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ABSTRACT  

Designing nanocarriers to release proteins under specific conditions is required to improve 

therapeutic approaches, especially in treating cancer and protein deficiency diseases. We present 

here supramolecular assemblies based on asymmetric poly(ethylengycol)-b-

poly(methylcaprolactone)-b-poly(2-(N,Ndiethylamino)ethylmethacrylate) (PEG-b-PMCL-b-

PDMAEMA) copolymers for controlled localization, and pH-sensitive release of proteins. 

Copolymers self-assembled in soft nanoparticles with a core domain formed by PMCL, and a 

hydrophilic domain based on PEG mainly embedded inside, and the branched PDMAEMA 

exposed at the particle surface. We selected as model proteins to be attached to the nanoparticles 

bovine serum albumin (BSA), and acid sphingomyelinase (ASM), the latter being an ideal 

Page 1 of 51

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 2

candidate for protein replacement therapy. The hydrophilic/hydrophobic ratio, nanoparticle size, 

and the nature of biomolecules are key factors for modulating protein localization and 

attachment efficiency. The predominant outer shell of PDMAEMA allows efficient pH-triggered 

release of BSA and ASM, and in acidic conditions >70% of the bound proteins were released. 

Up-take of protein-attached nanoparticles by HELA cells, together with low toxicity and pH 

responsive release, support such protein-bound nanoparticles as efficient stimuli-responsive 

candidates for protein therapy. 

 

 INTRODUCTION 

Protein therapy, one of the most effective treatments for several diseases, aims to increase the 

levels of proteins that are deficient, displace dysfunctional proteins, deliver functional proteins 

into the cells, or inhibit a biological process by a specific protein.
1
  However, direct 

administration of proteins is often ineffective because of low bioavailability, rapid degradation, 

and low permeability through membranes.
2
 The need to develop novel solutions for these 

problems has led to the design of carriers with sizes in nanometer range for efficient transport 

and delivery in specific spatial and time conditions. In particular, a large variety of polymer 3D 

assemblies (particles, capsules, micelles, or vesicles) in which specific proteins are entrapped, 

encapsulated or attached have been introduced recently.
3
 Protein entrapment depends on the 

chemical nature of the copolymer, its molecular weight, the presence of end groups, and protein-

polymer interactions.
4
 By selecting the components of the supramolecular assembly, and the site 

of internal protein localization,
5
  controlled protein release is possible as a result of changes in 

protein-polymer interactions.
5,6

 In this respect, copolymer assemblies based on PCL-PEG-

PCL
7,8

, PEO-PCL-PAA
9
 and PEG-PCL-PAA

10
 have been used to study their interactions with 
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 3

model proteins, such as bovine serum albumin (BSA). Of particular interest are supramolecular 

assemblies that are responsive to various stimuli, such as pH, temperature or the presence of 

chemical or biological compounds.
11

 Such assemblies allow the release of proteins in the 

presence of a stimulus, either by degradation of the assembly or by detachment of the 

biomolecules induced by a change in protein-polymer interactions.
11

 For example, pH responsive 

assemblies have high potential for medical applications because pH is an essential signaling 

factor that accompanies pathological conditions (e.g. inflammation, cancerous tissue).
12

 Various 

pH responsive polymer assemblies such as polyionic complex micelles,
13

 nanocapsules,
14

 or 

aldehyde displaying silica nanoparticles
15

 have been used to deliver therapeutic drugs. In 

particular, PEG-b-PCL-b-PDMAEMA assemblies have been reported as delivery carriers for 

RNA
16

, DNA
17

 and SiRNA,
9
 but not yet for proteins.  

Here we present nanoparticles based on PEG-b-PMCL-b-PDMAEMA asymmetric copolymers 

for controlled localization and subsequent pH-sensitive release of proteins.  We have evaluated 

the efficacy both with a model protein, bovine serum albumin fluorescein isothiocyanate 

conjugate (BSA-FITC), and acid sphingomyelinase (ASM), known for its role in catalyzing the 

breakdown of sphingomyelin to ceramide in the treatment of Niemann-Pick disease.
18

 ASM 

entrapment in polymer nanoparticles with controlled localization and pH-responsive release 

represents a more appropriate solution for this pathology compared to the previous entrapment in 

non-responsive PLGA nanoparticles.
19

  We have selected asymmetric tri-block copolymers PEG-

b-PMCL-b-PDMAEMA to self-assemble into nanoparticles that support a specific localization 

for the proteins, and benefit from their biocompatibility and biodegradability.
20

 The presence of 

the PDMAEMA block induces pH responsiveness, whilst poly(methylcaprolactone) (PMCL) 

favors the formation of more stable 3D assemblies, because it is fluid at room temperature, and 
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 4

more hydrophobic than (poly caprolactone) PCL due to the presence of the methyl groups.
21

 The 

formation and stability of the polymer nanoparticles in buffer, as relevant environment for 

attachment of proteins, have been characterized by a combination of light scattering, 

transmission electron microscopy (TEM and cryo-TEM), and fluorescence correlation 

spectroscopy (FCS). The effect of the ratio between the hydrophobic block and the pH-sensitive 

block on the entrapment/release of ASM allowed improvements in the system efficiency for 

protein delivery. Activity assays were performed to establish whether protein entrapment 

affected its activity once released from the nanoparticles, whilst up-take and toxicity in HeLa 

cells were evaluated by a combination of [3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and fluorescence 

activated cell sorting (FACS). To the best of our knowledge, our study is the first one focussed 

on a pH responsive proteins delivery by nanoparticles resulting from the smart use of an 

asymmetric triblock copolymer, which serves to direct protein localization in the architecture of 

the nanoparticles. Our stimuli-responsive nanoparticles with controlled localization of proteins 

represent a smart solution for protein therapy, serving to improve the release as a key parameter 

for efficient therapeutic solutions.  

 

 EXPERIMENTAL SECTION  

 

Materials and methods Poly(ethyleneglycol) monomethylether (mPEG) with molar mass of 

2000 Da and 2-(dimethylamino)ethyl methacrylate were obtained from Sigma Aldrich. Monomer 

methacrylate was prepared by using 4-methylcyclohexanone and m-chloroperoxy-benzoic acid 

also purchased from Sigma Aldrich. The bovine serum albumin (BSA) (Mw = 66 KDa; I.P: 4.7 at 
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 5

25°C in PBS), BSA conjugated with fluorescein isothiocyanate (BSA-FITC, labelling efficiency 

11-12 mol FTIC / 1 mol BSA) and acid sphingomyelinase from Acid Sphinomyelinase (ASM) 

(Mw = 67 KDa; I.P: 6.8 at 25°C in PBS) were purchased from Sigma Aldrich and all the solvents 

for self-assembly (ethanol and PBS buffer) were used without further purification. 

Synthesis of mPEG-b-PMCL-PDMAEMA triblock copolymers 

mPEG-b-PMCL-PDMAEMA triblock copolymers were synthesized according to the 

procedure described by Matter et al. 
20

, by using poly (ethyleneglycol) monomethylether (mPEG) 

with a molar mass of 2000 Da (Aldrich), copper (I) chloride (Reagent plus > 99 %, Sigma 

Aldrich), N, N, N′, N″, N″-pentamethyldiethylenetriamine (PMDETA) (> 99%, Aldrich), THF 

(Fluka), methanol, 2-bromoisobutyrylbromide (BIBB > 98%, Sigma Aldrich), triethylamine (> 

99.5%, Fluka) and dichloromethane (Baker, HPLC grade).  

Self-assembly of mPEG-b-PMCL-PDMAEMA triblock copolymers 

3D supramolecular assemblies of mPEG-b-PMCL-PDMAEMA triblock copolymers were 

prepared by the co-solvent method.
20

 Block copolymer was dissolved in ethanol, and then a 

phosphate buffer saline solution (PBS) was added drop-wise to produce a copolymer 

concentration of 5 mg mL-1. The average size of the self-assembled nanoparticles was reduced 

by repeated extrusions (9 times) through filters (0.4 μm pore diameter) using a mini extruder 

from Avanti-Polar Lipidics Inc. Biomolecule-copolymer 3D assemblies were prepared in a 

similar manner. The block copolymer was dissolved in ethanol, and then a solution of the 

biomolecule (BSA or ASM) in PBS at physiological pH was added drop-wise to the copolymer 

solution to reach a copolymer concentration of 5 mg mL
-1

, and a biomolecule concentration of 
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 6

0.058 mg mL
-1

. The final mixture was stirred overnight at room temperature and then dialyzed 

for 48 h in buffer, changing the buffer (pH = 7.2)  6 times in order to remove protein excess. 

Light scattering 

Dynamic light scattering (DLS) and static light scattering (SLS) were measured using an ALV 

laser goniometer with a linearly-polarized He-Ne laser operating at a wavelength of 632.8 nm 

(JDS Uniphase). Copolymer solutions were maintained at a constant temperature of 20 ± 0.1 °C. 

Measurements were carried out by varying the scattering angle (θ) from 30 to 150° in 10° steps. 

The viscosity of the solutions was assumed equal to that of pure water at 20 °C (η = 1.0 cP). The 

time correlation function G(t) was determined with an ALV/LSE-5004 correlator. Diffusion 

coefficients at zero deviation (D0) were evaluated from G(t) using both nonlinear decay-time 

analysis and the Laplace inversion method (CONTIN).  

Transmission Electron Microscopy (TEM) 

TEM micrographs were obtained with a Phillips EM400 electron microscope operating at 100 

kV. Nanoparticles were negatively stained by adding 5 µL of 2 % uranyl acetate solution and 

deposited on a carbon-coated copper grid. Excess uranyl acetate was removed under vacuum. 

Cryogenic-TEM 

Nanoparticle suspensions in buffer (10 mM PBS, pH 7.2, 50 mM NaCl) (1 mg mL
-1

) were 

deposited on glow-discharged carbon grids (Quantifoil, Germany) and blotted before quick-

freezing in liquid ethane using a Vitribot plunge-freezing device (FEI Co.). The grids were stored 

in liquid nitrogen before transferring them into a cryo-holder (Gatan). Imaging was performed on 
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 7

a Philips CM200 FEG TEM at 200 kV accelerating voltage in low-dose mode with a defocus 

value of about −4 µm  

Fluorescence Correlation Spectroscopy (FCS) 

FCS was performed with a Zeiss LSM 510-META/Confcor2 laser-scanning microscope 

equipped with an Ar laser (488 nm) and a 40× water-immersion objective (Zeiss C/Apochromat 

40X, NA 1.2), with the pinhole adjusted to 70 µm. Solutions of copolymers (5 mg/ml) with 

entrapped protein (BSA-FITC, λexcitation 495 nm) or enzyme (o-ASM, λexcitation 496 nm) were 

measured at room temperature in special chambered quartz-glass holders (Lab-Tek; 8-well, 

NUNC A/S), which provide optimal conditions for measurement while reducing evaporation of 

the solutions. Intensity fluctuations were analyzed using an autocorrelation function with the 

LSM 510/Confocor software package (Zeiss, AG). Spectra were recorded over 10 s, and each 

measurement was repeated ten times; results are reported as the average of three independent 

experiments. Adsorption and bleaching effects were reduced by exchanging the sample droplet 

after 2 minutes of measurement. The excitation power of the Ar laser was PL = 200 mW, and the 

excitation transmission at 495 nm was 25 %. To reduce the number of fitting parameters, the 

diffusion times for free labeled protein (τD BSA-FITC = 82 µs) and for free labeled enzyme 

(τDo-ASM = 126µs) were independently determined, and fixed in the fitting procedure. 

Cell toxicity assay 

The [3-(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium 

(MTS) assay (Promega) was used to asses cell viability. Hela cells were cultured at a density of 

2.5x10
3 

cells/well in a 96-well plate. After 24 hours, the medium was removed and 100 µl 
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 8

aliquots containing the corresponding concentration of samples [0.5; 5 and 50 µg/ml] were added 

to the cell medium. Cells incubated only in medium served as controls. After 24 hours of 

incubation 20µl of MTS solution was added to each well. The plates were incubated for 2 hours 

at 37 ºC, and the absorption measured at λ = 490 nm. The quantity of formazan product as 

measured by absorbance at 490 nm is directly proportional to the number of living cells in 

culture. Absorption of cells where no nanoparticles were added served as 100 %. 

Uptake of labeled-sphingomyelinase/PEG-b-PMCL-b-PDMAEMA 

HeLa cells were cultured at a density of 5x10
4 

cells per well in an 8-well Lab-Tek (NalgeNunc 

International, USA) for 24 h in Dulbelcco’s Modified Eagle’s Medium (DMEM) containing 10% 

fetal calf serum (FCS) growth medium to allow attachment to the surface. After attachment, the 

medium was removed and nanoparticles containing fluorescent labeled Sphingomyelinase (o-

ASM) (S.I) at a final polymer concentration of 0.05 mg/ml were incubated for an additional 24 h 

in DMEM growth medium. The pre-treated HeLa cells containing the o-ASM-nanoparticles were 

further incubated at 37 °C for 10 min with freshly prepared Deep Red (Cellmask) plasma 

membrane stain (5 mg/ml), and Hoechst 3342 (5 mg/ml) DNA stain. Cells washed three times 

with PBS were visualized with a CLSM (Carl Zeiss LSM510, Germany) equipped with a 63x 

water emulsion objective (Olympus, Japan). The measurements were performed in multitrack 

mode and the intensity of each fluorescent dye was adjusted individually: Hoechst 3342 was 

excited at 405 nm in channel 1, Deep Red at 633 nm in channel 2 and Alexa-488 at 488 nm in 

channel 3. The micrographs were recorded using Carl Zeiss LSM software (version 4.2 SP1). 

Fluorescent-activated cell sorting (FACS) 
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 9

8x10
4
 HeLa cells were cultured in a well of a 24-well plate and cultured in DMEM containing 

10% FCS for 24 h at 37 °C in a humidified CO2 incubator. Then the medium was exchanged and 

polymer solution with entrapped biomolecule was added and incubated for another 24 h. Cells 

were washed with PBS, trypsinized, centrifuged, washed, centrifuged, suspended in PBS and put 

on ice. Flow cytometry was measured with a BD FACSCanto II flow cytometer (BD Bioscience, 

USA) using FSC and SSC detectors as well as a fluorescence channel o-ASM. A total of 20,000 

events for each sample were analyzed, and data processed using Flowing Software 2.5.0 (Turku 

Centre for Biotechnology, Finland) 

Enzyme activity assay 

ASM release kinetics from PEG-b-PMCL-b-PDMAEMA nanoparticles incubated at 

physiological pH and acidic pH 5.5 (corresponding to lysosomal pH) were studied at room 

temperature. Nanoparticles containing no enzyme were measured to determine the background 

signal. The enzyme kinetics of ASM was followed immediately after mixing the sample with the 

Sphingomyelinase Assay Kit (Abcam®) in Microtiter® 96-Well FluorescenceMicroplates 

(Thermo Scientific). Enzyme was measured at pH 7.2 for the samples incubated at both pH 5.5 

and 7.2 (SI).  

Titration of PEG-b-PMCL-b-PDMAEMA nanoparticles 

Nanoparticles for titration were prepared by the same method used for self-assembly at pH 7.2. 

A Zetasizer NANO with a multi-purpose titrator MPT-2 from Malvern was used, and NaOH (0.5 

M), HCl (0.5 M) and HCl (0.05 M) solutions were used to adjust the pH between 3 and 10. 

RESULTS AND DISCUSSION 
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 10

PEG-b-PMCL-b-PDMAEMA tri-block copolymers were obtained by a three step synthesis: (i) 

ring-opening polymerization of γ-methyl-ε-caprolactone (MCL), (ii) functionalization of PEG-

PMCL with an ATRP-initiating group, and (iii) ATRP of DMAEMA with mPEG-b-PMCL-Br as 

macronitiator. 
20

 Tri-block copolymers were assigned as A45BmCn where m and n represent the 

chain length of PMCL and PDMAEMA groups respectively determined from the 
1
H NMR 

spectra (Figure S1, SI).  

Self-assembly and characterization of PEG-b-PMCL-b-PDMAEMA copolymers 

Self-assembly of PEG-b-PMCL-b-PDMAEMA (PEG45-b-PMCL110-b-PDMAEMA37 and 

PEG45-b-PMCL101-b-PDMAEMA27) copolymers was performed at various pH values in the 

range 3.5 - 10 in order to analyze both the 3D assemblies generated in dilute solutions, and their 

pH responsiveness. Supramolecular architectures of the copolymers were characterized by a 

combination of light scattering (dynamic and static), and TEM. TEM micrographs of self-

assembled nanostructures of copolymers show the coexistence of two populations of spherical 

objects with different sizes (Figure 1 A, B).  

 

Figure 1. TEM micrographs of 3D supramolecular assemblies generated by PEG-b-PMCL-b-

PDMAEMA copolymers at physiological pH. A. A45B110C37 copolymer, B. A45B101C27 
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copolymer. Scale bars: 200nm.  C. Cryo-TEM micrograph of 3D supramolecular assemblies of 

A45B110C37 copolymer after 2 months. Scale bar: 200 nm. 

In this particular case, the size distribution of the spherical objects was measured by DLS to 

analyze the predominance of populations. According to the CONTIN algorithm, there are two 

populations of spherical objects: a population of particles with RH∼ 100 nm, and a second one 

with smaller particles of RH∼ 50 nm (Figure S2, SI). However, the existence of two separated 

populations allows us to analyze the data by taking into account only the population of particles 

with larger size. We calculated the ratio (ρ) between the radius of gyration (Rg), obtained from 

SLS, and the hydrodynamic radius (RH), from DLS experiments (ρ = Rg/RH), because it is known 

to be a specific parameter for identification of the morphology of spherical nano-objects (Table 

1).  ρ values of the 3D supramolecular assemblies of our copolymers were 1.19 - 1.23, which 

characterize an architecture of soft spherical nanoparticles with a hydrophilic corona, in 

agreement with previous reports 
22

. A value for RH larger than that obtained from TEM was 

expected, because the RH from DLS experiments is the sum of the particle size and its 

surrounding hydration sphere. 

Table 1. Physico-chemical parameters of PEG-b-PMCL-b-PDMAEMA copolymers in 

physiological conditions (PBS, pH 7.2 at 25 °C). 

Copolymer Mw 

(g/mol)
a 

ζζζζ 

potential 

(mV)
* 

RH 

(nm) 

Rg 

(nm) 

Rg/RH PDI 

A45B110C37 22100 20.2 ± 0.3 88 ± 10 112 ± 8 1.27 1.50 
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 12

A45B101C27 18167 12.9 ± 0.2 50 ± 12 66 ± 6 1.32 1.30 

RH: hydrodynamic radius; Rg: radius of gyration; 
*
a. MW, weight-average molar mass 

At pH = 7.2, the radius of nanoparticles increased from 50 nm up to 88 nm, when the length of 

the B and C blocks increased (from 101 to 110 units for the B block and from 27 to 37 units for 

the C block). Under physiological pH, nanoparticles were stable for more than two months, as 

indicated by cryo-TEM and TEM micrographs (Fig. 1 C, S3, SI). In addition, cryo-TEM 

micrographs indicate a soft-core particle morphology for these assemblies, in the self-assembly 

conditions used here, specifically selected for attachment of proteins relevant for bio-

applications. 

Particle architecture and size are influenced by various factors such as: chemical nature of the 

blocks, chain length of each block and the ratio between them, the domain of the polymer 

exposed to the environment, pH and temperature. Therefore we analyzed the changes in the 

architecture and size of nanopoarticles at different pH values. By changing the pH, the particle 

size for each copolymer changed, indicating a pH sensitive behavior (Figure 2, Figure S3). The 

hydrodynamic radius, RH, was affected both by the pH ( 3.5 – 12.0), and the molecular properties 

of the copolymers: DH increased from 50±8 to 150±22 nm for A45B101C27, and from 72±11 to 

174±26 nm for A45B110C37 nanoparticles. Whilst the size of A45B101C27 nanoparticles did not 

change for pH values 6.0 - 7.4, A45B110C37 nanoparticles increased their size in this pH range. 

The increase of the hydrodynamic radius upon increase of the pH is associated with the decrease 

of the electrostatic repulsions, which induces a starting of an aggregation process of the small 

nanoparticles.
23,24

 The aggregation process can lead to a probable sedimentation of big 

aggregates as indicated by the SLS experiments (Figure S4). The equilibrium between the two 
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fractions of nanoparticles is shifted towards the smaller nanoparticles (SI, Figure S2 B).. With 

increasing pH, the particles lose their charge and the equilibrium shifts to larger nanoparticles, 

due to the start of a particle-particle aggregation process. 

The pH sensitive behavior of PEG-b-PMCL-b-PDMAEMA soft nanoparticles indicates that 

the polymer domain exposed at the interface with the environment is predominantly PDMAEMA 

with possible PEG chains as well. Whilst there is no power to separate PEG and PDMAEMA, by 

taking into account the molecular characteristics of PEG and PDMAEMA monomers, PEG is not 

likely to be located at the external surface of the corona because of the bulky conformation of 

PDMAEMA for both copolymers. The resulting nanoparticle morphology is therefore based on  

PEG mainly embedded in the hydrophilic domain, and the branched PDMAEMA exposed at the 

particle surface. This privileged orientation of the PDMAEMA domain is exactly the one 

necessary to support attachment of biomolecules based on electrostatic interactions. In addition, 

note that only a small number of PEG chains can be located at the exterior domain with the 

environment to not obstruct protein attachment because of the repellent property of PEG. 
25,26
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Figure 2. Hydrodynamic diameter (DH) of PEG-b-PMCL-b-PDMAEMA NP. A45B110C37 

nanoparticles (circles), and A45B101C27 nanoparticles (squares) at different pH values. Dashed 

lines represent a transition domain where both small and large nanoparticles co-exist. 

 

The effect of temperature on the hydrodynamic diameter of nanoparticles was assessed 

between 25 and 40°C, a range relevant for medical applications. There was only a small change 

in nanoparticle diameter between 25 and 40ºC, which would not affect the possible medical 

application of the nanoparticles (Figure S5, SI).  

Attachment of small molecular mass molecules to PEG-b-PMCL-b-PDMAEMA soft 

nanoparticles 

Sodium fluorescein (Mw = 376.27 Da) was used as a model molecule to establish whether 

small molecular mass molecules can be attached to the nanoparticles. We used fluorescence 

correlation spectroscopy, FCS to examine the interaction of sodium fluorescein with the soft 

nanoparticles, by measuring the diffusion time of free sodium fluorescein, and sodium 

fluorescein-nanoparticles, respectively. In FCS, the laser-induced fluorescence of the excited 

fluorescent molecules that pass through a very small probe volume is auto-correlated in time to 

give information about the diffusion times of the molecules. These provide information about 

interactions of the fluorescent molecules with larger target molecules, including 

encapsulation/attachment of proteins in/to nanoparticles due to their proportionality to the RH of 

the fluorescent object (according to the Stokes-Einstein equation). The change of the diffusion 

time for the free dye of τD =38 µs to 5.5 ms (for A45B101C27 nanoparticles), and 5.9 ms (for 

A45B110C37 nanoparticles) indicates that the dye interacts with both types of nanoparticle. 
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Electrostatic interactions represent the driving force for the attachment of sodium fluorescein, 

and attachment efficiencies (A.E) of 40% and 67%, respectively were obtained when the 

hydrophobic/hydrophilic ratio between the C and B blocks was increased (SI, Table S1). As 

expected, nanoparticles with a longer positively charged C block are able to attach more 

molecules (67%) than those with a shorter positively charged C block (40%). 

Attachment of proteins to PEG-b-PMCL-b-PDMAEMA soft nanoparticles 

A further step was to select model proteins and analyze whether they bind to PEG-b-PMCL-b-

PDMAEMA soft nanoparticles. Water soluble bovine serum albumin (BSA) was selected 

because of its negatively charged backbone for pH > PI (isoelectric point PI = 4.7 at 25°), which 

favours its binding to the positively charged nanoparticles. The isoelectric point of the 

copolymers was determined by titration (Figure S6, SI), and attachment of BSA labelled with 

fluorescein isothiocyanate (FITC) to the nanoparticles was studied by FCS. The diffusion time 

(τd) for the free BSA-FITC at room temperature was τD = 82 µs (Figure S7 A-a and B-a, SI), and 

the autocorrelation curve for BSA-FITC-nanoparticles (Figure S7 A-b and B-b, SI) indicates the 

presence of slowly diffusing particles for both copolymers. This population with a reduced 

diffusion time, τD = 5.71 ms (for A45B110C37), and τD = 5.53 ms (for A45B101C27) represents more 

than 73 % of the total number of fluorescent particles that passed through the confocal volume 

during the measurement time, and corresponds to BSA-FITC-nanoparticles. The remaining 

diffusing fluorescent particles correspond to free BSA-FITC molecules, which were not attached 

to nanoparticles, and were detected due to their high quantum yield, and the high sensitivity of 

FCS. Upon interaction with BSA-FITC, the hydrodynamic radius of protein-nanoparticles 

changed compared to the values obtained from light scattering data (Table 2). However, it is 
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known that there are differences between the hydrodynamic radius determined by FCS and 

DLS
27

, and therefore this difference is not considered as relevant. Light scattering of labelled 

protein-loaded nanoparticles was excluded because of the interference of the fluorophore with 

the laser used in light scattering experiments.   

The attachment efficiency was calculated as the number of fluorescent labeled proteins per 

nanoparticle in comparison with the theoretical maximum number of fluorescent labeled proteins 

per nanoparticle (SI). The maximum number is calculated by dividing the volume of the vesicle 

with the volume of the fluorescent protein. Due to the preparation method of the particles (co-

solvent method), the radius used for calculations for A.E were the RH. The attachment efficiency 

of the nanoparticles indicates that the proteins are present in the outer corona of the nanoparticles 

because of the PDMAEMA domain predominantly exposed at their external surface. 

Nanoparticles morphology, which combines the molecular specificity of PEG and PDMAEMA 

with the results of the proteins attachment, is indeed based on PEG mainly forming the outer part 

of the nanoparticle core of PMCL, which is embedded into the domain of the branched 

PDMAEMA as the particle surface. The presence of the PDMAEMA domain at the interface of 

the nanoparticles with the environment favored both a controlled localization of charged 

biomolecules, and their pH-sensitive release. 

Note that the protein-ABC fraction represents the overall bound protein-nanoparticle 

population in a two-populations FCS fit (free protein fraction and bound-protein fraction), 

without distinguishing between different numbers of nanoparticles or different number of 

proteins/nanoparticle in various samples. A.E. values are the key parameters to analyze the 

differences between the protein binding to different copolymers nanoparticles.  
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Table 2. Attachment efficiency of BSA-FITC to PEG-b-PMCL-b-PDMAEMA nanoparticles.  

           IEP: Isoelectric point; DH: hydrodynamic radius (*) by FCS (**) by DLS; A.E: attachment efficiency; τD: diffusion time 

The A.E. of BSA-FITC increased from 13 to 22 % when the size of the hydrophilic block 

PDMAEMA increased (Table 2). This effect is attributed to electrostatic interactions between the 

positively charged hydrophilic block and the negatively charged protein at pH 7.2, in agreement 

with reports indicating that positively charged nanoparticles entrap proteins with isoelectric 

points lower than pH 5.5.
28

 The release of BSA-FITC protein as a function of time was evaluated 

by FCS (Figure S8, SI). At pH = 5.8, PEG-b-PMCL-b-PDMAEMA nanoparticles released up to 

70 % of BSA-FITC independent of the hydrophobic/hydrophilic ratio of the copolymers. 

A step further towards the development of a product for therapeutic applications was to 

produce sphingomyelinase-bound nanoparticles, and the fraction of sphingomyelinase labeled 

with OregonGreen 488 succinimidyl ester (o-ASM) bound to polymer nanoparticles was 

evaluated in a similar manner to that described in the preceding paragraph. The autocorrelation 

curve for the free labeled enzyme resulted in a diffusion time of τD = 126 µs, whereas a 

significant increase was observed when the enzyme was added to nanoparticles: τD = 4.15 ms for 

A45B110C37, and τD = 3.33 ms for A45B101C27 nanoparticles, respectively (Figure 3 A and B). 

Similar to the BSA attachment, this significant increase in diffusion time is attributed to 

interaction of the enzyme with the nanoparticles. The hydrodynamic diameter of protein-

nanoparticles increased compared to that of BSA-nanoparticles as a result of both the differences 
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in molecular masses of the biomolecules, and higher attachment efficiency for ASM (Table 2 

and 3). The stronger interaction of the enzyme molecules with both types of nanoparticle is 

indicated by the fraction of enzyme-nanoparticles of > 89%. 

 

Figure 3. FCS autocorrelation curves (continuous lines) and their fits (dotted lines) for (A) free 

o-ASM (a) and o-ASM-nanoparticles of A45B110C37 (b). (B) free o-ASM (a), and o-ASM-

nanoparticles ofA45B101C27 (b). Curves are normalized to 1 to facilitate comparison. 

Table 3.Attachment efficiency of o-ASM to PEG-b-PMCL-b-PDMAEMA (ABC) 

nanoparticles 

 

The A.E. of molecules to polymer nanoparticles can be affected by several factors, such as 

method of preparation, size of the nanoparticles, hydrophilic/hydrophobic ratio, or concentration 
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of molecules to be attached.
29

 In the case of PEG-b-PMCL-b-PDMAEMA nanoparticles, the 

particle size and the hydrophilic/hydrophobic ratio play an important role in the A.E., and results 

in an increase of > 50% when the sizes of the B and C blocks are increased. TEM micrographs 

(Figure S9, SI) show that attachment of proteins to PEG-b-PMCL-b-PDMAEMA nanoparticles 

does not affect the architecture of nanoparticles compared to those without attached proteins 

(Fig. 1). 

Localization of proteins upon interaction with polymer nanoparticles is a key factor affecting 

the release profile. In the case of BSA-FITC attached to the outer interface of nanoparticles of 

PEO-PCL-PDMAEMA copolymers, protein localization at the external interface has been 

reported to improve the release behavior.
10

 In order to get more insight into the localization of 

ASM upon interaction with the copolymer nanoparticles, we used a combination of zeta potential 

characterization and FCS. Zeta potential was measured for PEG-b-PMCL-b-PDMAEMA 

nanoparticles with and without enzyme (Figure S10, SI). Nanoparticles without ASM were 

positively charged (+15 mV), but on ASM addition, the charge of biomolecule-nanoparticles 

decreased dramatically (to -2 mV). This significant charge difference indicates that ASM 

molecules interact with the outer shell of the nanoparticles, in agreement with the morphology of 

the nanoparticles with the PDMAEMA domain exposed towards the environment. Localization 

of ASM molecules at the external hydrophobic domain of the soft nanoparticles was assessed by 

comparing the fraction of o-ASM-nanoparticles with the fraction of o-ASM molecules 

interacting with nanoparticles already attached to non-labeled ASM. First, copolymer 

nanoparticles (A45B101C27 or A45B101C37) without protein are prepared, then mixed with a 

solution of o-ASM during 50 minutes and measured by FCS. The autocorrelation function of free 

o-ASM and copolymer nanoparticle/o-ASM after mixing is shown in (Figure S11, SI). The 
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change in the autocorrelation function of the mixture of o-ASM with nanoparticle compared with 

that of the free o-ASM indicated that the proteins interacted with the outer corona of 

nanoparticles for both copolymers (Figure S11, SI), and an A.E of around 13 % was calculated 

for A45B101C27. Second, nanoparticles were prepared in the presence of unlabeled ASM and 

measured by FCS both before and after addition of a solution of o-ASM for 50 minutes (Figure 

S11, SI). A significant decrease of the A.E to < 3% indicates that unlabeled-ASM molecules are 

already attached to the nanoparticles and hinder supplementary interaction of o-ASM with the 

nanoparticles. Therefore, ASM is mainly localized in the outer hydrophilic domain of 

nanoparticles, a location which favors protein release under appropriate environment conditions 

(Scheme 1). 

 

Scheme 1. Schematic illustration of the self-assembly of PEG-b-PMCL-b-PDMAEMA 

copolymers before and after interaction with a charged protein at pH 7.2.  

A key parameter for potential medical applications is the activity of ASM upon interaction 

with the nanoparticles. Since ASM is stable in acidic conditions,
18

 its activity was measured at 

pH 7.2 both for ASM-A45B110C37 nanoparticles kept at this pH value, and for those previously 
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exposed to acidic conditions for 60 min (pH = 5.5) (Figure 4). The activity of ASM-A45B110C37 

kept at pH 7.2 was lower than that of ASM-particles previously exposed to acidic conditions due 

to the lower accessibility of ASM molecules at pH 7.2, being protected in the hydrophilic corona 

of the nanoparticles. The location of the proteins at the external hydrophilic domain of the 

nanoparticles is clearly supported by the residual enzymatic activity of the protein-loaded 

nanoparticles at pH 7.2. If the proteins would have been located in the inner domain of the 

nanoparticles, their accessibility would have been completely blocked and they should have no 

activity. The residual activity proves that the ASM proteins are located in the external 

hydrophilic domain being still able to convert the substrate into product. In the case of ASM-

nanoparticles exposed at acidic pH, the more positively charged environment favors ASM 

release, which results in a significantly increase of the ASM activity.  

 

 

Figure 4: Enzymatic activity of ASM measured at pH 7.2: ASM-A45B110C37 nanoparticles kept 

at pH 7.2 (Red), and ASM-A45B110C37 nanoparticles exposed at pH 5.5 for 60 min (Blue); 

A45B110C37 nanoparticles (Yellow).  
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Release of o-ASM was monitored by FCS for A45B110C37 (Figure 5A) and A45B101C27 (Figure 

5B) as a function of time and pH. At pH 5.5, the release profile of ASM- A45B110C37 

nanoparticles shows a fast ASM release within 240 min (70 %), followed by a plateau (around 

85 % release). The fast release profile is due to favored diffusion of ASM from the corona of the 

nanoparticles, because of the combined effect of the decreased charge of the protein molecules 

(pH < I.P) and the increased positive change of the environment. The fast release can be 

correlated with the increased activity of ASM-nanoparticles in acidic pH conditions (see above). 

At pH 7.2, as the proteins are negatively charged, electrostatic interactions favor their attachment 

to the nanoparticles, which results in a significantly slower release (30 % release in 240 min). A 

similar release of ASM molecules was observed at pH = 7.2 for nanoparticles based on 

copolymers with a shorter C block. However, a slower release profile was observed at pH = 5.5 

in the case of A45B101C27 nanoparticles compared to that resulting from A45B110C37 nanoparticles: 

the decreased fraction of the released protein molecules from nanoparticles based on a shorter C 

block is due to a different balance in the electrostatic interactions, because of the different 

amount of attached proteins (Table 3).  
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Figure 5. Release behavior of o-ASM from ABC nanoparticles as a function of time: (A) 

A45B110C37 nanoparticles at pH 7.2 (triangles), and at pH 5.5 (squares). (B) A45B101C27 

nanoparticles at pH 7.2 (squares) and at pH 5.5 (circles). 

Cell toxicity and uptake of PEG-b-PMCL-b-PDMAEMA nanoparticles 

The toxicity of nanoparticles was assessed in HeLa cell lines using the MTS assay (SI) by 

incubating for 24 hours with nanoparticles, BSA- or ASM-nanoparticles (concentrations up to 50 

µg/ml). The nanoparticles and both protein-loaded nanoparticles all showed >70% cell viability 

(Figure 6).  

 

 

Figure 6. HeLa cell viability after 24 h incubation with nanoparticles. (A) A45B110C37 

nanoparticles (empty), A45B110C37 nanoparticles with BSA-FITC (stripes), A45B110C37 

nanoparticles with o-ASM (dense stripes). (B) A45B101C27 nanoparticles (empty), A45B101C27 

nanoparticles with BSA-FITC (stripes), and A45B101C27 nanoparticles with o-ASM (dense 

stripes).   
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At the highest concentration A45B101C27 nanoparticles present a slightly lower cell viability 

(73%) than A45B110C37 nanoparticles (78%), due to a lower overall positive charge (ESI), in 

agreement with previous reports on cationic polymer nanoparticles. 
30

 However, upon attachment 

of protein molecules, both A45B101C27 and A45B110C37 nanoparticles at the highest concentration 

have a lower cytotoxicity (the effect is, due to the decrease in the overall positive charge, as 

indicated by zeta-potential measurements (Fig. S8, SI). The effect is seen for both copolymers, 

but it is more pronounced for A45B110C37-based nanoparticles. BSA-FITC loaded A45B110C37 

nanoparticles presented a viability > 100%, due to the stimulatory effect of BSA on cell 

proliferation.
31

 Overall, the low cytotoxicity of protein-nanoparticles supports their further 

development for therapeutic applications. 

To be applied as a therapeutic agent, cellular uptake of ASM-nanoparticles is critical and 

therefore was investigated in HeLa cells using confocal laser scanning microscopy (CLSM). In 

HeLa cells incubated with the o-ASM/ABC nanoparticles for 24 h, the presence of a fluorescent 

signal for o-ASM/A45B110C37 nanoparticles, and o-ASM/A45B101C27 nanoparticles clearly 

indicated uptake of o-ASM loaded nanoparticles (Figure 7). 

 

Figure 7. Confocal laser scanning micrographs of HeLa cells. The cellular membrane was 

visualized by Cell Mask Deep Red (green), nuclei with Hoechst 33342 (violet), and o-ASM 
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(red).  A) Untreated cells, B) Cells treated with 50µg/ml o-ASM-A45B110C37 nanoparticles, C) 

cells treated with 50µg/ml  o-ASM-A45B101C27 nanoparticles. Insets: zoomed regions of HeLa 

cells treated with 50µg/ml o-ASM-A45B110C37 and 50µg/ml o-ASM-A45B101C27 nanoparticles. 

Scale bar: 50 µm 

In addition, up-take by HeLa cells after incubation for 24h of nanoparticles containing 

fluorescently labeled BSA-FITC (1:12 labeling efficiency) and o-ASM (1:3 labeling efficiency) 

respectively, was measured by fluorescence-activated cell sorting (FACS).  A significant shift of 

the peaks corresponding to the cells incubated with nanoparticles compared to normal cells 

confirms uptake (Figure 8). The difference in fluorescence shift between nanoparticles loaded 

with BSA-FITC and o-ASM is attributed to the lower labeling efficiency of o-ASM. The 

stimulating effect of BSA is considered only as a minor factor, because the coating of 

nanoparticles with BSA has been reported to have little or no influence on the cellular uptake of 

nanoparticles
32

. 

 

Figure 8. Flow cytometry analysis of cellular uptake of HeLa cells for labeled proteins in 

nanoparticles: Untreated HeLa cells (red); HeLa cells treated with 50µg/ml o-ASM-A45B101C27 

(blue); HeLa cells treated with 50µg/ml o-ASM-A45B110C37 (grey); HeLa cells treated with 
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50µg/ml  BSA-FITC-A45B101C27 (yellow), and HeLa cells treated with 50µg/ml BSA-FITC-

A45B110C37 (green).  

4. CONCLUSION 

By self-assembly of as-symmetric poly(ethylenegycol)-b-poly(methyl caprolactone)-b-poly(2-

(N,N-diethylamino) ethyl methacrylate) copolymers with two different ratios of the hydrophobic 

to hydrophilic blocks we generated soft nanoparticles to which proteins could be attached at a 

desired location in order to develop an efficient protein delivery platform. The asymmetry of the 

block copolymers favored a specific location for proteins and small molecular mass molecules: 

the PDMAEMA block predominantly present at the external interface favored attachment of 

proteins and small molecular mass molecules with the opposite charge, whilst PEG was mainly 

embedded inside the hydrophilic domain. Combination of the methods we used in this study (LS, 

TEM, cryo-TEM, FCS, activity assays of the proteins) allowed understanding the nanoparticles 

morphology and behavior in the presence of proteins as key factors for future translational 

applications. Attachment of biomolecules was favored by a triggered effect of electrostatic 

interactions between the PDMAEMA domain and negatively charged molecules. Both BSA and 

o-ASM were successfully attached, and subsequently released from the self-assembled 

nanoparticles (>80%) when the pH was decreased to acidic values. This is the first system based 

on electrostatic attachment and release of therapeutic proteins (ASM), whilst preserving their 

activity. The protein-polymer nanoparticles showed low toxicity at concentrations up to 50µg/ml, 

and were up-taken by HeLa cells. PEG-b-PMCL-b-PDMAEMA nanoparticles can attach a 

variety of biomolecules with charge opposite to that of the PDMAEMA domain, and then release 

them in a pH-responsive manner, which supports their further optimization for potential 

therapeutic applications. Our study is the first one showing that it is possible to deliver proteins 
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in a pH responsive manner by their controlled localisation in the nanoparticle interface with the 

environment.  
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TEM micrographs of 3D supramolecular assemblies generated by PEG-b-PMCL-b-PDMAEMA copolymers at 
physiological pH. A. A45B110C37 copolymer, B. A45B101C27 copolymer. Scale bars: 200nm.  C. Cryo-TEM 
micrograph of 3D supramolecular assemblies of A45B110C37 copolymer after 2 months. Scale bar: 200 nm. 
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Hydrodynamic diameter (DH) of PEG-b-PMCL-b-PDMAEMA NP. A45B110C37 nanoparticles (circles), and 
A45B101C27 nanoparticles (squares) at different pH values. Dashed lines represent a transition domain 

where both small and large nanoparticles co-exist.  
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Figure 3. FCS autocorrelation curves (continuous lines) and their fits (dotted lines) for (A) free o-ASM (a) 
and o-ASM-nanoparticles of A45B110C37 (b). (B) free o-ASM (a), and o-ASM-nanoparticles ofA45B101C27 

(b). Curves are normalized to 1 to facilitate comparison.  
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Enzymatic activity of ASM measured at pH 7.2: ASM-A45B110C37 nanoparticles kept at pH 7.2 (Red), and 

ASM-A45B110C37 nanoparticles exposed at pH 5.5 for 60 min (Blue); A45B110C37 nanoparticles (Yellow).  
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Figure 5. Release behavior of o-ASM from ABC nanoparticles as a function of time: (A) A45B110C37 
nanoparticles at pH 7.2 (triangles), and at pH 5.5 (squares). (B) A45B101C27 nanoparticles at pH 7.2 

(squares) and at pH 5.5 (circles).  
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HeLa cell viability after 24 h incubation with nanoparticles. (A) A45B110C37 nanoparticles (empty), 

A45B110C37 nanoparticles with BSA-FITC (stripes), A45B110C37 nanoparticles with o-ASM (dense stripes). 

(B) A45B101C27 nanoparticles (empty), A45B101C27 nanoparticles with BSA-FITC (stripes), and 

A45B101C27 nanoparticles with o-ASM (dense stripes).    
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Confocal laser scanning micrographs of HeLa cells. The cellular membrane was visualized by Cell Mask Deep 
Red (green), ,nuclei with Hoechst 33342 (violet), and the fluorescent labeled ASM (red).  A) Untreated cells, 

B) Cells treated with 50µg/ml o-ASM-A45B110C37 nanoparticles, C) cells treated with 50µg/ml  o-ASM-

A45B101C27 nanoparticles. Insets: zoomed regions of HeLa cells treated with 50µg/ml o-ASM-A45B110C37 
and 50µg/ml o-ASM-A45B101C27 nanoparticles. Scale bar: 50 µm  
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. Flow cytometry analysis of cellular uptake of HeLa cells for labeled proteins in nanoparticles: Untreated 
HeLa cells (red); HeLa cells treated with 50µg/ml o-ASM-A45B101C27 (blue); HeLa cells treated with 

50µg/ml o-ASM-A45B110C37 (grey); HeLa cells treated with 50µg/ml  BSA-FITC-A45B101C27 (yellow), and 
HeLa cells treated with 50µg/ml BSA-FITC-A45B110C37 (green).  
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1H NMR spectra of ABC tri-block copolymers.  
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Particle size distribution of A45B110C37 tri-block copolymers. A.) Mass weighted distribution. B.) Number 
weighted distribution.  
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Figure S3: Transmision Electron Microscopy of A45B110C37 copolymer: (A) sample prepared at first day (B) 
sample after 60 days. Scale bar: 500 nm  
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Figure S4: Influence of pH on molecular weigth (Mw) of A45B110C37 copolymers  
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Figure S5. Effect of temperature on particle size of ABC copolymers. (squares) A45B110C37; (circles) 
A45B101C27.  
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Figure S6. Titration measurements of ABC copolymers: (A) and (B) A45B110C37 Circles: Hydrodynamic 
diameter (DH) Triangles: -potential. (C) and (D) A45B101C27 Circles: Hydrodynamic diameter (DH) 

Triangles: -potential. Dash lines: Isoelectric point.  
 
 

165x100mm (72 x 72 DPI)  

 

 

Page 45 of 51

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

Figure S7. (A) FCS autocorrelation curves (continuous lines) and their fit (dashed lines) of: Free BSA-FITC 
(a) and BSA-FITC-A45B110C37 (b). (B) BSA-FITC (a) and BSA-FITC  A45B101C27 (b). Curves normalized to 

1 to facilitate comparison.  
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Figure S8. BSA-FITC release from ABC nanoparticles as a function of time at pH = 5.8. (diamonds) 
A45B31C44; (triangles) A45B84C85; (circles) A45B101C27; (squares) A45B101C20 followed by FCS.  
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Figure S9. TEM micrographs after attachment of o-ASM to ABC nanoparticles. (A) o-ASM/A45B101C27; (B) 
o-ASM/A45B110C37. Scale bar: 200 µm.  Bright spots are related with the presence of PDMAEMA on the 

exterion of the nanoparticles. 1-3  
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Figure S10. Zeta potential of ABC nanoparticles. (empty squares) A45B110C37 without protein; (empty 
circles) A45B101C27 without protein; (filled squares) A45B110C37 with protein; (filled circles) A45B101C27 

with protein. Protein concentration: 0.058 mg/ml.  
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Figure S11. FCS autocorrelation curves (continuous lines) and their fit (dash lines) of: (A) Free o-ASM 
protein (a), and A45B110C37 nanoparticles attached with non-labelled ASM 50 min after mixing with a 

solution of free o-ASM (b). (B) free o-ASM (a), and A45B101C27 nanoparticles attached with non labelled 
ASM 50 min after mixing with a solution of o-ASM (b). Curves normalized to 1 to facilitate comparison.  
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Scheme 1. Schematic illustration of the self-assembly of PEG-b-PMCL-b-PDMAEMA copolymers before and 
after interaction with a charged protein at pH 7.2.  

 
 

126x69mm (72 x 72 DPI)  

 

 

Page 51 of 51

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


