
ON THE COMPUTATION OF SOLUTION SPACES IN HIGH DIMENSIONS

L. GRAFF, H. HARBRECHT, AND M. ZIMMERMANN

Abstract. A stochastic algorithm that computes box-shaped solution spaces for nonlinear,
high-dimensional and noisy problems with uncertain input parameters has been proposed in
[35]. This paper studies in detail the quality of the results and the e�ciency of the algorithm.
Appropriate benchmark problems are specified and compared with exact solutions that were
derived analytically. The speed of convergence decreases as the number of dimensions increases.
Relevant mechanisms are identified that explain how the number of dimensions a↵ects the
performance. The optimal number of sample points per iteration is determined in dependence
of the preference for fast convergence or a large volume.

1. Introduction

In many engineering problems, uncertainty is naturally present, especially in the early devel-
opment phase. Uncertainty arises because some parameters cannot yet exactly be specified or
they may be changed over the course of development. This type of uncertainty is called epistemic
uncertainty since it is reducible if greater knowledge is provided, see [9, 17, 20, 31].

Classical optimization methods seek an optimum in the design space. Typically, they do not
consider the variability of design variables and do thus not take into account uncertainty. Con-
sequently, optimal designs may be non-robust and quite sensitive to parameter variabilities, and
are, therefore, infeasible. Some authors even believe that optimization is actually just the oppo-
site of robustness, see [18]. As reliability is nevertheless mandatory, engineers have to look for
robust designs which avoid unexpected deviations from the nominal performance, see [23]. To this
end, more advanced methods have been developed to include uncertainties of the parameters and
robustness criteria in the optimization.

Robust design optimization (RDO), as introduced in [32], includes robustness measures in the
optimization problem. RDO helps to obtain a design that is less sensitive to variations of uncon-
trollable input variables without eliminating the source of the uncertainty, see [8, 10, 24, 32]. The
solution of RDO is a robust design whose objective function value is insensitive to uncertainty,
see [2].

Reliability-based design optimization (RBDO) is a method to determine optimal designs which
are characterized by a low probability of failure. Prominent examples of RBDO are, for example,
the first and second order reliability method (FORM/SORM), see [34]. It is assumed that the
complete information of the input uncertainty is known, see [8, 19, 29]. This means, if there exists
an inherent randomness in the non-deterministic behavior of the physical system, i.e., an aleatoric
uncertainty, then this uncertainty is known and can be described, see [17, 20, 31].

Sensitivity analysis (SA) provides a further approach to deal with uncertainty. It aims at
estimating the variability of the objective function value, a↵ected by the variability of the input
parameters, see [26]. Sensitivity measures for the input parameters are typically obtained by the
ANOVA (analysis of variance) decomposition or by the Sobol decomposition, see [21, 28].

Uncertainty also arises when more than one design team is involved in the design of an engi-
neering development process and every design team must optimize their subsystem without full
information about the other subsystems. Every team has its own individual subsystem with goals
and constraints which must match the goal of the overall design. Furthermore, the di↵erent dis-
ciplines (in e.g. vehicle crash development this are vibration analysis, durability, aerodynamics,
etc.) may have conflicting objectives and the subsystems are often coupled, see [1, 14]. A possible

Key words and phrases. Robust design, uncertainty, solution space, high-dimensional systems, nonlinear
systems.

1

2 L. GRAFF, H. HARBRECHT, AND M. ZIMMERMANN

method to solve such problems is multidisciplinary design optimization (MDO) because di↵erent
disciplines are simultaneously optimized in MDO, see [6, 12].

Unfortunately, MDO, RBDO, RDO and SA su↵er from certain disadvantages which excludes
them for the application to the problems we have in mind. For MDO, a model which comprises
all relevant disciplines must be provided. Unfortunately, such a model is usually not available for
the design of complex engineering systems where di↵erent teams are involved in the development
process. RBDO and RDO deal with models where the variability of input parameters is given. If,
however, the variability of the input parameters is not known completely, it has to be estimated
which is not always possible. When applying SA, information on how to improve a non-robust or
critical solution is limited: what parameter needs to be adjusted and what value it should assume
is unknown.

The strategy we follow here is to identify a maximum solution space for the high-dimensional,
nonlinear, possibly noisy system under consideration [35]. On the solution space, the objective
function assumes only subcritical output values, i.e., they are below a given threshold value, with
a predefined probability for all enclosed designs. The solution space is expressed by intervals for
each input parameter, representing a high-dimensional hyperbox. For a design to be good, the
choice of a parameter value within its assigned interval does not depend on the values of the other
parameters as long as they are within their respective intervals. In this sense, the parameters
are decoupled from each other. The intervals may be used to assess robustness and sensitivity
to uncertain input parameters which can be measured by the widths of the associated intervals.
Moreover, a hyperbox helps to identify relevant parameters to improve a non-robust or insu�cient
design. Additionally, they might be combined with intervals of other disciplines – their cross
sections are global solution spaces.

This approach is similar to RBDO, as threshold values for the objective function are used to
distinguish between good and bad designs. It is similar to RDO in that input variations are
considered. It di↵ers from both, however, in that the degrees of freedom of the optimization
problem are the permissible tolerance regions rather than the design variables themselves.

An iterative algorithm, consisting of two phases, is analyzed in this paper for the iterative
identification of the hyperbox described above. The algorithm was introduced and compared with
data mining and machine learning techniques in [35]. The starting point is a candidate hyperbox
which is built around a design with subcritical objective function value. Then, this candidate
hyperbox is iteratively evaluated and modified. In the first phase, called the exploration phase,
the landscape of the optimization problem under consideration is explored. This phase consists of
three steps. In the first step, a design of experiments is performed (e.g. by Monte Carlo sampling,
see [27]). In the second step, a subset is identified which contains only good designs of the original
design space. In the third step, the hyperbox is moved through the design space in order to find
the hyperbox with maximum volume. The first phase is iterated until the hyperbox does not move
any more. Then, the second phase starts, called the consolidation phase. It consists of a repeated
application of the first two steps of the first phase until a hyperbox is identified which contains
only subcritical outputs with a predefined probability. This paper focuses on the analysis of the
algorithm’s performance.

The paper is organized as follows. In Section 2, motivated by a problem from engineering
practice, the problem statement is derived for identifying the maximum hyperbox which guarantees
a subcritical performance. Section 3 introduces the algorithm which identifies hyperboxes. Three
benchmark problems are given in Section 4 to validate the proposed algorithm by comparing the
numerical results with the exact solutions. In addition, an engineering problem from vehicle front
crash design confirms the applicability to high-dimensional and nonlinear engineering models. To
analyze the reliability of the algorithm, the consolidation phase is studied in Section 5. This
includes a study of the convergence behavior. In addition, the relevant mechanisms which are
related to the problem’s dimensionality are identified. With these results, the optimal number of
sample points per iteration can be chosen, depending on the preference for speed or volume size.
Finally, in Section 6, we state concluding remarks.

ON THE COMPUTATION OF SOLUTION SPACES IN HIGH DIMENSIONS 3

2. Motivation and problem statement

2.1. Example problem. We shall consider a model of a full-width front impact crash. The
vehicle crashes head-on into a rigid concrete barrier at 56 km/h, see Figure 1(a). In the vehicle
development, the maximum of the crash pulse generated by the vehicle structure is a relevant
parameter to minimize the injury of car occupants in a front crash, see [33]. The crash pulse is
the deceleration time history measured at the rocker panel and the B-pillar of the vehicle, see [11].
The crash pulse is entirely determined by the force-deformation characteristics of the elements of
the car structure, parametrized by F

i

, see [13]. A visualization of the force-deformation curve of
a part of the front structure is shown in Figure 1(b) and Figure 1(c). Crash simulations show an
inherently nonlinear physical behavior with respect to structural parameters. For this reason, the
crash pulse is di�cult to design.

An important objective quantity for crash design is the maximum of the crash pulse and is
denoted as a. An optimization could be run for the function a = f(F1, F2, . . . , Fd

) in order to find
an optimum for the maximum of the crash pulse. Unfortunately, this solution cannot be realized
exactly due to uncertainties. Therefore, rather than computing an optimum, a range of solutions,
expressed as a hyperbox, should be computed. This hyperbox would represent admissible intervals
for the degrees of freedom F

i

.

(b) (c)

deformation

fo
rc

e

classical optimum
realized solution

acceleration

(a)

Figure 1. (a) Simulation of a vehicle front crash, (b) vehicle front structure
and (c) force-deformation characteristics of a structural component of a front car
structure.

2.2. Problem statement. Let ⌦
DS

⇢ Rd be a bounded, closed and convex set of admissible
designs, called the design space. The volume of an axis-parallel hyperbox in this design space
should be maximized under the constraint that the objective values of all enclosed designs are
below a given threshold. The hyperbox corresponds to a product of intervals for each input
parameter.

Definition 2.1. Consider xlow = (xlow

1 , x

low

2 , . . . , x

low

d

), xup = (xup

1 , x

up

2 , . . . , x

up

d

) ⇢ ⌦
DS

such

that xlow xup component-by-component. Then, the hyperbox ⌦ = ⌦(xlow

,xup) is the cartesian
product

⌦ = I1 ⇥ · · ·⇥ I

d

⇢ ⌦
DS

of intervals
I

i

= [xlow

i

, x

up

i

] ⇢ R for all i = 1, 2, . . . , d.

If we denote the width of the i-th interval I
i

by `

i

= x

up

i

� x

low

i

, then `1, `2, . . . , `d are the
lengths of the edges of the hyperbox ⌦. Especially, ` = (`1, `2, . . . , `d) is given by ` = xup � xlow.
The volume µ(⌦) of the hyperbox ⌦ is thus given by

µ(⌦) =
dY

i=1

`

i

.

Let f : ⌦
DS

! R be an objective function which denotes a scalar quantity of interest. In
practical applications, it represents a numerical simulation which produces a result f(x) from
input parameters x. For the system f(x) and a given critical value f

c

2 R, a hyperbox ⌦ is sought
such that µ(⌦) ! max subject to f(x) f

c

for all x 2 ⌦.

4 L. GRAFF, H. HARBRECHT, AND M. ZIMMERMANN

Definition 2.2. A design x 2 ⌦
DS

which satisfies the constraint f(x) f

c

is called a good design.
A design x 2 ⌦

DS

which violates the constraint f(x) f

c

is called a bad design.

With these preparations at hand, we can state the following constrained, nonlinear, and high-
dimensional optimization problem:

(P)
find xlow

,xup 2 ⌦
DS

with xlow xup component-by-component

such that µ(⌦) ! max subject to f(x) f

c

for all x 2 ⌦.

)

This optimization problem is a shape optimization problem which shall be solved without the use
of gradients to ensure applicability to any engineering problem where the function f(x) is not
analytically given. The solution will be a hyperbox which induces a fixed interval for each input
parameter. In practice, these intervals define requirements for the related components and will be
used in the development process as design goals.

Remark 2.3. Typically, engineering problems have several design goals f

(i)(x) f

(i)
c

, i =
1, . . . ,m. They are included in the problem formulation (P) by setting f(x) := maxm

i=1{f (i)(x)�
f

(i)
c

} and f

c

:= 0.

2.3. Solution strategies. There are already approaches in the literature to solve optimization
problems similar to (P). In [25], this problem is solved by using an approach which combines
cellular evolutionary strategies and interval arithmetic. Interval arithmetic is applied to evaluate
the generated hyperbox. The drawback is that the objective function f(x) has to be known
analytically and can thus not be treated as a black box (see [5]). Unfortunately, in most practical
applications from engineering, the objective function is represented by a numerical simulation,
producing a result f(x) from input parameters x, and is not known analytically.

In other approaches, admissible design domains are identified with the aid of cluster analysis and
fuzzy set theory (see [3, 22]). Nevertheless, fuzzy set theory needs additional information like the
membership function of the parameters which is typically not available in the engineering design
development. Furthermore, the design space is sampled only once. Consequently, the number of
sample points has to be larger than the volume of the design space divided by the volume of the
solution space to detect good regions. For high-dimensional problems with many relevant input
parameters, a very large number of sample points is required to identify the solution space.

Surrogate modelling can be used for the fast evaluation of a design point x (for mathematical
surrogates see [5], for an example of physical surrogate modelling see [7]). It can be combined
with the approach presented here, however, it cannot replace it, as their output are performance
values of single design points rather than solution spaces.

The algorithm which is considered in this paper has been introduced in [35]. It aims at directly
solving the constrained nonlinear high-dimensional optimization problem (P). This algorithm
requires only function evaluations and, therefore, no access to the analytical expression of f(x)
which means the system f(x) is treated as a black box. Thus, the proposed optimization method
is non-intrusive.

3. Algorithm

The algorithm for solving (P) consists of two phases as seen in the flowchart in Figure 2. The
starting point is a design x which fulfills the inequality f(x) f

c

. It can be found by a classical
optimization like di↵erential evolution (see e.g. [30]). Then, an initial hyperbox is generated which
includes this admissible design. The size of the initial box has to be chosen su�ciently small
in order to ensure that by sampling at least one good design is found. The size may be highly
dependent on the problem and may has to be adapted accordingly. For all results presented in this
paper, the edge length of the initial box in each dimension has been set to be 20% of the respective
design interval with the admissible design as center. The first phase, called the exploration phase,
is an iterative scheme which explores the landscape of the objective function. Finally, the second
phase of the algorithm, called the consolidation phase, is performed. The consolidation phase
includes an algorithm which shrinks the hyperbox such that it contains only good designs at a
given probability level. The total number function calls which have to be calculated to identify

ON THE COMPUTATION OF SOLUTION SPACES IN HIGH DIMENSIONS 5

����������	
��������
	���
��������
��������

��
�������	����������
����
�����������
�����

��
�����������������
�������
��

�
�������	
��������
���

���

�

����������	
��������
	���
��������
�������� ��������������������
�

��
�������	����������
����
�����������
�����

 ��!�"!�#�$�

���

�

����������	
����
�����
����
��	
��

�%&'

����������	
���������
��
�������

���������
���

�����������
�	
��������

�������������
������������

Figure 2. The flowchart of the algorithm to identify the maximal hyperbox.

the largest hyperbox is N ⇥M , where N is the number of sample points per iteration and M is
the total number of iteration steps in the exploration phase and in the consolidation phase.

3.1. Exploration phase. The exploration phase consists of three basic steps which are outlined
in the flowchart in Figure 2 at the top.

1.1

1.2

1.3

1.4

1.5

0.8

0.9

1

1

1.5

2

2.5

3

-1

-0.5

0

-2
-1

2

3

x1

x2

x1

1.1

1.2

1.3

1.4

1.5

x2

0.8

0.9

1

0.7 0.9 1.1 1.3 1.1

1.2

1.3

1.4

1.5

0.8

0.9

1

x1

x2

1.1

1.2

1.3

1.4

1.5

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0.8

0.9

1

x1

x2

x1

x2x2
Ωcand

point of origin

Figure 3. Trimming algorithm to select the hyperbox with the most good sample
points in ⌦.

In the first step, i.e., the hyperbox evaluation, a population of designs is created by using a
design of experiments technique such as Monte Carlo sampling or Latin hypercube sampling (see
e.g. [27]) in the candidate hyperbox ⌦ = [xlow

1 , x

up

1]⇥ · · ·⇥ [xlow

d

, x

up

d

]. The generated population
{x

j

} is divided in good sample points which fulfill f(x
j

) f

c

and bad sample points for which it
holds f(x

j

) > f

c

.

6 L. GRAFF, H. HARBRECHT, AND M. ZIMMERMANN

Definition 3.1. The ratio ba = N

g

/N of the number N
g

of good sample points and the total number
N of sample points is called the fraction of good sample points.

In the second step, the hyperbox is modified by removing all bad sample points. This is done
by an algorithm which identifies a hyperbox that includes only good sample points according to
the following rule.

A good sample point is used as the point of origin, i.e., it will always be included, as visualized
in Figure 3. Then, the bad sample point with the highest objective value is removed by relocating
the boundaries such that the smallest number of good sample points is lost. If this dimension is
not unique, i.e., if there is more than one dimension associated with the loss of the same number
of good sample points, then that one is chosen where most bad sample points are removed. The
next bad sample point with the remaining highest value is removed in such a way that again the
smallest number of good sample points are lost as shown in Figure 3. This procedure is repeated
until there are no more bad sample points. When all bad sample points are removed, the hyperbox
is again reduced in size with respect to all dimensions where a bad sample point was removed such
that the new box boundaries will lie on good sample points.

After this process, for each good sample point, there will be a hyperbox which contains only
good sample points. From all these hyperboxes, the one with the most sample points will be
selected as the output.

Remark 3.2. The algorithm will be called trimming algorithm as it removes the bad space by
relocating the boundaries.

The pseudo-code of the trimming algorithm is found in Algorithm 1. Its computational com-
plexity is O(N3

d) where N is the total number of sample points and d is the number of dimensions.

Algorithm 1: Pseudo-code of the trimming algorithm.

Data: a hyperbox ⌦ and a set S = {x
j

2 ⌦ : f(x1) � · · · � f(x
N

)} of sample points
Result: hyperbox ✓ ⌦ which contains only good sample points
forall the good sample points {xgood 2 S : f(xgood) f

c

} do
forall the bad sample points {xbad 2 S : f(xbad) > f

c

} do
for i = 1, 2, . . . , d do

if x

bad

i

< x

good

i

then
count the good sample points x with x

bad

i

� x

i

� x

low

i

;
else

count the good sample points x with x

bad

i

 x

i

 x

up

i

;

choose the direction i

? where the fewest good sample points are removed;

if x

bad

i

?

< x

good

i

?

then trim to x

low

i

?

;
else trim to x

up

i

?

;

forall the directions i where a bad sample point is removed do
if x

bad

i

< x

good

i

then
x

low

i

:= min
j

x

i,j

for all remaining good sample points x
j

;
else

x

up

i

:= max
j

x

i,j

for all remaining good sample points x
j

;

remember the hyperbox with most good sample points;

The third step consists of modifying the candidate hyperbox by growing in all parameter direc-
tions. By increasing the size of the hyperbox, new regions are enclosed which enable the hyperbox
to move through the design space in order to find the best hyperbox. The hyperbox is enlarged
by adjusting its boundaries as follows. The boundaries in the (k + 1)-st iteration are calculated
from the boundaries of the k-th iteration according to

[xlow

i

]
k+1 = [xlow

i

]
k

� �

k

�
[xup

i

]
k

� [xlow

i

]
k

�
for all i = 1, 2, . . . , d

ON THE COMPUTATION OF SOLUTION SPACES IN HIGH DIMENSIONS 7

for the lower boundary and according to

[xup

i

]
k+1 = [xup

i

]
k

+ �

k

�
[xup

i

]
k

� [xlow

i

]
k

�
for all i = 1, 2, . . . , d

for the upper boundary. If the growth rate �

k

is chosen too large, then the fraction of good
sample points in the next candidate hyperbox will be small. A small number of good sample
points provides only little information about further boundary relocations, thus making over- and
underestimation more likely (see Section 5). If the growth rate �

k

is chosen too small, many
iteration steps will be necessary in the exploration phase. As a compromise between speed and
accuracy, the growth rate is adaptively chosen to be

(1) �

k

=
ba
k�1

a

target

�

k�1,

where k is the iteration index, ba
k�1 is the fraction of good sample points in the (k�1)-st iteration,

and a

target

is the desired fraction of good sample points. To our experience, the choice a
target

= 0.8
leads to good results in (1).

-2
-2

3

x2

2x1

classical optimum

solution box

Figure 4. Iteration process starting in the classical optimum to move towards a
beneficial direction with increasing box size.

The complete exploration phase is illustrated in Figure 4 in case of the Rosenbrock function

f(x1, x2) = (1� x1)
2 + 100

�
x2 � x

2
1

�2
.

The design space is ⌦
DS

= [�2, 2] ⇥ [�2, 3] and the critical value is f

c

= 20. The initial �-value
was chosen to be 1. This value is small enough to obtain a su�ciently high fraction of good designs
in the first iteration step. It is also large enough to ensure that not too much iteration steps are
performed in the exploration phase. It can be observed that the hyperbox moves away from the
classical optimum towards a beneficial direction with larger box size. If the hyperbox does not
move and µ(⌦) does not significantly change anymore, the algorithm switches to the second phase.

3.2. Consolidation phase. The consolidation phase is an iterative scheme where each iteration
consists of three basic steps as seen in the flowchart in Figure 2. In the first step, bad sample points
are removed by the trimming algorithm as described in the previous section. In the next step,
again, a sample of designs is created by using Monte Carlo sampling or Latin hypercube sampling
in the candidate hyperbox. Then, the candidate hyperbox is statistically evaluated in the third
step. Given the lower and upper boundary of a Bayesian confidence interval [a

low

, a

up

] for the
probability of success a, the probability for a to lie within that confidence interval is calculated
according to the following theorem (see [16] for a quantitative study of this result).

Theorem 3.3 ([16]). Let N 2 N be the total number of uniformly distributed sample points in
the hyperbox ⌦ and N

g

 N the number of good sample points. Moreover, let a 2 [0, 1] denote the
true fraction of the good space in the hyperbox ⌦. Then, the confidence level that the probability
of the fraction of good sample points (probability of success) lies within the Bayesian confidence
interval [a

low

, a

up

] is

(2) P (a
low

< a < a

up

|N
g

) =

R
a

up

a

low

t

N

g (1� t)N�N

gdt
R 1
0 s

N

g (1� s)N�N

gds
.

8 L. GRAFF, H. HARBRECHT, AND M. ZIMMERMANN

In Figure 5, the width of the Bayesian confidence interval around the probability of success is
shown over the number of sample points N for di↵erent values of N

g

/N . As it can be observed,
the width of the confidence interval decreases when the ratio N

g

/N increases. When there are 100
sample points and the ratio N

g

/N = 1, which means that there are only good sample points, the
true fraction of the good space is with 95% probability between a

low

= 0.97 and a

up

= 1, see [16].
Therefore, the width of the 95%-confidence interval is 0.03. The remaining 3% probability of
failure can be accepted for two reasons. First, the determination of a solution hyperbox is useful
in the early development stage in order to design a product which fulfills the requirements. The
layout of, e.g., a vehicle is likely to change over the course of the development process. There is
thus no need for a high accuracy. Second, the final design will always be verified by a detailed
simulation or a hardware test to confirm the fulfillment of the requirements. The width of 0.03 of
the 95%-confidence interval is assumed to be su�ciently small, especially in an early development
stage where the knowledge of the final design is limited. Therefore, in general N = 100 sample
points are used for the evaluation of the candidate hyperbox.

When N

g

/N = 1, the algorithm will stop and the last candidate hyperbox is chosen to be the
final solution hyperbox.

0 100 200 300
0

0.05

0.1

0.15

0.2

0.25

N

w
id

th
 (

a
u
p
−

a
lo

w
)

N
g
/N=0.5

N
g
/N=0.9

N
g
/N=1

Figure 5. The width of the 95%-confidence interval around the probability of success.

4. Results of the algorithm

In this section, three benchmark problems are considered to compare the solution of the pro-
posed algorithm with the exact solution of the optimization problem (P). This means that the
accuracy of the algorithm is studied. To that end, always a su�ciently large, fixed number of
iterations is chosen in both, the exploration phase and the consolidation phase. Moreover, also
a fixed number of 100 sample points is used in each iteration which turned out to be a good
choice according to the results of Problem 1 and Section 5.4. Note that the algorithm’s speed of
convergence will be investigated in Section 5.

• In Problem 1, the solution space is constrained by a convex polytope in two dimensions
as depicted in Figure 6(a).

• In Problem 2, the good space is given by a hyperbox which is inscribed in the design space
(see Figure 6(b)). The ratio of the volume of the good space and the volume of the design
space is 0.5.

• In Problem 3, the solution space is constrained by a tilted hyperplane which divides the
d-dimensional unit cube into two equal volumes, cf. Figure 6(c).

These problems are nonlinear optimization problems under a�ne constraints. The corresponding
total performance function is nonlinear for Problems 1 and 2. High-dimensionality is considered
in Problems 2 and 3.

In addition, the applicability of the solution algorithm to high-dimensional and nonlinear en-
gineering problems is demonstrated by means of Problem 4 from crash analysis which has been

ON THE COMPUTATION OF SOLUTION SPACES IN HIGH DIMENSIONS 9

described in Subsection 2.1. The gray surface in Figure 6(d) illustrates the bad space of a particular
two-dimensional cross section.

(a) (b) (c) (d)

Figure 6. Problems considered: (a) Problem 1 (convex polytope), (b) Problem
2 (hyperbox), (c) Problem 3 (tilted hyperplane), and (d) Problem 4 (front crash).

4.1. Problem 1. A convex polytope as boundary. As an illustrative example, in particular,
for validating the algorithm’s convergence towards the correct solution, we consider the nonlinear
optimization problem of maximizing a rectangle within a convex polytope in two dimensions
(cf. Figure 6(a)).

4.1.1. Exact solution. Let ⌦
DS

= [0, 4]2 be the design space and

⌦ = [xup

1 � x

low

1]⇥ [xup

2 � x

low

2] ⇢ ⌦
DS

.

Writing z = (xlow

,xup) = (xlow

1 , x

low

2 , x

up

1 , x

up

2), the set

K = {(xlow

,xup) 2 ⌦
DS

⇥ ⌦
DS

: g(z) = Az� b 0 and xlow xup},

where

A =

2

6666664

0 0 1
8

1
4

0 0 4
17

2
17� 1

2 0 0 1
2� 1

2 � 1
3 0 0

� 1
3 � 2

3 0 0
0 � 3

2 1 0

3

7777775
, b =

2

6666664

1
1
1
�1
�1
1

3

7777775
,

describes the convex polytope seen in Figure 7(a). Due to

µ(⌦) = (xup

1 � x

low

1)(xup

2 � x

low

2) =
1

2
zTDz with D =

2

664

0 2 0 0
0 0 �2 0
0 0 0 2
�2 0 0 0

3

775 ,

the constrained optimization problem

(3) µ(⌦) ! max subject to z 2 K

is a quadratic optimization problem under a�ne inequality constraints. The unique maximum
µ(⌦) is found by means of Lagrange multipliers (see e.g. [15]) and has the values tabulated in the
second column of Table 1. A visualization of this maximum is found in Figure 7(a).

10 L. GRAFF, H. HARBRECHT, AND M. ZIMMERMANN

(a)

x1

fre
qu

en
cy

0 1.18 2 2.85 4
0

10

20

30

40

50

60
lower boundary
upper boundary

(b)

x2

fre
qu

en
cy

0 1.23 22.58 4
0

10

20

30

40

50

60
lower boundary
upper boundary

(c)

Figure 7. Problem 1. (a) Convex polytope in d = 2 dimensions with the hy-
perbox of maximal volume. (b) Distribution of the hyperboxes found by the
algorithm for x1 in 100 simulations. (c) Distribution of the hyperboxes found by
the algorithm for x2 in 100 simulations.

4.1.2. Numerical solution. The constrained optimization problem (3) can equivalently be ex-
pressed as the constrained optimization problem (P) if we set

f(x1, x2) =

(
0, if g(x1, x2, x1, x2) 0 component-by-component,

1, otherwise,

and f

c

= 0.5. Therefore, problem (3) can be solved numerically by using the algorithm presented in
Section 3. The results of the numerical optimization are shown in Table 1 for N = 50 and N = 100
sample points per iteration. The algorithm was run 100 times, where the iterative process was
started with a hyperbox built around a randomly chosen admissible point. 200 iterations of the
exploration phase and 100 iterations of the consolidation phase were used. The columns entitled
x

i,avg

contain the mean of the coordinates of the final hyperboxes of the 100 simulations, the
columns entitled �(x

i

) are the related standard deviations, the columns entitled "(x
i

) contain
the absolute errors |x

i,avg

� x

i,opt

|, and the columns entitled “error” contain the relative errors
|x

i,avg

� x

i,opt

|/x
i,opt

.

exact numerical solution (N = 50 samples) numerical solution (N = 100 samples)
x

i,opt

x

i,avg

�(x
i

) "(x
i

) error in % x

i,avg

�(x
i

) "(x
i

) error in %

x

low

1 1.18 1.181 0.101 0.001 0.058 1.174 0.074 0.006 0.508
x

up

1 2.85 2.687 0.169 0.163 5.708 2.735 0.140 0.115 4.050
x

low

2 1.23 1.245 0.138 0.015 1.203 1.235 0.108 0.005 0.407
x

up

2 2.58 2.647 0.092 0.067 2.589 2.633 0.073 0.053 2.052

average — — 0.125 0.062 2.390 — 0.099 0.045 1.754
Table 1. Exact solution of Problem 1 and related numerical results for 100
simulations with N = 50 and N = 100 samples per iteration.

We observe in Table 1 that the standard deviation decreases if the number of sample points per
iteration is doubled. The mean error is 2.4% for N = 50 and 1.8% for N = 100. Therefore, the
error between the exact solution and the mean of the numerical solutions becomes smaller when
the number of sample points per iteration is increased. In Section 5.4, it is shown that N = 100
sample points are a good choice to converge fast and to obtain a large volume in the consolidation
phase of the algorithm. Therefore, N = 100 is chosen in the next test examples.

The distribution of the solution hyperboxes found by the algorithm is visualized for N = 100
sample points in Figure 7(b) for the coordinate x1 and in Figure 7(c) for the coordinate x2. The

ON THE COMPUTATION OF SOLUTION SPACES IN HIGH DIMENSIONS 11

boundaries of the optimum hyperbox are indicated by the dashed green lines. These plots show
that the proposed algorithm converges to the exact solution in the sense that the average of the
numerical solutions approximately coincides with the exact solution.

4.2. Problem 2. A hyperbox as boundary. The maximization of a hyperbox in case of
another hyperbox being the boundary between the good and the bad space is considered in d > 1
dimensions. In particular, the convergence of the algorithm to the optimal solution is shown in
high dimensions.

Figure 8. Problem 2. A hyperbox which defines the good space of the design
space, inscribed in the unit d-cube.

4.2.1. Exact solution. For r 1, let [0, r]d ⇢ Rd be a hyperbox which defines the good space of
the design space. This hyperbox is inscribed in the d-dimensional unit cube ⌦

DS

= [0, 1]d which
serves as the design space. The value of r = r(d) is chosen in such a way that the fraction of the
good space is always 0.5, that is r = d

p
0.5 (see Figure 8 for a visualization in the case of d = 2

and d = 3 dimensions). Hence, with the lower bounds xlow

i

= 0 for all i = 1, 2, . . . , d, we arrive for
x

i

= x

up

i

, i = 1, 2, . . . , d, at the optimization problem

(4) µ(⌦) =
dY

i=1

x

i

! max

under the a�ne inequality constraints

(5) 0 x

i

 r for all i = 1, 2 . . . , d.

The solution to this optimization problem is easily calculated by x

i

= x

opt

= d

p
0.5 for all i =

1, 2 . . . , d. The value x

opt

tends to 1 as d tends to infinity which is also seen by dashed blue curve
in Figure 9.

4.2.2. Numerical solution. The solution of the optimization problem (4) under the inequality con-
straint (5) coincides with the solution of problem (P) with

f(x) =

(
0, if x

i

 r for all i = 1, 2, . . . , d,

1, otherwise,

and f

c

= 0.5. This optimization problem is solved numerically for d = 2, 3, 10, 50, 100 spatial
dimensions. The algorithm is run 100 times with N = 100 sample points per iteration. The
iterative process starts with a hyperbox built around a randomly chosen admissible point.

In Table 2, the mean of the numerical solutions and the standard deviations are tabulated for
d = 2 and d = 3, respectively. Herein, x

i,avg

denotes the mean of the i-th coordinate of the final
hyperbox. The associated standard deviation is �(x

i

), the absolute error is "(x
i

) = |x
i,avg

�x

i,opt

|,
and the relative error is |x

i,avg

� x

i,opt

|/x
i,opt

. The agreement between the numerical solutions of
the algorithm and the exact solutions is reasonably good.

12 L. GRAFF, H. HARBRECHT, AND M. ZIMMERMANN

d = 2
exact numerical solution
x

i,opt

x

i,avg

�(x
i

) "(x
i

) error in %

x1 0.707 0.700 0.007 0.007 0.95
x2 0.707 0.700 0.007 0.007 1.05

d = 3
exact numerical solution
x

i,opt

x

i,avg

�(x
i

) "(x
i

) error in %

x1 0.794 0.784 0.010 0.010 1.20
x2 0.794 0.784 0.009 0.010 1.23
x3 0.794 0.784 0.010 0.010 1.20

Table 2. Exact solution of Problem 2 and related numerical results for 100
simulations in d = 2 and d = 3 dimensions.

To evaluate the results of the algorithm when the number of dimensions increases, the bound-
aries of the resulting hyperboxes x

i,`

are computed for every run `. The mean x

avg

with respect
to all (i, `) is presented in Figure 9(a) for d = 2, 10, 50, 100 dimensions. One infers that the mean
x

avg

approximately agrees with the analytical mean x

opt

= d

p
0.5, also in high dimensions. The

relative error |x
avg

� x

opt

|/x
opt

is plotted in Figure 9(b). It is nearly independent of the number
of dimensions, and it is smaller than 3%. Therefore, the algorithm approximates the optimum
hyperbox well also in high dimensions.

0 50 100
0

0.2

0.4

0.6

0.8

1

d

x

Problem 2: x
avg

Problem 2: x
opt

Problem 3: x
avg

Problem 3: x
opt

(a)

0 50 100
0

20

40

60

80

100

d

e
rr

o
r

in
 %

Problem 2

Problem 3

(b)

Figure 9. Numerical and exact solutions for Problem 2 (hyperbox) and Problem
3 (tilted hyperplane). (a) Mean of the averaged simulations in comparison with
the optimal solutions for d = 2, 10, 50, 100. (b) The relative error for d =
2, 10, 50, 100.

4.3. Problem 3. A tilted hyperplane as boundary. We consider now a d-dimensional prob-
lem with a tilted hyperplane as boundary of the good space. The exact solution is computed and
the algorithm’s behavior for large d is studied.

4.3.1. Exact solution. Let us consider the d-dimensional unit cube [0, 1]d as design space ⌦
DS

.
The boundary of the good space is a diagonal hyperplane which contains the point [1, 1, . . . , 1]/2
and has the normal vector [1, 1, . . . , 1]/

p
d. That is, the tilted hyperplane is described by the

equation

g(x) =
dX

i=1

x

i

� d

2

and intersects the design space in the middle, see Figure 10(a) for d = 2 and Figure 10(b) for d = 3.
This choice ensures that the fraction of the good space is 50%, independently of the dimension d.

ON THE COMPUTATION OF SOLUTION SPACES IN HIGH DIMENSIONS 13

The associated optimization problem for the hyperbox with the lower bounds x

low

i

= 0 and the
upper bounds x

i

= x

up

i

, i = 1, 2, . . . , d, reads as

(6) µ(⌦) =
dY

i=1

x

i

! max subject to x 2 K = {x 2 ⌦
DS

: g(x) 0}.

Its unique solution is given by x = [1/2, 1/2, . . . , 1/2], cf. Figure 10 for an illustration of the
associated optimum hyperbox. The optimum hyperbox volume is µ(⌦opt) = 2�d.

(a) (b)

Figure 10. Problem 3. Tilted hyperplane in d = 2 and d = 3 dimensions with
the maximal hyperbox.

4.3.2. Numerical solution. The constrained optimization problem (6) is equivalent to the con-
strained optimization problem (P) if we set f(x) = g(x) and f

c

= 0. We shall compare the
numerical results produced by the optimization algorithm with the exact solution. The algorithm
is run 100 times where the initial guess is a hyperbox built around a randomly chosen admissible
design.

For low dimensions, d = 2 and d = 3, the mean of the numerical solutions and the standard
deviation are tabulated in Table 3. The mean of the i-th coordinate of the final hyperboxes
x

i,avg

, the associated standard deviation �(x
i

), the absolute error "(x
i

), and the relative error are
calculated. These results confirm that the proposed algorithm approximates the exact solution in
d = 2 and d = 3 dimensions.

d = 2
exact numerical solution
x

i,opt

x

i,avg

�(x
i

) "(x
i

) error in %

x1 0.5 0.479 0.06 0.021 4.2
x2 0.5 0.523 0.06 0.023 4.6

d = 3
exact numerical solution
x

i,opt

x

i,avg

�(x
i

) "(x
i

) error in %

x1 0.5 0.515 0.08 0.015 3.0
x2 0.5 0.508 0.07 0.008 1.6
x3 0.5 0.519 0.07 0.019 3.8

Table 3. Exact solution of Problem 3 and related numerical results for 100
simulations for d = 2 and d = 3 dimensions.

Next, we compare the numerical result produced by the algorithm with the exact solution when
the number of dimensions increases. We consider d = 2, 10, 50, 100 dimensions. As in the previous
problem, the mean x

avg

is computed with respect to all runs and all vertices. It is plotted in
Figure 9(a) versus the spatial dimension. In low dimensions, the result of the algorithm is in good

14 L. GRAFF, H. HARBRECHT, AND M. ZIMMERMANN

agreement with the optimal solution. In high dimensions, that is d > 10, the algorithm strongly
overestimates the optimum hyperbox. Hence, the associated relative error |x

avg

�x

opt

|/x
opt

, found
in Figure 9(b), strongly increases as the number of dimensions increases. Nevertheless, the fraction
of bad space contained in the hyperbox is small and of the order 1/N . This e↵ect reflects the
curse of dimensionality (see [4]), caused by the fact that the tilted hyperplane has no axis-parallel
boundaries. This is in contrast to Problem 2 where the fraction of bad space contained in the
hyperbox is very sensitive to overestimation since the boundaries between the good and the bad
space are axis-parallel.

The algorithm ensures that the fraction of good designs N

g

/N is su�ciently close to 1 in the
sense of Theorem 3.3. Independently of the number of dimensions, the probability for a hyperbox to
contain only good design points can be computed from sample data and can therefore be controlled.
The volume of the resulting hyperbox may di↵er from the exact solution. This e↵ect is particularly
strong for problems with tilted solution space boundaries, i.e. the performance function depends
on many parameters. A detailed analysis on how the number of samples influences the results is
shown in Subsection 5.3.

4.4. Problem 4. An engineering problem from front vehicle crash design. A vehicle front
crash problem, as described in Subsection 2.1, is considered to demonstrate the applicability to
high-dimensional, nonlinear and noisy industrial problems. The front car structure of the vehicle
consists of sixteen parts which are relevant for the crash design. The number of parameters (force
levels) per part is four. In total, there are d = 64 parameters. The optimization problem under
inequality constraints is given as follows:

(7)
find Flow

,Fup 2 ⌦
DS

with Flow Fup component-by-component

such that µ(⌦) ! max subject to a

pulse

= f(F) f

c

for all F 2 ⌦.

)

Here, the function f : ⌦
DS

! R is a mapping which is provided by a numerical simulation.
The underlying computer model is described in [7] and consists of one-dimensional force elements
which are connected by nodes that can only vary in the direction of the car’s movement. The
computation is performed by ABAQUS and takes less than 10 seconds on a single processor of a
Linux workstation, having two Intel(R) Xeon(R) X5550 CPUs with a clock rate of 2.67 GHz and
a main memory of 12 GB.

F1

F2
85000

105000

125000

145000

45000

65000

F9

F10

Figure 11. Problem 4. Two-dimensional cross sections of the design space.
Shown are good (circles) and bad (triangles) design points.

Two-dimensional cross sections of the design space are shown in Figure 11 where circles define
good designs which satisfy the constraint f(F) f

c

and triangles define bad designs which violate
this constraint. Here, the highly nonlinear structure of the optimization problem (7) can be
observed. Also, in the left diagram of Figure 11, regions can be observed where good and bad
designs mix, suggesting erratic variations of the objective function. In crash simulations, this is
referred to as noisy behavior.

ON THE COMPUTATION OF SOLUTION SPACES IN HIGH DIMENSIONS 15

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
i

n
o
rm

a
li
z
e
d
 f
o
rc

e

Figure 12. Normalized intervals for each parameter F
i

.

The algorithm is applied to the optimization problem (7), where 200 iterations are performed
in the exploration phase and 200 iterations are performed in the consolidation phase. Hence,
the algorithm needs N ⇥M = 100 ⇥ 400 function calls to compute the solution hyperbox. This
hyperbox is illustrated in Figure 12 via normalized intervals [F low

i

, F

up

i

] for each parameter F

i

with i = 1, 2, . . . , 64.

......... ...

good design
bad design

F2F1 F3 F4 F36F35 F37 F38 F62F61 F63 F64
deformation deformation deformation

fo
rc

e

fo
rc

e

fo
rc

e

part-1 part-10 part-16

Figure 13. Force-deformation intervals for a vehicle structure. A bad and a
good design are shown.

In Figure 13, the calculated force-deformation intervals are presented for three of the 16 parts
of the front car structure. Particular good (green line) and bad (red line) designs are also shown
in Figure 13. The bad design lies outside the computed hyperbox because the design is not in the
given interval at part 10 and 16. Nevertheless, note that not all designs which are outside of the
hyperbox have to be bad.

A sample with 100 arbitrarily chosen force-deformation curves which are inside the solution
hyperbox are depicted in Figure 14 for three of the 16 parts of the front car structure. For all
curves, the maximal crash pulse is indeed subcritical. Hence, N

g

/N is equal to 1 and, according
to Theorem 3.3, the true fraction of the good space is between 0.97 and 1 with 95% probability.

In Figure 15(a), the fraction of good sample points is shown for di↵erent phases of the algorithm.
During the exploration phase (phase 1), the fraction of good sample points oscillates between 0.7
and 0.9. In the consolidation phase (phase 2), the curve converges towards 1 as desired. The
normalized volume is found in Figure 15(b). It grows in the exploration phase of the algorithm and
decreases in the consolidation phase. Here, µ(⌦

box

) denotes the volume of the candidate hyperbox
and µ(⌦

DS

) is the volume of the design space. Figure 15(c) shows the normalized volume versus
the fraction of good sample points. In the exploration phase, the curve stagnates, and converges
then in the consolidation phase. The algorithm converges to a hyperbox with a fraction of good

16 L. GRAFF, H. HARBRECHT, AND M. ZIMMERMANN

...

F2F1 F3 F4 F62F61 F63 F64
deformation deformation

fo
rc
e

fo
rc
e

fo
rc
e

part-1 part-10 part-16

...

F36F35 F37 F38
deformation

Figure 14. Force-deformation intervals in case of the front crash with N = 100
sample points.

space of 100% which is illustrated by normalized intervals in Figure 12. This validates that the
algorithm is applicable to high-dimensional, nonlinear problems from engineering applications.

0 200 4000

0.5

1

k

N
g/N

phase 1 phase 2

(a)

0 200 40010−35

10−30

10−25

10−20

k

µ(
Ω

bo
x)/µ

(Ω
D

S
)

phase 1 phase 2

(b)

0.7 0.8 0.910−35

10−30

10−25

10−20

Ng/N

µ(
Ω

bo
x)/µ

(Ω
D

S
)

stagnation
in phase 1

convergence
in phase 2

(c)

Figure 15. Problem 4. (a) The fraction of good sample points versus the number
of iterations. (b) The hyperbox volume versus the number of iterations. (c) The
hyperbox volume over the fraction of good sample points.

5. Convergence behavior in the consolidation phase

The user of the algorithm seeks a hyperbox with a large volume µ(⌦). Furthermore, a large
fraction N

g

/N of the good design space is desired. This fraction is typically small during the
exploration phase. The purpose of the consolidation phase is to increase this fraction to a required
level, possibly at the cost of a smaller hyperbox volume. This section studies how the number of
dimensions and the number of sample points a↵ect the quality of the resulting solution hyperbox
and the speed of convergence in the consolidation phase.

First, in Subsection 5.1, a convergence coe�cient is introduced as a measure of the convergence
speed. Then, in Subsection 5.2, Problems 2 (hyperbox), 3 (tilted hyperplane), and 4 (front crash)
are considered to investigate the influence of the dimensionality on the convergence behavior.
Afterwards, Subsection 5.3 studies the influence of the sample size on the speed of convergence
and on the volume of a resulting solution hyperbox. Then, in Subsection 5.4, it is demonstrated
that the speed of convergence and the volume of the resulting solution hyperbox are typically in
conflict with each other. This conflict is illustrated by appropriate Pareto lines for all problem
under consideration. Depending on the preference for speed or volume size, the sample size can
be chosen and the total number of required simulations can be estimated.

ON THE COMPUTATION OF SOLUTION SPACES IN HIGH DIMENSIONS 17

5.1. Convergence coe�cient. From numerical experiments, it is observed that the fraction
of good sample points a

k

converges exponentially to 1 during the consolidation phase, i.e., it
approximately holds

1� a

k

⇡ b exp(�ck)

for all iteration steps k � 0. The coe�cients b and c can be determined by a discrete least-squares
fit for M iteration steps:

M�1X

k=0

|a
k

� ea
k

|2 ! min, where ea
k

= 1� b exp(�ck).

Figure 16 shows the fraction a

k

of good sample points and the fitted curve ea
k

for Problem 3 for
d = 100 dimensions and N = 100 samples. They are both in good agreement during the iteration.
Since the cost per iteration is the number N of samples, we introduce the convergence coe�cient
c/N as a measure for the algorithm’s convergence speed.

0 100 200 300
0.4

0.6

0.8

1

k

N
g
/N

Numerical results
Fitting curve

Figure 16. Convergence speed of the fraction of good sample points: Numerical
results and fitting curve ea

k

for d = 100 and N = 100.

5.2. Influence of the dimensionality. The influence of the dimensionality on the convergence
speed is illustrated in Figure 17 for Problems 2–4. Herein, the fraction of good sample points is
plotted versus the number of iterations for di↵erent dimensions and N = 100 sampling points per
iteration step. The convergence coe�cient is found in the legend of the plots. For all problems,
the convergence speed decreases when the dimension increases.

0 50 100
0.4

0.6

0.8

1

k

N
g
/N

d=10, c/N=0.0116
d=50, c/N=0.0052
d=100, c/N=0.0017

(a)

0 50 100
0.4

0.6

0.8

1

k

N
g
/N

d=10, c/N=0.0058
d=50, c/N=0.00072
d=100, c/N=0.00039

(b)

0 50 100
0.4

0.6

0.8

1

k

N
g
/N

d=10, c/N=0.0065
d=50, c/N=0.00034
d=100, c/N=0.00024

(c)

Figure 17. Fraction of good sample points versus the number of iterations for
N = 100 for (a) Problem 2 (hyperbox), (b) Problem 3 (tilted hyperplane), and
(c) Problem 4 (front crash).

18 L. GRAFF, H. HARBRECHT, AND M. ZIMMERMANN

The following mechanism describes the influence of dimensionality, which will be called each bad
sample point can be used for one dimension only : If, for example, there are 100 sample points in
a hyperbox and the fraction of good points is 80%, then 20 bad sample points are used to remove
bad space. In 10 dimensions, there will be enough sample points to remove bad space in each
dimension because we find two bad sample points for each dimension on average. The problem
which arises in 100 dimensions is that the bad sample space can be removed in 20 dimensions at
most because a bad sample point can be used to remove bad space in one dimension only. Bad
space without bad sample points cannot be removed. Consequently, the optimum hyperbox will
be overestimated in some dimensions. This is illustrated in Figure 18(a) for Problem 2 in d = 2
dimensions and one bad sample point. The grey area describes the bad space of the design space
and the white area describes the good space. This fact explains that the algorithm converges
slower in higher dimensions.

x1

u
r

x2

ε
optimal solution

numerical solution
(a)

x1

x2

ε
optimal solution

numerical solution
(b)

10 20 30 40 50

10
−0.8

10
−0.7

N

ε

Problem 3: avg(ε)

(c)

10 20 30 40 50
0

0.05

0.1

0.15

0.2

N

ε
u

Problem 2: E(ε
u
)

(d)

Figure 18. Mechanisms explaining over- and underestimation. (a) Problem 2.
Each bad sample point can be used for one dimension only and impossibility of
boundary corrections. (b) Problem 3. Overestimation due to sparse sampling. (c)
Average avg(") of the measure " for Problem 3. (d) Expectation of the underes-
timation measure "

u

for Problem 2.

5.3. Influence of the number of sample points. The influence of the number N of sample
points per iteration on the convergence speed and the hyperbox volume is studied in this subsection
for Problems 2–4. Every point in the diagrams in Figure 19 displays the mean of five calculations.

5.3.1. Number of sample points versus convergence speed. Problem 2. Figure 19(a) shows a max-
imum of the convergence coe�cient for d = 10 and d = 50 dimensions. The reason for this
maximum is that the fraction N

g

/N of good sample points reaches at this point the value 1 in
only one iteration step. For N larger than the peak location, N

g

/N = 1 is also reached in only
one iteration step, and c/N decreases. Left of the peak, the convergence coe�cient increases as
the number of sample points increases. This can be explained by the mechanism each bad sample
point can be used for one dimension only, see Subsection 5.2. For each dimension, at least one bad
sample point with x

i

� r has to exist to remove the bad space, see Figure 18(a). If the number
of sample points increases, then the number of dimensions where bad volume can be removed
increases. Consequently, the convergence speed increases until there are su�ciently many bad
sample points, i.e., in every dimension at least one.

Problem 3. Figure 19(b) shows that the convergence coe�cient increases as the number of
sample points per iteration decreases, independently of the number of dimensions. If the number
of sample points per iteration is small, then the volume which is removed per bad sample point
is large, also the bad volume. To explain the mechanism, consider a two-dimensional sample for
Problem 3 in the design space [0, 1] ⇥ [0, 1]. Recall that the optimal solution is x1 = x2 = 0.5.
Then, the distance between the optimal boundary location 0.5 and a sample point x = (x1, x2),

ON THE COMPUTATION OF SOLUTION SPACES IN HIGH DIMENSIONS 19

10
2

10
3

10
−4

10
−3

10
−2

10
−1

N

c
/N

(a)

10
2

10
3

10
−4

10
−3

10
−2

10
−1

N

c
/N

(b)

10
2

10
3

10
−4

10
−3

10
−2

10
−1

N

c
/N

(c)

10
2

10
3

10
−30

10
−20

10
−10

10
0

N

µ
(Ω

e
n
d
)/

µ
(Ω

D
S
)

(d)

10
2

10
3

10
−15

10
−10

10
−5

10
0

N

µ
(Ω

e
n
d
)/

µ
(Ω

D
S
)

(e)

10
2

10
3

10
−60

10
−40

10
−20

10
0

N

µ
(Ω

e
n
d
)/

µ
(Ω

D
S
)

(f)

10−3 10−2 10−1
10−30

10−20

10−10

100

c/N

µ(
Ω
en
d)
/µ
(Ω
D
S)

d=10
d=50
d=100

(g)

10−5 100
10−15

10−10

10−5

100

c/N

µ(
Ω
en
d)
/µ
(Ω
D
S)

d=10
d=50
d=100

(h)

10−5 100
10−60

10−40

10−20

100

c/N

µ(
Ω
en
d)
/µ
(Ω
D
S)

d=10
d=50
d=100

(i)

Figure 19. Convergence coe�cient (first row), normalized volume (second row),
Pareto frontier for the convergence coe�cient and the normalized volume (third
row) for Problem 2 (first column), Problem 3 (second column), and Problem 4
(third column).

where the boundary of the candidate hyperbox will be located, is calculated in dimension i = 1,
i.e.,

" = x1 � 0.5.

In Figure 18(b), the measured distance " is shown by four sample points. The distances for
L = 10 000 repetitions for each number N of sample points are averaged and plotted in Figure
18(c). The average of the measure " is always larger than 0 and increases as the number N of
sample points increases. Since " > 0, the optimum hyperbox is overestimated, therefore, this

20 L. GRAFF, H. HARBRECHT, AND M. ZIMMERMANN

phenomenon is called overestimation due to sparse sampling. The larger the overestimation, the
slower the convergence speed. Consequently, the convergence speed decreases as N increases.

Problem 4. Changing now to Problem 4 (front crash), according to Figure 19(c), a behavior
can be observed that is similar to the one observed for Problem 3. The convergence coe�cient
c/N decreases when the number N of sample points increases. This indicates similar shapes of
the boundaries separating good from bad space.

5.3.2. Number of sample points versus volume. In addition to the convergence speed of the fraction
of good sample points, described by the convergence coe�cient c/N , the volume µ(⌦

end

) of the
final hyperbox needs to be taken into account.

It can be observed in Figure 19(d) that for Problem 2 the normalized volume increases a lot
as the number of sample points per iteration increases. Whereas, the corresponding diagram for
Problem 3 (see Figure 19(e)) shows that here the volume increases only a bit when the number of
sample points per iteration is increased. The same is observed for Problem 4, cf. Figure 19(f).

The increase of volume for larger N can be explained by overestimation due to sparse sampling
which was explained in the previous Subsection 5.3.1, see also Figure 18(b). This e↵ect shows
that, with an increasing number of sample points N , the average of the considered distance "

increases, see Figure 18(c). If the number of sample points is small, the volume which is removed
per bad sample point is large and the resulting volume is small. Therefore, the volume of the final
hyperbox increases as the number of sample points increases.

Another reason for the increasing volume is the impossibility of boundary corrections : To explain
this mechanism, Problem 2 is considered in one dimension. One sample with N sample points is
made in the interval [0, 1]. Then, the expected distance between the optimal point r = 0.5 and
the sample point x

j

where the boundary will be after removing the bad sample points is

E("
u

) =

Z

[0,1]N\[0,0.5]N
min
j

: {0.5� x

j

: x
j

< 0.5} d(x1, x2, . . . , xN

) =
1

N + 1

✓
1� 1

2N

◆
.

Due to the rectangular boundaries of Problem 2, the optimum hyperbox will always be under-
estimated, see Figure 18(a), and "

u

is an underestimation measure. If the solution hyperbox
boundary is larger than 0.5, then E("

u

) = 0. We observe in Figure 18(d) that the expectation
E("

u

) decreases as the number N of sample points increases. Therefore, the volume of the resulting
hyperbox increases.

In Problem 2, the dependency of the final hyperbox volume on the number of sample points is
greater than in Problem 3. Problem 2 has boundaries which are axis-parallel and, thus, the e↵ect
of the impossibility of boundary corrections is much stronger in Problem 2 than in Problem 3.

5.4. Convergence speed versus hyperbox volume. Typically, there is a conflict between
the fast convergence and the volume size of the resulting hyperbox. For Problems 3 and 4, the
convergence coe�cient decreases whereas the resulting hyperbox volume increases upon increasing
N . This conflict can be visualized by a Pareto frontier, see Figure 19. For Problem 2, this conflict
exists only for large N , that is, right of the peak in Figure 19(a). For small N however, both,
convergence coe�cient and volume size, increase, see Section 5.3.

If a large volume is desired, as many sample points as possible have to be chosen. This will
slow down the algorithm. If fast convergence is desired, as few sample points as possible have to
be chosen. The smallest convergence coe�cients are observed in Figure 19 for Problem 3 and 4
and for d = 100 dimensions as 10�4–10�3, corresponding to roughly ⇡ 10000 function evaluations
in Table 4.

The resulting hyperbox will be small. For computing the optimal number of sample points, the
following procedure is proposed: Depending on the preference for speed or volume size, c/N is
chosen using Figure 19. The total number of required evaluations for a particular choice of c/N
is shown in Table 4 for an a0 = 50%, where a0 is the fraction of the good space in the initial
candidate hyperbox.

ON THE COMPUTATION OF SOLUTION SPACES IN HIGH DIMENSIONS 21

convergence coe�cient c/N 0.01 0.001 0.0001 0.00001

number of evaluations NM 267 2661 26594 265928
Table 4. Convergence coe�cient and the total number of function evaluations
required for a fraction of the good space of 50% in the initial candidate hyperbox.

6. Conclusion

In the present paper, we analyzed an algorithm which identifies a hyperbox with maximum
volume in the design space such that all designs inside this hyperbox are subcritical. The method
can be applied to high-dimensional, nonlinear and noisy systems. For a design to be good, the
choice of a parameter value within its assigned interval does not depend on the values of the other
parameters as long as they are within their respective intervals. In this sense, the parameters are
decoupled from each other. Robustness can be measured by the size of the resulting intervals.
Moreover, intervals help to identify relevant parameters to improve a non-robust or critical solu-
tion. They may be combined with intervals of other disciplines – their cross sections are global
solution spaces.

The algorithm determines a solution hyperbox provided that the initial guess contains enough
good space. The algorithm’s output is a numerical approximation of the exact solution and may
therefore contain designs x that do not satisfy the imposed requirement f(x) f

c

. However,
the probability to be inaccurate in this sense can be computed and controlled by Theorem 3.3
independently of the number of dimensions. Final convergence is reached, when the probability for
the resulting hyperbox to contain only good designs is su�ciently large. Nonetheless, for problems
with disconnected regions, the solution hyperbox might only be locally optimal. It might extremely
di↵er from the largest optimum hyperbox in the design space because the algorithm is only able
to move the candidate hyperbox between disconnected regions if the growth rate is large enough.

Several benchmark problems were constructed to study the convergence of the proposed solution
algorithm. The convergence in mean to the optimal solution was shown in low dimensions and for
problems with rectangular boundaries in high dimensions. In Problem 3 (tilted hyperplane), the
volume of the hyperbox found by the algorithm for high dimensions is very large compared to the
optimum hyperbox. Nevertheless, the bad volume contained in the computed hyperboxes is small.
If the widths of the intervals of a hyperbox are slightly larger than the widths of the intervals of
the optimum hyperbox, then the volume of this hyperbox is considerably larger than the volume
of the optimum hyperbox in high dimensions, that is, the available data become sparse. This
e↵ect reflects the curse of dimensionality. However, this observation does not a↵ect the practical
applicability since the fraction of the good space is still close to 100%. This was demonstrated by
an engineering model for a front crash.

Furthermore, the convergence behavior of the consolidation phase of the algorithm was ana-
lyzed. The convergence coe�cient was introduced to measure the convergence speed. It turns out
that the convergence speed decreases as the number of dimensions increases. Finally, the conflict
between the resulting volume and the convergence speed was studied for several high-dimensional
optimization problems. The volume of the solution hyperbox increases as the number of sample
points per iteration increases. However, the convergence coe�cient decreases. This conflict can be
visualized by a Pareto frontier. Mechanisms explaining this behavior were identified as overestima-
tion due to sparse sampling, impossibility of boundary corrections and each bad sample point can
be used for one dimension only. For Problem 3 (tilted hyperplane) and Problem 4 (front crash),
the same convergence behavior was observed. This indicates that, in Problem 3, the boundary of
the good space has a similar shape as in Problem 4.

22 L. GRAFF, H. HARBRECHT, AND M. ZIMMERMANN

7. Nomenclature

a True fraction of good design space
a

k

Fraction of good sample points in iteration step k

c/N Convergence coe�cient
d Number of dimensions
f(x) Objective function
f

c

Critical threshold value
M Total number of iteration steps
N Number of sample points
N

g

Number of good sample points
I

i

Interval for variable x

i

x

i

Design variable i

x
i

Vector of design variables x
i

x

low

i

, xup

i

Upper and lower limits of variable x

i

xlow, xup Vectors of upper and lower limits
" Error
µ Size measure of box ⌦
⌦ Hyperbox
⌦

DS

Design space

References

[1] N.M. Alexandrov, M.Y. Hussaini: Multidisciplinary design optimization. State of the art. Society for Industrial
and Applied Mathematics, Philadelphia, 1997.

[2] M. Allen, M. Raulli, K. Maute, D.M. Frangopol: Reliability-based analysis and design optimization of electro-
statically actuated MEMS. Computers and Structures, 82:1007–1020 (2004).

[3] M. Beer, M. Liebscher: Designing robust structures. A nonlinear simulation based approach. Computers and
Structures, 86(10):1102–1122 (2008).

[4] R.E. Bellman: Adaptive control processes: a guide tour. Princeton University Press, Princeton, 1961.
[5] E.A. Bender: An introduction to mathematical modeling. Dover Publications, New York, 2000.
[6] H.-G. Beyer, B. Sendho↵: Robust optimization. A comprehensive survey. Computer Methods in Applied Me-

chanics and Engineering, 196:3190–3218 (2007).
[7] J. Fender, F. Duddeck, M. Zimmermann: On the calibration of simplified vehicle crash models. Struct. Multi-

discip. Optim., Springer, Berlin, Heidelberg, 2013.
[8] S. Gunawan, P.Y. Papalambros: A Bayesian approach to reliability-based optimization with incomplete infor-

mation. Journal of Mechanical Design, 128(4):909–919 (2006).
[9] I. Hacking: The emergence of probability. Cambridge University Press, Cambridge, 1975.

[10] E.M.T. Hendrix, C.J. Mecking, T.H.B. Hendriks: Finding robust solutions for product design problems. Euro-
pean Journal of Operational Research, 92:28–36 (1996).

[11] M. Huang: Vehicle crash mechanics. CRC Press, Boca Raton, 2002.
[12] M. Kalsi, K. Hacker, K. Lewis: A comprehensive robust design approach for decision trade-o↵s in complex

systems design. Journal of Mechanical Design, 123(1):1–10 (2001).
[13] H. Kerstan, W. Bartelheimer: Innovative Prozesse und Methoden in der Funktionsauslegung – Auslegung für

den Frontcrash. Fahrzeugsicherheit, VDI-Berichte, volume 2078, VDI Verlag, Düsseldorf, 2009.
[14] J.J. Korte, R.P. Weston, T.A. Zang: Multidisciplinary optimization methods for preliminary design. AGARD

CP-600, Future aerospace technology in the service of the Alliance, Paris, Vol. 3, pp. C40:1–10, 1997.
[15] H.W. Kuhn, A.W. Tucker: Nonlinear programming. Proceedings of 2nd Berkeley Symposium, University of

California Press, Berkeley, California, pp. 481–492, 1951.
[16] M. Lehar, M. Zimmermann: An inexpensive estimate of failure probability for high-dimensional systems with

uncertainty. Structural Safety, 36–37:32–38 (2012).
[17] D. Lim, Y.-S. Ong, Y. Jin, B. Sendho↵, B.S. Lee: An adaptive inverse multi-objective robust evolutionary

design optimization. Genetic Programming and Evolvable Machines, 7(4):383–404 (2007).
[18] J. Marczyk: Stochastic multidisciplinary improvement: beyond optimization. American Institute of Aeronau-

tics and Astronautics, AIAA 2000–4929, 2000.
[19] Z.P. Mourelatos, J. Liang: A Methodology for trading-o↵ performance and robustness under uncertainty.

Journal of Mechanical Design, 128(4):1195–1204 (2006).
[20] W.L. Oberkampf: Uncertainty quantification using evidence theory. Stanford University, Stanford, 2005.
[21] S. Pannier, W. Graf: Sensitivity measures for fuzzy numbers based on artificial neural networks. Applications

of Statistics and Probability in Civil Engineering, CRC Press, London, pp. 497–505, 2011.

ON THE COMPUTATION OF SOLUTION SPACES IN HIGH DIMENSIONS 23

[22] S. Pannier, W. Graf, M. Kaliske, K. Grossenbacher, M. Ganser, A. Lipp, M. Liebscher, H. Müllerschön: A↵ect-

ing reliability of deep drawing processes in early design stages. Association for Structural and Multidisciplinary
Optimization in the UK (ASMO-UK), 2006.

[23] G.-J. Park, T.-H. Lee, K.H. Lee, K.-H. Hwang: Robust design. An overview. AIAA Journal, 44(1):181–191
(2006).

[24] M.S. Phadke: Quality engineering using robust design. Prentice Hall, Englewood Cli↵s, New Jersey, 1989.
[25] C.M. Rocco, J.A. Moreno, N. Carrasquero: Robust design using a hybrid-cellular-evolutionary and interval-

arithmetic approach: a reliability application. Reliability Engineering and System Safety, 79:149–159 (2003).
[26] A. Saltelli, K. Chan, E.M. Scott: Sensitivity analysis. Wiley, New York, 2000.
[27] K. Siebertz, D. van Bebber, T. Hochkirchen: Statistische Versuchsplanung: Design of Experiments (DoE).

Springer, Berlin-Heidelberg, 2010.
[28] I.M. Sobol’: Sensitivity estimates for nonlinear mathematical models. Mathematical Modeling and Computa-

tional Experiment, 1(4):407–414, 1993.
[29] R. Stocki: A method to improve reliability using optimal Latin hypercube sampling. Polish Academy of Sciences,

Poland, 2006.
[30] R. Storn, K. Price: Di↵erential evolution. A simple and e�cient heuristic for global optimization over con-

tinuous spaces. Journal of Global Optimization, 11:341–359 (1997).
[31] L.P. Swiler, A.A. Giunta: Aleatory and epistemic uncertainty quantification for engineering applications.

Sandia Technical Report, SAND2007–2670C, 2007.
[32] G. Taguchi, E. Elsayed, T. Hsiang: Quality engineering in production systems. McGraw-Hill, New York, 1989.
[33] W. Witteman: Adaptive frontal structure design to achieve optimal deceleration pulses. Proceedings of the

19th International Technical Conference on the Enhanced Safety of Vehicles, United States, Washington DC,
2005.

[34] Y.G. Zhao, T. Ono: A general procedure for first/second-order reliability method (FORM/SORM). Structural
Safety, 21(2):95–112 (1999).

[35] M. Zimmermann, J.E. von Hoessle: Computing solution spaces for robust design. International Journal for
Numerical Methods in Engineering, 94(3):290–307 (2013).

Lavinia Graff, BMW Group Research and Innovation Center, Knorrstr. 147, 80937 Munich, Germany

E-mail address: Lavinia.Graff@bmw.de

Helmut Harbrecht, University of Basel, Department of Mathematics and Computer Science, Spiegel-
gasse 1, 4051 Basel, Switzerland

E-mail address: Helmut.Harbrecht@unibas.ch

Markus Zimmermann, BMW Group Research and Innovation Center, Knorrstr. 147, 80937 Munich,
Germany

E-mail address: markusz@alum.mit.edu

	1. Introduction
	2. Motivation and problem statement
	2.1. Example problem
	2.2. Problem statement
	2.3. Solution strategies

	3. Algorithm
	3.1. Exploration phase
	3.2. Consolidation phase

	4. Results of the algorithm
	4.1. Problem 1. A convex polytope as boundary
	4.2. Problem 2. A hyperbox as boundary
	4.3. Problem 3. A tilted hyperplane as boundary
	4.4. Problem 4. An engineering problem from front vehicle crash design

	5. Convergence behavior in the consolidation phase
	5.1. Convergence coefficient
	5.2. Influence of the dimensionality
	5.3. Influence of the number of sample points
	5.4. Convergence speed versus hyperbox volume

	6. Conclusion
	7. Nomenclature
	References

