∗) ≥ 0 ∀v∈V (9)

and

V def
= { v | va =

∑

(i, j)∈C

∑

r∈Rij

δar hijr ∀ a∈A , h∈H } (10)

Smith [28] discusses the properties of equilibrium solutions and formulates the prob-
lem [TAP-VI] for both the arc node case and the arc route case for additive route
costs. Dafermos develops an equivalent finite dimensional variational inequality for-
mulation. Formulations for the elastic case have been proposed by Dafermos and
Florian. Dafermos and Nagurney [11] developed an arc flow formulation, equivalent
to the above model, and study the stability and sensitivity of equilibria, based on
that formulation.

In this point we introduce the primal and dual gap functions GP(x) and GD(x) for
[TAP-VI] .

GP(v) = −min
w∈V

c(v)> · (w − v) (11)

GD(w) = −max
v∈V

c(v)> · (w − v) (12)

The primal gap function may be interpreted in this context as the difference of total
travel costs between the current flow v and the shortest route flow z. Thus a posi-
tive gap function corresponds to a potential benefit for some travelers in adjusting
their route choices. On the other hand, G(v) = 0 precisely when no traveler has
an incentive to change route, that is, when the flow satisfies Wardrop conditions of
equilibria. Viewing the gap function in terms of an error in Wardrop conditions,
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Hearn [16] suggests the use of this formulation even in the separable case, since the
objective function of its mathematical formulation is rather artificial.

Algorithms based on primal gap function are given Hearn [16]; methods based on
simplicial descomposition are given by Lawphongpanich and Hearn [19], and Pang
and Yu [21]. Cutting plane methods are given by Nguyen and Dupuis.

Now, we present conditions for the existence and uniqueness of solutions for the vari-
ational inequality formulation [TAP-VI] . Although they are, in the traffic equilib-
rium context, essentially equivalent, the existence results presented differ. It seems
that too strong assumptions have sometimes been put on the model when establish-
ing the existence of a solution, mainly because these conditions serves to validate
the proposed algorithms as well.

We recall that sufficient conditions for the existence of a solution to VIP , where
based on:

• Boundedness of the feasible set.

• Sufficient monotonicity of the mapping defining the problem.

The feasible set in the traffic assignment problem is, in general, not bounded, due
to the existence of cycles in the network. Anyway, we can ensure the existence of a
solution to [TAP] , by restricting the cost functions c(v) or Cijr(h) to be strictly
positive for all feasible flows. The implication of this is that an optimal solution
cannot include cyclic flows and the variables can therefore be restricted as follows,

0 ≤ va ≤
∑

(i, j)∈C
dij, ∀ a∈A

Lawphongpanich and Hearn [19] consider for [TAP-VI] how the original problem
can be replaced by restricted problems over sets of simple or loop-free routes. In
convergence results or existence and uniqueness results, boundness it is always as-
sumed.

Existence and uniqueness results are extracted from Aashtiani and Magnanti [1] and
Smith [27]. The graph G is assumed to be strongly connected, i.e., that there exists
at least one route connecting each origin and destination.

The problem [TAP-VI] has an equilibrium solution v(∗) under one of the following
conditions:

1. Under additive cost model and c(v) continuous, positive and dij ≥ 0 (Aashtiani
and Magnanti).

2. Under additive cost model and c(v) continuous, nonnegative and the feasible
set closed and convex (Smith).

9



3. Under nonadditive cost model and C(h) continuous, positive and dij ≥ 0 (Aash-
tiani and Magnanti).

Uniqueness results listed below proceed from the same sources mentioned before:

1. Under additive cost model and c(v) continuous, nonnegative, strictly monotone
and the feasible set closed and convex, the equilibrium link flow solution v(∗)

is unique (Smith.)

2. Under additive cost model and c(v) continuous, positive, strictly monotone and
dij ≥ 0, the link flow volumes v(∗) and the accessibility vector u� are unique
(Aashtiani and Magnanti.)

Observe that the results require that the vector c(v) of cost functions be strictly
monotone in terms of link volumes v, not in terms of path flows h. Path flows need
not to be unique, since two collections of path flows might correspond to the same
link flows.

3. Convergence conditions for [TAP - VI] algo-

rithms

The first methods applied to the general finite dimensional variational inequal-
ity problem were based on fixed point problem reformulations, but for large scale
problems, these algorithms are impractical, due to the large memory requirements,
and their failure to utilize problem structure. Efficient methods for VIP may be
grouped into the following methodology classes:

• Linearization methods. They are based on iterative approximation of the map-
ping defining VIP by affine mappings at the current point.

• Diagonalization methods. Similar to the algorithms proposed for solving equa-
tions: Extensions of Jacobi, Gauss-Seidel and Newton methods.

• Simplicial Decomposition methods.

• Dual cutting plane methods. These methods apply to solving the maximization
of the dual gap function, which it is equivalent to solving [TAP-VI] . Conver-
gence results require strict monotonicity and the set of feasible arc flows to be
a compact polyhedron.

• Gap descent Newton method. Essentially, the method generates a sequence such
that each iterate is the solution to a variational inequality problem involving
a linear approximation of the functional cost at the previous iterate, whose
solution is used to define a descent direction to the gap function. Monotonicity
and continuous differentiability of the functional cost are required for global
convergence results.
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3.1 Linearization Methods

Several variants are described in reports, but all of them are based on an iterative
approximation of f(x) on the current iteration point x(t), called f (t)(x) and can be
described as special cases of the following scheme:

Algorithm. Given x(t) ∈ X, let x(t+1) solve the variational inequality
subproblem VI(f (t), X), where f (t)(x) is some mapping approximating the
original f(x) at the point x(t).

Pressumably, each subproblem VI(f (t), X) is numerically easier to solve than the
original problem VI(f, X).

The method is classified as a linear approximation method if f (t)(x) is of the form

f(x) ∼ f (t)(x) = c + A(t)x

where A(t) is a constant matrix at iteration t and c = ρf(x̂)−A(t)x̂ for x̂ ∈ X and
ρ > 0.

Included in the family of linear approximation methods are:

Newton method. The mapping f(x) is assumed to be differentiable and A(t) = ∇f(x(t)).
The linear approximation is in this case the first order Taylor expansion of f(x)
around x(t).
Quasi-Newton methods. A(t) is taken to be an approximation to the Jacobian
matrix ∇f(x(t)).
Linear SOR methods. Successive overrelaxation methods in which the matrix
A(t) is taken to be

A(t) =

{
L(t) + D(t)/ω∗

U(t) + D(t)/ω∗
0 < ω∗ < 2

Assuming L(t), U(t) and D(t) are respectively the strictly lower and upper triangular
parts and diagonal of ∇f(x(t)). When ω∗ is taken to be 1, the scheme becomes the
linearized Gauss-Seidel method .
Linear Jacobi method. The matrix A(t) is taken to be the diagonal of the Jaco-
bian matrix at the current point, i.e., A(t) = Diag(∇f(x(t))).
Projection methods. The matrix A(t) is taken to be a fixed symmetric and
positive definite matrix G equal for all iterations t.

Although a fast local convergence is ensured for Newton’s method, the problem
VI(f (t), X) is not trivial, and the affine variational inequality defined is not equiva-
lent to a mathematical program, since∇ f(x) is, in general, assymetric. Quasi-Newton
methods have been proposed with an approximation matrix chosen to be symmetric,
to ensure that the variational inequality defined is equivalent to a mathematical pro-
gramming program. SOR methods lead to decomposition of the original subproblem
into independent problems.
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The reason why methods in the last category are termed projection methods is due
to the following geometrical interpretation of the iterates {x(t)}. Indeed, it is easy
to show that if the set X is closed and convex and if A(t) = 1

γ
G is symmetric and

positive definite, then the vector x(t+1) that solves the subproblem VI(f (t), X) is the
projection of the point x(t) − γG−1f(x(t)) onto the set X where the projection is
defined with respect to the G-norm, i. e.,

x(t+1) = PrG
X

(
x(t) − γG−1f(x(t))

)

where for a given vector z, PrG
X (z) is the unique vector solving the mathematical

programming program

min ‖ z− y ‖G
s. t. y ∈ X

and
‖ x ‖G= (x>Gx)

1
2

is the G-norm of the vector x.

3.2 Projection methods

Projection methods are easily converted to mathematical programming equivalents.
A projection algorithm for solving VIP sets A(t) = 1

γ
G, for all t, where G is an

arbitrary symmetric and positive definite matrix. The projection algorithm is defined
by the iterative formula

x(t+1) = PrG
X

(
x(t) − γG−1f(x(t))

)
t = 1, 2, · · · (13)

Each iteration t is equivalent to a quadratic mathematical programming program
stated as,

x(t+1) = min
y∈X

1

2
‖ x(t) − γG−1f(x(t))− y ‖2

G (14)

defining the projection of the point x(t) − γG−1f(x(t)) onto the feasible set X ac-
cording to the metric ‖ · ‖G.

The quadratic program is a special case of affine variational inequalities. Let us
define the function H(·) as

H(y) =
1

2
‖ x(t) − γG−1f(x(t))− y ‖2

G ∀y∈X

Then, according to the correspondence between a convex program (derived from the
positive definiteness of matrix G) and the optimality conditions, x(t+1) solves the
quadratic program if and only if x(t+1) satisfies local minima condition (that are
sufficient conditions for global minimum in convex programming)

∇H(x(t+1))>(y − x(t+1)) ≥ 0 ∀y∈X
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or equivalently,

(f(x(t)) +
1

γ
G(x(t+1) − x(t)))>(y − x(t+1)) ≥ 0 ∀y∈X

or equivalently,

f (t)(x(t+1))>(y − x(t+1)) ≥ 0 ∀y∈X

At this point the equivalence between a mathematical program and an specific affine
variational inequality has been shown. It is interesting to note, that any linearization
method formerly described can be viewed as a projection algorithm with variable
metric; the metric is defined by the approximation matrix A(t) defined at each
iteration t, provided the matrices are symmetric and positive definite. The projection
algorithm with variable metric is equivalent to the following iterative statement:

x(t+1) = PrA(t)

X

(
x(t) − (A(t))−1f(x(t))

)
t = 1, 2, · · · (15)

In fact, it is not easy to solve the quadratic program equivalent to the affine vari-
ational inequality for [TAP-VI] and the convergence of a pure fixed projection
method is very poor. Most linearization algorithms applied to [TAP-VI] have been
proposed in the context of simplicial decomposition methods, because an affine vari-
ational inequalities defined over a convex hull of extreme flows might be converted
into a quadratic program with simple constraints.

Dafermos was the first to apply general projection methods to [TAP-VI] . She also
gave convergence properties in the context of traffic equilibrium. Convergence re-
sults for projection algorithms are complex and it seems that conditions are rather
restrictive: it is required to f(x) be continuously differentiable and strongly mono-
tone, provided ρ > 0 to be sufficiently small.

3.3 Diagonalization Methods

Diagonalization methods have in common that interactions among blocks of vari-
ables are removed. These algorithms, when applied to variational inequalities, extend
the Jacobi and Gauss-Seidel methods for linear and nonlinear equations. They are
also called relaxation methods , due to the relaxation of the cost interactions. Algo-
rithms of this type were developed for in the 70’s in the analysis of multiclass user
networks.

Dafermos [10] presents a unified description of diagonalization methods. She intro-
duces a smooth function

g(x,y) : X×X 7→ IRn

with the following properties

1. g(x,x) = f(x), for all x∈X.
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2. ∇xg(x,y) is positive definite and symmetric.

The latter properties ensure a unique solution of the variational inequality

g(x(t+1),x(t))>(x− x(t+1)) ≥ 0 ∀x∈X

that, by symmetry, reduces to the strictly convex program

x(t+1) = min
x∈X

H(x,x(t))

where ∇xH(x,y) = g(x,y) and x(t) solves VIP if x(t+1) = x(t).

Some methods that fit into Dafermos general framework are
g(x,y) = f(y) + A(y) · (x− y) Linearization

(gi(x,y)) = fi(y1, · · · , yi−1, xi, yi+1, · · · , yn) i = 1, · · · , n Nonlinear Jacobi
(gi(x,y)) = fi(x1, · · · , xi, yi+1, · · · , yn) i = 1, · · · , n Nonlinear

Gauss-Seidel
Dafermos’ convergence conditions are tested practically to be too restrictive and
much more complex, but less restrictive sufficient conditions are proposed by some
authors, these conditions have an intuitive interpretation that the Jacobian of the
cost function should have weak asymmetries and can be expressed as,

∥∥∥∇xg
− 1

2 (x1,y1)∇yg(x2,y2)∇xg
− 1

2 (x3,y3)
∥∥∥
2

< 1,

for ∀xi,yi ∈ X and i = 1, 2, 3.

3.4 Simplicial Decomposition Methods

Simplicial decomposition techniques have been applied to [TAP-VI] by Smith [28],
Pang and Yu [21], Bertsekas and Gafni and Lawphongpanich and Hearn [19].

Bertsekas and Gafni utilize the arc route formulation of [TAP-VI] and define a
master problem as the variational inequality over the current restricted set, i. e.,
VI(f(x),X(t)), and apply a projection algorithm for solving the master problem. The
algorithm is a linearized method, where new routes are added after each iteration
of the linearization scheme. No column dropping is used. Algorithms with fixed and
variable projection metric are proposed for solving the master problem. The global
convergence of the algorithm is shown in the fixed projection metric case, under the
following assumptions :

1. f(x) strongly monotone.

2. f(x) Lipschitz continuous.

and a linear convergence rate is obtained. For the variable projection method case,
a safeguard on the selection of the variable projection matrix at each iteration has
to be forced in order to show a similar convergence result.
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Lawphongpanich and Hearn [19] propose an algorithm where dropping extremes is
considered for extremes with zero weight in the current point if a sufficient gap func-
tion descent has been encountered in the current iteration. Two levels of aggregation
are proposed:

1. Link flow extremes.

2. Commodity link flow extremes, where a commodity groups OD pairs with the
same origin, we refer to them as origin link flow extremes.

The first option is shown to be the most efficient. The master problem is defined as
the variational inequality over the current restricted set, i.e., VI( f(x),X(t)) and the
resolution of the master problem is proposed by means of a fixed metric projection
method derived from that proposed by Bertsekas and Gafni.

Pang and Yu [21] propose a linearized simplicial decompositon method similar to
that of Lawphongpanich and Hearn [19]. The aggregation level is set to link flow
extremes. The master problem is defined as a linear approximation to the functional
defining the variational inequality at the current point and restricted to the subset
of link flow extremes, i.e.,VI( f (t)(x),X(t)). Extreme points with weight coefficients
greater that zero in the current iteration are maintained to the next. The method
for solving the master problem is a modified version of the Dantzig, van de Panne
and Whinston algorithm for quadratic programming that operates on the simplicial
representation of X(t) in terms of its extreme points. The linear approximations
proposed for defining the master problem are of the type:

1. For symmetric problems, the Jacobian matrix of f(x) at the current point.

2. For asymmetric problems, the diagonal part of the Jacobian of f(x) at the
current point.

Some remarks related to the RSD algorithm are:

• A small positive tolerance δ for primal gap descent is required for ensuring
convergence when extreme dropping is used.

• A convergent monotone sequence {ε(t)} is required, i.e.,

ε(t) > ε(t+1) > 0, and ε(t) → 0 as t →∞
• c(v) is assummed to be strictly monotone and nonnegative and the demand

feasible set of total link flows V is assummed to be compact (i.e., closed and
bounded) and convex.

• Any convergent method for solving variational inequalities may be applied to
the master problem which needs to be solved approximately. The authors use
a variant of Bertsekas and Gafni projection method.

• The gap function value is a natural byproduct of solving the subproblem and
provides a stopping criteria, as well as monitoring the dropping extreme process.
A deep study on gap functions may be found in Hearn [16].
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• For large scale problem a relative gap is suggested as more suitable and defined
as

Ḡ(v(t)) =
c(v(t)) · (v(t) − f (t))

c(v(t)) · f (t)

and a certain ε-solution determined more practical for implementation pur-
poses.

Lawphongpanich and Hearn [19] results demonstrate the potential of the simplicial
decomposition algorithm with regard to computer time. They also show that the
method obtains good solutions while retaining only a small number of extreme flow
patterns.

4. Proximal point methods for VI’s

The proximal point algorithm has been analyzed for inclusions of the form

0 ∈ T(x) (16)

in Rockafellar [25] for the case of T being a monotone point-to-set map on a Hilbert
space as a generalization of the algorithm of Martinet [20] for convex minimiza-
tion problems. The results of Rockafellar [25] apply when the mapping is maximal

monotone. In this case the proximal operator Pc(x)
∆
= (I+cT)−1(x) is also maximal

monotone and single valued (see for instance, Rockafellar and Wets [26], theorem
12.12). The iterations of the proximal point method for the problem (16) can be
simply described as,

Find xk+1 so that xx+1 ≈ Pck
(xk) (17)

where ck is a sequence so that inf ck > 0 and the tolerances εk → 0+. If exactly
xx+1 = Pck

(xk), then this is equivalent to solve the problem

Find xk+1 so that 0 ∈ c−1
k (xk+1 − xk) + T(xk+1) (18)

or for a variational inequality on IRn

Find x∗ ∈ X so that F(x∗)>(x− x∗) ≥ 0, ∀x ∈ X (19)

iteration (17) expresses as:

Find xk+1 ∈ X so that (F(x) + c−1
k (x− xk))

>(x− xk) ≥ 0, ∀x ∈ X (20)

Attaining to the general methods for VI’s described in previous sections, iteration
(20) seems to be well posed for its resolution provided that ∇F(·) + c−1

k I is positive
definite.

Eckstein and Bertsekas [14] develope a relaxed algorithm that allows for the proximal
iteration to be solved only approximately for a sequence of tolerances εk → 0+ :

Find xk+1 so that ‖xx+1 − Pck
(xk) ‖ ≤ εk (21)
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If iteration (20) is carried out approximately, then, accordingly to (21) this is equiv-
alent to choose a sequence of δk → 0+ and solve the proximal subproblems (20)
approximately,

Find xk+1 ∈ X, (F(x) + c−1
k (x− xk))

>(x− xk) ≥ −δk, ∀x ∈ X (22)

suggesting clearly a stopping criterion based on the primal gap. The algorithm of
Eckstein and Bertsekas [14] can be summarized as follows. At iteration k:

xk+1 = σkx̄k + (1− σk)xk (23)

being x̄k a solution of (21) (or (22) in the context of VI’s), and the parameters σk,
εk and ck taken so that, inf σk > 0, sup σk < 2, inf ck = c̄ > 0 and

∑
k εk < +∞.

They prove the convergence of the algorithm under the maximal monotonicity of
the operator T and provided that a solution of the inclusion (16) exists (otherwise
the algorithm may not converge).

The work of Pennanen [24] shows that, in fact the so stringent condition of maximal
monotonicity required up to now for the convergence of the proximal point algorithm,
can be substituted by the hypomonotonicity condition. (a mapping T is called
hypomonotone if the T + ρI is monotone for some ρ > 0). He uses the Yosida

regularization Tρ of T, Tρ
∆
= (T−1 + ρI)−1 and shows that, in fact:

(I + cTρ)
−1 =

1

c + ρ
(cPc+ρ + ρI)

for c 6= 0. This is equivalent to say that the application of the relaxed proximal
point of Eckstein-Bertsekas to the Yosida regularization Tρ of T is equivalent to the
application of the proximal point algorithm of Rockafellar to T. This is stated if
the following theorem due to Pennanen:

Theorem 1.2 (Pennanen (2002), theorem 9) Let T : X 7→ Y , with 0 ∈ Y be an
hypomonoton point-to-set map for some ρ > 0 and let x̄ ∈ T−1(0) ∩ X 6= ∅ and
T−1(0) ∩ X a closed set. Then, there exists ε > 0 so that if the starting point
x0 ∈ Bε(0). Then, the iteration:

xk+1 = Bε(0) ∩ (I + ckT)−1(xk) (24)

converges weakly and Fejér monotonically to a point x̄ ∈ T−1(0)∩X if ck ↗ c̄ ≤ +∞
and inf ck > 2ρ. Further if the map y 7→ T−1

ρ (y) ∩ X satisfies for some positive
constant LT the calming condition at x̄, x ∈ Tρ(y) ⇒ ‖x− x̄ ‖ ≤ LT‖y ‖, then the
sequence of points generated by (24) converges to T−1(0) ∩X linearly with rate

(
1− c̄

c̄− ρ

(
2− c̄

c̄− ρ

)
c̄ 2

(LT + ρ)2 + c̄ 2

) 1
2

< 1

It is proved that applying the proximal point iteration to T with the parameters
stated in the above theorem is equivalent to the application of the over-relaxed
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proximal point of Eckstein-Bertsekas with parameters c′k = ck−ρ and σk = ck/(ck−
ρ) and alternatively that the application of the over-relaxed iteration of Eckstein-
Bertsekas on T with σk = (c′k−ρ)/c′k, with inf c′k > 2ρ is equivalent to the proximal
point iteration xk+1 = Bε(0) ∩ (I + (c′k − ρ)T)−1(xk).

5. Applications to the demand adjustment prob-

lem

The matrix adjustment problem on a traffic network can be formulated as the fol-
lowing bilevel programming problem,

Min g≥ 0 F (g) = z1F1(v) + z2F2(g)

s.t. v ∈ V∗(g)
(25)

where by v it is denoted the vector of total link flows and by g it is denoted the origin-
destination trip matrix so that, when assigned to the traffic network reproduces some
traffic observed conditions.

The functions F1 and F2 can be viewed as distances between the response of the
lower level problem and the data input that is used for the adjustment, i.e., the link
flow observations and an obsolete or reference trip matrix. Usually F1 is adopted as
F1(v) = 1

2
(v1− v̂1)

>U (v1− v̂1) and F2 as F2(g) = 1
2
(g− ḡ)>B (g− ḡ) or an entropy

function and the subscript 1 on the link flows v1 stands for a subset of components
where there are observations available, v̂1. U and W are weighting matrices. Usually
ḡ is referred to as the target matrix.

Also in (25), V(g) is the set of feasible link flows corresponding to the O-D matrix
g and V∗(g) is the set of solutions in terms of the total link flows of the variational
inequality (26) that formulates the traffic assignment problem on an asymmetric
traffic network.

Find v ∈ V(g), so that c(v)>(v′ − v) ≥ 0, ∀v′ ∈ V(g) (26)

In general if the assignment map V∗(g) is a singleton, then the bilevel programming
problem (25) for the demand adjustment problem can be reformulated as:

Min g≥ 0 F (g) = z1F1(v
∗(g)) + z2F2(g) (27)

It must be remarked that the upper level function F (g) is non-differentiable.

The proximal point algorithm for minimizing a (continuously differentiable) function
F (g) on a convex set X consists of solving a sequence of problems of the type:

Min g∈X F (g) +
µ`

2
‖g − g`‖2

2
(28)
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for a sequence {µ`} of parameters, µ` ≤ µ̄. It must be also noted that, if µ` is high
enough, a solution g∗(µ`) of the above problem (28) provides a good approximation
to an element of the generalized gradient of Clarke [2] ∂ F (g∗(µ`)) for the function
F (g) at g∗(µ`), because the Fermat rule applied to problem (28) results in:

−µ`(g
∗(µ`)− g`) ∈ ∂ F (g∗(µ`)). (29)

In order to apply the proximal point iteration for the demand adjustment problem,
the previous problem (28) needs to be transformed in the following one:

Min (v, g)∈Ω H(v, g) +
µ`

2
‖g − g`‖2

2

s.t. G(v, g) = 0
(30)

For a non negative O-D matrix g, Ω denotes the feasible cone of flows-demands or
the set of pairs (v, g) so that g ≥ 0 and v ∈ V(g) and G(v, g) is a gap function for
the variational inequality (26) parametrized by g. The primal and dual gap functions
GP (v) and GD(v), have already been mentioned in section 2. As the methods to be
used are primal feasible it is immaterial the value of G(v, g) outside Ω.

In this paper we shall deal only with the primal gap function GP (v) parametrized
by g. If the constraint GP (v, g) = 0 is penalized with parameter 1/α`, then (30)
can be approximated by:

Min (v, g)∈Ω ψ`(v, g) = GP (v, g) + α`H(v, g) +
α`µ`

2
‖g − g` ‖2

2
(31)

where α` · µ` → 0. The optimality conditions for problem (31) can be stated by
means of the Fermat rule as:

0 ∈ ∂̄GP (v, g) + α`∇H(v, g) + α`µ`(g − g`) + NΩ(v, g) = T(v, g) (32)

The calculation of the Clarke’s subgradient of the primal gap function is done in
Codina and Montero [9] and it is shown there that:

∂̄GP (ṽ, g̃) =




c(ṽ) +

(
∂c

∂v

)>

ṽ

(w − ṽ)

t(g̃)




(33)

where w ∈ argmin{ GP (ṽ) = −Min w∈V(g̃) c(ṽ)>(w − ṽ) }.
The generalized equation (32) can be difficult to solve and we will consider now the
case in which the travel costs c(v) are strongly monotone with modulus mc. Now it
is easy to see that

(
cα(v∗(g), g)
−tα,µ(v∗(g), g)

)
+ NΩ(v∗(g), g) ∈ T(v∗(g), g) (34)

where cα(v, g) = c(v) + α∇vH(v, g) and tα,µ(v, g) = t(g)− µα(g− g`)− α∇gH(v, g).
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A good approximation for the inclusion (32) can be the variational inequality:

cα(v, g)>(v′ − v)− tα,µ(v, g)>(g′ − g) ≥ 0, ∀ (v′, g′) ∈ Ω (35)

presenting the structure of an elastic demand traffic assignment problem that can be
converted to a fixed demand traffic assignment problem by means of the Gartner’s
transformation [15].

The cost approximation algorithms in Patriksson [22] can be used for the case of
the gap function GP (v, g) and H = H(v). At iteration k, of the cost approximation
algorithm, the resulting variational inequality subproblem at point gk is:

cα(v)>(w − v) + (−t(gk) + µα(g − g`))>(g′ − g) ≥ 0, ∀(w, g′) ∈ Ω (36)

where t(g`) are the equilibrium O-D travel times resulting from the assignment of the
O-D matrix gk with costs c(v). It must be remarked that the variatinal inequality
(36) does not present the required condicitions for convergence of the algorithms
cited in Section 3 and it is here where the use of the proximal point algorithm can
be advantageous in order to obtain a solution of (36).

6. Conclusions and further work

This paper reviews firstly the conditions for convergence of the more used algorithms
to solve variational inequalities with special incidence in the traffic assignment prob-
lem and summarizes the recently new conditions developed by Pennanen [24] for the
proximal point algorithm which do not require strong monotonicity. The application
of the proximal point algorithm to a problem of bilevel programming that formulates
the adjustment of origin-destination trip matrices is also shown. A set of numerical
experiments will be required in order to evaluate practically and in comparison with
other methods, the performance of the proximal point algorithm to the problems
examined in this paper.
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