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Summary 

Natural products provide an important and unique source of new lead compounds for drug discovery. 

Approximately 50% of all new chemical entities are inspired by nature. In the search of novel anti-

inflammatory compounds in the ancient medicinal plant Isatis tinctoria, tryptanthrin, indirubin, and 

(E,Z)-3-(4-hydroxy-3,5-dimethoxybenzylidene)indolin-2-one (indolinone) were identified as 

pharmacologically active constituents. They inhibit, at low µM to nM concentrations, cyclo-

oxygenase-2  (COX-2), 5-lipoxygenase (5-LOX) catalyzed leukotriene synthesis, cyclin-dependent 

kinase (CDK), glycogensynthase kinase-3β (GSK), and mast cell degranulation. While the molecular 

modes of action of these alkaloids are not yet fully understood, their unique pharmacological profiles, 

structural drug-like properties, and low cytotoxicity render these molecules promising anti-

inflammatory leads. To further evaluate the potential of these alkaloids as novel anti-inflammatory and 

anti-allergic leads, an assessment of their ADMET properties was warranted. For exact quantification 

of the compounds, LC-MS/MS methods were developed and validated according to current regulatory 

guidelines. 

To get a first prognostic picture for the in vivo performance of our compounds, a pilot PK study was 

performed in male Sprague Dawley rats after intravenous administration at a concentration of 2 mg/kg 

b.w.. Tryptanthrin and indirubin showed a half-life (t1/2) of around 40 min, while indolinone was 

quickly eliminated (t1/2 = 4 min).  

As most of the drugs are preferentially administered orally, the gastrointestinal tract (GIT) represents 

the major site of drug absorption. Human colon carcinoma cells (Caco-2 cells) serve as the method of 

choice to predict human drug absorption across the intestinal wall in vitro. To study the permeability 

of the three compounds across the epithelial monolayer, the alkaloids were screened at concentrations 

of 5-10 µM in the Caco-2 assay. As efflux transporters can greatly impact the in vivo absorption and, 

thus, the bioavailability of a drug candidate, the compounds were tested for possible P-glycoprotein 

(P-gp) interaction. Therefore, the alkaloids were co-incubated with the P-gp inhibitor verapamil 

(50 µM). Active efflux was assessed by calculating the efflux ratio (ER) from bidirectional assays. 

Due to high lipophilicity of indirubin, the compound precipitated in the transporter buffer and was thus 

excluded for further investigations in aqueous solutions. Tryptanthrin displayed a high permeability 

(Papp > 32.0 x 10
-6 

cm/s) across the cell monolayer. The efflux ratio below 2 (< 1.12) and the 

unchanged Papp values in presence of the P-glycoprotein (P-gp) inhibitor verapamil indicated that 

tryptanthrin was not involved in P-gp mediated efflux. In the Caco-2 assay, the recovery of indolinone 

was low, pointing to possibly extensive phase II metabolism. Further investigation by a high-

resolution mass spectrometry (HR-MS) system revealed the formation of two sulfate and two 

glucuronide conjugates for indolinone.  
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Another well-known biological barrier in the human body is the blood-brain barrier (BBB). To 

evaluate the BBB permeation potential of tryptanthrin and indolinone, the compounds were tested in 

three cell-based human and animal BBB models. Data obtained with the human and animal BBB 

models showed good correlation and were indicative of a high BBB permeation potential of 

tryptanthrin and indolinone. Furthermore, active-mediated efflux was evaluated by calculating the ER 

from bidirectional assays. The ERs below 2 suggested that both compounds were not involved in 

active-mediated efflux. 

Besides P-gp, another critical anti-target in drug development is the human ether-a-go-go (hERG) 

potassium channel. In the late 1990s, an increasing number of non-cardiovascular drugs have been 

withdrawn from the market due to cardiotoxic side-effects linked to hERG blocking. Since then, 

regulatory agencies insist on acquiring experimental hERG data of drug candidates before moving into 

clinical trials. Possible cardiotoxic liability of the compounds was assessed in vitro, by measurement 

of an inhibitory effect on hERG tail currents in stably transfected HEK 293 cells using the patch-

clamp technique. Slight hERG inhibition was found for tryptanthrin (IC50 of 22 µM) and indolinone 

(IC50 of 25 µM). 

Data obtained from the in vitro assays were corroborated by in silico predictions. For tryptanthrin and 

indolinone, all criteria for high human oral absorption and passive BBB penetration were met. In 

addition, the slight hERG inhibition found for tryptanthrin and indolinone in vitro could be confirmed 

by in silico predictions. 
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Zusammenfassung 
Naturstoffe sind eine wichtige und einzigartige Quelle von neuen Leitstrukturen in der 

Wirkstoffentdeckung. Schätzungsweise 50% aller neuen chemischen Wirkstoffe sind von Naturstoffen 

inspiriert worden. Auf der Suche nach entzündungshemmenden Substanzen in der traditionellen 

Medizinalpflanze Isatis tinctoria konnten die drei Substanzen Trpytantrin, Indirubin und (E,Z)-3-(4-

Hydroxy-3,5-dimethoxybenzyliden)indolin-2-on (Indolinon) als pharmakologisch wirksame 

Inhaltsstoffe identifiziert werden. Es konnte gezeigt werden, dass sie die Cyclooxygenase-2 (COX-2), 

die 5-Lipoxygenase (5-LOX) katalysierte Leukotriensynthese, die Cyclin-abhängige Kinase (CDK), 

die Glycogensynthase Kinase-3β (GSK) und die Mastzelldegranulation im tiefen micro bis 

nanomolekularen Bereich inhibieren. Während die exakten molekularen Wirkmechanismen dieser 

Alkaloide noch nicht vollständig entschlüsselt werden konnten, machen ihre einzigartigen 

pharmakologischen Profile, ihre wirkstoffartigen Strukturen, und die geringe Zytotoxizität sie zu 

vielversprechenden anti-inflammatorischen Leitstrukturen. Um ihr Potential als Leitstrukturen weiter 

bewerten zu können, war eine erste Abschätzung ihrer ADMET Eigenschaften gefragt. Dabei wurden 

für die exakte Quantifizierung der Substanzen Methoden mittels Flüssigchromatographie mit 

Massenspektrometrie-Kopplung (LC-MS/MS, engl. liquid chromatography-mass spectrometry) 

entwickelt und gemäss regulatorischen Richtlinien validiert. 

Um ein erstes prognostisches Bild zum Verhalten unserer Substanzen in vivo zu erhalten, führten wir 

eine Pilotstudie an männlichen Sprague Dawley Ratten durch. Hierzu wurden die Substanzen 

intravenös bei einer Konzentration von 2 mg/kg Körpergewicht appliziert. Tryptanthrin und Indirubin 

zeigten eine Halbwertszeit von rund 40 Minuten, während Indolinon bereits nach 4 Minuten eliminiert 

wurde.  

Da die meisten Medikamente oral eingenommen werden, stellt der gastrointestinal Trakt (GIT) den 

Hauptabsorptionsort für Arzneimittel dar. Dabei sind die humanen Kolonkarzinom-Zellen (Caco-2 

Zellen) die Methode erster Wahl, um in vitro Abschätzungen zur oralen Absorption einer Substanz 

machen zu können. Um die Permeabilität der drei Substanzen über den epithelialen Monolayer 

beurteilen zu können, wurden die Alkaloide in Konzentrationen von 5-10 µM im Caco-2 Modell 

getestet. Da Effluxtransporter einen grossen Einfluss auf die Absorption und damit auch auf die 

Bioverfügbarkeit eines Medikaments haben können, wurden die Substanzen zudem auf P-

Glycoprotein (P-gp) Interaktionen untersucht. Dazu wurden die Alkaloide gemeinsam mit dem P-gp 

Inhibitor Verapamil (50 µM) inkubiert. Zudem wurde der aktive Efflux über die Berechnung des 

Efflux Verhältnisses (ER, engl. efflux ratio) aus den bi-direktionellen Experimenten ermittelt. 

Aufgrund der hohen Lipophilie von Indirubin fiel die Substanz in der wässrigen Transportlösung aus 

und wurde für weitere Studien in wässrigen Medien ausgeschlossen. Tryptanthrin zeigte hingegen eine 

hohe Permeabilität (Papp Werte > 32.0 x 10-6 cm/s) über den Caco-2 Zellmonolayer. Das Efflux 

13



Verhältnis unter 2 (1.12) sowie die unveränderte Permeabilität der Substanz in Anwesenheit des P-gp 

Inhibitors Verapamil liessen darauf schliessen, dass Tryptanthrin nicht in einen P-gp vermittelten 

Efflux involviert ist. Indolinon zeigte in den Caco-2 Untersuchungen eine tiefe Massenbilanz. Die 

Ergebnisse deuteten auf eine extensive Phase II Metabolisierung hin. Weitere Untersuchungen mittels 

hochauflösender Massenspektrometrie (HR-MS, engl. high-resolution mass spectrometry) ergaben, 

dass Indolinon in zwei Sulfat- und zwei Glukuronid-Konjugate umgewandelt wurde.  

Eine weitere bedeutende biologische Barriere im menschlichen Körper ist die Blut-Hirn-Schranke. Um 

das Permeationspotential von Tryptanthrin und Indolinon zu untersuchen, wurden die Substanzen in 

drei verschiedenen Zell-basierten menschlichen und tierischen Blut-Hirn-Schranken Modellen 

getestet. Daten aus den menschlichen und den zwei tierischen Modellen zeigten eine gute 

Übereinstimmung und wiesen auf eine hohe Blut-Hirn-Schranken-Gängigkeit von Tryptanthrin und 

Indolinon hin. Des Weiteren wurden das Efflux-Verhältnis aus bidirektionellen Experimenten 

ermittelt. Da der Quotient kleiner als 2 war, konnte gezeigt werden, dass keine der beiden Substanzen 

in einen aktiven Efflux involviert war. 

Neben dem P-gp, stellt der hERG Kalium-Kanal ein weiteres kritisches Anti-Target im 

Medikamentenentwicklungsprozess dar. In den späten 1990er Jahren wurden zahlreiche nicht-

kardiovaskuläre Medikamente aufgrund ihrer kardiotoxischen Nebenwirkungen vom Markt 

genommen. Später konnten diese Nebenwirkungen mit der Blockade des hERG Kanals in Verbindung 

gebracht werden. Seit dem schreiben regulatorische Behörden vor, dass alle neuen Wirkstoffe auf ihre 

hERG Aktivität hin getestet werden müssen, bevor sie für klinische Studien zugelassen werden. Um 

ein mögliches kardiotoxisches Potential unserer Substanzen ausschliessen zu können, wurde 

Tryptanthrin und Indolinon auf hERG-Strom-hemmenden Eigenschaften an stabil transfizierten 

HEK 293 Zellen mittels der Patch-Clamp Methode getestet. Dabei konnte festgestellt werden, dass 

Tryptanthrin (IC50 = 22 µM) und Indolinon (IC50 = 25 µM) eine leichte hERG Inhibition auslösten. 

Insgesamt zeigten unsere in vitro Daten eine gute Übereinstimmung mit den in silico Berechnungen. 

Für Tryptanthrin und Indolinon konnten alle Parameter für eine hohe orale Absorption sowie passive 

Blut-Hirn-Schranken-Gängigkeit erfüllt werden. Die leichte hERG Blockade der beiden Substanzen in 

vitro wurde mit Hilfe von in silico Daten bestätigt. 
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In previous studies, the alkaloids tryptanthrin (1), indirubin (2), and indolinone (3) were identified as 

pharmacologically active compounds in the ancient medicinal plant Isatis tinctoria L. (Brassicaceae). 

They inhibit COX-2, 5-LOX catalyzed leukotriene synthesis, cyclin-dependent kinase (CDK), 

glycogensynthase kinase-3β (GSK), and mast cell degranulation, at low µM to nM concentrations
1–4

. 

While the molecular mode of action is not fully clarified yet, their unique structure and 

pharmacological profile, the lack of cytotoxicity and their structural drug-like properties, earmarked 

these compounds as interesting anti-inflammatory leads for further development.  

 

In the early 1970s, selectivity and potency were considered as the key parameters for successful drug 

discovery
5
. However, therapeutic efficacy of a bioactive compound can be greatly influenced by its 

absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters. Therefore, it has 

been widely recognized that ADMET properties need to be addressed early in the drug discovery 

process.  

The overall aim of this work was to assess first in vivo key pharmacokinetic (PK) parameters and the 

in vitro permeation potential across biological barriers (gastrointestinal tract [GIT] and blood-brain 

barrier [BBB]) of tryptanthrin, indirubin and indolinone by means of validated UPLC-MS/MS 

quantification methods. 

In a first step, we aimed to develop quantitative UPLC-MS/MS methods in lithium heparinized rat 

plasma, Hankʼs Balanced Salt Solution (HBSS), and Ringer HEPES buffer (RHB), and validate them 

according to current international guidelines for industry
6–8

. To demonstrate that our quantitative 

measurements in the given matrix are reliable and reproducible, we aimed at validating the methods 

with respect to accuracy, precision, selectivity, sensitivity, and short and long-term stability. 

The objective of the second part of the PhD thesis was to apply the quantification methods in lithium 

heparinized rat plasma to a pilot pharmacokinetic (PK) study in Sprague Dawley rats. To obtain first 

PK parameters of tryptanthrin, indolinone, and indirubin, we aimed at testing the compounds in male 

Sprague Dawley rats after intravenous application (2 mg/kg b.w.)
9
.  

In the third part of the thesis, we aimed at using the validated methods in the two buffers HBSS and 

RHB to study the in vitro permeability of the three compounds across the GIT and the BBB. 

The most convenient route for systemic application is oral administration. However, to reach 

satisfactory bioavailability, various requirements need to be met. For instance, the compounds have to 
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be sufficiently soluble, withstand high enzymatic activity (degradation and metabolism), and permeate 

through the intestinal epithelium in a sufficiently high amount. Thus, to assess the suitability of our 

three compounds for oral administration, we aimed at determining the absorptive/secretory 

permeability coefficients of our compounds across the Caco-2 cell monolayer. In addition, to 

investigate P-glycoprotein (P-gp) interaction and active mediated efflux, we aimed at evaluating the 

permeability of the compounds in presence of a P-gp inhibitor (verapamil) and by calculating the 

efflux ratios from bidirectional assays. 

The BBB is a highly restrictive barrier and thus protects the brain from harmful substances, such as 

toxins and bacteria. However, the BBB is so restrictive that it often prevents the penetration of 

potentially life-saving drugs. On the other hand, drugs intended for the periphery might enter the brain, 

where they could cause undesired central effects, such as dizziness, headache, or drowsiness
10,11

. 

Hence, independent of the therapeutic purpose, BBB permeability assessments of drug candidates are 

warranted. To evaluate the brain penetration of our compounds, we aimed at screening the substances 

in a cell-based in vitro monoculture BBB model, which we previously established by using an 

immortalized human brain microvascular endothelial cell line (hBMEC)
12,13

. Immortalized cells are 

easy to culture, maintain their phenotype even after extensive passaging, and are thus highly suitable 

for a standardized screening. However, using immortalized cells faces numerous limitations such as 

poor barrier properties, insufficient tight junction formation, and low expression of key transporters
14

. 

For this reason, we aimed at comparing the results obtained from the human immortalized BBB model 

with widely accepted and validated animal primary co-culture BBB models
15–17

.  

Drug-induced hERG inhibition is the most important risk factor leading to fatal cardiac complications, 

including arrhythmia. Due to these severe side effects, numerous cardiac and non-cardiac drugs have 

been withdrawn from the market, or their use has been restricted. For this reason, hERG blocking is 

considered as the primary anti-target regarding drug-induced cardiotoxicity. To identify potential 

hERG liabilities of our three anti-inflammatory alkaloids, we aimed at evaluating the effect of 

tryptanthrin, indirubin, and indolinone on the hERG potassium channel by means of the patch-clamp 

technique.  
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2.1 Natural product based lead discovery 

For thousands of years, plants, animals, and microorganisms were the source of all medicinal 

preparations
1
. Before the 19

th
 century, only crude and semi-crude extracts from natural origin were 

available to treat human diseases
2
. However, with the growing understanding in enzymology and 

receptor pharmacology in the early 20
th
 century, the concept about remedies was revolutionized

3
: pure 

isolated compounds instead of extracts became the standard of pharmacotherapy. The isolation of the 

narcotic morphine from Opium by the German pharmacist Sertüner in 1805 is often considered as the 

starting point of natural product research. Shortly thereafter, the isolation of numerous important 

natural products such as emetine (1817), atropine (1819), quinidine (1820), caffeine (1820), and 

digoxin (1841) followed
4
. In this compound series, quinidine and morphine were the first 

commercially available pure natural products, marketed by Caventou in 1826 and Merck in 1827, 

respectively. In the late 19
th
 century, structural modifications of morphine into diacetylmorphine 

(heroin, 1898) and salicylic acid into acetylsalicylic acid (Aspirin
®
, 1899)

5
 led to the first 

semisynthetic drugs, developed by Hoffman at the pharmaceutical company Bayer
6
. Other prominent 

examples of drugs derived from traditional medicinal plants include the first local anesthetic cocaine 

(1869), the muscle relaxant turbocurarine (1935), and the antihypertensive reserpine (1951)
4
.  

 

 

Figure 1: Drugs derived from traditional medicinal plants
9
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Various studies demonstrated that there is a positive correlation between the therapeutic indication of 

plant-derived drugs and their ethnomedicinal uses
7,8

. For instance, khellin from Ammi visnaga 

(traditionally used to treat asthma) served as scaffold for the bronchodilator chromolyn (sodium 

chromomglycate); papaverin from Papaver somniferum (used as sedative) led to the development of 

the antiarrhythmic verapamil; and ephedrine from the traditional Chinese medicine (TCM) plant 

Ephedra sinica, served as a starting point for the development of beta agonists such as salbutamol 

(Fig. 1)
9,10

. More recent examples of natural-derived compounds serving as an inspirational source for 

new drugs include the antitumor drug paclitaxel (Taxol
®
) and derivatives of the antimalarial 

artemisinin (Artemotil
®
). Discovery of the latter compound was awarded with the Nobel Prize of 

Medicine in 2015. 

Up to the present, the contribution of natural products to modern pharmacotherapy has been 

remarkable. According to Newman and Cragg, approximately 50% of all approved new drug entities 

(NDE) in the last 30 years are linked to natural products (Fig. 2)
11

. Moreover, it was proposed that 60 

out of 243 lead structures derive solely from plant origin
4,12

. Nevertheless, despite this success over the 

past decades, pharmaceutical companies have scaled down the number of natural products research 

projects and a drop of 30% in natural product based projects could be recorded between 2001 and 

2008
13

. The introduction of molecular modelling, combinatorial chemistry and high-throughput 

screening (HTS) of synthetic libraries in the early 1990s mainly contributed to the declining interest in 

natural product research
14

.   

 

Figure 2: Origin of all approved new drug entities (NDE) from 1981 - 2010
11

. In total 50% of all NDE are directly 
or indirectly linked to natural products. Modified from D.J. Newman, G.M. Cragg J. Nat. Prod. 2012  

Historically, natural product research has been confronted with several challenges, such as unsecured 

access and supply of source material, and issues concerning intellectual property (IP) rights
13

. Further 

difficulties in natural product research include the (1) characterization of complex mixtures, (2) high 

probability of hit duplication, (3) solubility and stability issues, (4) synergistic/antagonistic activities, 

(5) complex structures rendering structural modifications highly challenging, (6) extremely low 

amounts of active constituents, and (7) cost-intensive development of synthetic strategies
13

. All these 

issues made natural product isolation a relatively slow and time-consuming process. Interestingly, 

despite the alleged disadvantages of natural products HTS over synthetic HTS, the success rate of 
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finding new synthetic lead compounds, particularly in certain key therapeutic areas such as anti-

infective, immunosuppression, oncology and metabolic diseases, remained relatively low
1,14

. This 

could be explained by the fact that natural products are chemically and structurally much more diverse 

than synthetic molecules. In fact, more than 40% of natural product scaffolds are absent in chemical 

compound libraries
2
. Moreover, natural products contain a wide range of pharmacophores and a high 

number of stereocenters rendering them an ideal starting point for chemical modifications. Above all, 

natural products are natural metabolites, which mean that they are not only biologically active, but 

also favorable substrates of carrier proteins that can deliver the molecule to the intracellular target
14

. 

These circumstances, along with the introduction of powerful novel technologies and innovative 

strategies, led to the re-discovery of natural product research
15

. Moreover, it should be noted that only 

6% of higher plants (of the approximately 30`000 known species), less than 1% of microbial species, 

and very few marine sources have been pharmacologically investigated so far
9
. Consequently, nature 

still retains a high unexplored potential and will remain an essential source for future lead discovery. 
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2.2 Alkaloids from Isatis tinctoria L. as potential leads for anti-

inflammatory drugs 

Inflammation is a non-specific immune response of the body tissue to harmful biological, chemical or 

physical stimuli
1
. The process is typically characterized by redness, heat, pain, swelling and loss of 

function. Under normal conditions inflammation is a self-limiting process. However, persistent 

inflammatory processes can lead to chronic disorders such as asthma
2
, inflammatory bowel disease

3
, 

and rheumatoid arthritis
4
. In the last decades, chronic inflammation has also been linked to cancer

5
, 

diabetes mellitus, cardiovascular disorders
6
, and even Alzheimer’s disease

7
. The most common anti-

inflammatory drugs include nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids. 

However, long-term use is often associated with numerous side effects such as gastric ulcers, 

bronchospasm (NSAIDs), or osteoporosis, truncal obesity, and hyperglycemia (corticosteroids)
8
. Thus, 

there is a clear unmet medical need for better tolerated anti-inflammatory drugs, which could possibly 

be filled by natural products with a favorable risk/benefit ratio. It is known that plant-derived 

secondary metabolites are able to (directly or indirectly) interact with various key mediators in the 

inflammation cascade such as
9,10

:  

(1) pro-inflammatory molecules such as cyclooxygenase (COX-2), inducible NO synthase 

(iNOS), and cytokines (interleukins, TNF-α), 

(2) various inflammatory mediators (e.g. arachidonic acid metabolites, cytokines), 

(3) second messengers (e.g. protein kinases, cGMP), and 

(4) transcription factors such as NF-κB or proto-oncogenes, among many others.  

In the search of anti-inflammatory compounds in the traditional medicinal plant Isatis tinctoria, 

tryptanthrin, indirubin and (E,Z)-3-(4-hydroxy-3,5-dimethoxybenzylidene)indolin-2-one (indolinone) 

were identified as pharmacologically active compounds in our research group. Their mode of action is 

not yet completely understood, but their pharmacological profile seems to be different from already 

known anti-inflammatory compounds. The following section provides an overview of the history, 

occurrence, and pharmacological activities of the traditional medicinal plant Isatis tinctoria L. and its 

three isolated constituents tryptanthrin, indirubin and indolinone.  
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2.2.1 Woad (Isatis tinctoria L.) 

Historical background of an ancient dye plant 

Since antiquity, woad (Isatis tinctoria L., Brassicaceae, 

Fig. 3) has been used as a medicinal herb and dye plant. 

Although the original habitat of Isatis tinctoria is in the 

grasslands of southeastern Russia, the plant spread widely to 

Europe and Asia by cultivation. From medieval times up to 

the 18
th 

century, woad was extensively cultivated in certain 

parts of Germany (Thuringia, Jülich), France (Languedoc, 

Somme, Normandy), Great Britain (Somerset, Lincolnshire) 

and Italy (Tuscany). The commerce with the highly prized 

indigo brought economic prosperity to these countries. 

However, in the late 17
th
 century, the woad trade declined 

with the import of brighter and cheaper indigo from Asia, 

produced from Indigofera species. In the late 19
th
 century, 

both woad and natural indigo were completely replaced by 

synthetic indigo
11,12

. 

Figure 3: Isatis tinctoria L..  
Source : Carl Axel Magnus Lindman,  
Bilder ur Nordens Flora (1901-05) 

 

Traditional medicinal uses  

The medicinal properties of Isatis tinctoria have been known for centuries in Europe and China. In 

Europe, first written records on the medicinal effect of the plant were given by Hippocrates (5
th
 B.C.), 

Pliny, the Elder (1
st
 century A.D.), and Galen (2

nd
 century A.D.)

12
. Furthermore, in a number of 

mediaeval herbals, the medicinal use of the plant was described for the treatment of fever, wounds and 

various other inflammatory ailments 
11,12

. In China, the taxonomically closely related Isatis indigotica 

is still one of the most important and popular herbals in the TCM, indicated for the treatment of 

inflammatory ailments. Moreover, Isatis indigotica leaves (Daqingye) and roots (Banlangen), and 

natural indigo (Qingdai) are official listed drugs in the Chinese Pharmacopoeia, used as anti-

inflammatory, hemostatic, antipyretic, antibacterial and antiviral agents
13

.  

 

Phytochemical and pharmacological profiling of an anti-inflammatory medicinal plant 

In the last 40 years, numerous phytochemical, biological, and pharmacological investigations have 

been performed on woad. In phytochemical characterizations of Isatis tinctoria and Isatis indigotica, 

more than 100 secondary metabolites were found
11

. Both species are rich in glucosinolates
14–16

, which 

is characteristic for the family Brassicaceae. Moreover, they contain numerous indole derivatives such 

as tryptanthrin (1)
17

, the blue dye indigo
18,19

 and its red isomer indirubin (2)
19

, indolinone (3)
20

, 
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deoxyvasicinone
21

, and the indigo precursors’ isatan A and isatan B
22

 (Fig. 4). Also, other compounds 

such as aromatic and aliphatic carboxylic acids
23

, various glucosides
24

, isoprenoids
24,25

, amino acids
25

, 

sphingolipids
26

, nitriles, furans
27,28

, lignans
29

, flavonoids, and anthranoids
21

 have been isolated. 

 

Figure 4: Structures of the main pharmacologically active constituents (1-4) of Isatis tinctoria 

 

In various pharmacological studies, the antiviral, antifungal, antibacterial, cytoinhibitory and 

insecticidal properties of Isatis tinctoria and its constituents have been analyzed.  

However, the anti-inflammatory potential of Isatis tinctoria and its active principles remained 

uncharacterized at that time. For this purpose, a broad-based pharmacological screening against 20 

clinically relevant targets was initiated in our research group some years ago. The lipophilic woad 

extract displayed a promising in vitro profile against numerous inflammation-related targets including 

inhibition of cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), inducible nitric oxide synthase 

(iNOS), histamine and serotonin release, and of leucocyte elastase
30

. Subsequent HPLC-based activity 

profiling enabled the identification of tryptanthrin (1) as a potent inhibitor of COX-2
30

 and 5-LOX
31

 

catalyzed eicosanoid synthesis, and indolin-2-one (3) as an inhibitor of histamine release from mast 

cells
32

. γ-Linoleic acid (4), an unsaturated fatty acid, was identified as the major 5-LOX inhibitor
31

. 

Fractions containing α-linolenic, linoleic, cis-11-octadecenoic acid, oleic and palmitic acids showed a 

significant activity against the human neutrophil elastase
33

. For indirubin (2) only marginal COX-2 

inhibition was found
11

. However, other groups reported anti-inflammatory
34,35

 and antiproliferative
36

 

properties of the compound. 

In vivo studies in models of acute and chronic inflammation
37

, contact allergy, and rheumatoid 

arthritis
38

, and a clinical pilot study in experimentally induced skin erythema in human volunteers
39

, 

showed the anti-inflammatory activity of the lipophilic woad extract in oral and/or topical 

applications. However, comparisons of the topical application of woad extract and pure tryptanthrin 

revealed that the extract is clinically more effective than the compound alone. Further investigations in 

an ex vivo cutaneous microdialysis model demonstrated that the skin penetration of tryptanthrin from 

the extract was substantially higher than for the compound alone
40

. These observations supported the 

notion that also other compounds synergistically contribute to the clinical efficacy of the extract and 

may enhance the aqueous solubility of the otherwise poorly soluble alkaloids such as tryptanthrin
11

. 
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2.2.2 Tryptanthrin (Couroupitine A) 

Discovery and occurrence  

The history of tryptanthrin dates back to 1878 when Sommaruga observed that by sublimation of 

indigo, golden-yellow needles were formed
41

. In 1915, Friedlander and Roschdestwensky first 

proposed the molecular structure of this alkaloid
42

, which was confirmed 60 years later by X-ray 

analysis
43,44

. Since it was observed in 1971 that this molecule is synthesized by the yeast Candida 

lipolytica when cultured in L-tryptophan-enriched medium, the compound was named tryptanthrin
45

. 

Moreover, it should be noted that in 1974 Sen et al.
46

 isolated a yellow compound from dried and 

powdered fruits of Couroupita guaianensis and elucidated structure 6 with the trivial name 

couroupitine A (Fig. 5). However, Bergman et al.
47

 corrected this erroneous formula of the structure 6 

later to the originally proposed structure 1
47

. In addition, tryptanthrin was isolated from various other 

natural sources such as fungi (Schizophyllum commune
48

, Leucopaxillus cerealis
49

), cold water marine 

bacteria (Oceanibulbus indolifex
50

) and numerous higher plants (Strobilanthes cusia
51

, Isatis 

tinctoria
17

, Isatis indigotica
52

, Polygonum tinctorium
17

, two Calanthe species
53

 including C. discolor 

and C. liukiuensis, Wrightia tinctoria
54

, and many others
46,55–57

). Moreover, it was reported that the 

compound is also present in mammals, particularly in the urine of Asian elephants (Elephas 

maximus
58

) and in the wing-sac liquids of bats (Saccopteryx bilineata
59

). 

 

 

Figure 5: Trypanthrin (1) and the original proposed structure of  
couroupitine A (6) 

 

Biological activities 

In various pharmacological studies the antibacterial, antifungal, antiprotozoal, antiparasitic, and 

cytoinhibitory activity of tryptanthrin was investigated. Tryptanthrin exhibited growth inhibition in the 

µM range against pathogenic bacteria such as Bacillus subtilis
60

, Escherichia coli
61

, Mycobacterium 

tuberculosis
62

, Helicobacter pylori
63

, methicillin-resistant Staphylococcus aureus
64

, as well as 

dermatophytic fungi such as Trichophyton, Microsporum, and Epidermophyron species
51

. The 

compound was also evaluated for its antiprotozoal potential and was considered active against 

Leishmania donovani
65

, Plasmodium falciparum
66

, Toxoplasma gondii
67

, and Trypanosoma brucei
68

. 

In addition, the compound showed cytotoxic
55,69

 activities against various mammalian cancer cell 

lines
55,69

, and inhibited hepatocyte growth factor in human fibroblasts
70

, as well as overexpression of 

the multidrug resistance gene MDR1 in breast cancer cells
71,72

. Recently, trypanthrin was also reported 
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to activate the aryl hydrocarbon receptor (AhR), a ligand-activated transcriptional factor that controls 

the expression of xenobiotic-metabolizing enzymes such as cytochrome P450
73

. 

Although, tryptanthrin was originally isolated from Isatis tinctoria as an anti-dermatophytic compound 

by Honda et al. in 1980
74

, the anti-inflammatory activity of the alkaloid was not explored at that time. 

Based on the promising results obtained by the HPLC-based activity profiling, further investigations 

on tryptanthrin in cell- and mechanism-based assays were initiated in our research group. In these 

studies, tryptanthrin inhibited COX-2 in two cell lines (Mono Mac and RAW 264.7) with a potency 

(IC50 37 nM and IC50 250 nM), that was comparable to the preferential COX-2 inhibitor nimesulide 

(IC50 27 nM and IC50 270 nM)
30,75

. In HEL cells, the compound (IC50 0.36 μM) inhibited COX-1 

catalyzed thromboxane B2 (TXB2) formation 100 times less potently than two non-selective COX 

inhibitors (diclofenac and indomethacin)
11

. These findings were in agreement with the results obtained 

from enzyme-based assays with isolated COX enzymes, where tryptanthrin displayed a strong COX-2 

(IC50 0.83 μM), but no significant COX-1 (IC50 50 μM) inhibition
75

. Additionally, in a cell-based assay 

with calcium-ionophore-stimulated human granulocytes (neutrophils) the ability of tryptanthrin to 

inhibit 5-LOX was evaluated by measuring the leukotriene B4 (LTB4) formation as an indirect 

indicator of the 5-LOX activity. The results indicated that the inhibition of LTB4 release from 

neutrophils for tryptanthrin (IC50 0.15 μM) was in the same range as for the clinically used anti-

asthmatic 5-LOX inhibitor zileuton (IC50 0.35 μM)
75

. Recent data revealed that tryptanthrin does not 

directly interfere with the 5-LOX activity, but modifies the subcellular localization of 5-LOX via a not 

yet fully understood mechanism
76

.  

Moreover, Ishihara et al. demonstrated that tryptanthrin inhibits the expression of iNOS and 

prostaglandine E
77

. Further immune-modulatory activities of tryptanthrin were reported by other 

groups such as the inhibition of T helper type 2 cells (Th2) development, immunoglobulin E (IgE) 

mediated degranulation, IL-4
78

 and interferon-γ
79

 production, and NF-κB
76

. 

Despite the potent and selective COX-2 inhibition of tryptanthrin, it is remarkable that there is no 

synthetic COX-2 inhibitor, neither on the market nor under development
11,80

, which shows a structural 

similarity to tryptanthrin. Only the plant-derived rutaecarpine, a COX-2 inhibitor isolated from Evodia 

rutaecarpa
81

, bears certain resemblance to tryptanthrin
11

. Moreover, it is assumed that dual inhibition 

of COX and 5-LOX could enhance the anti-inflammatory potency and reduce the undesired side 

effects with NSAIDs
82

. On the basis of this idea, numerous COX-2/5-LOX inhibitors have been 

synthesized and among these, licofelone
83

 has currently reached phase III clinical trials. But also in 

this case, tryptanthrin showed no structural similarities to any COX-2/5-LOX inhibitor, neither to the 

anti-asthmatic 5-LOX inhibitor zileuton nor to the dual COX-2/5-LOX inhibitor
11

 (Fig. 6).  
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Figure 6: Structure of tryptanthrin, rutaecarpine, and synthetic compounds including COX-2, 5-LOX and dual 
COX/5-LOX inhibitors. Modified from Hamburger, Phytochemistry Reviews, 2002

11
 

 

Even though the mode of action of tryptanthrin is not yet fully understood, its structural uniqueness, 

the broad pharmacological spectrum of activities, and the structural drug-like properties render the 

compound as a promising lead for the further development of novel anti-inflammatory agents. Also, 

tryptanthrin is easily accessible by synthesis, and its scaffold provides numerous possibilities for 

structural modification for lead optimization
11

.  

 

2.2.3 Indirubin 

Discovery and occurence  

The second constituent of Isatis tinctoria that raised our particular interest due to its promising 

pharmacological profile was the bis-indole, indirubin (2). The compound was first isolated from Isatis 

tinctoria by Schunck in 1855
84

. Later he discovered that indirubin (7) (also known as isoindigotin or 

indigo red) is the red isomer of the blue dye indigo (indigotin)
85

 (Fig. 7). In the late 1890s, Adolf von 

Bayer achieved the first chemical synthesis of indirubin along with indigo and laid therefore the 

starting point for chemical dye industry
86

. In plants both indigoids derive from spontaneous 

dimerization of the colorless precursors indoxyl and isatin, which themselves are liberated during the 

fermentation process from the precursors indican or isatan B
12,36

.  
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Indirubin and its precursors occur in various indigo-producing plants including Baphicacanthus cusia 

(Acanthaceae), Polygonum tinctorium (Polygonaceae), Indigofera tinctoria (Fabaceae), Indigofera 

suffrutticosa (Fabaceae), Isatis tinctoria (Brassicaceae)
36

, and two Calanthe species (C. discolor and 

C. liukiuensis, Orchidaceae)
53

, and in some marine mollusks (Muricidae)
87

. Interestingly, indirubin 

was also found in mammals, especially in human urine from patients suffering from the purple urine 

bag syndrome
88,89

. Additionally, indirubin was obtained from various recombinant bacteria expressing 

human cytochrome P450
90

, and diverse enzymes such as naphthalene dioxygenase
91,92

, and toluene 

dioxygenase
92

 among many others
93–95

.  

 

Figure 7: The blue dye indigo (7) and its red isomer indirubin (2) 

 

Biological and pharmacological profile 

The clinical interest in indirubin was triggered in the early 1980s when indirubin was identified as the 

active principle of Danggui Longhui Wan, a mixture of 11 herbals used in TCM to treat chronic 

myelocytic leukemia (CML)
86,36

. The antiproliferative activity of indirubin was extensively confirmed 

in various human cancer cell lines
96,97

, as well as in in vivo studies using human tumor xenograft 

models
98

. Further investigations in the late 1990s revealed at least partially its molecular mode of 

action: indirubin strongly inhibited the cyclin-dependent kinases (CDK-1, CDK-2, CDK-4, and CDK-

5) by binding to the ATP-binding pocket of CDKs
36

. Moreover, the compound induced a cell cycle 

arrest mainly in G2 and/or G2/M phase leading to apoptosis of the cell
36,99

. Besides CDK inhibition, 

indirubin was shown to block other kinases such as glycogen synthase kinase-3β (GSK-3)
100,101

 and c-

Src kinase
102

. In the last decade, indirubin was also found to block the cell cycle via the activation of 

the aryl hydrocarbon receptor (AhR)
100,103,104

. Additionally, indirubin was shown to possess anti-

inflammatory properties by inhibiting the production of various cytokines such as interferon γ, 

interleukin 6
34,35

, and RANTES
105

. Further studies revealed its ability to suppress the NF-κB signaling 

pathway and the expression of NF-κB target genes involved in tumorigenesis
35

. In the last years, a 

large number of other targets such as Stat3 transciption factor
102

, glycogen phosphorylase (GP)
106

, c-

Jun NH2-terminal kinase
107

, dual specificity tyrosine-phosphorylation-regulated kinases (DYRK)
108

, 

casein kinase
109

, and caspases
110

, among many others
93

 have been identified for indirubin and its 

derivatives.  
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In vivo toxicity studies and clinical trials 

In six-month toxicity studies in dogs given a dose of indirubin that was 25 times higher than those 

used for human therapy, reversible diarrhea and some liver damages were observed
36

. Hematopoiesis, 

electroencephalogram activity, and renal function remained unaffected under indirubin treatment
97,111

. 

Further in vivo long-term studies in animals showed that indirubin neither exhibited bone marrow 

toxicity nor hematotoxicity
97

. In clinical trials with 314 patients suffering from CML, indirubin was 

given orally at a daily dosage of 150 - 450 mg
112

. In 26% complete recovery and in 33% partial 

remission was observed in response to indirubin treatment. Overall, the toxicity of the compound was 

low and only mild to moderate side effects such as nausea, vomiting, abdominal pain and diarrhea 

were reported
111

.  

 

Aqueous solubility of indirubin 

One of the major drawbacks of indirubin is its low aqueous solubility leading to poor bioavailability. 

These circumstances triggered the search for novel indirubin derivatives with improved selectivity, 

solubility and efficacy against tumor cells. Based on crystallographic data of CDK2, CDK5 and GSK3 

in complex with indirubin derivatives, and on molecular modelling, a variety of different indirubin 

structure analogs were synthesized
86,113

. The newly synthesized analogs (e.g. Fig. 8) showed enhanced 

solubility, selectivity against CDK2, and were almost colorless, which are all favorable perquisites for 

drugs entering preclinical studies
114

.  

 

Figure 8: (Z)-3-allyl-N-(2-(dimethylamino)ethyl)-3-hydroxy-N-methyl-2’-oxo- 
[2,3’-biindolinylidene]-5’-sulfonamide, C24H28N4O4S, MW = 469 g/mol 

 

In addition to these medicinal efforts, galenic approaches were described to overcome the low 

solubility of indirubin. Some of these approaches included the development of Super-Saturated Micro-

Emulsion Drug Delivery Systems (S-SMEDDs)
115,116

, a Self-Nano-Emulsing DDS
117

, and an indirubin 

nanoparticle formulation
118

 to enhance the oral bioavailability of the compound. 

In summary, despite the low aqueous solubility of indirubin, the potent anti-proliferative and anti-

inflammatory activities as well as its low toxicity, render the compound as a promising lead for further 

drug development. 
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2.2.4 Indolinone derivative 

Biological activities of indolinone and pharmacology of mast cell stabilizers 

Another Isatis compound that attracted attention in the HPLC-activity based profiling was the 

indolinone derivate (E,Z)-3-(4-hydroxy-3,5-dimethoxybenzylidene)indolin-2-one (indolinone).  

The clinical use of indolinone derivatives was already known since the 1950s. Methisazone, a 

thiosemicarbazone, was one of the first antiviral drugs used for the treatment of smallpox
119

 (Fig. 9). 

Nowadays, the medicinal use of Methisazone is obsolete, but the development of synthetic indolinone 

derivatives as novel drug candidates is still ongoing. In the last decade a large number of indolinone 

analogs were screened for activities against Multiple Sclerosis
120

, HIV
121

, various infectious 

diseases
122

, and cancer
123

. In 2006, the indolinone-based drug Sunitinib (Sutent
®
, Pfizer, Fig. 9) was 

approved by the Food and Drug Administration (FDA) as multiple receptor tyrosine kinase (RTK) 

inhibitor for the treatment of renal cell carcinoma and advanced gastrointestinal stromal tumors
124

. 

Some years later, toceranib (Palladia
®
, Pfizer), a structural analog of sunitinib, entered the market as 

RTK inhibitor for the treatment of canine mast cell tumors
125

 (Fig. 9).  

RTKs are key regulators in cellular processes and their increased activities have been linked to various 

diseases such as cancer, atherosclerosis, angiogenesis, inflammatory diseases, and other immune-

mediated disorders
126

. Previous crystallographic data with 3-substituted indolin-2-ones, suggested that 

the indolinone scaffold bears a kinase inhibitory activity by binding to the ATP-binding pocket of 

RTKs
127

. This connection led to the assumption that the anti-allergic Isatis constituent, indolinone, 

possibly possesses some kinase-inhibitory activity
32

.  

 

Methisazone      Sunitinib      Toceranib 

Figure 9: Indolinone-based drugs in market 

 

In studies, which aimed at identifying the active principles of Isatis tinctoria, indolinone was found to 

inhibit the compound 48/80-induced histamine release from rat peritoneal mast cells with an IC50 of 

15 µM. Strikingly, the suppression of histamine release was 100 fold higher than that of the clinically 

used mast cell stabilizer disodium chromoglycate (IC50 1.5 mM). Based on these promising results, a 

series of structurally related benzylidene-2-indolinones were synthesized and tested for their inhibitory 

activity against histamine release. However, none of them inhibited mast cell granulation at 
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concentrations up to 40 µM
128

. As the synthesized indolinone derivatives were all inhibitors of various 

kinases, the missing activity in the screening indicated that kinase inhibition is most probably not the 

underlying mechanism of the suppressed histamine release of indolinone (even though the compound 

itself was not tested in the kinase panel)
128

. More recent data revealed that indolinone blocks the IgE 

mediated degranulation of sensitized mast cells (murine bone marrow derived mast cells) at nM 

concentrations (IC50 = 54 nM) without directly interfering with the targets upstream of the histamine 

containing granules. Hence, it is thought that indolinone inhibits the granule exocytosis by possibly 

binding to surface fusion proteins such as SNAREs that play a central role in mast degranulation
32,129

. 

From a therapeutic point of view, mast cell stabilization can be a useful approach for the treatment of 

asthma. The most common direct mast cell stabilizers in clinical use are disodium cromoglycate 

(Fig. 1) and its derivative nedocromil
130

. However, major drawbacks of these drugs are the frequent 

dosing (up to four times daily), as well as the unpleasant taste
131

. More recent approaches to stabilize 

mast cells include the development of Syk, JAK3, phosphodiesterases inhibitors and anti-IgE 

antibodies
130

. In 2006, one of these anti-IgE antibodies, omalizumab (Xolair
®
, Novartis), was 

approved by the FDA for the treatment of persistent allergic asthma and chronic idiopathic 

urticarial
132

. Major deficiencies of omalizumab are, however, the subcutaneous administration, the 

increased risk for anaphylaxis, and the relatively high therapy costs
132

. Consequently, there still 

remains an urgent need for the development of novel anti-allergic agents with improved 

pharmacological properties. 

While the exact molecular mode of action of indolinone remains to be identified, the apparent 

selectivity, the remarkable potency to block mast cell degranulation
128

, the lack of cytotoxicity
32

, and 

the structural drug-like properties render the molecule as an interesting lead for the further 

development of new anti-allergic drugs. 

 

32



 

 
 

References 

1. Ferrero-Miliani, L., Nielsen, O. H., Andersen, P. S. & Girardin, S. E. Chronic inflammation: importance of 
NOD2 and NALP3 in interleukin-1β generation. Clin. Exp. Immunol. 147, 227–235 (2007). 

2.  Murdoch, J. R. & Lloyd, C. M. Chronic inflammation and asthma. Mutat. Res. 690, 24–39 (2010). 
3. Hanauer, S. B. Inflammatory bowel disease: Epidemiology, pathogenesis, and therapeutic opportunities. 

Inflamm. Bowel Dis. 12, S3–S9 (2006). 
4. Epstein, F. H., Choy, E. H. & Panayi, G. S. Cytokine pathways and joint inflammation in rheumatoid arthritis. 

N. Engl. J. Med. 344, 907–916 (2001). 
5. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002). 
6. Haffner, S. M. The Metabolic Syndrome: Inflammation, diabetes mellitus, and cardiovascular disease. Am. 

J. Cardiol. 97, 3–11 (2006). 
7. Akiyama, H. et al. Inflammation and Alzheimer’s disease. Neurobiol. Aging 21, 383–421 (2000). 
8. Mutschler, E., Geisslinger, G., Kroemer, H. K., Menzel, S. & Ruth, P. Mutschler Arzneimittelwirkungen: 

Pharmakologie - Klinische Pharmakologie - Toxikologie. 211-279 (Wissenschaftliche Verlagsgesellschaft 
Stuttgart, 2012). 

9. Santos, A. R. Anti-inflammatory compounds of plant origin. Part I. Action on arachidonic acid pathway, 
nitric oxide and nuclear factor κ B (NF-κB). Planta Med. 69, 973–983 (2003). 

10. Santos, A. R. Anti-inflammatory compounds of plant origin. Part II. Modulation of pro-inflammatory 
cytokines, chemokines and adhesion molecules. Planta Med. 70, 93–103 (2004). 

11. Hamburger, M. Isatis tinctoria–From the rediscovery of an ancient medicinal plant towards a novel anti-
inflammatory phytopharmaceutical. Phytochem. Rev. 1, 333–344 (2002). 

12. Hurry, J. B. The woad plant and its dye. (AM Kelley, 1973). 
13. Tang, P. D. W. & Eisenbrand, P. D. G. in Chinese Drugs of Plant Origin 805–812 (Springer Berlin Heidelberg, 

1992). 
14. Elliott, M. C. & Stowe, B. B. Distribution and variation of indole glucosinolates in woad (Isatis tinctoria L.). 

Plant. Physiol. 48, 498–503 (1971). 
15. Fréchard, A. et al. Novel indole-type glucosinolates from woad (Isatis tinctoria L.). Tetrahedron Lett. 42, 

9015–9017 (2001). 
16. Goetz, J. K. & Schraudolf, H. Two natural indole glucosinolates from Brassicaceae. Phytochemistry 22, 905–

907 (1983). 
17. Honda, G., Tosirisuk, V. & Tabata, M. Isolation of an antidermatophytic, tryptanthrin, from indigo plants, 

Polygonum tinctorium and Isatis tinctoria. Planta Med. 38, 275–276 (1980). 
18. Perkin, A. G. XLIII.—Constituents of natural indigo. Part II. J. Chem. Soc., Transactions 91, 435–440 (1907). 
19. Perkin, A. G. & Bloxam, W. P. XXX.—Some constituents of natural indigo. Part I. J. Chem. Soc., Transactions 

91, 279–288 (1907). 
20. Wu, X., Liu, Y., Sheng, W., Sun, J. & Qin, G. Chemical constituents of Isatis indigotica. Planta Med. 63, 55–

57 (1997). 
21. Wu, X., Qin, G., Cheung, K. K. & Cheng, K. F. New alkaloids from Isatis indigotica. Tetrahedron 53, 13323–

13328 (1997). 
22. Oberthür, C., Schneider, B., Graf, H. & Hamburger, M. The elusive indigo precursors in woad (Isatis 

tinctoria L.)–Identification of the major indigo precursor, isatan A, and a structure revision of isatan B. 
Chem. Biodivers. 1, 174–182 (2004). 

23. Hartleb, I. & Seifert, K. Acid constituents from Isatis tinctoria. Planta Med 61, 95–96 (1995). 
24. HATLEB, I. & Seifert, K. A novel anthranilic acid derivative from Isatis tinctoria. Planta Med. 60, 578–579 

(1994). 
25. Zhu, Y.-P. Chinese materia medica: chemistry, pharmacology and applications. (CRC Press, 1998). 
26. Li, X. et al. New sphingolipids from the root of Isatis indigotica and their cytotoxic activity. Fitoterapia 78, 

490–495 (2007). 
27. Condurso, C. et al. The leaf volatile constituents of Isatis tinctoria by solid-phase microextraction and gas 

chromatography/mass spectrometry. Planta Med. 72, 924 (2006). 
28. Miyazawa, M. & Kawata, J. Identification of the key aroma compounds in dried roots of Isatis tinctoria. J 

Essent. Oil Res. 18, 508–510 (2006). 
29. Peng, J., Fan, G. & Wu, Y. Isolation and purification of clemastanin B and indigoticoside A from Radix 

Isatidis by high-speed counter-current chromatography. J. Chrom. A 1091, 89–93 (2005). 
30. Danz, H., Stoyanova, S., Wippich, P., Brattström, A. & Hamburger, M. Identification and isolation of the 

cyclooxygenase-2 inhibitory principle in Isatis tinctoria. Planta Med. 67, 411–416 (2001). 

33



 

 
 

31. Oberthür, C., Jäggi, R. & Hamburger, M. HPLC based activity profiling for 5-lipoxygenase inhibitory activity 
in Isatis tinctoria leaf extracts. Fitoterapia 76, 324–32. (2005). 

32. Kiefer, S., Mertz, A. C., Koryakina, A., Hamburger, M. & Küenzi, P. (E,Z)-3-(3′,5′-Dimethoxy-4′-hydroxy-
benzylidene)-2-indolinone blocks mast cell degranulation. Eur. J. Pharm. Sci. 40, 143–147 (2010). 

33. Hamburger, M., Rüster, G. U. & Melzig, M. F. HPLC based activity profiling for inhibitors of human 
neutrophil elastase in Isatis tinctoria leaf extracts. Nat. Prod. Commun. 1, 1107–10. (2006). 

34. Kunikata, T. et al. Indirubin inhibits inflammatory reactions in delayed-type hypersensitivity. Eur. J. 
Pharmacol. 410, 93–100 (2000). 

35. Sethi, G. et al. Indirubin enhances tumor necrosis factor-induced apoptosis through Modulation of Nuclear 
Factor-κB Signaling Pathway. J. Biol. Chem. 281, 23425–23435 (2006). 

36. Hoessel, R. et al. Indirubin, the active constituent of a Chinese antileukemia medicine. Nat. Cell Biol. 1, 60–
7. (1999). 

37. Recio, M. C., Cerda-Nicolas, M., Potterat, O., Hamburger, M. & Rios, L. Anti-inflammatory and antiallergic 
activity in vivo of lipophilic Isatis tinctoria extracts and tryptanthrin. Planta Med. 72, 539–46. (2006). 

38. Recio, M. C., Cerda-Nicolas, M., Hamburger, M. & Rios, L. Anti-arthritic activity of a lipophilic woad (Isatis 
tinctoria) extract. Planta Med. 72, 715–20. (2006). 

39. Heinemann, C., Schliemann-Willers, S., Oberthür, C., Hamburger, M. & Elsner, P. Prevention of 
experimentally induced irritant contact dermatitis by extracts of Isatis tinctoria compared to pure 
tryptanthrin and its impact on UVB-induced erythema. Planta Med. 70, 385–90. (2004). 

40. Oberthür, C., Heinemann, C., Elsner, P., Benfeldt, E. & Hamburger, M. A comparative study on the skin 
penetration of pure tryptanthrin and tryptanthrin in Isatis tinctoria extract by dermal microdialysis 
coupled with isotope dilution ESI-LC-MS. Planta Med. 69, 385–9. (2003). 

41. Sommaruga, E. V. Ueber die Molekulargrösse des Indigos. Berichte der deutschen chemischen Gesellschaft 
11, 1355–1356 (1878). 

42. Friedländer, P. & Roschdestwenski, N. Über ein Oxidationsprodukt des Indigoblaus. Ber. Dtsch. Chem. Ges. 
48, 1841–7. (1915). 

43. Brufani, M., Fedeli, W., Mazza, F., Gerhard, A. & Keller-Schierlein, W. The structure of tryptanthrin. Cell 
Mol Life Sci 27, 1249–1250 (1971). 

44. Fedeli, W. & Mazza, F. Crystal structure of tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione). J. Chem. 
Soc., Perkin Trans. 2 1621–1623 (1974).  

45. Schindler, F. & Zähner, H. Stoffwechselprodukte von Mikroorganismen. Archiv für Mikrobiologie 79, 187–
203 (1971). 

46. Sen, A. K., Mahato, S. B. & Dutta, N. L. Couroupitine A, a new alkaloid from Couroupita guianensis. 
Tetrahedron Lett. 15, 609–610 (1974). 

47. Bergman, J., Egestad, B. & Lindström, J.-O. The structure of some indolic constituents in Couroupita 
Guaianensis Aubl. Tetrahedron Lett. 18, 2625–2626 (1977). 

48. Hosoe, T. et al. Isolation of a new potent cytotoxic pigment along with indigotin from the pathogenic 
basidiomycetous fungus Schizophyllum commune. Mycopathologia 146, 9–12 (1999). 

49. Jahng, Y. Progress in the studies on tryptanthrin, an alkaloid of history. Arch. Pharm. Res. 36, 517–535 
(2013). 

50. Wagner-Döbler, I. et al. Oceanibulbus indolifex gen. nov., sp. nov., a North Sea alphaproteobacterium that 
produces bioactive metabolites. Int. J. Syst. Evol. Microbiol. 54, 1177–1184 (2004). 

51. Honda, G. & Tabata, M. Isolation of Antifungal Principle Tryptanthrin, from Strobilanthes Cusia O. Kuntze. 
Planta Med. 36, 85–86 (1979). 

52. Li, Q., Jin, J., Chong, M. & Song, Z. Studies on the antifungal constituent of Qing Dai (Isatis indigotica). 
Zhongcaoyao 14, 440–441 (1983). 

53. Yoshikawa, M. et al. Novel indole S,O-bisdesmoside, calanthoside, the precursor glycoside of tryptanthrin, 
indirubin, and isatin, with increasing skin blood flow promoting effects, from two Calanthe species 
(Orchidaceae). Chem. Pharm. Bull. 46, 886–888 (1998). 

54. George, V., Koshy, A. S., Singh, O. V., Nayar, M. N. S. & Pushpangadan, P. Tryptanthrin from Wrightia 
tinctoria. Fitoterapia 67, 553–554 (1996). 

55. Jao, C.-W., Lin, W.-C., Wu, Y.-T. & Wu, P.-L. Isolation, structure elucidation, and synthesis of cytotoxic 
tryptanthrin analogues from Phaius mishmensis. J. Nat. Prod. 71, 1275–1279 (2008). 

56. Xu, F. et al. Structures of new flavonoids and benzofuran-type stilbene and degranulation inhibitors of rat 
basophilic leukemia cells from the Brazilian herbal medicine Cissus sicyoides. Chem. Pharm. Bull. 57, 1089–
1095 (2009). 

57. Liu, Y., Ou, Y. F. & Yao, X. S. Chemical constituents in the leaves of Baphicacanthus cusia (Nees) Bremek. 
Chin. J. Med. Chem. 19, 273–275 (2009). 

34



 

 
 

58. Rasmussen, L. E. L., Lee, T. D., Daves Jr, G. D. & Schmidt, M. J. Female-to-male sex pheromones of low 
volatility in the Asian elephant, Elephas maximus. J. Chem. Ecol. 19, 2115–2128 (1993). 

59. Caspers, B., Franke, S. & Voigt, C. C. in Chem. Signal Vertebrates 11 151–160 (Springer, 2008). 
60. Honda, G., Tabata, M. & Tsuda, M. The antimicrobial specificity of tryptanthrin. Planta Med. 37, 172–174 

(1979). 
61. Bandekar, P. P. et al. Antimicrobial Activity of Tryptanthrins in Escherichia coli. J. Med. Chem. 53, 3558–

3565 (2010). 
62. Mitscher, L. A. & Baker, W. Tuberculosis: A search for novel therapy starting with natural products. Med. 

Res. Rev. 18, 363–374 (1998). 
63. Kataoka, M. et al. Antibacterial action of tryptanthrin and kaempferol, isolated from the indigo plant 

(Polygonum tinctorium Lour.), against Helicobacter pylori-infected Mongolian gerbils. J. Gastroenterol. 36, 
5–9 (2001). 

64. Kawakami, J. et al. Antibacterial and antifungal activities of tryptanthrin derivatives. Transactions of the 
Materials Research Society of Japan 36, 603–606 (2011). 

65. Bhattacharjee, A. K. et al. Analysis of stereoelectronic properties, mechanism of action and 
pharmacophore of synthetic indolo[2,1-b]quinazoline-6,12-dione derivatives in relation to antileishmanial 
activity using quantum chemical, cyclic voltammetry and 3-D-QSAR CATALYST procedures. Bioorg. Med. 
Chem. 10, 1979–1989 (2002). 

66. Bhattacharjee, A. K. et al. Structure-activity relationship study of antimalarial indolo [2,1-b]quinazoline-
6,12-diones (tryptanthrins). Three dimensional pharmacophore modeling and identification of new 
antimalarial candidates. Eur. J. Med. Chem. 39, 59–67 (2004). 

67. Krivogorsky, B., Grundt, P., Yolken, R. & Jones-Brando, L. Inhibition of toxoplasma gondii by indirubin and 
tryptanthrin analogs. Antimicrob. Agents Chemother. 52, 4466–4469 (2008). 

68. Scovill, J., Blank, E., Konnick, M., Nenortas, E. & Shapiro, T. Antitrypanosomal activities of tryptanthrins. 
Antimicrob. Agents Chemother. 46, 882–883 (2002). 

69. Kimoto, T. et al. Cytotoxic effects of substances in indigo plant (Polygonum tinctorium Lour.) on malignant 
tumour cells. Nat. Med. 53, 72–9 (1999). 

70. Motoki, T. et al. Inhibition of hepatocyte growth factor induction in human dermal fibroblasts by 
tryptanthrin. Biol. Pharm. Bull. 28, 260–266 (2005). 

71. Yu, S.-T., Chen, T.-M., Chern, J.-W., Tseng, S.-Y. & Chen, Y.-H. Downregulation of GSTpi expression by 
tryptanthrin contributing to sensitization of doxorubicin-resistant MCF-7 cells through c-jun NH2-terminal 
kinase-mediated apoptosis. Anticancer Drugs 20, 382–388 (2009). 

72. Yu, S.-T., Chen, T.-M., Tseng, S.-Y. & Chen, Y.-H. Tryptanthrin inhibits MDR1 and reverses doxorubicin 
resistance in breast cancer cells. Biochem. Biophys. Res. Commun. 358, 79–84 (2007). 

73. Schrenk, D., Riebniger, D., Till, M., Vetter, S. & Fiedler, H.-P. Tryptanthrins: A novel class of agonists of the 
aryl hydrocarbon receptor. Biochem. Pharmacol. 54, 165–171 (1997). 

74. Honda, G., Tosirisuk, V. & Tabata, M. Isolation of an antidermatophytic, tryptanthrin, from indigo plants, 
Polygonum tinctorium and Isatis tinctoria. Planta Med. 38, 275–276 (1980). 

75. Danz, H. et al. Inhibitory activity of tryptanthrin on prostaglandin and leukotriene synthesis. Planta Med. 
68, 875–880 (2002). 

76. Pergola, C. et al. On the inhibition of 5-lipoxygenase product formation by tryptanthrin: mechanistic 
studies and efficacy in vivo. Br. J. Pharmacol. 165, 765–776 (2012). 

77. Ishihara, T. et al. Tryptanthrin inhibits nitric oxide and prostaglandin E2 synthesis by murine macrophages. 
Eur. J. Pharmacol. 407, 197–204 (2000). 

78. Iwaki, K. et al. Tryptanthrin inhibits Th2 development, and IgE-mediated degranulation and IL-4 production 
by rat basophilic leukemia RBL-2H3 cells. J. Ethnopharmacol. 134, 450–459 (2011). 

79. Takei, Y. et al. Tryptanthrin inhibits interferon-gamma production by Peyer’s patch lymphocytes derived 
from mice that had been orally administered staphylococcal enterotoxin. Biol. Pharm. Bull. 26, 365–367 
(2003). 

80. Dannhardt, G. & Kiefer, W. Cyclooxygenase inhibitors--current status and future prospects. Eur. J. Med. 
Chem. 36, 109–126 (2001). 

81. Moon, T. C. et al. A new class of COX-2 inhibitor, rutaecarpine from Evodia rutaecarpa. Inflamm. Res. 48, 
621–625 (1999). 

82. Fiorucci, S., Meli, R., Bucci, M. & Cirino, G. Dual inhibitors of cyclooxygenase and 5-lipoxygenase. A new 
avenue in anti-inflammatory therapy? Biochem. Pharmacol. 62, 1433–1438 (2001). 

83. Boileau, C. et al. Licofelone (ML-3000), a dual inhibitor of 5-lipoxygenase and cyclooxygenase, reduces the 
level of cartilage chondrocyte death in vivo in experimental dog osteoarthritis: inhibition of pro-apoptotic 
factors. J. Rheumatol. 29, 1446–1453 (2002). 

35



 

 
 

84. Schunck, E. On the formation of indigo-blue. (1855). 
85. Sumpter, W. C. & Miller, F. M. The Chemistry of Heterocyclic Compounds, Indole and Carbazole Systems. 

(John Wiley & Sons, 2009). 
86. Jautelat, R. et al. From the Insoluble Dye Indirubin towards Highly Active, Soluble CDK2-Inhibitors. Chem. 

Bio. Chem. 6, 531–540 (2005). 
87. Cooksey, C. J. Tyrian Purple: 6,6’-Dibromoindigo and Related Compounds. Molecules 6, 736–769 (2001). 
88. Allegri, G., Bertazzo, A., Comai, S. & Costa, C. V. Production of indirubin and indigoids in humans. Indirubin, 

the red shade of indigo, L. Meijer, N. Guyard, LA Skaltsounis and G. Eisenbrand (Eds.), Editions ‘Life in 
Progress’, Station Biologique de Roscoff 89–101 (2006). 

89. Tan, C.-K., Wu, Y.-P., Wu, H.-Y. & Lai, C.-C. Purple urine bag syndrome. CMAJ 179, 491 (2008). 
90. Guengerich, P. F. & Wu, Z.-L. Biosynthesis of novel indirubins by recombinant cytochrome P450 systems. 

Indirubin, the red shade of indigo, L. Meijer, N. Guyard, LA Skaltsounis and G. Eisenbrand (Eds.), Editions 
‘Life in Progress’, Station Biologique de Roscoff 79–87 (2006). 

91. Ensley, B. D. et al. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis 
of indigo. Science 222, 167–169 (1983). 

92. Kim, J. Y., Lee, K., Kim, Y. & Kim, C.-K. Production of dyestuffs from indole derivatives by naphthalene 
dioxygenase and toluene dioxygenase. Lett. Appl. Microbiol. 36, 343–348 (2003). 

93. Meijer, L., Shearer, J., Bettayeb, K. & Ferandin, Y. Diversity of the intracellular mechanisms underlying the 
anti-tumor properties of indirubins. Int. Congress Series 1304, 60–74 (2007). 

94. Kim, I.-C., Chang, H.-C. & Oriel, P. Production of indigo and indirubin by Escherichia coli containing phenol 
hydroxylase gene of Bacillus stearothermophilus. J. Microbiol. Biotechnol. (Korea Republic) (1997). 

95. Rui, L., Reardon, K. F. & Wood, T. K. Protein engineering of toluene ortho-monooxygenase of Burkholderia 
cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds. Appl. Microbiol. 
Biotechnol. 66, 422–429 (2005). 

96. Niederberger, E. Mechanismusorientierte Untersuchungen zur antineoplastischen Wirkung von 
Naturstoffen und Naturstoffderivaten. (Dissertation, Universität Kaiserslautern, 1998). 

97. Eisenbrand, G., Hippe, F., Jakobs, S. & Muehlbeyer, S. Molecular mechanisms of indirubin and its 
derivatives: novel anticancer molecules with their origin in traditional Chinese phytomedicine. J. Cancer 
Res. Clin. Oncol. 130, 627–635 (2004). 

98. Kim, S.-A. et al. Antitumor activity of novel indirubin derivatives in rat tumor model. Clin. Cancer Res. 13, 
253–259 (2007). 

99. Merz, K. H. et al. Novel indirubin derivatives, promising anti-tumor agents inhibiting cyclin-dependent 
kinases. Int. J. Clin. Pharmacol. Ther. 42, 656–658 (2004). 

100. Leclerc, S. et al. Indirubins inhibit glycogen synthase kinase-3β and CDK5/P25, two protein kinases involved 
in abnormal tau phosphorylation in Alzheimer’s disease. J. Biol. Chem. 276, 251–60. (2001). 

101. Meijer, L. et al. GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chem. Biol. 10, 1255–1266 
(2003). 

102. Nam, S. et al. Indirubin derivatives inhibit Stat3 signaling and induce apoptosis in human cancer cells. 
Proceedings of the National Academy of Sciences of the United States of America 102, 5998–6003 (2005). 

103. Adachi, J. et al. Indirubin and indigo are potent aryl hydrocarbon receptor ligands present in human urine. 
J. Biol. Chem. 276, 31475–31478 (2001). 

104. Knockaert, M. et al. Independent actions on cyclin-dependent kinases and aryl hydrocarbon receptor 
mediate the antiproliferative effects of indirubins. Oncogene 23, 4400–4412 (2004). 

105. Mak, N.-K. et al. Inhibition of RANTES expression by indirubin in influenza virus-infected human bronchial 
epithelial cells. Biochem. Pharmacol. 67, 167–174 (2004). 

106. Kosmopoulou, M. N. et al. Binding of the potential antitumour agent indirubin-5-sulphonate at the 
inhibitor site of rabbit muscle glycogen phosphorylase b. Eur. J. Biochem. 271, 2280–2290 (2004). 

107. Xie, Y. et al. Indirubin-3′-oxime inhibits c-Jun NH 2-terminal kinase: Anti-apoptotic effect in cerebellar 
granule neurons. Neurosci. Lett. 367, 355–359 (2004). 

108. Myrianthopoulos, V. et al. Novel inverse binding mode of indirubin derivatives yields improved selectivity 
for DYRK kinases. ACS Med. Chem. Lett. 4, 22–26 (2012). 

109. Cheng, X. et al. 7, 7′-Diazaindirubin—A small molecule inhibitor of casein kinase 2 in vitro and in cells. 
Bioorg. Med. Chem. 22, 247–255 (2014). 

110. Ribas, J. et al. 7-Bromoindirubin-3′-oxime induces caspase-independent cell death. Oncogene 25, 6304–
6318 (2006). 

111. Hössel, R. Synthese von Derivaten des Indirubins und Untersuchungen zur Mechanismusaufklärung ihrer 
antineoplastischen Wirkung. (Dissertation Universität Kaiserslautern, 1999). 

36



 

 
 

112. Maruta, H. Indirubin in Tumor suppressing viruses, genes, and drugs: innovative Cancer Therapy 
Approaches. 157-168 (Academic Press, 2001). 

113. Polychronopoulos, P. et al. Structural basis for the synthesis of indirubins as potent and selective inhibitors 
of glycogen synthase kinase-3 and cyclin-dependent kinases. J. Med. Chem. 47, 935–946 (2004). 

114. Potterat, O. & Hamburger, M. in Natural Compounds as Drugs Volume I 45–118 (Springer, 2008). 
115. Gaboriaud-Kolar, N., Vougogiannopoulou, K. & Skaltsounis, A.-L. Indirubin derivatives: a patent review 

(2010-present). Expert Opin. Ther. Pat. 25, 583–593 (2015). 
116. Chen, Z.-Q., Liu, Y., Zhao, J.-H., Wang, L. & Feng, N.-P. Improved oral bioavailability of poorly water-soluble 

indirubin by a supersaturatable self-microemulsifying drug delivery system. Int. J. Nanomed. 7, 1115 
(2012). 

117. Heshmati, N., Cheng, X., Eisenbrand, G. & Fricker, G. Enhancement of oral bioavailability of E804 by self‐
nanoemulsifying drug delivery system (SNEDDS) in Rats. J. Pharm. Sci. 102, 3792–3799 (2013). 

118. Wu, B. Nanoparticles of indirubin, derivatives thereof and methods of making and using same. (2015). 
119. McLean, D. M. Methisazone therapy in pediatric vaccinia complications. Ann. N.Y. Acad. Sci. 284, 118–121 

(1977). 
120. Bouérat, L. et al. Indolin-2-ones with high in vivo efficacy in a model for Multiple Sclerosis. J. Med. Chem. 

48, 5412–5414 (2005). 
121. Boechat, N. et al. Design, synthesis and pharmacological evaluation of HIV-1 reverse transcriptase 

inhibition of new indolin-2-ones. Med. Chem. 3, 533–542 (2007). 
122. Bouchikhi, F. et al. Synthesis and biological evaluation of diversely substituted indolin-2-ones. Eur. J. Med. 

Chem. 43, 2316–2322 (2008). 
123. Kaur, K. & Talele, T. T. 3D QSAR studies of 1, 3, 4-benzotriazepine derivatives as CCK 2 receptor 

antagonists. J. Mol. Graph. Model. 27, 409–420 (2008). 
124. Atkins, M., Jones, C. A. & Kirkpatrick, P. Sunitinib maleate. Nat. Rev. Drug Discov. 5, 279–280 (2006). 
125. London, C. A. et al. Multi-center, placebo-controlled, double-blind, randomized study of oral toceranib 

phosphate (SU11654), a receptor tyrosine kinase inhibitor, for the treatment of dogs with recurrent 
(either local or distant) mast cell tumor following surgical excision. Clin. Cancer Res. 15, 3856–3865 (2009). 

126. Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010). 
127. Sun, L. et al. Synthesis and biological evaluations of 3-substituted indolin-2-ones: a novel class of tyrosine 

kinase inhibitors that exhibit selectivity toward particular receptor tyrosine kinases. J. Med. Chem. 41, 
2588–2603 (1998). 

128. Rüster, G. U., Hoffmann, B. & Hamburger, M. Inhibitory activity of indolin-2-one derivatives on compound 
48/80-induced histamine release from mast cells. Pharmazie 59, 236–7. (2004). 

129. Puri, N., Kruhlak, M. J., Whiteheart, S. W. & Roche, P. A. Mast cell degranulation requires N-
ethylmaleimide-sensitive factor-mediated SNARE disassembly. J. Immunol. 171, 5345–5352 (2003). 

130. Finn, D. F. & Walsh, J. J. Twenty‐first century mast cell stabilizers. Br. J. Pharmacol. 170, 23–37 (2013). 
131. Rubin, J. S., Sataloff, R. T. & Korovin, G. S. Diagnosis and Treatment of Voice Disorders. Mast cell stabilizers 

620-622 (Plural Publishing, 2014). 
132. Strunk, R. C. & Bloomberg, G. R. Omalizumab for asthma. N. Engl. J. Med. 354, 2689–2695 (2006). 
 

 

37



 

 
 

2.3 Pharmacokinetics and early ADMET profiling in drug discovery 

In the early 1970s, scientists mainly focused on finding the most active and selective drug candidate. 

Issues concerning pharmacokinetics (PK), stability, and ADMET properties of a compound were 

addressed later during the drug development phase. In the late 1980s, a landmark study, however, 

revealed that the main reasons for drug failure in the development phase were poor PK and 

biopharmaceutical properties (39.4%), rather than unsatisfactory efficacy (29.3%)
1
. As a consequence 

of this, companies started to implement compound property assessments using high-throughput 

methods (in silico, in vitro, in vivo) already during early drug discovery
2
. 

In a first approach, higher throughput in vitro assays were implemented, which efficiently provide 

information about the physicochemical properties of a compound such as solubility, permeability, and 

metabolic stability. In an additional approach, higher throughput animal studies were incorporated in 

order to screen more test compounds. Moreover, these preliminary PK studies provided important key 

PK parameters that allowed prediction of the in vivo ADMET success in humans. 

Most companies introduced a combination of various approaches for compound assessment in early 

drug discovery. As a consequence of these strategy changes, failure due to insufficient compound 

properties dropped from 39% in 1988 to 10% in 2000. A study in 2002, however, revealed that 

toxicity and formulation still remained major challenges in drug discovery
2,3

.  

Considering this, we aimed at evaluating preliminary PK and early ADMET properties of the three 

anti-inflammatory compounds, tryptanthrin, indirubin and indolinone. The focus of the following 

chapter is on the drug development process, followed by an introduction to pharmacokinetics (PK), the 

gastrointestinal tract (GIT) and the blood-brain barrier (BBB) as biological barriers, and the human 

ether-a-go-go related gene (hERG) potassium channel.  
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2.3.1 Drug discovery and development process 

Drug discovery and development is a costly and time-consuming process (Fig. 10). On average, drug 

discovery and development takes 14.2 years and costs up to $2.5 billion for a single marketed drug
4,5

. 

The complete process can be divided into three phases: drug discovery, development, and registration. 

Typically, the discovery phase requires 3 - 5 years and involves biological target identification and 

validation, hit identification, and lead finding and optimization
4
. During drug discovery, ADMET 

(absorption, distribution, metabolism, excretion, and toxicity) properties
 
are also assessed by a series 

of in silico, in vitro, and in vivo tools
4,6,7

. Based on these data, lead structures are optimized, before 

they enter the drug development phase. At this stage, the compound is subjected to preclinical testing 

in animals (~ 2 years), first-in-man studies (also known as phase I), and full clinical trials (phase II and 

III, ~ 6 years), before the compound finally enters the registration phase (~ 1.8 years)
4
. According to 

the US Food and Drug Administration (FDA), only 8% of phase I trial drugs become a marketed 

product, and 4% of the approved drugs are withdrawn from the market (e.g. Vioxx)
8
. As drug 

discovery and development is a highly risky and expensive activity, many companies are following the 

“fail fast, fail cheap” strategy
4
.  

 

 

Figure 10: Drug discovery and development stages, average time span and their major activities. HTS: High-
throughput screening, PK: Pharmacokinetics. SAR: structure-activity relationship. Adapted from

3,9–12
. 
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2.3.2 Pharmacokinetics in drug discovery 

Key PK parameters  

PK describes the concentration time course of a compound in vivo
2
 (Table 1). The concentration time 

course of a drug changes depending on a number of factors, including the route of administration. An 

intravenously (i.v.) administered compound immediately distributes from the bloodstream into the 

tissues, before it is eliminated from the body by the liver and kidneys. Orally administered drugs first 

have to dissolve (liberation), penetrate through the gastrointestinal tract (absorption), and pass through 

the liver (metabolism), before they enter the systemic circulation. As a consequence, the time (tmax) to 

reach the maximal plasma peak concentration (Cmax) in the bloodstream is delayed
2
. The area under 

the curve (AUC) reflects the total drug exposure over time. The bioavailability (F) is linked to the 

AUC and describes the fraction of an administered dose that reaches the systemic blood circulation 

unchanged
3
. By definition, drugs given i.v. have a bioavailability of 100%. Bioavailability of other 

administration routes is determined by comparison with i.v. dosing (“absolute bioavailability”). A 

bioavailability of less than 100% is usually the result of incomplete absorption (low solubility, low 

permeability, high efflux, and/or enzymatic or pH hydrolysis) and/or high first pass metabolism (phase 

I and II). Moreover, it should be noted that a compound with low bioavailability bears the risk of high 

patient-to-patient variability, particularly when its drug-metabolizing enzymes (cytochrome P450) are 

polymorphic in a population (slow vs fast metabolizer)
3
. Another elementary PK parameter is the 

clearance (CL), which is defined as the ratio of the administered dose to the AUC. The volume of 

distribution (Vd) is an apparent volume and reflects the drug extent of localization outside the plasma. 

Thus, the higher the Vd (= dose/C0), the lower the initial drug concentration C0 in the plasma. 

 

Table 1: Descriptions, typical units and calculations of key PK parameters
3
 

PK parameter Description Typical units Calculation 

Area under the curve 
(AUC) 

Integral of the concentration-time 
curve 

h*ng/mL 
𝐴𝑈C0−∞ =  ∫ 𝐶 𝑑𝑡

∞

0

 

𝐴𝑈C0−last =  ∫ 𝐶 𝑑𝑡
𝑙𝑎𝑠𝑡

0

 

Initial concentration (C0) Initial blood concentration after i.v. 
dosing 

ng/mL Direct measurement 

Volume of distribution 
(Vd) 

The apparent volume in which the 
compound is dissolved  

L/kg or 
mL/kg/b.w. 

Vd =  
dose

C0
 

Clearance (CL) Describes how fast a compound is 
extracted from systemic circulation 

L/h/kg or 
mL/min/kg 

CL =  
dose

AUCi.v.
 

Elimination rate 
constant (ke) 

Elimination rate of first order 
kinetics 

h
-1 

ke =  
ln (2)

t1/2
=  

CL

Vd
 

Half-life (t1/2) Time required to reach half of the 
initial concentration 

min or h 
t1/2 =  

ln (2)

𝑘e
 

Bioavailability (%F) Fraction that reaches systemic 
circulation 

% 
%F =  

AUCp.o.

AUCi.v.
∗  

dosei.v.

dosep.o.
∗ 100 

Maximum 
Concentration (Cmax) 

Peak plasma concentration 
following dose 

ng/mL Direct measurement 

Time of maximum drug 
concentration (tmax) 

Time to reach Cmax min or h Direct measurement 
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The half-life (t1/2) is the time required to reach half of the initial drug concentration in the body. This 

parameter is inversely proportional to the elimination constant (ke) and linked to the CL and Vd. Thus, 

a high ke leads to a short half-life and a rapid decline of plasma concentration
13

. Furthermore, t1/2 

allows estimation on how frequent a dose has to be administered to maintain the drug concentration in 

a therapeutic range
2
. It should be noted that PK parameters are highly dependent on the structural 

properties of a compound (molecular weight, hydrogen bonds, lipophilicity, polar surface area, and 

pKa) and the exposed physical/biochemical environment (e.g. blood flow, pH, transporters, protein 

binding, and enzymes)
3
. A highly active compound in vitro is thus not necessarily an efficient drug in 

vivo, if e.g. the bioavailability is poor. On the other hand, drug candidates with lower bioactivity but 

favorable physicochemical properties may result in more efficacious in vivo drugs. Therefore, it is an 

important prerequisite to assess PK parameters along with physicochemical properties in early drug 

discovery, in order to improve in vivo performance of a compound by structural modifications. 

Common goals for PK parameters in drug discovery are summarized in Table 2. 

 

Table 2: Categorization of the main PK parameters in drug discovery
2
. 

 

 
Plasma protein binding (PPB) 

Drug molecules can bind to a wide variety of blood components such as red blood cells, leukocytes 

and platelets, proteins (albumin, α1-acid glycoprotein, lipoproteins, erythrocytes), and α-, β-, and γ-

globulins
2
. The most prominent plasma proteins involved in drug binding in humans are human serum 

albumin (HSA; representing 60% of total plasma proteins), α1-acid glycoprotein (AGP) and 

lipoproteins
2,15

.  

Plasma is the liquid fraction of whole blood (without cells) and is produced when blood is collected in 

the presence of an anticoagulant (e.g. heparin). Blood cells are removed by centrifugation and the 

resulting supernatant represents the plasma. In contrast, serum is obtained without an anticoagulant. 

Clotting factors (e.g. fibrinogen) are removed by centrifugation to produce the serum. In PK studies, 

the plasma is used for analysis. Plasma contains both the protein-bound and unbound fraction of drugs, 

while the cell-bound drug fraction is discarded
2
. 

Plasma proteins can adsorb high amounts of drug molecules. As only the unbound drug fraction can 

reach the target tissue, protein binding impacts the exposure to the therapeutic target and the ADMET 

PK parameters High Low 

Volume of distribution (Vd) >10 L/kg <1 L/kg 

Plasma clearance (CL) Rat: >45 mL/min/kg 
Human: >15 mL/min/kg 

Rat: <10 mL/min/kg 
Human: <5 mL/min/kg 

Half-life ( t1/2) Rat: >3h 
Human: >8h 

Rat: <1h 
Human: <3h 

Oral bioavailability
14 

(%F) Rat: >50% Rat: <20% 

Oral exposure
14 

(AUC) Rat: >2000 h*ng/mL Rat: <500 h*ng/mL 

Time of maximum drug 
concentration (tmax) 

>3h <1h 
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properties of a molecule. However, it should be noted that not only the extent of drug binding, but also 

the rate of association/dissociation influences the drug disposition in the body
2
. Moreover, plasma 

protein binding (PPB) can vary among species, different disease states, or with age
16–18

. 

 

PK dosing and sampling 

In early drug discovery, a compound is typically screened in 2 - 4 animals (e.g. rats)
2
. Common 

concentrations used in PK studies are around 10 mg/kg for oral and 1 mg/kg for i.v. administration
2
. 

Administration of a single test compound is often called discrete dosing. An alternative approach (so-

called cassette dosing) consists of the co-administration of several compounds (typically 4 - 10) as a 

one dose solution to animals
19

. The advantage of this strategy is that fewer animals are needed, and 

that PK parameters of several compounds can be assessed in parallel. However, the major drawback of 

this method is the risk of drug-drug interactions (e.g. competition for same transporter/enzymes, 

solubility issues) possibly resulting in misinterpretation of PK properties
20

.  

Ideally, drug concentrations in plasma samples are quantified by LC-MS/MS. Data analysis is 

performed using computational software programs (e.g. WinNonlin, PKsolver), which rapidly fit the 

data to mathematical PK models and calculate standard PK parameters
2
.  
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2.3.3 The gastrointestinal tract (GIT) and intestinal epithelium 

The main function of the gastrointestinal tract (GIT) is the digestion of food and the absorption of 

nutrients
21

. As most of the drugs are delivered via the oral route, the GIT also presents the major site 

of drug absorption
22

. The first obstacle for oral drugs is the acidic environment (pH 1.4 - 7)
2
 of the 

stomach, which not only breaks down food but also drug molecules. The small intestine connects the 

stomach to the large intestine (colon). Absorption occurs mainly in the three sections of the small 

intestine (duodenum, jejunum, and ileum). The surface area of the intestinal lumen is greatly amplified 

(600-fold) by macroscopic valve-like folds (circular folds), the villi, and the microvilli
22

 (Fig. 11). The 

microvilli and the glycocalyx form the brush border, a highly active enzymatic barrier. Moreover, the 

epithelial surface is coated by mucus containing large glycoproteins (mucin), enzymes, bacteria (gut 

microbes) and electrolytes. The pH of the three intestinal sections varies from slightly acid (pH 4.4) in 

the duodenum in a fasting state to slightly basic (pH 8) at the end of the ileum
23

. 

 

Figure 11: Schematic representation of the small intestine. 

 

Permeation mechanisms  

Approximately 96% of all commercial drugs penetrate through the GIT by passive diffusion
2
. Passive 

diffusion is driven by the concentration gradient across the phospholipid bilayer membrane. Diffusion 

can occur either through the epithelial cells (transcellular) or between the cell junctions 

(paracellular)
24

. Due to the lipophilic nature of the membrane, hydrophobic compounds (e.g. 

testosterone) can easily cross the cell membrane and are, therefore, primarily transported 

transcellularily
24

. Hydrophilic molecules, such as mannitol, are almost impermeable across the cell 

membrane and cross, therefore, the membrane predominantly via cell junctions (paracellular 

transport)
24

. These cell junction (pores/channels) in the epithelium are size-selective and usually 

exclude macromolecules with a molecular diameter of > ~8 Å
25,26

. Compared to other barriers, such as 

the blood-brain barrier (BBB), the junctions of the GIT are rather loose and allow molecules to slip 

43



 

 
 

between
2
. Another major mechanism of permeability is the carrier-mediated influx. Carrier-mediated 

influx often occurs against a concentration gradient and requires energy. Examples for uptake 

transporters (solute carrier family [SLC]) involved in drug absorption include the human di/tri-peptide 

transporter (hPEPT1, at the apical side)
27

, members of the human organic anion transporting 

polypeptide (OATP) family (at the apical side), and the organic cation transporter 1 (OCT1, 

SLC22A1, expressed at the basolateral side)
28

. In carrier-mediated efflux, molecules are actively 

transported by efflux pumps from the inside of a cell back into the intestinal lumen. The body is thus 

protected from potentially harmful substances (drugs, toxins). The apically expressed efflux pumps 

(ABC transporter family), include the P-glycoprotein (P-gp, also known as multidrug resistance 

protein 1 [MDR1] or ATP-binding cassette sub-family B member 1 [ABCB1]), the breast cancer 

resistance protein (BCRP, ABCG2), and the multidrug resistance associated protein 2 (MRP2, 

ABCC2)
29,30

. Among them, P-gp is the most prominent efflux transporter, as it can greatly impact the 

ADME process of a compound and consequently the success of a drug discovery project
2
. 

 

Intestinal metabolism 

Besides the liver, drug molecules can also be metabolized in the intestine before they enter the 

systemic circulation. Metabolism is divided into phase I and phase II. Phase I reactions are 

modifications (e.g. oxidation, dealkylation) of the parent drug catalyzed by monooxygenases such as 

the cytochrome P450 (CYP) family
2
. In the subsequent phase II metabolism, polar moieties such as 

glucuronic acid, sulfate, or glutathione are added to the molecule. Various cytochromes (e.g. CYP2D6, 

CYP3A4) are also present in the epithelial cells of the small intestine. The major metabolic enzyme in 

the small intestine is CYP3A4 present at approximately 50% of the hepatic level
22

. Besides phase I, 

also various phase II enzymes such as uridine 5'-diphospho-glucuronosyl transferases (UDP-UGTs), 

sulfotransferases (SULTs), and glutathione S-transferases (GSTs) are expressed in the small 

intestine
31,32

. 

 

2.3.3.1 Rule-based approaches and in silico models  

The fastest method to predict oral absorption of a compound is to apply “rules”. Even though many 

scientists have evaluated structural properties of drug candidates for optimal oral absorption, the most 

prominent rule became the “rule of 5”
33

. This set of rules was elaborated by the chemist Christopher 

A. Lipinski and predicts that oral absorption of a compound is more likely when 1) the number of H-

bond donors is < 5, 2) the number of H-bond acceptors < 10, 3) the molecular weight (MW) < 500, 

and 4) the LogP < 5. The “rule of 5” can only be applied to compounds transported by passive 

diffusion; molecules that are involved in active transport are excluded from this rule
34

. Subsequent 

studies by Veber et al.
35

 suggested that oral absorption of a molecule is favored if the sum of rotatable 

bonds is ≤ 10, and the polar surface area (PSA) ≤ 140 Å
2
 or the total H-bonds (acceptor plus donor) 

≤ 12. 
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In the past years, numerous computational models for the prediction of intestinal drug absorption have 

been developed (e.g. QikProp, Schrodinger or ACD/Labs Percepta Drug Profiler)
36

. Compared to the 

labor-intensive in vitro and in vivo methods, in silico models offer a fast, high-throughput, and cost-

efficient approach. However, in silico data should be considered with caution, as oral absorption is a 

complex and dynamic process which is affected by various factors (gastrointestinal physiology, 

formulation, food, etc.) that complicate the development of correct computational models
37

. 

 

2.3.3.2 In vitro permeability models  

In vitro approaches can be divided into physicochemical and cell-based methods. While the 

physicochemical assays allow predictions about the passive diffusion of a compound, cell-based 

assays also allow estimations about transporter-mediated routes.  

 

Physicochemical models 

A well-known physicochemical assay is the parallel artificial membrane permeability assay (PAMPA). 

This model was first established in 1998 by Kansy et al.
38

. Instead of a cell-based barrier, the model is 

made of phospholipids dissolved in long-chain hydrocarbons (e.g. dodecane)
2
. The phospholipid 

compositions can be modified in order to mimic different biological barriers (e.g. GIT, BBB).  

The immobilized artificial membrane high performance liquid chromatography (IAM-HPLC) 

represents an additional approach to evaluate passive diffusion
2
. The IAM methodology consists of an 

IAM column (packed with a stationary phase consisting of phospholipids bonded to the solid support) 

and a HPLC. Retention time is measured for a test compound and a standard drug. By comparing 

retention times of the test compound with the standard, permeability of the test compound can be 

predicted
39

. The IAM-HPLC methodology can also be used to investigate brain uptake or skin 

permeability
21

. 

The advantages of such physicochemical methods are the high-throughput capability, the low costs, 

and the relatively high reproducibility. However, they only provide information on passive diffusion, 

and the absence of cells expressing relevant transporters limits their predictive capability
40

. 

 

Cell-based models 

The most popular in vitro model to assess intestinal drug permeability is the Caco-2 (human colon 

adenocarcinoma cell line) assay
41,42

. Caco-2 cells are grown over a period of 21 days on 

semipermeable filter inserts until they form a monolayer of entero-like cells (Fig. 12). Despite its 

colon origin, a number of transporters of enterocytes of the small intestine are expressed in this cell 

line (e.g. P-gp, MRP2, OCT1, BCRP, and PEPT1)
2
. Similar to the small intestine, Caco-2 cells 

develop microvilli structures and a well-differentiated brush border on the apical side
31

 (Fig. 12). 
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The permeability assay is usually carried out in a bidirectional way (from apical to the basolateral 

compartment, and from the basolateral to the apical compartment, Fig. 12) to assess the permeability 

(expressed by the apparent permeability coefficient Papp, Table 3) and the contribution of active 

transporters in the permeability process (e.g. by calculation of the efflux ratio, Table 3)
2,4

. A 

complementary approach to test whether a compound is a transporter substrate (e.g. P-gp) is the co-

incubation with inhibitors (e.g. verapamil)
2
. However, Caco-2 cells are not genetically identical and 

expression levels of transporters can vary among laboratories
43

. Therefore, it is recommendable that 

each laboratory establishes its own Caco-2 model.  

Table 3: Permeability ranges typically used in the Caco-2 assay as benchmarks
2
. 

Observed permeability Explanation 

Papp < 2 x 10
-6 

cm/s 

2 x 10
-6 

< Papp < 20 x 10
-6

 cm/s 

Papp > 20 x 10
-6

 cm/s 

Low permeability 

Moderate permeability 

High permeability 

Uptake ratio: PA


B/ PB


A  ≥ 2 

Efflux ratio: PB


A/ PA


B  ≥ 2  

If PA


B ≈ PB


A   

The compound is most probably involved in active uptake 

The compound is most probably subjected to efflux 

The compound most probably permeates though the GIT by passive diffusion
2
 

 

In a typical Caco-2 assay, aliquots are taken from both compartments after different time points over a 

1-2 hours incubation period
44

. Test concentrations commonly range from 5 - 10 µM. Some 

laboratories argue that the oral drug concentration is closer to 50 - 100 µM, and thus recommend using 

higher concentrations in this assay
2
. But it should be noted that at such high concentrations, most 

transporters are probably saturated
2
. The Caco-2 assay is often performed at two pH conditions. In the 

apical compartment (representing the intestinal lumen), an acidic pH (e.g. pH 5 - 6.5) and in the 

basolateral compartment (blood) a neutral pH is used
2
. However, one major drawback of using a pH 

gradient is that passive diffusion is enhanced, for acids in the direction of lower pH, and for bases in 

the direction of the higher pH. Therefore, it is also common to use a pH of 7.4 in both compartments
2
. 

Caco-2 cells express phase II enzymes such as UDP-glucuronosyltransferases, sulfotransferases, and 

glutathione-S-transferases
31

. Unfortunately, they express only insignificant levels of the drug 

metabolizing CYP P450 enzymes
45,46

. An additional weakness of the Caco-2 model is the poor 

representation of the paracellular route, which might be explained by the tight junctions between the 

cells: compared to the human intestine, the Caco-2 assay has a significantly higher transepithelial 

resistance (TEER) (about 60 – 120 Ωcm
2
 compared to 400 Ωcm

2
)

47,48
. Moreover, Caco-2 cells are not 

able to produce mucus
49

. Despite these apparent disadvantages, the Caco-2 assay shows a good 

correlation to human oral absorption
 
and therefore, provides a valuable tool to assess both active and 

passive routes of an oral administered drug
4
.  
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Figure 12: Caco-2 monolayer grown on a semipermeable filter insert
37

 
 

 

An alternative cell line for estimating oral absorption is the Madin-Darby canine kidney cell line 

(MDCK)
21

. An advantage of this assay is that this cell line only requires 3 days of cultivation to reach 

similar integrity as Caco-2 cell monolayers (21 days)
21

. However, MDCK cells originate from dog 

kidneys, and their expression pattern of transporters differs from that of the human intestine
21

. To 

circumvent this drawback, stable transfected MDCKs that express specific transporters have been 

implemented as a permeability screening tool
40

.  

 

2.3.3.3 In situ models  

Permeability of drugs can also be studied by in situ perfusion of intestinal segments of rodents (e.g. 

rats, rabbits). An enormous advantage of in situ methods compared to in vitro assays is the presence of 

intact blood and nerve supply
21

. However, in order to obtain statistically significant data, a large 

number of animals are required. Moreover, the high costs and the relatively high amount of test 

compounds needed, render the model not feasible in early phases of drug discovery
21

. 
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2.3.4 The blood-brain barrier (BBB)  

The blood-brain barrier (BBB) is a 

restrictive barrier that separates the brain 

from the systemic blood circulation
50

. The 

main function of the BBB is the protection 

of the central nervous system (CNS) from 

potentially harmful substances such as 

xenobiotics, toxic metabolites, viruses, and 

bacteria
40

. It has been estimated that more 

than 98% of small drug molecules are 

unable to cross the BBB
51

. BBB penetration 

is, however, a perquisite for drugs acting on 

the CNS. On the other hand, BBB 

penetration might cause unwanted side 

effects for drugs not intended for the CNS. 

Therefore, regardless of the therapeutic 

area, it is important to assess BBB 

permeation of a drug candidate in early 

drug discovery
39

. 

The BBB is composed of endothelial cells covering the inner surface of the brain capillaries
52

. The 

capillary network
53

 in the human brain is more than 600 km long and has a surface area of 12 - 20 m
2
. 

The capillary endothelial cells are connected through tight junctions and adherens junctions 

(Fig. 13)
54

. Tight junctions (composed of the proteins occludin, claudins, and junctional adhesion 

molecules) seal the intercellular space resulting in extremely high TEER values
55

. Pericytes surround 

the endothelial cells. Both pericytes and endothelial cells are embedded in the basal lamina
52

. Due to 

their close contact, it is believed that pericytes stabilize the integrity of endothelial cells and conserve 

the barrier function
50,56

. The perivascular endfeet of astrocytes are attached to the basal lamina and 

cover a significant surface part of the endothelial cells
57

 (Fig. 13). By releasing growth factors and 

signaling molecules, astrocytes mainly contribute to the development and maintenance of the BBB 

characteristics
50

. Unlike the capillaries in the rest of the body, the BBB capillaries are characterized by 

high efflux activity, lack of fenestrations, limited pinocytosis, tight intracellular junctions, high 

metabolic activity (CYP P450 are expressed), and thus limited BBB penetration
58

. 

Passive diffusion is the dominant permeability mechanism across the BBB. Factors that favor this 

mechanism are low MW and high lipophilicity of a molecule
59

. Most of the compounds are 

transported out of the brain back into the blood via efflux pumps. Besides the efflux transporters 

BCRP and MRP1, MDR1 (P-gp) is highly expressed in the BBB
60

. Compared to other (cellular) 

 

 

 

 

Figure 13: Schematic depiction of the human BBB
43

. The 
neurovascular unit is composed of three cellular 
components: endothelial cells, pericytes and astrocytes, 
which are in close contact to neurons. The tight junctions 
between the endothelial cells form a selective diffusion 
barrier. 
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tissues, the paracellular permeation is drastically reduced in the BBB due to the presence of the tight 

junctions. Only a few transporter substrates such as nutrients (e.g. amino acids, peptides, glucose) and 

other endogenous molecules are actively taken up
2,60

. Importantly, it should be noted that BBB 

permeability can be altered in CNS pathologies (e.g. epilepsy, stroke, infectious processes, 

Alzheimer’s disease)
59

.  

 

2.3.4.1 Structure BBB permeation relationships and in silico models 

BBB-permeation of a compound depends on various physicochemical properties such as lipophilicity, 

PSA, MW, H-bonding, and ionization state. In 1995, Pardridge
61

 first introduced a set of rules. He 

suggested that compounds more likely pass the BBB, if the total sum of H-bonds is < 8-10, 

MW < 400-500, and if the compound is not acidic. Other researchers proposed that BBB penetration is 

favored if the sum of nitrogen and oxygen is < 6, PSA < 60-70 Å, MW < 450, and the LogD (at pH 

7.4) is between 1 and 3
62,63

. Moreover, various in silico tools have been established as pre-screening 

tools to test large chemical datasets (e.g. B3PP by Martins et al. 2012)
64

. But again, the absence of 

physiological conditions renders in silico tools vulnerable to false positive/negative results. 

 

2.3.4.2 In vitro BBB models 

The first potentially useful in vitro BBB model was introduced in the early 1980s by using freshly 

isolated primary bovine brain capillary endothelial cells
65

. Shortly thereafter, various mono-cultures 

BBB models using primary endothelial cells from rat, murine, porcine, and bovine origin were 

established
39

 (Fig. 14). It soon turned out that endothelial cells cultured alone rapidly de-differentiate 

and lose their phenotype
66

. Numerous studies have shown that brain-derived cellular components 

(particularly astrocytes) are able to induce BBB properties
67

. Therefore, various co-culture or triple co-

cultures in vitro BBB models using astrocytes, pericytes and/or neurons have been implemented to 

mimic the in vivo anatomy of the neurovascular unit
68

 (Fig. 14). 

 

 

 

Figure 14: In vitro BBB models cultured as monoculture, or in co- and triple-culture
68

. 
 

 

However, using primary cells faces numerous challenges. The cell isolation and purification is time-

consuming, expensive, and needs experience
68

. Besides this, the yield of cells is relatively low, the 

Monoculture    Co-culture   Triple-culture 

Apical (blood) 

Basolateral (brain) 
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lifespan is limited, and the expression pattern of uptake proteins and efflux pumps from animals 

differs from endothelial cells of human origin
69,70

. To avoid species differences, the use of human-

derived primary cells would be ideal
39

. However, brain tissue derived from surgical material often 

cannot be considered as “healthy”
68

. Additionally, difficulties in access, ethical reasons, patient-related 

heterogeneity, and poor TEER values restrict the use of human primary endothelial cells
66

.  

To circumvent these shortcomings, a number of immortalized brain endothelial cell lines of human 

(e.g. hCMEC/ D3) and animal (e.g. RBE4 from rats) origin have been generated in the last years
67

. 

Immortalized cell lines are easy to culture and maintain their differentiated properties even after 

extensive passaging
39

. However, compared to the in vivo situation, immortalized cell lines show 

various deficits, such as poor barrier properties including relatively low TEER values, insufficient 

tight junctions, and reduced expression of key transporters
53,71

. In the last decades, also cells lines of 

non-cerebral origin (e.g. Caco-2 or MDCK, stably transfected with specific transporters) have been 

widely established in the pharmaceutical industry as screening tools in early drug discovery
53

. These 

cell lines are easy to culture and show tight and reproducible barrier properties. However, epithelial 

cells differ in their morphology and transporter expression from BBB endothelial cells
53

. Recently, 

BBB models using endothelial cells derived from human pluripotent and hematopoietic stem cells 

have been implemented
55,72

. Unlike primary cell cultures, stem cells exhibit (unlimited) self-renewal 

while maintaining their homogenous gene expression profile
66

. Even though further benchmarking 

studies against established BBB models are required, the self-renewing potency and the fully human 

origin render such in vitro BBB models highly promising
39,66

.  

 
 

2.3.4.3 In vivo BBB models 

In vivo BBB permeability studies provide the most reliable data regarding BBB permeation
40

. A 

number of invasive techniques in animals, including in situ brain perfusion with radiolabeled 

compounds, HPLC analysis of brain homogenates, and intracerebral microdialysis have been 

implemented to assess BBB permeability and brain distribution
58

. One of the few techniques 

applicable to humans is the cerebrospinal fluid (CSF) sampling
58

. In this method, the drug 

concentration in the CSF is used to predict the unbound drug concentration in the brain
73

. More recent 

approaches to monitor the brain-uptake of compounds include various non-invasive imaging 

techniques, such as magnetic resonance imaging (MRI) and positron emission tomography (PET). 

However, these methods are not able to distinguish between parent compound and metabolites (for 

labeled compounds)
58

. Several reviews and books have discussed further in vivo methods in more 

detail
40,74,75

. But as in vivo approaches are low-throughput, costly and labor-intensive, they are mainly 

applied at later stages of the drug development process
39

. 
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2.3.5 The hERG channel 

In the late 1990s a number of non-cardiovascular drugs had to be withdrawn from the market due to 

unexpected post-marketing reports of sudden cardiac death
76

. Later it was found that this fatal side-

effect was associated with hERG channel inhibition in the heart. Since then, regulatory agencies 

carefully review new drug applications for potential hERG liabilities. Cardiac arrest due to hERG 

channel inhibition is a rare event, and in clinical trials a large number of patients are required to prove 

cardiac safety for a drug candidate. Hence, costs are tremendously increased if a compound shows 

hERG liability at an advanced stage of drug development. Therefore, it has become routine in practice 

to screen for hERG channel activity in an early lead optimization stage
2
.  

The hERG gene (KCNH2. KV11.1) is fully named human ether-a-go-go related gene and encodes the 

pore-forming subunit of a potassium ion channel that is primarily expressed in the heart
77

. The hERG 

channel consists of a tetramer of four identical subunits. Each subunit has six transmembrane regions. 

Being a typical voltage-gated ion channel, the membrane potential controls the opening and closing 

transition of the ion pore. The flow of K
+
 ions out of the cells generates the rapidly activating delayed 

rectifier K
+
 current called IKr

2,78
. 

IKr plays a pivotal role in the ensemble of ion channels that 

generates the cardiac action potential. The cardiac action potential 

is initiated with the opening of sodium channels
2
 (Fig. 15). The 

rapid influx of Na
+ 

ions into the cell causes a depolarization from 

about -90mV (resting state) to about +20mV. The subsequent 

opening of calcium ion channels maintains the depolarization and 

allows Ca
2+

 to move into the cells. By opening of the potassium 

channels, K
+ 

flows out of the cells leading to a repolarization of    

-90mV. The hERG ion channel is thus mainly involved in the 

repolarization of the cardiac action potential
2,78

. 

If a compound binds within the inner cavity of hERG, it can 

prevent K
+ 

ions from moving out of the cell, leading to a longer 

repolarization time (Fig. 15). On the electrocardiogram (ECG), this event can be monitored as a delay 

of the T wave (QT prolongation, also called long QT syndrome [LQTS], Fig. 15)
2
. Excessive LQT can 

induce the potentially life-threatening arrhythmia called torsades de pointes (TdP)
81

. But hERG 

blocking alone is often not the only trigger that causes TdP. Additional risk factors include genetic 

factors, electrolyte disorders (e.g. hypokalemia, hypomagnesemia), female gender, impaired 

hepatic/renal function, pre-existing cardiac diseases (e.g. bradycardia), and co-administration of a drug 

that either also blocks the hERG channel or inhibits the metabolism of a potential hERG inhibitor
82

. 

 
 

Figure 15: Correlation between 
ventricular action potential duration 
and QT interval

79,80
.  
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Many class III antiarrhythmic drugs induce QT prolongation based on their pharmacological action. 

Ironically, antiarrhythmic agents also have a proarrythmic potential, and the induction of TdP is a 

frequent side effect (e.g. 1–5% of patients treated with sotalol are affected)
83,84

.  

Not all antiarrhythmic drugs bear the same risk for generating arrhythmia. As many overlapping ion 

currents contribute to the cardiac action potential, other ion channels may also counteract the reduced 

potassium current. The most prominent example for this observation is verapamil. Although verapamil 

shows high hERG channel affinity, it also acts as a calcium channel antagonist
82

.  

Unlike class III antiarrhythmic agents, the incidence of drug-induced LQTS by non-cardiac drugs 

(such as antihistamines, antibiotics, or prokinetics, Fig. 16) is relatively low (less than one in 

100ʼ000)
82,85

. Nevertheless, even a low level of risk is unacceptable for drugs used for the treatment of 

non-life threatening diseases, particularly if the risk outweighs the benefits and safer alternatives are 

available. For this reason, several non-cardiac drugs (e.g. terfenadine
86

, cisapride
87

, Fig. 16) have been 

withdrawn from the market or their use has been restricted (e.g. chloroquine
88

, moxifloxacin
89

, 

Fig. 16). 

 

 

Figure 16: Commercial drugs that were withdrawn or carry warning labels due to hERG channel inhibition
82

.  

Most of the drugs that cause TdP or LQTS are hERG inhibitors. But not all hERG inhibitors induce 

arrhythmia, which makes cardiac safety assessment a challenging task. Therefore, a three-step 

approach (including in silico assessments, in vitro screenings by electrophysiological tools, and in vivo 

electrocardiograms) is often used to facilitate decision-making
2
. 

 

2.3.5.1 Structure-activity relationships and in silico approaches 

Site-specific mutation studies have identified the amino acids Try652 and Phe656 of the hERG 

channel protein as the most important residues for drug binding
90

. Aromatic compounds seem to 

interfere with Try652 via either π-stacking or cation-π interactions
91

. Phe656 appears to interact with 

Terfenadine 
(antihistaminic) 

Cisapride 
(prokinetic) 

Chloroquine 
(antimalarial) 

Moxifloxacin 
(antibiotic) 
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the non-aromatic hydrophobic substructures of a compound
80

. The main binding site lies within the 

inner cavity of hERG and can only be reached in the opened state. Compared to other ion channels, 

hERG can trap a compound within its central cavity. This observation might be explained by certain 

amino acid sequences
92

 (Pro-X-Pro) that enlarge the inner volume of the hERG channel, even in a 

closed state
93

.  

Although structurally diverse compounds block the hERG channel, several studies have repetitively 

shown common structural features that are associated with hERG inhibition. Most of the compounds 

that favor hERG blocking (1) are basic amines (pka >7.3), (2) have hydrophobic/lipophilic 

substructures (calculated logP ≥ 3.7), (3) lack negatively ionizable groups, and (4) are absent of 

oxygen H-bond acceptors
94

. Even though hERG structure-activity relationship is a highly active 

research field in academia/industry, the large chemical diversity of hERG blockers makes accurate in 

silico predictions difficult. Yet, due to the growing availability of databases, in silico models for hERG 

blocking predictions became commercially available in the last years (e.g. ACD/Labs Percepta Drug 

Profiler)
2
. 

 

2.3.5.2 In vitro hERG methods 

Various in vitro hERG assays have been implemented to assess cardiac safety of a drug candidate. In 

vitro hERG methods are typically cell-based assays and use stable (hERG) transfected cells lines such 

as human embryonic kidney cells (HEK293) or Chinese hamster ovary cells (CHO). In general, two 

types of in vitro assays can be distinguished
2
.  

(I) Indirect methods usually monitor effects that are linked to the K
+ 

flux across the hERG channel and 

include fluorescence-based assays
95

 (measure the intracellular amount of a voltage dependent dye), 

binding competition assays
96

 (which detect the displacement of a radiolabeled ligand by the test 

compound) and rubidium efflux methods
78

 (where the intracellular amount of Rb
+
 is determined, based 

on the ability of Rb
+
 to cross potassium channels). Although these assays are all favorable for high-

throughput screenings, they often show low correlation to in vivo electrophysiology
2
. 

(II) In contrast to these “indirect methods”, electrophysiological techniques measure the potassium 

current directly and are thus often considered as “gold standard” (e.g. patch-clamp, two electrode 

voltage-clamp)
97

. The most widely used electrophysiological tool in ion channel research is the 

“patch-clamp” method. In this technique, a glass pipette with an open diameter of about 1 µm is filled 

with a cytoplasm-compatible buffer and an electrode is inserted. This pipette is attached to a 

micromanipulator, which facilitates under the microscope placing of the tip in close contact to a hERG 

expressing cell (e.g. genetically modified HEK 293, CHO cells). In this position a negative pressure is 

applied and a piece of the membrane is “patched” on the tip of the patch-pipette. The electrode is used 

to “clamp” the membrane potential at a certain voltage, while the current needed to maintain this 
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Figure 17: Typical ion current profile from patch-
clamp for hERG blockers. Source: B’SYS GmbH 

voltage is recorded (Fig. 17). The K
+ 

ion efflux across the cell membrane can thus be measured 

directly. By changing the membrane potential from -80mV to +20mV, the hERG channel opens and 

an outward current can be observed (positive current amplitude). A decrease of the membrane 

potential to -40mV leads to a transient peak of the ion current (based on a fast transition of inactivated 

hERG channels to the open state) before the channel goes back to its closed state. If a test compound is 

a hERG inhibitor (e.g. E-4031) the channel gets blocked and the potassium outward current is reduced 

(Fig. 17)
2
.  

Although electrophysiological measurements provide valuable information regarding the hERG 

activity of a compound, in vitro hERG data are 

not sufficient for a full assessment of cardiac 

risk in humans. According to the ICH 

(International Conference on Harmonization) 

safety guideline S7B, the following nonclinical 

data are required
79,98

: (1) effects mediated 

through other ion channels (e.g. sodium 

channel), (2) action potential parameters in 

isolated cardiac preparations (e.g. Purkinje 

fibers, papillary muscles, or intact hearts from 

dogs, guinea pigs, rabbits or sheeps), (3) ECG 

parameters measured in animals (e.g. dog), and 

(4) data evaluating the proarrythmic effect in 

isolated cardiac preparations or animals. 

 

2.3.5.3 In vivo hERG methods 

The most conclusive data regarding hERG inhibition are provided by in vivo studies. In this technique, 

electrodes are attached to the surface of the heart. If a compound is a hERG blocker, the QT 

prolongation can be directly seen on the ECG
2,99

. The major advantage of this method is that 

additional safety parameters (e.g. heart rate, blood pressure) can be assessed in parallel
99

.  

A safety margin that is frequently used is the ratio between the hERG IC50 and the Cmax, unbound
100

. To 

reach an acceptable degree of safety, a value >30 is aimed for. This value has been set based on 

experimental observations: a ratio >30, showed in 15% generation of TdP, while 85% remained 

unaffected. For values <30, 95% developed TdP and only 5% were not affected
100

. Besides Cmax , also 

other PK parameters (e.g. metabolism) and plasma protein binding have to be considered as they can 

greatly impact the amount of compound reaching the heart tissue. An additional safety margin refers to 

the QT prolongation. According to ICH-E14 guideline for clinical studies major concerns are 

expressed about a drug candidate when the LQT exceeds 5 ms compared to normal
2,101

. 
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2.4 Bioanalysis 

2.4.1 Definition and current techniques  

Bioanalysis is a sub-discipline of analytical chemistry that focuses on the analysis of xenobiotics 

(drugs, metabolites and biomarkers) and biotics (DNA, macromolecules, proteins) in biological 

matrices (e.g. blood, plasma, serum, urine, CSF and salvia)
1
. Quantitative and qualitative analysis of 

molecules in biological systems play an important role in various areas including drug discovery and 

development, pharmacokinetics and metabolic studies, therapeutic drug monitoring (TDM), and 

clinical and forensic toxicology
2–5

. 

For the detection and quantification of analytes in biological matrices, different bioanalytical 

techniques have been established. Immunoassays (IAs) are one of the most frequently used techniques 

in routine analysis. They are sensitive, easy to use, time efficient and can be automated (Table 4)
6
. 

However, the major disadvantages of all IAs are the requirement of analyte-specific antibodies and the 

risk of cross-reactions that may lead to false positive results
6,7

. Gas chromatography coupled to mass 

spectrometry (GC-MS) is considered as a more selective and sensitive technique
6
. Moreover, reference 

libraries of mass spectra are available which facilitates the detection of known compounds. 

Nevertheless, GC-MS requires a time-consuming sample preparation (derivatization), as the samples 

need to be volatile and thermostable for the analysis
8
. Over many years, liquid chromatography (LC) 

hyphenated with spectrometric detection such as ultraviolet/visible (UV/VIS) absorbance or 

occasionally fluorescence was often used in bioanalytics
9
. Even though both detection systems are 

highly robust, the techniques are limited to compounds possessing a chromophore (UV/VIS) or 

fluorophore (fluorescence)
10

. In the last decades liquid chromatography- mass spectrometry (LC-MS) 

has undergone tremendous technological improvements with the introduction of new interfaces, 

ionization and detection techniques
11

. These advancements allowed the application of LC-MS/(MS) to  

Table 4: Comparison of some available bioanalytical techniques
6
 

Method Comments Advantage Disadvantage 

IA e.g. enzyme-linked 
immunosorbent assay (ELISA)

12
 

Radio-IA (RIA)
13

 

Highly sensitive 
Relatively easy 
Automated 
High-throughput

13
 

High price of reagents (analyte-
specific-antibodies) 
Cross-reactions  
Health hazards (RIA)

13
 

GC-MS Well suited for apolar, 
thermostable and low molecular 
weight analytes 

Sensitive and selective 
Reference databases of 
spectra available

6
 

Not compatible with polar, 
thermolabile, or high-molecular 
weight compounds 
Derivatization sometimes required 

LC- UV/Vis Useful for aromatic 
compounds/unsaturated systems 
Fixed or programmable 
wavelength detector available 

Moderately sensitive 
Robust 

UV/VIS absorbance of compounds 
required 

LC-
MS/(MS) 

Compatible with non-volatile and 
thermolabile molecules 
Gold standard for small 
molecules (MW < 800)

14
 

Sensitive and selective 
Applicable to a wide 
range of analytes 

Matrix effect
6
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the qualitative and/or quantitative analysis of endogenous components (e.g. proteins, peptides, 

carbohydrates, DNA), drugs, or metabolites
5,15,16

. Up to the present, LC-MS/(MS) is considered as the 

gold standard for small molecules due to its unsurpassed selectivity and sensitivity
14

. But also high-

resolution mass spectrometry (HR-MS)(either time-of-flight or orbitrap mass analyzer) has been on 

rise, as these instruments can simultaneously provide qualitative and quantitative analysis of 

compounds and their metabolites
14

. 

 

2.4.2 LC coupled to MS/MS and HR-MS 

Liquid chromatography (LC) 

LC can be classified into high performance liquid chromatography (HPLC) and ultra-high 

performance liquid chromatography (UHPLC), or as one vendor calls it ultraperformance liquid 

chromatography (UPLC)
9
. While conventional HPLC instruments are designed for pressures of 

approximately 400-600 bar (5800-8700 psi), UHPLC systems generate back-pressures of around 

1000-1300 bar (14500-18900 psi)
9
. The capability of operating at such high pressures allows the use 

of shorter columns with a smaller particle size of the packing material (below 2 µm)
17

, which in turn 

results in higher resolving power and reduced analysis time
9
. 

 

Mass spectrometer (MS)  

A mass spectrometer consists of an ion source, a mass analyzer and a detector
18

. Before the analyte 

can enter the mass analyzer, the sample introduced into the source has to be transferred from the liquid 

or solid phase to the gas phase and needs to be ionized
9
. The most common ion source is the 

atmospheric pressure ionization (API) source to which the electrospray ionization (ESI)
19

 and the 

atmospheric pressure chemical ionization (APCI)
9
 source belong. In both ionization techniques, 

molecules eluting from the column, are ionized to either positively (M+H
+
) or negatively (M-H

-
) 

charged ions. Both ESI and APCI are considered as “soft” ionization techniques as they induce only 

little fragmentation to the analyte
8,9

. While APCI is used to analyze small, thermostable and non-polar 

compounds, ESI is preferentially applied to investigate labile and more polar molecules
8,18

. After 

ionization of the analyte, the mass analyzer separates the ions according to their mass-to-charge ratio 

(m/z). The most popular mass analyzer in drug quantification is the triple quadrupole detector (TQD or 

QqQ)
8
. The TQD system is a tandem mass spectrometer (MS/MS) that consists of three quadrupole 

mass analyzers connected in series (Fig. 18). The first (Q1) and the third (Q3) quadrupoles consist of 

four parallel conducting rods that permit the passage of only a single m/z value, whereas the middle 

quadrupole (Q2) acts as a (non-mass-resolving) collision cell
20

. The arrangement of the TQD allows 

the performance of different scan types
9
. Selected reaction monitoring (SRM) is the most common 

scan type in quantitative analysis. In this mode, Q1 selects a specific m/z (parent ion) to be fragmented 

in Q2 in the presence of an inert gas (argon or nitrogen). After this so-called collision induced 
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dissociation (CID), the second mass analyzer (Q3), filters a specific m/z fragment (daughter ion) to be 

detected by an electron- or photo- multiplier
21

. This procedure offers high selectivity and sensitivity, 

and ensures that only the molecule of interest is quantified, whereas unwanted molecules (e.g. matrix 

constituents) do not reach the detector
10

. When more than one specific m/z is selected for Q1 and Q3, 

the scan type is denoted as multiple reactions monitoring (MRM).  

 

Figure 18: Schematic presentation of a triple quadrupole detector (QqQ) instrument 

High resolution mass analyzer (HR-MS) systems are preferentially used to obtain more accurate mass 

data (< 5 ppm)
22

, which is particularly desirable for metabolite identification and structural 

elucidation. One instrument working at such high resolving power is the time-of-flight (TOF) mass 

analyzer. The Q-TOF system can be considered as a modified TQD system, where the third 

quadrupole (Q3) is replaced by a orthogonal reflectron-TOF mass analyzer
22

 (Fig. 19). This TOF mass 

analyzer measures the mass-dependent time that ions need to move from the pusher electrode to the 

detector. Low m/z ions fly at a higher velocity and reach the detector within a shorter time than higher 

m/z ions
9
. Calibration of the accelerating field with reference substances (“lock masses”) permits the 

exact mass analysis of unknown compounds
9
.  

 

Figure 19: Schematic presentation of the Q-TOF instrument
23 
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2.4.3 Sample preparation 

Biological matrices are highly complex mixtures, usually containing a high content of proteins, salts, 

phospholipids, and other endogenous material
9
. Most of these biological samples are not suitable for 

direct LC-MS/MS analysis, but need to be cleaned-up prior to injection. If done properly, sample 

extraction enhances selectivity and sensitivity, and additionally increases column and instrumentation 

lifetime
10

. Sample extraction techniques currently used to clean up biological samples include sample 

dilution (‟dilute-and-shoot”), protein precipitation (PP), liquid-liquid extraction (LLE), and solid 

phase extraction (SPE)
6
. In recent years, the supported-liquid extraction (SLE) has become 

increasingly popular
24

 (Table 5). But also newer phospholipid removal techniques such as the Ostro
TM

 

(Waters) pass-through sample preparation plates (combination of filtration and sorbent interaction) 

have emerged. 

Dilution: In this clean-up technique, samples (e.g. urine) are diluted with water or mobile phase, and 

directly injected into the LC-MS/MS system. This ‟dilute-and-shoot” process is a fast and easy 

procedure. Samples are usually diluted in a ratio of 1:10 or higher to reduce the matrix effect. 

However, this process also dilutes out the compound of interest
6
. 

Protein precipitation (PP): The purpose of the protein precipitation is to remove endogenous proteins 

and cellular components that would interfere with the LC-MS/MS system. Protein denaturation can be 

achieved through exposure to strong acids/bases (leading to a pH change), organic solvents (methanol, 

acetonitrile), or heat
1
. As denaturation changes the secondary and tertiary structure of the protein, the 

analyte bound to these proteins becomes freely soluble in the reagent solvent
1
. After centrifugation, 

the supernatant is evaporated to dryness and reconstituted in an injection solvent/mobile phase prior to 

injection into the LC-MS/MS system
25

. 

Liquid-liquid extraction (LLE): The liquid-liquid extraction involves the transfer of a compound in 

aqueous solution into an immiscible organic phase (e.g. ethyl acetate, methylene chloride, and 

hexane)
26

. To facilitate the equilibrium partitioning of the analyte between the phases, samples are 

vortexed. After phase separation by centrifugation, the organic phase containing the extracted analyte 

is evaporated to dryness and reconstituted in injection solvent before analysis
27

. 

Supported-liquid extraction (SLE): The supported-liquid extraction (SLE) is an analogous technique 

to the traditional LLE and uses the same organic solvents for sample extraction
28

. Instead of shaking 

the two immiscible phases together, in SLE, the aqueous sample is immobilized on an inert support, 

while the organic phase flows through the packing material
24

. In this way, problems such as emulsion 

formation and low analyte recoveries can be circumvented
28

. 

Solid phase extraction (SPE): The separation is based on the affinity of the analyte towards the 

stationary phase
25

. After loading the analyte onto a pre-conditioned SPE cartridge, the compound 
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retains on the stationary phase, until it is eluted with an appropriate solvent. Commercial SPE 

cartridges (e.g. Oasis SPE, Waters)
29

 are inert plastic tubes packed with an adsorbent. Package 

materials (reversed or normal phase) are similar as in LC columns. However, the particle size of the 

package in SPE cartridges is often considerably larger than in LC columns, to ensure a reasonable 

permeability of the analyte
25

. 

Table 5: Currently most used sample preparation techniques
6
. 

Method Comments Advantages Disadvantages 

Dilute and 
shoot 
 

Matrix interferences are not 
removed  
No pre-concentration of 
analyte 

Easy and simple 
Time-efficient 

Possible interferences 
Lack of sensitivity  
Instrument and column 
contamination 

Protein 
precipitation 
(PP) 

Most widely used extraction 
method

24
 

 

Simple and fast 
Inexpensive 

Numerous co-extracted 
compounds 
Less clean compared to LLE 

Liquid-liquid 
extraction 
(LLE) 

Based on the relative 
solubility of a compound in 
two different immiscible 
liquids 

Suitable for numerous 
compounds 
Good selectivity 
Few matrix effects; provides 
cleaner extracts than PP

24
 

Limited extraction of large 
hydrophilic compounds 
Variable recoveries 
Large volumes of costly 
solvents needed 

Supported-
liquid 
extraction 
(SLE) 

Commercial available 96-well 
plates (e.g. Isolute® SLE+ 
from Biotage)

28
 

Highly clean samples 
High recovery and 
reproducibility

24
 

Expensive 
Limited sample aliquot 
volume (< 400 µL) due to the 
96-well format

24
 

Solid-phase 
extraction 
(SPE) 

Numerous types of supports: 
reversed phase silica material 
(e.g. C18), cation or anion 
exchanger, organic polymer 
(e.g. N-vinylpyrrolidone)

6
 

Highly clean extracts 
Good selectivity 
Suitable for numerous 
compounds 

High cost of cartridge 
More expensive than PP and 
LLE 

 

 

2.4.4 Bioanalytical quantification using validated LC-MS/MS methods 

The aim of bioanalytical quantification methods is to provide accurate and reliable results. 

Particularly, in the field of forensic and clinical toxicology, correct data interpretation plays a 

significant role
30

. Unreliable analytical findings might result in fatal outcomes such as unjustified legal 

consequences for the defendant, or incorrect dosing of patients
30

. Thus, method validation is a 

perquisite for correct quantification. Method development builds the basis of method validation. Once 

a method is validated, it can be applied to the study (Fig. 20). 

To standardize bioanalytical method validation procedures, the US Food and Drug Administration 

(FDA)
31,32

 and the European Medicine Agency (EMA)
33

 have released bioanalytical guidance 

documents which are in compliance with the good laboratory practices (GLP)
30

. But also other 

regulatory authorities, such as the Japanese Ministry of Health, Labour and Welfare (MHLW)
34

, or the 

Agência Nacional de Vigilância Sanitária (ANVISA) Resolution from Brazil
35

 have issued guidelines 

for the design and conduction of bioanalytical quantification studies. Unfortunately, each guideline is 

slightly different, and at present no harmonized global guideline has been established
36

. 
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Figure 20: Major steps in method development, validation, and application to a study8 

 

2.4.5 Method development  

LC-MS/MS method development includes the following steps
37

: 

1. Physicochemical properties: For developing a reliable quantification method, information 

about the physiochemical properties of the analyte such as chemical structure, functional 

group(s), molecular weight, solubility, and stability are crucial. Based on these properties, 

suitable solvents can be selected and handling precautions can be taken (such as temperature 

storage, light protection of photosensitive compounds, etc.)
37

. 

2. Selection of the best internal standard (I.S.): I.S. is a compound added in a constant amount 

to the quantitative sample to correct variations during sample preparation and analysis
38

. A 

stable isotopic-labeled version of analyte is the ideal I.S. due to its similar physiochemical 

characteristics. However, D (
2
H), 

13
C, and 

15
N-labeled compounds are very expensive and 

mostly not available for natural products
39

. Therefore, synthetic structural analogs are often 

used as alternatives. 

3. Optimization of MS/MS parameters: To reach high selectivity and sensitivity for the 

analyte, a suitable ion source needs to be selected (e.g. ESI, or APCI). Moreover, MS/MS 

parameters such as SRM transition, cone voltage, collision energy, etc. have to be generated 

and optimized for analyte and I.S.. 

4. Optimization of the LC method: To obtain an optimal chromatographic separation the 

following variables needs to be modified: (1) column type (e.g. reversed phase [RP-LC], 

normal phase LC [NP-LC], or hydrophilic interaction [HILIC]) (2) mobile-phase 

composition/gradient (3) temperature (column, autosampler), and (4) eluent additives and 

pH
37

. 

5. Selection of sample preparation technique: Sample preparation is the most critical step in 

method development, as it can highly impact the quality of the data. PP is the most common 

extraction technique. But for highly complex mixtures (e.g. plasma) more sophisticated 

techniques are sometimes required (e.g. SPE)
10

. 
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2.4.6 Method validation 

After a method has been developed, it needs to be demonstrated that the quantification assay is reliable 

and reproducible for the intended use
2
. For analytes in a different matrix (e.g. plasma, aqueous buffer) 

a new method has to be validated
9
. Partial validations are required, when modifications in e.g. sample 

preparation technique, detection system, or changes within the matrix are made for a validated 

method
9
. Cross-validations are necessary, when one study is performed in different laboratories or 

when different analytical techniques (e.g. ELISA vs. LC-MS/MS) are used for data generation
30

. 

According to the FDA and EMA guidelines a method should be validated with respect to calibration 

curve, accuracy, precision, selectivity, specificity, matrix effect, carry-over, recovery (= extraction 

yield), dilution integrity, and stability
31–33

. 

A Calibration curve should include six to eight calibrators that cover the total experimental 

concentration range. The calibration curve is generated by plotting the peak response against the 

retention time. The peak response is usually defined as the ratio of the peak area of the analyte to the 

I.S. Data are fitted either by linear or quadratic regression. But also other models (e.g. power fit) are 

used
9
. Weighting factors such as 1/concentration (also known as 1/X or 1/X

2
) are often applied to 

improve the fit of the regression to the data
9
. The response of the lowest calibrator (LLOQ = lowest 

limit of quantification) should be at least 5 times higher than the response of the analyte in the blank 

and the signal to noise ratio (S/N) should be higher than 10
31,33

. To check the reliability of the 

calibration curve, quality controls (QCs) should be incorporated into each analytical run. These QC 

samples should cover the low (3x LLOQ), the medium (50% of ULOQ, ULOQ = upper limit of 

quantification), and the high (70-85% of ULOQ) concentration range of the calibration curve
31,33

. 

Accuracy is an assessment of the differences between the determined concentration and the nominal 

concentration and is expressed by the relative error RE%. Precision evaluates the closeness of an 

individual measurement to multiple measurements on an homogenous set of sample and is defined by 

the coefficient of variation (CV%)
31,33

. 

𝑅𝐸 (%) =
𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑐𝑜𝑛𝑐. −𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑐𝑜𝑛𝑐.

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑐𝑜𝑛𝑐.
 𝑥 100 

𝐶𝑉 (%) =
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑆. 𝐷. )

𝑀𝑒𝑎𝑛 𝑐𝑜𝑛𝑐.
 𝑥 100 

To fulfill the acceptance criteria of the FDA and EMA guidelines, imprecision (CV%) should be 

below 15% for all levels (20% for the LLOQ as exception) and inaccuracy (RE%) should be within  

15% of the nominal value for all levels ( 20% of the nominal value for the LLOQ). 
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Intra-run accuracy and precision of a method are assessed within one analytical run on the same day, 

whereas inter-run accuracy and precision are determined within different analytical runs over at least 

three days
31,33

. 

Selectivity refers to the ability to distinguish the analyte and I.S. from other interfering endogenous or 

exogenous components in the sample. Selectivity of the method is assessed by analyzing at least six 

individual sources of blank matrix
31,33

. However, for rare matrices the use of fewer sources is also 

acceptable (e.g. three different batches for rat plasma)
33

. Specificity is defined as the lowest 

concentration that can be measured with precision and accuracy
31,33

. While specificity is considered as 

an absolute term, selectivity can be graded
40

. 

The matrix effect is a signal suppression or enhancement of the analyte due to the presence of 

endogenous substances, phospholipids, salts, impurities etc.
9
. This effect can result in a shift in 

retention time, poor peak shapes or even inaccurate measurements
9
. Therefore, the matrix effect 

should be assessed to ensure the reliability of the method
31,33

. 

Carry-over is the transfer of analyte or I.S. (amount) to the following sample injected. Carry-over 

typically occurs within the LC-MS/MS system (e.g. syringe, switching valve) or within the column
9
. 

But it can also be the result of inaccurate pipetting during the sample preparation process. To assess 

the carry-over with an analytical run, a blank sample is injected after the ULOQ. The EMA guideline 

requests a carry-over below 20% for the analyte and 5% for the I.S:
33

.  

According to the FDA and EMA guidelines the extraction yield does not need to be close to 100%. 

However, to avoid under/overestimation of data, the recovery has to be consistent, reproducible and 

precise over the validated range
31,33

. 

Sample dilution should not impact accuracy and precision of a method. To demonstrate the dilution 

integrity, a QC sample prepared at higher concentrations than the ULOQ should be diluted with blank 

matrix and analyzed. 

Stability tests are performed to mimic the experimental conditions such as sample collection, 

processing, and storage. Typical short-term stability tests include three freeze-and-thaw cycles, 4 

hours storage at benchtop, and autosampler stability. For the assessment of the long-term stability of 

the analyte, unprocessed samples are kept for days, month or even years under storage conditions (e.g. 

- 20°C or -80°C). Stability data on the stock solution of analyte and I.S. should be generated to ensure 

the stock solution stability
31,33

. A degradation of less than 5% is typically tolerated. 

Finally, a standard operating procedure (SOP) should be written and generated data for the 

establishment of the method should be documented in a validation report. 
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2.4.7 Sample analysis 

After a method has been validated, it can be applied to a study. Gained experience regarding sample 

handling during the validation has to be taken into consideration for the study. For sample 

quantification, like for validation tests, two sets of calibrators along with six QCs (low, medium, high 

QCs in duplicates) are injected into the LC-MS/MS system. The analytical run is considered to be 

valid, if 75% of the calibrators and 67% (e.g. at least four out of six) of the QCs of the measured 

concentration are within 15% of their respective nominal values (20% for the LLOQ as exception)
31,33

. 

In addition, if samples are diluted, diluted QCs should be included in the analysis. 
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3.1 Development and validation of a LC-MS/MS method for assessment of an 

anti-inflammatory indolinone derivative by in vitro blood-brain barrier 

models 

Evelyn A. Jähne, Daniela E. Eigenmann, Maxime Culot, Roméo Cecchelli, Fruzsina R. Walter, Mária 

A. Deli, Robin Tremmel, Gert Fricker, Martin Smieško, Matthias Hamburger, and Mouhssin Oufir 

 

Journal of Pharmaceutical and Biomedical Analysis 98 (2014) 235–246 

DOI: 10.1016/j.jpba.2014.05.026 

 

The anti-inflammatory and anti-allergic compound (E,Z)-3-(4-hydroxy-3,5-dimethoxybenzylidene)-

indolin-2-one (indolinone, Fig. 1) from woad (Isatis tinctoria L., Brassicaceae) was screened in our 

recently validated immortalized human in vitro blood-brain barrier (BBB) model and in two well-

characterized primary animal in vitro BBB models. For the exact quantification of indolinone, we 

developed and validated an ultra-performance liquid chromatography tandem mass-spectrometry 

(UPLC-MS/MS) quantification method in Ringer HEPES buffer (RHB) according to current 

international guidelines. Data obtained in the three different models showed good correlation and were 

indicative of a high BBB permeation potential of indolinone. P-glycoprotein (P-gp) interaction of 

indolinone was studied with the aid of a calcein-acetoxymethyl (AM) uptake assay using porcine brain 

capillary endothelial cells, and by calculation of the efflux ratio (ER) from the bidirectional 

permeability assays. The ER below 2 indicated that the compound was not involved in active mediated 

efflux. The calcein-AM uptake assay demonstrated that indolinone was neither a P-gp substrate nor a 

P-gp inhibitor. 

 

Fig.1: E,Z-3-(4-hydroxy-3,5-dimethoxybenzylidene)indolin-2-one (indolinone) 

 

My contributions to this publication: validation of the UPLC-MS/MS method in RHB, cultivation of 

human cells (hBMEC cell line), sample preparation and analysis, recording and analyzing data, 

writing the manuscript draft, and preparation of figures and tables. 

          Evelyn Andrea Jähne 
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The compound  (E,Z)-3-(4-hydroxy-3,5-dimethoxybenzylidene)indolin-2-one  (indolinone) was identi-

fied  from  lipophilic  woad extracts  (Isatis  tinctoria  L., Brassicaceae)  as  a compound  possessing  potent

histamine  release  inhibitory  and anti-inflammatory  properties  [1].  To  further  evaluate  the  potential  of

indolinone  in terms  of crossing  the  blood–brain barrier (BBB), we screened  the compound in several

in  vitro  cell-based human and  animal  BBB models. Therefore, we developed  a quantitative LC–MS/MS

method  for  the  compound in modified  Ringer HEPES  buffer  (RHB)  and validated it  according  to FDA  and

EMA guidelines  [2,3].  The calibration  curve of indolinone  in the  range between  30.0 and  3000  ng/ml  was

quadratic,  and the  limit  of  quantification  was 30.0 ng/ml.  Dilution  of samples up  to 100-fold  did  not  affect

precision  and accuracy. The carry-over  was within  acceptance  criteria. Indolinone  proved  to  be  stable in

RHB  for  3 h at  room  temperature  (RT),  and  for three  successive freeze/thaw  cycles.  The  processed  sam-

ples  could be  stored  in the  autosampler at  10 ◦C  for at least  28  h.  Moreover,  indolinone  was stable for at

least  16 days in RHB  when  stored  below  −65 ◦C.  This  validation  study  demonstrates  that our method is

specific, selective, precise,  accurate,  and capable  to produce  reliable  results.

In  the  immortalized human  BBB mono-culture  model,  the  apparent permeability  coefficient  from  apical

to  basolateral  (Papp A→B),  and the  Papp from  basolateral  to apical (Papp B→A) were  19.2 ±  0.485  ×  10−6 cm/s

and 21.7  ± 0.326  ×  10−6 cm/s,  respectively.  For  the  primary  rat/bovine  BBB co-culture  model a Papp A→B of

27.1  ± 1.67  ×  10−6 cm/s  was  determined.  In the  primary  rat  BBB triple co-culture model,  the  Papp A→B and

the Papp B→A were  56.2  ± 3.63  × 10−6 cm/s  and 34.6  ± 1.41  × 10−6 cm/s,  respectively. The  data  obtained

with the  different models  showed  good  correlation  and were  indicative  of  a high  BBB permeation poten-

tial  of indolinone confirmed  by  in  silico prediction  calculations.  P-glycoprotein  (P-gp)  interaction  for

indolinone  was studied  with  the  aid of a calcein-AM  uptake assay,  and  by  calculation of the  efflux ratio

(ER)  from the  bidirectional permeability  assays.  For both  bidirectional  BBB models  an  ER  below  2 was

calculated,  indicating  that  no active mediated  transport  mechanism  is involved  for  indolinone.  In  porcine

Abbreviations: BBB, blood–brain barrier; BSA, bovine serum albumin; BBEC, primary bovine brain capillary endothelial cells; Cal, calibrator; cLogP, calculated logarithm of

partitioning coefficient; Calcein-AM, calcein-acetoxymethylester; CCl, cell layer capacitance; Conc., concentration; CNS, central nervous system; CV%, coefficient of variation;

CPT-cAMP, 8-(4-chlorophenylthio)-adenosine-3′ ,5′-cyclic monophosphate, sodium salt; DMEM,  Dulbecco’s modified Eagle’s medium; DMSO, dimethyl sulfoxide; DNase I,

deoxyribonuclease type  I;  96-DWP, 96-deep well plate; EMA, European Medicines Agency; ER, efflux ratio; ESI, electrospray ionization; FBS, fetal bovine serum; FDA, Food

and  Drug Administration; hBMEC, immortalized human brain microvascular endothelial cell line; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; HPLC, high-

performance liquid chromatography; I.S., internal standard; KRB,  Krebs–Ringer buffer; LLOQ, lower limit of quantification; LTS, long-term stability; MRM,  multiple reaction

monitoring; MW,  molecular weight; Na-F, sodium fluorescein; NMR, nuclear magnetic resonance; PBCEC, porcine brain capillary endothelial cells; PBS, phosphate buffered

saline; Papp, apparent permeability coefficient; P-gp, P-glycoprotein; PSA, polar surface area; QC, quality control; QCH, quality control high; QCL, quality control low; QCM,

quality control medium; RBEC, primary rat brain capillary endothelial cell; RE%, relative error; RHB, Ringer HEPES buffer; Rpm, revolutions per minute; RT, room temperature;

SD, standard deviation; S.E.M., standard error of the mean; SS, stock solution; TEER, transendothelial electrical resistance; TFA, trifluoroacetic acid; TQD, tandem quadrupole

detector; ULOQ, upper limit of  quantification; UPLC–MS/MS, ultra performance liquid chromatography with tandem mass spectrometric detection; v/v, volume per volume;

WS,  working solution.
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brain  capillary  endothelial  cells  (PBCECs), the calcein-AM  uptake  assay  demonstrated  that  indolinone  is

neither a P-gp  substrate nor  a  P-gp  inhibitor and  is accumulated  into cells  at  high extent.

© 2014 Elsevier  B.V.  All rights  reserved.

1. Introduction

In the course of an investigation of  anti-inflammatory and

anti-allergic compounds in  the ancient anti-inflammatory plant

Isatis tinctoria [1,4–20] we identified (E,Z)-3-(4-hydroxy-3,5-

dimethoxybenzylidene)indolin-2-one (indolinone) as the com-

pound responsible for the inhibition of histamine release from

activated mast cells [1]. The compound was a  potent inhibitor of

antigen-induced histamine release by stabilizing mast cells [1] by

a molecular mode of action that is  not yet fully understood but

different from known compounds. The compound was shown not

to act via targets upstream of the histamine containing granules

and, hence, is thought to interact with the membrane of  histamine-

containing granules [1]. Given the new mechanism of  action, low

cytotoxicity, anti-allergic potency, and drug-like physicochemical

properties [21], indolinone is  a  promising lead for the develop-

ment of new anti-allergic drugs. For further assessment of the

potential of indolinone we recently developed and validated an

UPLC–MS/MS method for quantification of indolinone in lithium

heparinized rat plasma for a  preliminary pharmacokinetic study in

Sprague-Dawley male rats [22]. To further evaluate the potential of

indolinone in terms of blood–brain barrier (BBB) permeability, we

screened the compound in several in vitro cell-based human and

animal BBB models.

Blood–brain  barrier (BBB) penetration is necessary for drugs act-

ing on the central nervous system (CNS). High passive membrane

permeability and low P-glycoprotein (P-gp) interaction favor CNS

exposure [23]. On the other hand, low BBB penetration is  desir-

able for drugs aimed at peripheral targets to  minimize CNS-related

side effects. Hence, regardless of the therapeutic area, assessment

of BBB penetration is required at an early phase of the drug dis-

covery process [24]. For this purpose, we developed a  quantitative

LC–MS/MS assay for indolinone in Ringer HEPES buffer (RHB) and

validated it according to  international guidelines [2,3]. Indolinone

was screened in several cell-based in vitro human and animal BBB

models [25–27], and the permeability of indolinone was  assessed

by LC–MS/MS. P-gp interaction was studied with the aid of a

calcein-AM uptake assay in  porcine brain capillary endothelial

cells (PBCECs), and by calculation of the efflux ratio (ER) from the

bidirectional permeability assays [25,27]. To further explore the

transporter mechanism of  indolinone, an  uptake assay was per-

formed in PBCECs.

2.  Materials and methods

2.1.  In silico prediction of blood–brain barrier permeability

Three-dimensional computer models of both (E)- and (Z)-3-(4-

hydroxy-3,5-dimethoxybenzylidene)indolin-2-one (indolinone)

were built in Maestro modeling environment (Maestro, ver-

sion 9.3, Schrödinger, LLC, New York, NY, 2012), and the most

favorable conformers were identified by  the conformational

search in MacroModel (MacroModel, version 9.9, Schrödinger,

LLC, New York, NY, 2012) using the OPLS-2005 force-field,

implicit solvent conditions (water), and 1000 iterations of

the mixed serial/low mode sampling method. For each iso-

mer, the conformers within 5 kcal/mol from the corresponding

global minimum were used as input for the QikProp application

(QikProp, version 3.5, Schrödinger, LLC, New York, NY, 2012), to

Fig. 1.  Chemical structures of (E,Z)-3-(4-hydroxy-3,5-dimethoxybenzylidene)-

indolin-2-one (indolinone) (A) and internal standard, (E,Z)-3-(benzylidenyl)-

indolin-2-one (B) [22].

evaluate various descriptors relevant for drug permeability. For

comparison, the polar surface area (PSA) and the logarithm of

partition coefficient (cLogP) descriptors were calculated also

using the Calculator plugin of Chemaxon Marvin web-application

(http://www.chemaxon.com/marvin/sketch/index.php, accessed

on  February 12, 2014) requiring only the 2D structural formula as

input.

2.2. LC–MS/MS analysis

2.2.1.  Chemicals and reagents

(E,Z)-3-(4-Hydroxy-3,5-dimethoxybenzylidene)indolin-2-one

(indolinone)  (Fig. 1A) and the internal standard (I.S.) (E,Z)-3-

(benzylidenyl)-indolin-2-one (Fig. 1B) were synthesized according

to a general protocol for indolinones [28]. Both compounds showed

a purity of  ≥99% as determined by HPLC–UV–ESI-MS and 1H and
13C NMR  [29]. The ratio of E to Z  isomers for indolinone and I.S. was

assessed by 1H  NMR  and HPLC as 71:29 and 75:25, respectively

[22]. Preparative separation of isomers failed because of slow

spontaneous isomerization at RT [9,28]. All used solvents were

of HPLC grade. Acetonitrile and dimethyl sulfoxide (DMSO) were

supplied by Scharlau (Barcelona, Spain). Methanol was  from Lab-

Scan (Gliwice, Poland). Formic acid and trifluoroacetic acid (TFA)

were purchased from BioSolve (Valkenswaard, Netherlands), and

albumin from bovine serum (BSA) was  supplied by Sigma–Aldrich

(Steinheim, Germany). HPLC grade water was  obtained by  an

EASYpure II (Barnstead, Dubuque, IA, USA) water purification

system. Ringer HEPES buffer (RHB) (150 mM NaCl, 2.2 mM CaCl2,

0.2 mM MgCl2,  5.2 mM KCl, 2.8 mM  glucose, 5 mM  HEPES, 6  mM

NaHCO3,  0.2% BSA) was  prepared in-house, adjusted to  pH 7.4, and

stored at 4 ◦C.

2.2.2. LC–MS/MS instrument and chromatographic conditions

Method validation was performed on an Acquity UPLC system

consisting of a  binary pump, an autosampler set at 10 ◦C, and

a column heater set at 45 ◦C, which was  coupled to an Acquity

TQD (all  Waters Corp., Milford, MA,  USA). Separation of analyte

(indolinone) and I.S. ((E,Z)-3-(benzylidenyl)-indolin-2-one) was

achieved with a  UPLC HSS T3 column (100 mm  × 2.1 mm;  1.8 �m
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particle size) (Waters Corp., Milford, MA,  USA). The mobile phase

consisted of water containing 0.1% formic acid (Eluent A) and

acetonitrile containing 0.1% formic acid (Eluent B). Chromato-

graphic separation was performed at a flow rate of 0.5  ml/min

with the following gradient: 0–0.5 min, B 2%; 0.5–2 min, B 2–100%;

2–2.5 min, B 100%; 2.5–2.6 min, B 100–2%; 2.6–4 min, B 2%. The

total run time was 4 min. As injection solvent a  mixture of 35%

water containing 0.1% formic acid and 65% methanol containing

0.1% formic acid was used (35:65, v/v). Weak and strong wash sol-

vents were water–acetonitrile (50:50, v/v) containing 0.2% TFA,

and acetonitrile–isopropanol–acetone (40:40:30, v/v/v) contain-

ing 0.2% TFA, respectively. The seal wash solvent consisted of  a

water–acetonitrile mixture (90:10, v/v).

MS detection was performed with electrospray ionization in

positive ion mode (ESI+). Nitrogen, generated by a  nitrogen gener-

ator N2-Mistral (Schmidlin AG, Neuheim, Switzerland), was  used

both as desolvation and nebulization gas. Argon was  used as

collision gas. MS/MS  parameters were generated using Waters

IntelliStart software followed by  manual optimization.

MRM  transitions were 297.7 > 265.0 for indolinone, and

221.8 > 194.0 for I.S. ((E,Z)-3-(benzylidenyl)-indolin-2-one). The

capillary voltage was 3.5 kV. Cone voltage was 46 V, and collision

energy was 21 eV for both indolinone and I.S. Source temperature

was set at 150 ◦C, and the desolvation temperature was  400 ◦C.

The flow rates for desolvation gas and cone gas were 900 l/h and

10 l/h, respectively. The dwell time was automatically set at 69 ms.

Data were acquired with MassLynx V4.1  software and quantified

by means of QuanLynx software (Waters Corp., Milford, MA,  USA).

2.2.3. Standards and stock solutions

Stock  solutions (SS) of  analyte and I.S. were prepared by weigh-

ing pure compounds on an analytical balance (Mettler-Toledo,

Switzerland) and dissolving them in DMSO. The working solu-

tions (WS1) of analyte and I.S. were freshly prepared in  methanol

by further diluting the corresponding SS to  obtain a  concentra-

tion of 100 �g/ml for indolinone, and 10  �g/ml for the I.S. For the

I.S., a daily second working solution (WS2) at a  concentration of

1000 ng/ml was freshly prepared by  diluting WS1  (10 �g/ml) with

methanol. All SS and WS (except WS2, which was  discarded after

use) were stored below −65 ◦C until analysis.

2.2.4. Preparation of calibration and quality control samples

Seven calibration samples (calibrators) in  the range of

30.0–3000 ng/ml and quality controls (QCs) at low, middle and high

levels (QCL = 90.0 ng/ml, QCM =  1500 ng/ml, QCH =  2400 ng/ml)

were prepared in RHB by  serial dilution of the WS  of indolinone

(100 �g/ml). After dilution, all samples were vortexed, aliquoted

into polypropylene tubes, and stored below −65 ◦C until analysis.

2.2.5. Sample extraction in Ringer HEPES buffer

To 200 �l of RHB containing indolinone, 100 �l of I.S. at

1000 ng/ml, 200 �l  of BSA solution (60 g/l), and 1000 �l  of ice

cold acetonitrile were added. The mixture was briefly vortexed,

mixed for 10 min  at room temperature (RT) in an Eppendorf Ther-

momixer (1400 rpm), and centrifuged for 20 min  at 13 200 rpm at

10 ◦C (Centrifuge 5415R, Eppendorf, Schoenenbuch, Switzerland).

The supernatant (1300 �l) was  transferred into a 96-deep well plate

(DWP), dried under nitrogen gas flow (Evaporex EVX-96, Apri-

cot Designs, Monovia, CA, USA), and reconstituted with 200 �l  of

injection solvent (35% solvent A + 65% solvent B,  A: water + 0.1%

formic acid, B: methanol + 0.1% formic acid). Afterwards, the 96-

DWP was  shaken for 45  min  at RT in  an Eppendorf Mixmate and

centrifuged for 2 min  at 3000 rpm (Megafuge, Heraeus Instruments

AG, Switzerland). Due to nonspecific adsorption of I.S. onto the 96-

DWP, each sample was transferred into a  300 �l  glass insert of a

HPLC  vial before injection into the UPLC–MS/MS system in full loop

mode (5 �l).

2.3. Method validation

The  method was  validated according to the guidelines of the

US Food and Drug Administration (FDA) [2] and the European

Medicines Agency (EMA) [3].

2.3.1. Chromatographic performance

The calibration curve was  generated by seven calibrators ran-

ging from 30.0 to 3000 ng/ml. To meet requirements of the FDA

guidance, the coefficient of determination (R2) has to  be higher than

0.96 and at least 75% of all calibrators should be  valid. Furthermore,

for both levels: LLOQ and ULOQ, only one value could be omitted.

2.3.2. Regression parameters

Two  sets of seven calibrators (ranging from 30.0 to 3000 ng/ml)

were injected at the beginning and at the end of each analytical run,

starting from the lower limit of  quantification (LLOQ =  30.0 ng/ml)

to the upper limit of quantification (ULOQ = 3000 ng/ml). The cali-

bration curve was validated by six QCs (duplicates of QCL, QCM  and

QCH), which were inserted randomly into the analytical run.

2.3.3.  Carry-over

To  evaluate the carry-over of analyte and I.S. in each analyt-

ical run, an extracted RHB blank was injected immediately after

the ULOQ (3000 ng/ml) of  both sets of calibrators. Mean carry-over

(n = 2) in  the blank sample following the ULOQ should not exceed

20% of the signal of  the LLOQ (30.0 ng/ml) for indolinone and 5% for

I.S.

2.3.4. Selectivity

Six  QC  samples of  indolinone at the LLOQ (duplicates, three

different batches of RHB) were extracted and injected within a  vali-

dation run into the UPLC–MS/MS system. Selectivity imprecision

(CV%) had to be  below 20% and inaccuracy (RE%) had to be within

±20% of  the nominal values. Moreover, only one QC sample of each

RHB batch was allowed to  have an inaccuracy of more than ±20%.

2.3.5. Specificity

A  total of six blank samples (duplicates, three different batches

of RHB) without the addition of indolinone and I.S. were injected

into the UPLC–MS/MS within an analytical run  and quantified by

means of a  valid calibration curve. For  all three batches of RHB,

the peak areas evaluated in the blank samples were not allowed to

exceed 20% of the mean LLOQ peak area.

2.3.6. Intra-run and inter-run repeatability

Six replicates of QCs at five concentration levels (30.0, 90.0,

1500, 2400, 3000 ng/ml) were processed and injected into the

UPLC–MS/MS. To ensure the reproducibility, these sets of QCs were

tested within three validation runs on three different days. In each

run, intra-run imprecision (CV%) of each QC series had to  be  below

15% (20% at the LLOQ) and intra-run inaccuracy (RE%) had to be

within ±15% of the nominal values (±20% at the LLOQ). At  the

end of the three series, inter-run imprecision and inaccuracy were

assessed by calculating the overall mean and standard deviation

(SD) for each QC level. The acceptance criteria for imprecision (CV%)

and inaccuracy (RE%) were the same as described above.

2.3.7. Extraction yield

The  absolute recovery of the analyte was  calculated using six

replicates of indolinone at low (90.0 ng/ml), medium (1500 ng/ml),

and high concentration (2400 ng/ml) which were spiked with I.S.

after extraction compared to six blank RHB samples which were

73



238 E.A. Jähne et al. / Journal of  Pharmaceutical and Biomedical Analysis 98 (2014) 235–246

spiked with indolinone at three concentration levels (90.0, 1500,

and 2400 ng/ml) and I.S. after extraction.

The extraction yield of  I.S. was calculated by comparison of

six processed samples containing I.S. which were spiked with

indolinone at medium level (1500 ng/ml) after extraction versus

six replicates of blank RHB samples which were spiked with I.S.

and indolinone (1500 ng/ml) after extraction.

2.3.8. Dilution test

In  order to demonstrate that the dilution of samples at higher

concentration levels than the ULOQ (3000 ng/ml) did not affect the

reliability of the method, a  dilution test was  performed. For this pur-

pose, the matrix was spiked with the WS  of indolinone (100 �g/ml)

to obtain a final concentration of 15 000 ng/ml (i.e. 5× ULOQ). This

solution was further serially diluted to give six replicates at a  con-

centration of 1500 ng/ml (10-fold dilution) and six replicates at a

concentration of 150 ng/ml (100-fold dilution). Concentrations of

the replicates of each dilution level were calculated using a  valid

calibration curve. Furthermore, the resulting mean concentration,

imprecision, and inaccuracy were calculated. According to guide-

lines [2,3], the imprecision (CV%) had to be below 15% and the

inaccuracy had to be within ±15% of the nominal value.

2.3.9. Short-term stabilities of indolinone in Ringer HEPES buffer

2.3.9.1.  Freeze and thaw cycles below −65 ◦C. Six replicates of QCL

(90.0 ng/ml) and QCH (2400 ng/ml) were exposed to three freeze

(below −65 ◦C, storage time >  24 h) and thaw (at RT)  cycles before

they were processed and quantified using a valid calibration curve.

At both concentration levels, the imprecision (CV%) had to be below

15% and the inaccuracy (RE%) had to  be within ±15% of  the nominal

value.

2.3.9.2. Biological sample stability on benchtop at RT. Six  replicates

of QCL (90.0 ng/ml) and QCH (2400 ng/ml) were stored at RT for

4 h and quantified using a  valid calibration curve. At  both concen-

tration levels, the imprecision (CV%) had to be below 15% and the

inaccuracy (RE%) had to  be within ±15% of the nominal value.

2.3.9.3.  Processed sample stability in the autosampler at 10 ◦C.

Six replicates of QCL (90.0 ng/ml) and QCH (2400 ng/ml) were

processed and quantified using a valid calibration curve. All QCs

were stored for 28 h in the autosampler (set at 10 ◦C, protected from

light) before they were re-injected and re-analyzed with freshly

prepared calibrators and QCs. At  both concentration levels, the

imprecision (CV%) had to be below 15% and the inaccuracy (RE%)

had to be within ±15% of the nominal value.

2.3.10. Long-term stability below −65 ◦C

Three replicates of RHB samples freshly prepared at low,

medium and high concentration (90.0, 1500, 2400 ng/ml) were

quantified at time zero (t =  0). Three other replicates at the same

concentration levels (90.0, 1500, 2400 ng/ml) were stored below

−65 ◦C. After 16 days of storage, the samples were processed and

quantified by means of a valid calibration curve which consisted of

two sets of freshly prepared calibrators and QCs. The mean values

of each concentration level at 16 days were calculated and com-

pared to the mean values of the appropriate concentration from

the first day (t = 0) of the long-term stability test. The results of

t = 16 days were plotted in function of t =  0 and a linear regression,

forced through zero, was performed. To  confirm the stability of the

samples, the slope had to  be within 1 ±  0.15.

2.3.11. Stock solutions stability test

According to the FDA guideline, the eventual degradation should

not exceed the threshold of 5% for both compounds [2].

2.4. Blood–brain barrier permeability screening

2.4.1. Immortalized mono-culture human in vitro BBB model

Indolinone was screened in a human in vitro BBB model

which we previously established using immortalized human brain

microvascular endothelial cells (hBMEC cell line) [25,30]. Culture

medium for hBMEC cells was  EBM-2 supplemented with hydro-

cortisone, ascorbic acid, heparin, antibiotic-antimycotic solution,

and 20% fetal bovine serum (FBS).

For the in vitro BBB model, hBMEC cells were seeded at

a density of 6.0 × 104 cells/cm2 on the apical side of collagen-

coated filter membranes of 24-well tissue culture inserts from

Greiner Bio-one® (transparent PET membrane, 3.0 �m pore size,

0.6 × 106 pores/cm2). The tissue culture inserts were transferred

into a 24-well cell module of a CellZscope system (NanoAn-

alytics, Münster, Germany) [31], incubated at 37 ◦C (5% CO2),

and transendothelial electrical resistance (TEER) values were

recorded in  real-time every hour. After 50 h, at a  TEER value of

40.8 ± 0.884 � cm2 (Fig. 4), the permeability assay for indolinone

was carried out as follows. The tissue culture inserts were trans-

ferred into a 24-well plate containing 1200 �l  of pre-warmed

(37 ◦C)  RHB in  each well (basolateral compartment). Medium

in inserts (apical compartment) was  subsequently replaced

with 300 �l  of a  pre-warmed (37 ◦C) WS  containing indolinone

(5 �M)  and sodium fluorescein (Na-F) as integrity control marker

(10 �g/ml) in  RHB. The 24-well plate was  incubated at 37 ◦C on

an orbital shaker (ELMI DTS-2, Riga, Latvia) with moderate speed

(100 rpm) and aliquots of 250 �l of both apical and basolateral

compartments were collected after 1 hour. Quantification of Na-F

fluorescence was  carried out using a Chameleon microplate reader

(Hidex, Turku, Finland). Quantification of indolinone was  done by

LC–MS/MS. All experiments were performed bidirectionally and in

triplicate.

2.4.2. Animal in vitro BBB models

2.4.2.1. Primary co-culture rat/bovine in vitro BBB model. The

method of Dehouck et al. [32] was  used with minor modifications.

Bovine brain capillary endothelial cells (BBECs) isolated from cap-

illary fragments were co-cultured with primary mixed glial cells

from newborn Sprague-Dawley rats. The glial cells were isolated

according to the method of Booher and Sensenbrenner [33] and

cultured for 3 weeks, plated on the bottom of cell culture clusters

containing six wells each. The BBECs were seeded onto collagen-

coated 6-well tissue culture inserts which were placed in  the wells

containing glial cells. The medium used for the co-culture was

Dulbecco’s modified Eagle’s medium (DMEM, Life technologies,

Saint Aubin, France) supplemented with 10% (v/v) newborn calf

serum (Integro b.v., Zaandam, Netherlands), 10% (v/v) horse serum

(Life technologies), 2 mM  glutamine (Sigma Aldrich), 50 �g/ml gen-

tamycin, and 1 ng/ml of basic fibroblast growth factor (bFGF, Sigma

Aldrich). The medium was  changed every second day. Under these

conditions, BBECs formed a  confluent monolayer after 5 days. The

permeability assay for indolinone was  carried out 7 days after

confluency by transferring BBEC monolayers to  six-well plates

containing 2.5 ml of RHB per well. The solution containing 5  �M

indolinone and 1 �M Na-F, used as integrity control marker, in  RHB

was added to the cell monolayer (1.5 ml for 6-well plate filters), and

the plates were placed on an orbital shaker. After 1  hour, aliquots

were taken from both compartments. Quantification of Na-F flu-

orescence was  carried out using a Synergy H1 multiplates reader

(BioTek Instruments, Vinooski, USA). Quantification of indolinone

was done by LC–MS/MS. All experiments were performed in

triplicate. The mean TEER value after 7 days in co-culture with

rat primary glial cells was  in the range of 350–400 � cm2

[34].
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2.4.2.2. Primary triple co-culture rat in vitro BBB model. Primary

rat brain capillary endothelial cells (RBECs) were isolated from

3-week-old Wistar rats, similarly as described earlier [35,36]. Fore-

brains were collected in sterile phosphate buffered saline (PBS)

on ice, and meninges were removed using heat sterilized filter

paper. Gray matter was cut by scalpels into 1 mm3 pieces which

were digested in Dulbecco’s modified Eagle’s medium (DMEM, Life

Technologies, Gibco, USA) with 1 mg/ml  collagenase (Worthington,

USA) and deoxyribonuclease type I (DNase I, Roche, USA) for 50 min

at 37 ◦C. Microvessels were separated by a gradient centrifugation

in 20% BSA–DMEM (1000 × g,  20 min) from myelin, and this step

was repeated three times. The isolated and pooled fraction was  fur-

ther digested with 1 mg/ml  collagenase–dispase (Roche, USA) and

DNase I in DMEM for 30  min. From the digested cell suspension,

brain endothelial cell clusters were separated on a 33% Percoll gra-

dient (Sigma Aldrich, USA) (1000 × g, 10 min), collected and washed

twice in cell culture medium before plating on 60 mm Petri dishes

(Orange, Belgium) coated with collagen type IV  and fibronectin

(Sigma Aldrich, USA). RBECs were cultured in DMEM/F12 supple-

mented with 15% plasma-derived bovine serum (First Link, UK),

1 ng/ml basic fibroblast growth factor (bFGF, Roche, USA), insulin

(5 �g/ml), transferrin (5 �g/ml), sodium selenite (5 ng/ml) (insulin-

transferrin-sodium selenite media supplement, Sigma Aldrich,

USA), 100 �g/ml heparin (Sigma Aldrich, USA) and 50 �g/ml gen-

tamicin (Sigma Aldrich, USA). In the first 4 days, cell culture medium

contained puromycin (3 �g/ml, Sigma Aldrich, USA) to selectively

eliminate P-gp negative contaminating cell types [37]. When cul-

tures reached 90% confluency (fourth day in dish), the puromycin

treated RBECs were passaged to the apical side of the collage type IV

and fibronectin coated filter membranes of 24-well tissue culture

inserts from Greiner Bio-one® (transparent PET membrane, 3.0 �m

pore size) at a cell number of 2.5 ×  104 cells/insert and used for

the permeability experiments. To induce BBB characteristics, RBECs

were co-cultured with rat cerebral glial cells and rat pericytes [27].

Primary cultures of rat mixed glial cells were obtained from 1-

day-old Wistar rats [35,36]. Meninges were removed by forceps

on a small drop of PBS,  then cortical pieces were mechanically

dissociated by pressing the tissue through a  nylon mesh (40 �m,

Millipore, USA) in DMEM containing 10% FBS (Lonza, Switzerland)

and 50 �g/ml gentamicin. Dissociated cell clusters were plated on

5 �g/ml poly-l-lysine (Sigma Aldrich, USA) coated 24-well plates

from Greiner Bio-One® and cultured for at least 2 weeks before use.

In confluent glia cultures 89% of cells were positively stained for the

astroglia cell marker glial fibrillary acidic protein (GFAP), while the

remaining 11% were positive for CD11b, a microglia marker.

Cultures of rat brain microvessel pericytes were prepared by

a 3-week long culture of isolated rat brain capillary fragments

which contained a  high number of  pericytes besides endothelial

cells. The same microvessel isolation yielded RBECs, and pericytes

if puromycin-treatment was omitted. Cell survival and prolifera-

tion were helped by  selective culture conditions using uncoated

dishes and DMEM (Life Technologies, Gibco, low glucose) supple-

mented with 10% FBS and antibiotics. Culture medium was  changed

every 3 days. Rat brain microvessel pericyte cultures were positive

for �-smooth muscle actin, NG2 and PDGFRß immunostaining, and

negative for von Willebrand factor and GFAP markers [38].

To  assemble the BBB model from the three cell-types, Greiner

Bio-one® tissue culture inserts were put into 24-well plates con-

taining glia at the bottom of the wells. Pericytes at passage number

3 were seeded on the bottom side of  the inserts (basolateral) and

RBECs were passaged to  the upper side of the coated inserts (apical)

with endothelial culture medium in  both compartments [27]. After

2 days of co-culturing, 550  nM hydrocortisone (Sigma Aldrich, USA)

was added to the culture medium [39]. Before experiments, cells

were treated with 8-(4-chlorophenylthio)-adenosine-3′,5′-cyclic

monophosphate (CPT-cAMP, 250 �M,  Sigma Aldrich, USA) and RO

20-1724 (17.5 �M,  Roche) for 24 h to tighten junctions and elevate

resistance [37,39].

At  a TEER value of 427.8 ± 62.9 � cm2 (day 4  of co-culture), the

permeability assay for indolinone was  performed. Before the exper-

iment, working solutions consisting of  indolinone (5  �M)  and Na-F

(10 �g/ml) for layer integrity control were prepared in  pre-warmed

(37 ◦C)  RHB. To protect cell layer integrity, RHB contained 0.1% BSA.

Tissue culture inserts with RBECs and pericytes were transferred

into a  new 24-well plate containing 700 �l of RHB for apical to

basolateral (A to B) permeability measurements or  700 �l  working

solution for basolateral to apical (B  to A) transport assays. Medium

in inserts (apical compartment) was subsequently replaced with

300 �l  working solution for A to B or 300 �l RHB for B to  A trans-

port tests. The 24-well plate was  incubated at 37 ◦C on a  horizontal

shaker (100 rpm, Biosan, Latvia) for 1 h.  Aliquots of  250 �l  and

650 �l were collected from the apical and basolateral compart-

ments and stored below −65 ◦C until analysis. Concentration of

Na-F was  measured by a Fluostar Optima fluorescent multiplate

reader (BMG Labtechnologies, Germany).

2.4.3. BBB permeability calculation

The apparent permeability coefficient (Papp) for indolinone and

Na-F was calculated in centimeters per second (cm/s) according to

the equation [40]:

Papp (cm/s) = VR

ACD0
×

(
�CR

�t

)

where VR is  the volume in  the receiver compartment, A is  the surface

area of the filter membrane (0.336 cm2 for 24-well inserts, 4.7 cm2

for six-well inserts), CD0 is the initial concentration in the donor

compartment, and �CR/�t is the change of concentration over time

in the receiver compartment.

Recovery for indolinone and Na-F was  calculated according to

the equation:

Recovery (%) = CDf VD + CRf VR

CD0VD
× 100

where  CDf and CRf are the final concentrations of the compound

in the donor and receiver compartments, respectively, CD0 is  the

initial concentration in the donor compartment, and VD and VR are

the volumes in  the donor and receiver compartments, respectively.

All results are expressed as means ±  S.E.M.

Low  permeability and high efflux can be  limiting factors for BBB

penetration. A  common way  of quantifying P-gp interaction in vitro

is by calculating the efflux ratio (ER) across P-gp expressing cell

monolayers, which is  defined as [41–45]:

ER = Papp B→A

Papp A→B

Compounds showing an ER > 2.0 usually indicate P-gp efflux.

To confirm that indolinone and Na-F did not  attach to  the plastic

material and that the diffusion barrier was  only provided by  the cell

monolayer, control experiments were performed using collagen-

coated inserts without cells.

2.5. Transporter studies

2.5.1.  Calcein-AM uptake in porcine brain capillary endothelial

cells  (PBCECs)

The calcein-AM uptake assay was  performed in primary porcine

brain capillary endothelial cells (PBCECs) seeded in  96-well plates

(Corning Costar) at a  density of 2.5 ×  105 cells/cm2. Culture medium

was Earl’s Medium 199  (Biochrom, Berlin, Germany) supplemented

with l-glutamine, penicillin, streptomycin, gentamycin, and FBS.

After achieving confluence, the cells were used for the calcein assay

as previously described [46]. Briefly, cells were washed twice with
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pre-warmed Krebs–Ringer Buffer (KRB) and then incubated for

15 min  with 100 �l  of 2 �M  calcein-AM in  KRB at 37 ◦C. After this

pre-incubation time, 100 �l of indolinone at increasing concentra-

tions in KRB was added to  each well to  achieve a final concentration

of 5, 50, and 500 �M indolinone. Stock solution of indolinone was

prepared in DMSO. Dilutions were then made with KRB. The final

concentration of DMSO on the cells did not exceed 1%. At this con-

centration, DMSO did not affect the assay [46]. After an  incubation

time of 30 min  at 37 ◦C, the cells were washed twice with cold

(5 ◦C) KRB and subsequently incubated with 200 �l  1% Triton-X

in KRB for 20 min. Fluorescence was measured in  a  plate reader

(Tecan, Infinite F200 Pro) with an excitation/emission wavelength

of 485/520 nm.  Intracellular fluorescence was obtained by subtrac-

ting background fluorescence of control wells. Calcein uptake was

expressed as % of control (KRB).

2.5.2. Cellular uptake assay

The cell uptake assay was also performed with PBCECs. The

cells were treated as described above and also seeded in  a  96-well

plate [47]. Confluent cells were washed twice with KRB, then pre-

incubated for 15 min  at 37 ◦C with 200 �l  KRB. After removal of KRB,

the cells were incubated with 200 �l indolinone in  KRB (100 and

1000 �M)  at 37 ◦C for 30 min. The cells were again washed twice

with KRB, followed by incubation with 200 �l  1% Triton-X in  KRB for

30 min  at 37 ◦C. Indolinone content was determined by LC–MS/MS

as described in Section 2.2. The area of each well was 0.32 cm2.

Based on the presumption that the cell monolayer had a height of

3 �m,  the total volume of the cells in one well was 0.096 �l. This vol-

ume was taken into consideration when the content of indolinone

(in 200 �l KRB) was  calculated.

3. Results and discussion

3.1.  Chromatographic performance and method validation

3.1.1. Chromatographic performance

Based on the slow inter-conversion at RT [9,28] of (E,Z)-3-(4-

hydroxy-3,5-dimethoxybenzylidene)indolin-2-one (indolinone)

(Fig. 1A), both E and Z isomers peak areas were integrated and

quantified in RHB (Fig. 1). Since isotope-labeled indolinone was

not available, the structurally related (E,Z)-3-(benzylidenyl)-

indolin-2-one was selected as I.S. (Fig. 1B) [22]. For quantification

of analyte and I.S., an identical peak integration of both E and Z

isomers was  performed (Fig. 2). The calibration curve ranging from

30.0 to 3000 ng/ml was fitted by least-square quadratic regression,

and a weighting factor of 1/X2 was applied. The mean coefficient

of determination (R2) was  0.9919 (Supplementary Table 1), and

acceptance criteria were fulfilled [2,3] (Supplementary Table 1).

Supplementary table related to  this article can be  found, in the

online version, at http://dx.doi.org/10.1016/j.jpba.2014.05.026.

3.1.2. Assessment of carry-over

The  mean carry-over was 0.00% (acceptance criteria: below 20%)

for indolinone (Fig. 2A) and 0.0839% (below 5%) for I.S. (Fig. 2B).

Hence, the carry-over did not impact precision and accuracy of the

method (Supplementary Table 2).

Supplementary table related to  this article can be  found, in the

online version, at http://dx.doi.org/10.1016/j.jpba.2014.05.026.

3.1.3. Selectivity for indolinone

Selectivity  imprecision (CV%) for the six samples at the LLOQ

(duplicates, three different RHB batches) was 8.34% (below 20%)

and inaccuracy (RE%) was −12.3% (within ±20%), indicating that

the quantification method was selective for indolinone (Supple-

mentary Table 3).

Supplementary table related to this article can be found, in  the

online version, at http://dx.doi.org/10.1016/j.jpba.2014.05.026.

3.1.4. Specificity for indolinone

The peak areas measured in  the blank RHB sample were 0.00%

(below 20%), demonstrating that the method was  specific for

indolinone (data not shown).

3.1.5. Intra-run and inter-run repeatability for  indolinone

Intra-run imprecision (CV%) was 6.29% (below 20%) for the LLOQ,

and 1.88–5.62% (below 15%) of the nominal value for all the other

QCs (Supplementary Table 4). The inaccuracy (RE%) was 6.57%

(within ±20%) for the LLOQ and −10.1% to 2.33% (within ±15%)

of the nominal values for the other QC  levels (Supplementary Table

4). Inter-run imprecision (CV%) ranged from 1.49% to 5.87% (below

20% for LLOQ, and below 15% for all other QC levels), and the inac-

curacy (RE%) was  between −9.50% and −0.0589% (below 20% for

LLOQ, and below 15% for all other QC levels) (Supplementary Table

4). According to international guidelines [2,3], the method was thus

precise and accurate.

Supplementary table related to this article can be found, in  the

online version, at http://dx.doi.org/10.1016/j.jpba.2014.05.026.

3.1.6. Extraction yield

The  absolute recovery of indolinone was  81.5% for QCL

(90.0 ng/ml), 91.3% for QCM (1500 ng/ml), and 91.8% for QCH

(2400 ng/ml) (Supplementary Table 5). For the I.S., an absolute

recovery of 83.6% was determined (Supplementary Table 5). Conse-

quently, the extraction yield was  proven to be consistent, precise,

and reproducible according to FDA guidance [2].

Supplementary table related to this article can be found, in  the

online version, at http://dx.doi.org/10.1016/j.jpba.2014.05.026.

3.1.7. Dilution test

For  both QC series, imprecision (CV%) was  below 15% (6.36% for

dilution factor 100 and 4.48% for dilution factor 10), and inaccuracy

(RE%) was  within ±15% of the nominal values (−8.62% and 7.27%,

respectively) (Supplementary Table 6). Hence, precision and accu-

racy of the method was  not affected by dilution of samples up to

100-fold.

Supplementary table related to this article can be found, in  the

online version, at http://dx.doi.org/10.1016/j.jpba.2014.05.026.

3.1.8. Processed sample stability at autosampler conditions

At  both concentration levels (90.0 ng/ml and 2400 ng/ml),

imprecision (CV%) was  below 15% (5.13% and 3.14%, respectively,

data not  shown), and inaccuracy (RE%) was  within ±15% of  the

nominal values (−0.191% and −11.5%, respectively) (Supplemen-

tary Table 7). Thus, processed samples of indolinone proved to be

stable for at least 28 h at autosampler conditions (10 ◦C,  protected

from light).

Supplementary table related to this article can be found, in  the

online version, at http://dx.doi.org/10.1016/j.jpba.2014.05.026.

3.1.9. Freeze and thaw cycle stability

Imprecision (CV%) for the six replicates at the QCL (90.0 ng/ml)

and the QCH (2400 ng/ml) was  below 15% (4.69% and 3.52%, respec-

tively, data not shown), and inaccuracy (RE%) was  within ±15%

(12.6% and 0.564%, respectively) (Supplementary Table 7), demon-

strating that  indolinone stored below −65 ◦C in RHB was  stable for

at least three freeze and thaw cycles.

3.1.10. Biological samples stability on benchtop at RT

Imprecision (CV%) for the six replicates of QCL (90.0 ng/ml) and

QCH (2400 ng/ml) exceeded 15%, and inaccuracy was not within
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Fig. 2. Typical MRM  chromatograms of blank RHB  injected after the ULOQ and monitored for indolinone (A) and for I.S. (B),  of RHB spiked at 30.0 ng/ml (LLOQ) of indolinone

(C), and 1000 ng/ml of I.S. (D), of  RHB spiked at 3000 ng/ml (ULOQ) of indolinone (E) and 1000 ng/ml of I.S. (F).

±15% of the nominal values, indicating that indolinone was not sta-

ble when stored for 4 h at RT (data not shown). For this reason, the

benchtop stability test was reduced to 3  h. Under these new condi-

tions, imprecision (CV%) for the six replicates at low concentration

(90.0 ng/ml) was 3.13%, and for the six replicates at high concentra-

tion (2400 ng/ml) it was  2.43% (data not shown). Inaccuracy (RE%)

was 5.38% and −4.40%, respectively (Supplementary Table 7). Con-

sequently, samples were shown to  be stable for 3 h under benchtop

conditions (RT) (Supplementary Table 7).

3.1.11. Biological samples long-term stability below −65 ◦C

As the slope of the calculated linear regression was 0.900 (accep-

tance criteria: 1  ± 0.15), the stability of the samples stored below

−65 ◦C for 16 days could be confirmed (Fig. 3).

3.1.12.  Stock solutions stability test

Our previous study demonstrated that stock solutions of

indolinone and I.S. stored below −65 ◦C for 190 days and kept for

ca. 6  h at RT were stable, since the degradation expressed by  the

difference percentage (−1.11% and −1.46% for indolinone and I.S.,

respectively) was below 5% [22].

3.2. In silico prediction of blood–brain barrier permeability

In silico methods are nowadays routinely used for a  rapid

assessment of physico-chemical properties of compounds. Descrip-

tor values averaged over the 18 low energy conformers of

(E,Z)-indolinone show no violation of Lipinski’s rule of  five [21]

(MW < 500, cLogP <  5,  donorHB < 5, acceptHB < 10; Table 1) along
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Table 1
Mean  values of the most relevant in silico pharmacokinetic descriptors for (E,Z)-indolinone.

QikProp descriptors (3D) Chemaxon Marvin (2D)

Compound MW  donorHB acceptHB cLogPo/w cLogBB Human oral absorption (%) PSA (Å2) cLogPo/w PSA (Å2)

(E,Z)-indolin-2-one 297.30 2.00 4.75 2.44 −0.78 93.2 77.8 2.65 67.8

Fig. 3. Long-term stability (LTS) of  indolinone in RHB for 16  days below −65 ◦C.

with a high predicted human oral absorption (93.2%). The values of

both 2D- and 3D-based PSA descriptor were not only well below the

maximum acceptable threshold of 140 Å2 for good oral absorption,

but also meet the criteria for a  passive permeation through the BBB

(PSA < 90 Å2) [48]. Similarly, both predicted cLogPo/w values were

within the range that is favorable for blood–brain transport. On the

other hand, the specialized QikProp model for brain/blood parti-

tioning predicted a cLogBB of −0.78 (usual range from −3.0 to 1.2)

indicating a slight preference for the blood environment [49].

3.3.  Blood–brain barrier screening

3.3.1. Human in vitro BBB model

In the in vitro BBB model with immortalized human brain

capillary endothelial cells (hBMEC cell line) [25], the Papp of

indolinone for apical to basolateral transport (Papp A→B) was

19.2 ± 0.485 × 10−6 cm/s (Table 2). Compared to the Papp A→B of the

negative control Na-F (3.20 ± 0.0295 × 10−6 cm/s), this value was

considerably higher and suggested that indolinone may  cross the

BBB. The Papp value for basolateral to apical transport (Papp B→A)

was 21.7 ± 0.326 × 10−6 cm/s (Table 3). The efflux ratio of 1.13 indi-

cated no active efflux mediated transport for indolinone (ER <  2.0)

[41–45].

The recovery of indolinone was ≥88.9% in  all experiments,

suggesting that the obtained Papp values were reliable. A  recov-

ery above 80% is needed for an acceptable approximation of the

Papp value [50]. After each permeability experiment, TEER values

were determined, and they were found to  be in the same range

(43.1 ± 0.431 � cm2,  Fig. 4) as before the assay. This indicated that

barrier integrity of the cell monolayers was maintained through-

out the experiments, and that indolinone did not affect cell layer

integrity.

3.3.2. Animal in vitro BBB models

3.3.2.1. Primary co-culture rat/bovine in vitro BBB model. The Papp

of Na-F in the presence of  indolinone (2.28 ± 0.168 ×  10−6 cm/s)

(Table 4) was in the same range as that of Na-F alone

(data not shown). This result attested the integrity of the

cell monolayer during the transport experiment. The Papp A→B

(27.1 ± 1.67 × 10−6 cm/s) was more than 10-fold higher than that of

Na-F and hence, suggested high BBB permeability. Given that Papp

A→B of indolinone across membranes with cells and control mem-

branes (i.e. without cells) were very close, that data suggested that

indolinone is freely diffusing across BBECs.

Fig. 4. Mean TEER values (�) and CCl values (�) recorded real-time by the CellZscope

system of hBMEC cells grown on 24-well tissue culture inserts. (*) Insert transfer to

24-well plate for indolinone permeability assay. (**) Insert transfer to  CellZscope

(37 ◦C) for barrier integrity control.

3.3.2.2. Primary triple co-culture rat in vitro BBB model. The in vitro

BBB model composed of  primary RBECs, rat pericytes, and rat glial

cells formed a  tight barrier with a  TEER value of 427.8 ± 62.9 �  cm2,

and a  Papp A→B 0.884 ± 0.186 × 10−6 cm/s for Na-F (Table 5). The

Papp A→B of indolinone was 56.2 ±  3.63 ×  10−6 cm/s (Table 5). Com-

pared to the Papp A→B of the paracellular permeability marker Na-F

this value was 60 times higher (Table 5) and hence, suggested

that indolinone crossed the BBB very effectively. The Papp value of

indolinone from basolateral to apical was  34.6 ± 1.41 × 10−6 cm/s

(Table 6). The efflux ratio was  below 1 and indicated no active

mediated efflux mechanism for indolinone (ER < 2.0) in the triple

co-culture model. TEER values recorded after the experiments

(189.1 ± 8.52 � cm2) were lower than prior to the assay. This could

be explained by cell disturbance due to a  switch from cell culture

medium to buffer, and to the lack of barrier stabilizing factors from

glial cells and culture medium. However, the resistance remained

well above the threshold indicative of  barrier tightness [39,51]. The

Na-F permeability coefficients also indicated a  preserved barrier

function, and no harmful effect of indolinone on RBECs.

3.4. Transporter studies

3.4.1.  Calcein-AM uptake in porcine brain capillary endothelial

cells  (PBCEC)

In  PBCEC, the calcein assay is specific for assessing P-gp trans-

port activity, and the known P-gp inhibitor verapamil (positive

control) increased cellular calcein fluorescence by 500% compared

to the control (KRB) (Fig. 5). Treatment with indolinone at 5, 50,

and 500 �M led to no calcein accumulation, indicating that the

compound was neither a  P-gp substrate nor a  P-gp inhibitor (Fig. 5).

3.4.2. Cellular uptake assay

The  validated LC–MS/MS method for quantification of

indolinone in RHB was  used to  quantify the content of indolinone

in the lysing medium (mixture of KRB and 1% Triton). No analytical

interferences were found showing that the RHB quantitative

method can be applied to such an assay (data not shown).
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Fig. 5. Calcein-AM uptake assay in primary porcine brain capillary endothelial cells

(PBCECs).  Indolinone was  tested at 5, 50, and 500 �M in KRB. Pure KRB was  used  as

control. Verapamil (50  �M,  P-gp inhibitor) was  used as positive control.

At  100 �M of indolinone, all measured concentrations were

below the LLOQ of the method (30.0 ng/ml), whereas at 1000 �M of

indolinone, the concentration inside the cells was 433.3 �M  after

30 min, demonstrating that indolinone can easily penetrate PBCEC

layers.

4. Conclusions

We  developed a  LC–MS/MS method for (E,Z)-3-(4-hydroxy-

3,5-dimethoxybenzylidene)indolin-2-one (indolinone) in  RHB and

validated the assay according to EMA  and FDA guidelines [2,3].

(E,Z)-3-(Benzylidenyl)-indolin-2-one, a  closely related synthetic

compound, was used as I.S. [22]. The standard calibration curve of

indolinone in  RHB in the range of 30.0–3000 ng/ml was quadratic

and a  weighting factor of 1/X2 was  applied. The LLOQ was

30.0 ng/ml. Dilution of samples up to 100-fold did not affect pre-

cision and accuracy. The carry-over was  within the acceptance

criteria. Indolinone was  stable for 3 h at RT, and for three succes-

sive freeze and thaw cycles. The processed samples could be stored

in the autosampler at 10 ◦C for at least 28 h. Moreover, indolinone

was stable for at least 16 days in RHB when stored below −65 ◦C.

These data demonstrated that the method was selective, specific,

precise, accurate, and capable of producing reliable results. A  com-

parison of two in vitro primary animal BBB models (co-culture

bovine/rat BBB model, and triple co-culture rat brain endothelial

cells/pericytes/astrocytes BBB model) and an immortalized mono-

culture human model (hBMEC cell line) as a  possible surrogate BBB

model were used for screening indolinone regarding its ability to

cross the BBB. The data obtained with the two  well-established ani-

mal in vitro BBB models showed good correlation with our human

in vitro mono-culture model and were indicative of  a high BBB

permeation potential of indolinone. These findings were corrobo-

rated by in silico prediction of BBB penetration. Finally, calcein-AM

and uptake assays showed that indolinone accumulated in PBCECs

and was  neither a  P-gp inhibitor nor a  P-gp substrate. This was

confirmed by calculation of the efflux ratio which was  found to

be lower than 2. The validated LC–MS/MS assays will be used for

further bioavailability studies addressing oral bioavailability and

pharmacokinetic properties.
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In the present study, we evaluated the key pharmacokinetic (PK) properties of the anti-inflammatory 

alkaloid indolo[2,1-b]quinazoline-6,12-dione (tryptanthrin, Fig. 2), isolated from the ancient medicinal 

plant Isatis tinctoria L.. Moreover, we studied the ability of the compound to cross the BBB. For this 

purpose, UPLC-MS/MS quantification methods in lithium heparinized rat plasma and Ringer HEPES 

buffer (RHB) were validated according to international guidelines. In the second part of our work, we 

applied the validated quantification methods to a preliminary PK study in Sprague Dawley male rats 

(2 mg/kg b.w.) and to three human and animal in vitro BBB models. The results obtained from the 

three different in vitro BBB models suggested a high BBB permeation potential of tryptanthrin. From 

the bidirectional BBB models, an ER below 2 was calculated. Hence, tryptanthrin was not subjected to 

active mediated transport. 

 

 

Fig.2: Indolo[2,1-b]quinazoline-6,12-dione (tryptanthrin) 
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Abstract
!

The indolo[2,1-b]quinazoline alkaloid tryptanthrin
was previously identified as a potent anti-inflam-
matory compound with a unique pharmacologi-
cal profile. It is a potent inhibitor of cyclooxy-
genase-2, 5-lipooxygenase-catalyzed leukotriene
synthesis, and nitric oxide production catalyzed
by the inducible nitric oxide synthase. To charac-
terize the pharmacokinetic properties of tryp-
tanthrin, we performed a pilot in vivo study in
male Sprague-Dawley rats (2mg/kg bw i.v.).
Moreover, the ability of tryptanthrin to cross the
blood-brain barrier was evaluated in three in
vitro human and animal blood-brain barrier
models. Bioanalytical UPLC‑MS/MSmethods used
were validated according to current international
guidelines. A half-life of 40.63 ± 6.66min and a
clearance of 1.00 ± 0.36 L/h/kg were found in the
in vivo pharmacokinetic study. In vitro data ob-
tained with the two primary animal blood-brain
barrier models showed a good correlation with
an immortalized human monoculture blood-
brain barrier model (hBMEC cell line), and were
indicative of a high blood-brain barrier perme-
ation potential of tryptanthrin. These findings
were corroborated by the in silico prediction of
blood-brain barrier penetration. P-glycoprotein
interaction of tryptanthrin was assessed by calcu-
lation of the efflux ratio in bidirectional perme-
ability assays. An efflux ratio below 2 indicated
that tryptanthrin is not subjected to active efflux.

Abbreviations
!

A: apical
AUC: area under the curve
B: basolateral

BBB: blood-brain barrier
BBEC: bovine brain capillary endothelial cells
C0: concentration at time zero
CCl: cell layer capacitance
CL: clearance
ER: efflux ratio
EMA: European Medicines Agency
FDA: Food and Drug Administration
hBMEC: human brain microvascular endothe-

lial cell line
Ke: elimination rate constant
I. S. internal standard
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Introduction
!

We previously identified the indolo[2,1-b]quinazoline alkaloid
tryptanthrin (l" Fig. 1A) as a pharmacologically active compound
in the ancient anti-inflammatory plant Isatis tinctoria L. (Brassi-
caceae) [1–4]. The compound was found to possess a unique
pharmacological profile, since it potently inhibits cyclooxygen-
ase-2 (COX-2), 5-lipooxygenase (5-LOX)-catalyzed leukotriene
synthesis in vitro and in vivo via a not yet clarified mechanism
[1,2,5], and inducible nitric oxide synthase (iNOS)-catalyzed
nitric oxide (NO) production [6]. Recent findings suggest that
the dual inhibition of COX-2 and 5-LOX-catalyzed eicosanoid for-
mation may provide a novel approach for the treatment of age-
related neurodegenerative disorders such as Alzheimerʼs disease,
given that the two enzymes are upregulated in the central ner-
vous system in age-related brain pathologies [7]. Epidemiological
studies have shown that prolonged use of NSAIDs such as ibupro-
fen reduces the risk, and delays the onset of Alzheimerʼs disease
in arthritis patients [8]. Some of the current NSAIDs cross the
BBB, but NSAIDs only inhibit cyclooxygenases. Thus, the unique
pharmacological profile and a scaffold that completely differs
from that of current NSAIDs render tryptanthrin a promising
starting point for medicinal chemistry efforts. To further evaluate
the potential of tryptanthrin as a new drug lead, we performed
a pilot PK study in male Sprague-Dawley rats (2mg/kg bw i.v.).
The ability of tryptanthrin to cross the BBB was assessed in
human and animal in vitro BBB models. For quantification of
tryptanthrin in lithium heparinized rat plasma and RHB,
UPLC‑MS/MSmethodswere validated according to the guidelines
of the FDA and the EMA [9,10].

Results and Discussion
!

UPLC‑MS/MS methods for tryptanthrin in lithium heparinized
rat plasma and RHB were validated with respect to intra-run
and inter-run repeatability, carryover, specificity, selectivity, ex-
traction yield, dilution, and short-term/long-term stabilities. To
fulfill the acceptance criteria of the FDA and EMA guidelines,
imprecision (CV%) should be below 15% for all levels (20% for
the LLOQ as the exception) and inaccuracy (RE%) should be with-
in ± 15% of the nominal value for all levels (± 20% of the nominal
value for the LLOQ). The calibration curves in the range of 10.0–
2000 ng/mL (rat plasma) and 20.0–2000 ng/mL (RHB) were fitted
by quadratic regression with a 1/X weighting factor. The mean
coefficients of determinations (R2) were 0.999 (rat plasma) and
0.997 (RHB) (Tables 1 S and 2 S, Supporting Information). For all
rat plasma QCs, the intra-run imprecision (CV%) was between
1.62% and 7.21% of the nominal values (Table 3 S, Supporting In-
formation). Inaccuracy (RE%) was in the range of − 13.2% to 9.41%
of the nominal values (Table 3 S, Supporting Information). Inter-
run imprecision (CV%) ranged from 3.11% to 7.10%, and inaccura-
cy (RE%) was between − 11.8% and 7.74% (Table 3 S, Supporting
Information). For the RHB method, intra-run imprecision ranged
from 1.10% to 12.8% of the nominal values for all QC levels. The
inaccuracy (RE%) was between − 12.2% and 2.82% of the nominal
values for all QC levels (Table 4 S, Supporting Information). Inter-
run imprecision (CV%) ranged from 2.41% to 9.04%, and the inac-
curacy (RE%) was between − 7.54% and 3.66% (Table 4 S, Support-
ing Information). After sample extraction from lithium heparin-
ized rat plasma, the mean carryover was 9.91% for tryptanthrin
and 0.0696% for I. S. (l" Fig. 2 and Table 5 S, Supporting Informa-

tion). The mean carryover of the RHB samples was 6.71% for
tryptanthrin and 0.0793% (below 5%) for I. S. (l" Fig. 3 and Table
6 S, Supporting Information). Selectivity imprecision (CV%) for
the six rat plasma samples at the LLOQ (duplicates, three differ-
ent plasma batches) was 7.68% (below 20%) and the inaccuracy
(RE%) was 2.99% (within ± 20%) (Table 7 S, Supporting Informa-
tion). For the method validation in RHB, selectivity imprecision

Fig. 1 Chemical struc-
tures of tryptanthrin
(PubChem CID: 73549)
(A) and the internal
standard (E,Z)-3-(ben-
zylidenyl)-indolin-2-one
(B).

Fig. 2 Typical MRM chromatograms of lithium heparinized rat plasma
spiked with 10.0 ng/mL (LLOQ) tryptanthrin (A) and 1000 ng/mL I.S. (B) of
lithium heparinized rat plasma spikedwith 2000 ng/mL (ULOQ) tryptanthrin
(C) and 1000 ng/mL I.S. (D), and of blank lithium heparinized rat plasma
injected directly after the ULOQ and monitored for tryptanthrin (E) and for
the I. S. (F).
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(CV%) for the six samples at the LLOQ (duplicates, three different
RHB batches) was 5.37% (below 20%) and the inaccuracy (RE%)
was − 7.62% (within ± 20%), demonstrating that the quantifica-
tion method was selective for tryptanthrin (Table 8 S, Supporting
Information).
The peak areas measured in the blank sample were in all plasma
batches and all RHB batches less than 8.87% of the LLOQ (below
20%), indicating that the quantitative assay is also specific for
tryptanthrin (data not shown). The absolute recovery for tryp-
tanthrin extracted from the rat plasma was 79.4% for QCL
(30 ng/mL), 77.5% for QCM (1000 ng/mL), and 77.6% for QCH
(1600 ng/mL) (Table 9 S, Supporting Information). The absolute
recoveries of the RHB samples were 60.8%, 78.6%, and 88.0% at
concentrations of 60, 1000, and 1600 ng/mL, respectively (Table
10 S, Supporting Information). Dilution of samples up to 100-fold
did not affect precision and accuracy of the methods (Tables 11 S
and 12 S, Supporting Information). Tryptanthrin proved to be
stable in the rat plasma and RHB for 4 h at RT and after three suc-
cessive freeze and thaw cycles (Tables 13 S and 14 S, Supporting
Information). Samples extracted from lithium heparinized rat
plasma proved to be stable in the autosampler at 10°C up to
36 h when protected from light (Table 13 S, Supporting Informa-
tion). Samples extracted from RHB could be stored in the auto-
sampler at 10°C during 19 h (Table 14 S, Supporting Informa-

tion). Tryptanthrin samples in the rat plasma were stable when
stored below − 65°C up to 90 days (Fig. 1 S, Supporting Informa-
tion), as the slope of the calculated linear regression was 0.920
(acceptance criteria: 1 ± 0.15). Stability of the RHB samples stored
below − 65°C could be confirmed up to nine days (Fig. 2 S, Sup-
porting Information), as the slope of the calculated linear regres-
sion was 0.858 (acceptance criteria: 1 ± 0.15). Tryptanthrin stock
solution (DMSO) was stored below − 65°C for 427 days, and kept
for 6 h at RT. The results showed that the degradation expressed
by the percentage differences (− 1.59%) was below 5%, indicating
that the DMSO stock solution of tryptanthrin was stable for
roughly 14 months when stored below − 65°C (Table 15 S, Sup-
porting Information). The DMSO stock solution of I. S. stored be-
low − 65°C was stable up to 190 days [11].
The validated method in the lithium heparinized rat plasma was
applied to a pilot PK study of tryptanthrin in Sprague-Dawley rats
after a single intravenous dose of 2mg/kg bw (n = 4). Themain PK
parameters of tryptanthrin calculated by non-compartmental
analysis are shown inl" Table 1, and the mean plasma concentra-
tion versus time profile after i. v. administration is shown in
l" Fig. 4. The initial concentration (C0) was 3395 ng/mL, and the
AUC calculated on the trapezoidal rule was 2228 ng × h/mL. The
clearance was 1.00 L/h/kg, and the half-life time (t1/2) was
40.63min (l" Table 1).
In the immortalized human BBB monoculture model (l" Fig. 5)
with the hBMEC cell line, the apparent permeability coefficient
from apical to basolateral (Papp A→B), and the Papp from basolateral
to apical (Papp B→A) were 36.96 ± 0.43 × 10− 6cm/s and 37.16 ±
0.89 × 10− 6cm/s, respectively (l" Table 2). Compared to the Papp
coefficients of the negative control Na-F (Papp A→B = 3.20 ± 0.03;
Papp B→A = 3.10 ± 0.02 × 10− 6cm/s), the Papp values of tryptanthrin

Table 1 PK parameters obtained with a single intravenous dose of 2mg/kg
bw tryptanthrin in rats (n = 4). Data were calculated using non-compartmental
analysis.

Parameters Mean SD

C0 (ng/mL) 3395 479

t1/2 (min) 40.63 6.66

Tmax (min) 4.25 1.50

Cmax (ng/mL) 3526 755

AUC0-last (ng × h/mL) 2082 683

AUC0–∞ (ng × h/mL) 2228 877

MRT (min) 44.11 6.26

Vz (L/kg) 1.02 0.53

CL (L/h/kg) 1.00 0.36

AUC0–last: AUC from time zero to 240min; AUC0–∞: AUC with extrapolation to infinity

Fig. 4 Mean plasma
concentration versus
time profile of tryptan-
thrin in male Sprague-
Dawley rats (n = 4) fol-
lowing i. v. administra-
tion (2mg/kg bw).

Fig. 3 Typical MRM chromatograms of RHB spiked with 20.0 ng/mL
(LLOQ) tryptanthrin (A) and 1000 ng/mL I.S. (B) of RHB spiked with
2000 ng/mL (ULOQ) tryptanthrin (C) and 1000 ng/mL I. S. (D), and of blank
RHB injected directly after the ULOQ and monitored for tryptanthrin (E)
and for the I. S. (F).
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were more than 10-fold higher, suggesting that tryptanthrin
crosses the BBB (l" Table 2). The ER of 1.01 indicated no active ef-
flux for tryptanthrin (ER < 2.0). Since a low recovery leads to
underestimation of Papp values, the recovery should be as high
as possible [12]. In all experiments, the recovery of tryptanthrin
was in the range of 100%, suggesting that the obtained Papp val-
ues were reliable. After each permeability experiment, TEER val-
ueswere recorded and found to be in the same range as before the
assay (around 25Ω cm2,l" Fig. 6). This indicated that tryptanthrin
did not affect cell layer integrity. Furthermore, CCL values were
between 0.50–5.00 μF/cm2, confirming that the cell monolayer
was confluent (l" Fig. 6) [13].
The primary coculture rat/bovine in vitro BBB model (l" Fig. 5)
exhibited TEER values of 350–400 Ω cm2 (data not shown). The
mean Papp A→B (36.15 ± 0.90 × 10− 6cm/s) (l" Table 3) of tryptan-

thrin was in the same range as in the immortalized human BBB
monoculture model (l" Table 2). The mean Papp A→B was more
than 10-fold higher than that of Na-F and suggested high BBB
permeability. The mean Papp of Na-F in the presence of tryptan-
thrin (3.17 ± 0.19 × 10− 6cm/s) (l" Table 3) was in the same range
as that of Na-F alone (data not shown), indicating that the integ-
rity of the cell monolayer was maintained during the transport
experiment. Since the mean Papp A→B values of tryptanthrin
across membranes with cells (36.15 ± 0.90 × 10− 6cm/s) and con-
trol membranes (i.e., without cells; 36.14 ± 3.99 × 10− 6cm/s)
(l" Table 3) were very close, tryptanthrin appears to freely diffuse
across BBECs.
The in vitro BBB model composed of primary RBECs, pericytes,
and glial cells (l" Fig. 5) formed a tight barrier with a TEER value
of 399 ± 44.5 Ω cm2 (data not shown) and a mean Papp A→B of

Fig. 5 In vitro human and animal BBB models used
for the screening of tryptanthrin. (Color figure
available online only.)

Table 2 Screening of tryptanthrin in the in vitro human BBB model (n = 3).

In vitro human

BBB model

(hBMEC cell line)

Transport

direction

Samples Time of

withdrawal

(min)

Mean con-

centration

(ng/mL)

Mean

amount

(ng)

Mean Papp of

analyte ± SEM

(× 10− 6cm/s)

Mean Papp of

Na-F ± SEM

(× 10− 6cm/s)

Recovery

of ana-

lyte (%)

Efflux

ratio

Inserts with
cells

A to B Donor compart-
ment (300 μL)

60 1031 309 – – – –

Receiver compart-
ment (1200 μL)

60 44.39 31.07 36.96 ± 0.43 3.20 ± 0.03 102 –

Control inserts
(without cells)

A to B Donor compart-
ment (300 μL)

60 1047 314 – – – –

Receiver compart-
ment (1200 μL)

60 126 152 105 74.3 130 –

Inserts with
cells

B to A Donor compart-
ment (1200 μL)

60 1167 1401 – – – –

Receiver compart-
ment (300 μL)

60 179 53.56 37.16 ± 0.89 3.10 ± 0.02 104 1.01

Control inserts
(without cells)

B to A Donor compart-
ment (1200 μL)

60 1361 1634 – – – –

Receiver compart-
ment (300 μL)

60 297 89.18 61.87 50.16 120 –
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1.14 ± 0.53 × 10− 6cm/s for Na-F (l" Table 4). The Papp A→B of tryp-
tanthrin was 83.40 ± 4.02 × 10− 6cm/s (l" Table 4). Compared to
the Papp A→B of the paracellular permeability marker Na-F (l" Ta-
ble 4), this value was more than 70 times higher and hence, sug-
gested that tryptanthrin permeated the cell layer very effectively.
The mean Papp value of tryptanthrin from basolateral to apical
was 64.12 ± 2.91 × 10− 6cm/s (l" Table 4). Since the calculated ER
in the triple coculture model was below 2 (ER = 0.77; l" Table 4),
tryptanthrinwas not involved in an active mediated efflux mech-
anism. TEER values recorded after the experiments (176 ± 9.40 Ω
cm2; data not shown) were lower than prior to the assay, but still
presenting a tight barrier [14,15]. This was also corroborated by
low permeability coefficients for Na-F.
The most relevant in silico descriptors for permeability are sum-
marized in Table 16 S, Supporting Information. Tryptanthrin
fulfilled Lipinskiʼs Rule of five (QikProp: MW=248 < 500,
cLogP = 1.0 < 5.0, donorHB = 0 < 5, acceptHB = 6 < 10), along with
a high-predicted human oral absorption (84.4%) [16]. The values
of both 3D- and 2D‑based PSA descriptors (PSAQikProp = 73 Å2 and
PSAMarvin = 50 Å2) were not only well below the maximum ac-
ceptable threshold of 140 Å2 for good oral absorption, but also
met the criteria for a passive permeation through the BBB
(PSA<90Å2) [17]. Similarly, both predicted cLogPo/w values
(cLogP QikProp = 1.00 and cLogPMarvin = 2.40) were within the
range that is favorable for blood-brain transport. On the other

Table 3 Screening of tryptanthrin in the in vitro primary coculture rat/bovine BBB model (n = 3).

In vitro primary

coculture BBB

bovine/rat model

Transport

direction

Samples Time of

withdrawal

(min)

Mean con-

centration

(ng/mL)

Mean

amount

(ng)

Mean Papp of

analyte ± SEM

(× 10− 6cm/s)

Mean Papp of

Na-F ± SEM

(× 10− 6cm/s)

Recovery

of ana-

lyte (%)

Inserts with cells A to B Donor compartment
(1500 μL)

60 635 953 – – –

Receiver compartment
(2500 μL)

60 237 592 36.15 ± 0.90 3.17 ± 0.19 106

Control inserts
(without cells)

A to B Donor compartment
(1500 μL)

60 686 1028 – – –

Receiver compartment
(2500 μL)

60 237 592 36.14 ± 3.99 24.20 ± 1.24 112

Fig. 6 MeanTEER values (▲) and CCl values (█) for hBMEC cell monolayers,
recorded in real-time by the CellZscope system. *Transfer of insert to a 24-
well plate for tryptanthrin permeability assays; **transfer of insert to
CellZscope for barrier integrity control. (Color figure available online only.)

Table 4 Screening of tryptanthrin in the in vitro primary triple coculture rat BBB model (n = 4).

In vitro primary

triple coculture

BBB rat model

Transport

direction

Samples Time of

withdrawal

(min)

Mean con-

centration

(ng/mL)

Mean

amount

(ng)

Mean Papp of

analyte ± SEM

(× 10− 6cm/s)

Mean Papp of

Na-F ± SEM

(× 10− 6cm/s)

Recovery

of analyte

(%)

Efflux

ratio

Inserts with
cells

A to B Donor compart-
ment (300 μL)

60 1193 358 – – – –

Receiver compart-
ment (700 μL)

60 189 132 83.40 ± 4.02 1.14 ± 0.53 125

Control inserts
(without cells)

A to B Donor compart-
ment (300 μL)

60 1093 328 – – – –

Receiver compart-
ment (700 μL)

60 262 183 116 ± 1.79 153 ± 11.41 132 –

Inserts with
cells

B to A Donor compart-
ment (700 μL)

60 1631 1142 – – – –

Receiver compart-
ment (300 μL)

60 339 102 64.12 ± 2.91 0.52 ± 0.18 136 0.77

Control inserts
(without cells)

B to A Donor compart-
ment (700 μL)

60 1313 919 – – – –

Receiver compart-
ment (300 μL)

60 302 90.54 57.15 ± 4.28 38.21 ± 2.89 110 –
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hand, the QikProp model for brain/blood partitioning predicted a
cLogBB of − 0.450 (usual range from − 3.0 to 1.2), indicating a
slight preference for the blood environment [18].
In summary, the UPLC‑MS/MS methods for tryptanthrin in lith-
ium heparinized rat plasma and RHB were developed and vali-
dated according to both EMA and FDA guidelines, and applied to
a PK study and three BBB models [9,10]. The rat plasma method
and the PK data from the pilot study will serve for the design of a
full PK study addressing oral bioavailability. Moreover, it is
planned to determine PK parameters by both non-compartmen-
tal and compartmental analysis using WinNonlin software to
select the most appropriate body model. For estimation of the in
vivo absorption of tryptanthrin, in vitro experiments with the
Caco-2 permeability assay and a method validation in Hanksʼ
balanced salt solution (HBSS) are in progress.
The BBB permeation potential of tryptanthrin was evaluated in
two in vitro primary animal BBB models [19,20] and in one in vi-
tro human immortalized BBB model [21]. A good correlation was
found, and datawere indicative of a high BBB penetration of tryp-
tanthrin when compared to Na-F. Furthermore, the data sug-
gested that tryptanthrin crossed the cell monolayers by passive
diffusion. These results were consistent with in silico BBB perme-
ation modelling. In addition, the efflux ratios determined in the
bidirectional in vitro BBB models suggested that tryptanthrin
was not subjected to active efflux. Considering the unique phar-
macological profile of tryptanthrin, the data here indicate that
the compound is a promising lead for drug development in the
area of neuroinflammatory diseases.

Material and Methods
!

Chemicals and reagents
Tryptanthrin (PubChem CID: 73549) (l" Fig. 1A) and the I.S. [(E,
Z)-3-(benzylidenyl)-indolin-2-one (l" Fig. 1B)] were synthesized
according to established procedures [1]. Both compounds
showed a purity of ≥ 99% as determined by HPLC and NMR [22].
All solvents were of analytical grade. Methanol was from Lab-
Scan, formic acid and trifluoroacetic acid were supplied by
BioSolve, and albumin from bovine serum (BSA) and sodium
fluorescein (Na-F, 10 μg/mL) were purchased from Sigma-Aldrich.
Acetonitrile and DMSO were purchased from Scharlau. HPLC
grade water was prepared using an EASYpure II (Barnstead,
Dubuque, IA, USA) water purification system. Ostro® 96-well
plates were provided by Waters Corp. Blank male Sprague-Daw-
ley rat plasma in lithium heparin batches were from Seralab. Tis-
sue culture inserts (transparent polyethylene membrane, 3.0 μm
pore size) for the 24-well format were from Greiner Bio-one®,
and tissue culture inserts (polycarbonatemembrane, 0.4 μm pore
size) used for the 6-well plates were from Corning. Ringer HEPES
buffer RHB (150mM NaCl, 2.2mM CaCl2, 0.2mM MgCl2, 5.2mM
KCl, 2.8mM glucose, 5mM HEPES, 6mM NaHCO3, 0.2% BSA) was
prepared in-house, adjusted to pH 7.4, and stored at 4°C.

Instrumentation and UHLC‑MS/MS conditions
The UPLC‑MS/MS system consisted of an ACQUITY UPLC system
(Waters Corp.) and a Waters tandem quadrupole detector (TQD)
mass spectrometer. Chromatographic separation was performed
on a Waters UPLC HSS T3 column (100mm×2.1mm; 1.8 μm par-
ticle size). Column temperature was set at 45°C, and the auto-
sampler was set at 10°C. The mobile phase was delivered at a
flow rate of 0.5mL/min. Weak and strong wash solvents were

water-methanol (50:50, v/v) and acetonitrile-isopropanol-ace-
tone (40:30:30, v/v/v) both containing 0.2% trifluoroacetic acid.
The seal wash solvent consisted of a water-acetonitrile mixture
(90:10, v/v). MS detection was performed with electrospray ion-
ization in the positive mode (ESI+). Nitrogen, generated by a ni-
trogen generator N2-Mistral (Schmidlin AG), was used both as a
desolvation and nebulization gas. Argon was used as a collision
gas. MS/MS parameters were generated using Waters IntelliStart
software followed by manual optimization. Multiple reaction
monitoring (MRM) transitions were 248.7 > 129.8 for tryptan-
thrin, and 221.8 > 194.0 for the I.S. [(E,Z)-3-(benzylidenyl)-indo-
lin-2-one] (l" Figs. 2 and 3). Due to the slow inter-conversion at
RT of the I.S., both E and Z isomer peaks were integrated and
quantified (l" Figs. 2 and 3) [11,23]. The capillary voltage was
3.5 kV. The cone voltage was 51 V, and the collision energy was
31 eV for both tryptanthrin and the I.S. The source temperature
was set at 150°C, and the desolvation temperature was 400°C.
The flow rates for the desolvation gas and cone gas were 900 L/h
and 10 L/h, respectively. Data were acquired with MassLynx V4.1
software and quantifiedwith QuanLynx software (Waters, Corp.).

Chromatographic conditions for samples extracted
from lithium heparinized rat plasma
The mobile phases consisted of 10mM ammonium formate
+ 0.05% formic acid (eluent A) and acetonitrile + 0.05% formic
acid (eluent B). The following gradient was used for separation:
0–1.0min, 5% of B; 1–6min, 5–100% of B; 6–7min, 100% of B;
7–7.1min, 100–5% of B; 7.1–8min, 5% of B. The injection solvent
consisted of 65% of eluent C (water + 0.1% formic acid) and 35% of
eluent D (acetonitrile + 0.1% formic acid). Total run time was
8min and the dwell time was automatically set at 0.2 sec
(l" Fig. 2).

Chromatographic conditions for samples extracted
from Ringer HEPES Buffer
Themobile phases consisted of water containing 0.1% formic acid
(eluent C) and methanol containing 0.1% formic acid (eluent E).
The following gradient was used for separation: 0–1min, 20% of
E; 1–5min, 20–90% of E; 5–5.1min, 90–100% of E; 5.1–6min,
100% of E; 6–6.1min, 100–20% of E; 6.1–7min, 20% of E. The to-
tal run time was 7min. As an injection solvent, pure methanol
was used. The dwell time was automatically set at 0.142 sec
(l" Fig. 3).

Sample preparation
SS of the analyte and I.S. were prepared in DMSO and stored be-
low − 65°C. Working solutions (WS1) of the analyte and I.S. were
prepared in methanol by further diluting the corresponding SS to
obtain a concentration of 100 μg/mL for tryptanthrin and 10 μg/
mL for I. S. WS1 of the I.S. was further diluted with acetonitrile
+ 1% formic acid (for the rat plasma method) or methanol (for
the RHB method) to give a second working solution (WS2) at
1000 ng/mL. SS and WS1 were stored below − 65°C until use.
WS2 was prepared daily before each analytical run. Seven cali-
bration samples (calibrators) in the range of 10.0–2000 ng/mL
(rat plasma) and 20.0–2000 ng/mL (RHB) were prepared in the
corresponding matrices by serial dilution with WS1 of tryp-
tanthrin (100 μg/mL). QCs at low (QCL), middle (QCM), and high
(QCH) levels were prepared in lithium heparinized rat plasma at
concentrations of 30.0, 1000, and 1600 ng/mL, and in RHB at con-
centrations of 60.0, 1000, and 1600 ng/mL.
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Sample extraction from the lithium heparinized rat plasma was
performed as follows: the Ostro® plate was placed onto a 96-
deep-well plate (96-DWP) serving as a collection plate. To 50 μL
lithium heparinized rat plasma containing tryptanthrin, 150 μL
of I. S. at 1000 ng/mL were added. The Ostro® plate/collection
plate assembly wasmixed for 10min at RTon an Eppendorf Ther-
momixer (1000 rpm). After mixing, the plates were placed on a
positive pressure processor (Biotage® PRESSURE+, Uppsala,
Sweden), and a pressure of 30–40 psi was applied for 10min.
The Ostro® plate was discarded and the filtrate in the collection
plate was dried under nitrogen gas (Evaporex EVX-96, Apricot
Designs). The dried extract was reconstituted with 200 μL of in-
jection solvent (65% solvent C and 35% D).
For the sample extraction from RHB, aliquots of RHB (200 μL)
containing tryptanthrin were subjected to protein precipitation
by adding 100 μL of I. S. at 1000 ng/mL, 200 μL of BSA solution
(60 g/L), and 1000 μL of ice-cold acetonitrile. The mixture was
briefly vortexed, mixed for 10min at RT on an Eppendorf Ther-
momixer (1400 rpm), and centrifuged for 20min at 16160 g at
10°C. The supernatant (1300 μL) was transferred into a 96-DWP,
dried under nitrogen gas flow, and reconstituted with 200 μL of
injection solvent (methanol).
After reconstitution of tryptanthrin with the corresponding in-
jection solvents, sample preparation (for both RHB and rat plas-
ma) was continued as follows: the 96-DWPs were shaken for
45min at RT on an Eppendorf Mixmate and centrifuged for
2min at 2060 g (Megafuge, Heraeus Instruments AG). Due to
nonspecific adsorption of the I.S. onto the 96-DWP, each sample
was transferred into a 300-μL glass insert of an HPLC vial before
injection into the UPLC‑MS/MS system in full loop mode (5 μL).

Method validation
The UPLC‑MS/MS quantificationmethods for tryptanthrin in lith-
ium heparinized rat plasma and RHB were fully validated accord-
ing to FDA and EMA guidelines [9,10]. The calibration curves of
tryptanthrin were in the range of 10.0–2000 ng/mL for the rat
plasma and 20.0–2000 ng/mL for the RHB. Each calibration curve
was validated by QCs at low, medium, and high concentration
levels [30.0 (QCL for rat plasma)/60.0 (QCL for RHB), 1000
(QCM), and 1600 ng/mL (QCH)], which were inserted randomly
into the analytical run. Calibrators and QCs at all concentration
levels were analyzed in duplicate. Carryover was assessed by di-
rectly injecting an extracted blank (lithium heparinized rat plas-
ma/RHB) after the upper limit of quantification (ULOQ = 2000 ng/
mL). Specificity and selectivity of the methods were evaluated by
six blank samples and six QC samples of tryptanthrin at the LLOQ
(duplicates, three different batches of lithium heparinized rat
plasma or RHB). Intra-run and inter-run repeatability was as-
sessed by injecting six replicates of tryptanthrin at five concen-
tration levels (LLOQ, QCL, QCM, QCH, and ULOQ) on three consec-
utive days. The absolute recovery of tryptanthrinwas determined
at three concentration levels [30.0 (rat plasma)/60.0 (RHB), 1000
and 1600 ng/mL] of QC samples by comparing the peak areas of
the extracted QC samples with those of the unextracted solutions
(= 100% recovery). To extend the upper limit of the calibration
curve, a dilution test was performed. For this purpose, a solution
of tryptanthrin at 4000 ng/mL in blank rat plasma and RHB was
prepared and then further diluted in a ratio of 1:10 and 1:100.
Short-term stabilities were assessed at RT, after cyclic freeze and
thaw, and after storage at autosampler conditions (10°C, light
protected). Long-term and stock solution stabilities were deter-
mined after storage below − 65°C. For all validation tests, impre-

cisionwas expressed by the coefficient of variation (CV%), and in-
accuracy by the relative error (RE%).

Preliminary pharmacokinetic study
All animal experiments were performed according to the policies
and guidelines of the Institutional Animal Care and Use Commit-
tee (IACUC) of the University of Florida, Gainesville, FL, USA (NIH
publication #85–23), study protocol #200802291, as previously
described [11]. Tryptanthrin was dissolved in DMSO and admin-
istered intravenously (i.v.) in a concentration of 2mg/kg bw
(n = 4). Blood samples (300 μL) were collected from the sublin-
gual vein into Vaccuette® heparinized tubes at 0 (prior to dosing),
2, 5, 10, 20, and 30min and 1, 2, 3, 4, 6, 8, and 12 h.

Data analysis
Mean plasma concentrations of tryptanthrin after i. v. adminis-
tration versus time curves were generated in Graphpad Prism
(version 5.01). The PK parameters were determined by non-com-
partmental analysis using PKSolver [24]. The PK parameters de-
termined were the concentration at time zero (C0), the terminal
elimination half-life (t1/2), area under the curve extrapolated to
infinity (AUC0–∞), the elimination rate constant (Ke), the MRT,
the volume of distribution at terminal phase (Vz), and the CL.
AUC0 → last was calculated using a linear/log trapezoidal method
from time zero to the last detectable sampling point 240min
after administration.

Blood-brain barrier drug permeability assays
In the human in vitro BBB model (l" Fig. 5), immortalized human
brain microvascular endothelial cells (hBMEC cell line) were
seeded at a density of 6.0 × 104 cells/cm2 onto collagen-coated
24-well tissue culture inserts. Barrier tightness was assessed by
real-time TEER measurements using a CellZscope system (Nano-
Analytics) [13]. TEER and cell layer capacitance (CCL) values were
recorded every hour. After 60 h, at the maximummean TEER val-
ue of 25.6 ± 0.0370 Ω cm2 (l" Fig. 6), the permeability assay for
tryptanthrin was carried out. The experiments were performed
bidirectionally and in triplicate as previously described [25].
For the primary coculture rat/bovine in vitro BBB model, the
method of Dehouck et al. (1990) [26] was used with minor mod-
ifications. Glial cells were isolated according to Booher and
Sensenbrenner (1972) [27] and cultured for 3weeks at thebottom
of 6-well plates. BBECs were isolated from capillary fragments
and were seeded onto collagen-coated 6-well tissue culture in-
serts placed into the wells containing the glial cells (l" Fig. 5).
After 7 days of coculture, at a mean TEER value of 350–400 Ω
cm2 [28], the permeability assay was performed (n = 3).
For the primary triple coculture rat in vitro BBB model, RBECs,
pericytes, and glial cells were isolated from 3-week-old Wistar
rats, similarly as described earlier [29,30]. Rat glial cells were cul-
tured at the bottom of 24-well plates. Pericytes were seeded onto
the bottom side of the inserts, and RBECs were seeded onto the
apical side of collagen-coated filter inserts (l" Fig. 5). After 4 days
of coculture, a mean TEER value of 398.8 ± 44.5 Ω cm2 was mea-
sured, and the bidirectional permeability assay was carried out
(n = 4).
Tryptanthrin was screened at a concentration of 5 μM together
with Na-F as a barrier integrity control marker in RHB. The plates
were spiked with the test solution and incubated at 37°C on a
horizontal shaker with moderate speed (100 rpm). Samples were
collected from both apical and basolateral compartments after
60min and stored below − 65°C until analysis. The fluorescent
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marker (Na-F) was quantified by a Chameleon microplate reader
(λex = 490 nm, λem = 514 nm; Hidex), fluorescence counter
(λex = 485 nm, λem = 528 nm; Synergy H1, Biotek), and Fluostar
Optima multiwell plate reader (λex = 480 nm, λem = 520 nm;
BMG Labtechnologies), and the analyte by UPLC‑MS/MS.

Blood-brain barrier permeability parameters
The apparent permeability coefficients (Papp) for tryptanthrin
and Na-F were calculated with the following equation [31]:

Papp ¼ VR

ðACD0Þ �
�CR

�t
ðcm=sÞ

VR = volume in the receiver compartment; A = surface area of the
filter membrane (0.336 cm2 for 24-well inserts, 4.7 cm2 for 6-well
inserts); CD0 = initial concentration in the donor compartment;
and ΔCR/Δt = change of concentration over time in the receiver
compartment. To evaluate if tryptanthrin was involved in efflux
transport, the ER [32] was calculated:

ER ¼ PappB!A

PappA!B

Active efflux of the compound was concluded if the ER was > 2.0
[33].
To confirm that the diffusion barrier was only provided by the
cell monolayer, control experiments were performed using colla-
gen-coated inserts without cells. Compound loss was assessed by
calculating the recovery (mass balance) according to the equa-
tion:

Recovery %ð Þ ¼ CDfVD þ CRfVR

CD0VD
� 100

CDf = final concentration of the compound in the donor; CRf = final
concentration of the compound in the receiver compartment;
CD0 = initial concentration in the donor compartment; and VD,
VR = volumes in the donor and receiver compartments, respec-
tively. All results are expressed as means ± SEM.

In silico prediction of blood-brain barrier permeability
A three-dimensional computer model of tryptanthrin was built
using the Maestro modeling environment (Maestro, version 9.3,
Schrödinger, LLC, 2012). The global minimum geometry was used
as an input for the QikProp application (QikProp, version 3.5,
Schrödinger, LLC, 2012) to evaluate various descriptors relevant
for drug permeability. The PSA and the logarithm of partition co-
efficient (cLogP) descriptors were calculated using the Calculator
plugin of ChemaxonMarvinweb-application (http://www.chem-
axon.com/marvin/sketch/index.php, accessed on February 12,
2014), which requires only the 2D structural formula as an input.

Supporting information
Data of both full method validations and the in silico parameters
are available as Supporting Information.
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Figures 

  
Fig. 1S Long-term stability (LTS) of tryptanthrin in lithium heparinized rat plasma for 90 days below -

65°C (N=3). 

 

 

 

 
Fig. 2S Long-term stability (LTS) of tryptanthrin in Ringer HEPES buffer for 9 days below -65°C 

(N=3). 
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Tables 

 

Table 1S Calibrators and calibration curve parameters for lithium heparinized rat plasma (N=10). 

Run 

number 

Nominal level (ng/mL) Regression parameters 

10.0 50.0 100 250 500 1000 2000 A B C R
2
 

1 
10.9 49.0 106 251 511 1048 2072 

-0.000000100 0.00183 0.00153 0.998 
10.9 43.5 *84.1 *211 471 976 1920 

2 
10.0 52.8 108 271 519 981 1933 

-0.0000000904 0.00191 0.00283 0.998 
9.88 45.7 108 236 467 927 2184 

3 
11.4 47.5 110 263 511 1023 2011 

0.0000000198 0.00122 0.00268 0.999 
11.0 50.1 93.7 242 472 989 1986 

4 
10.5 53.8 106 269 489 1021 2062 

-0.0000000236 0.00239 0.00452 0.999 
9.88 50.2 99.1 254 481 961 1957 

5 
10.1 52.5 109 232 507 1021 2035 

-0.000000191 0.00221 0.00450 0.999 
10.2 51.4 106 255 494 957 1980 

Mean 10.5 49.6 105 253 492 990 2014 -0.0000000771 0.00191 0.00321 0.999 

S.D. 0.544 3.30 5.34 13.7 19.1 37.4 78.7 0.0000000805 0.000450 - - 

CV% 5.19 6.66 5.08 5.41 3.88 3.78 3.91 
    

RE% 4.84 -0.724 5.19 1.03 -1.54 -0.959 0.705 
    

Response = A x Conc.
2
 + B x Conc. + C  

Quadratic regression, 1/X weighting, origin: included 

* >15.0% outside acceptance criteria, not used for calculations 

 

Table 2S Calibrators and calibration curve parameters for Ringer HEPES buffer (N=12) 

Run 

number 

Nominal level (ng/mL) Regression parameters 

20.0 50.0 100 250 500 1000 2000 A B C R
2
 

1 
18.9 43.2 95.2 250 477 939 1873 

-0.000000675 0.005543 -0.00485 0.996 
21.9 47.8 107 271 542 *1156 2171 

2 
18.0 43.8 99.6 252 469 864 1815 

-0.000000797 0.000526 -0.00415 0.993 
20.7 49.8 110 264 566 1038 2299 

3 
21.7 44.2 101 256 528 979 2101 

-0.00000101 0.000593 -0.0130 0.999 
19.2 45.9 99.9 244 510 974 1932 

4 
18.1 46.2 94.8 261 541 925 2224 

-0.000000973 0.00487 -0.00805 0.995 
20.8 49.7 96.8 262 557 871 2037 

5 
19.3 49.0 102 259 506 1009 2132 

-0.000000586 0.000284 -0.00311 0.999 
17.9 49.2 106 262 495 927 1984 

6 
18.1 48.9 108 246 522 955 1921 

-0.000000349 0.000207 0.000934 0.998 
19.0 52.3 106 256 516 939 2183 

Mean 19.5 47.5 102 257 519 947 2056 -0.000000732 0.00200 -0.00537 0.997 

S.D. 1.45 2.83 5.15 7.86 29.9 52.7 152 0.000000250 0.00249 - - 

CV% 7.43 5.97 5.04 3.06 5.76 5.56 7.41 
    

RE% -2.64 -5.04 2.14 2.78 3.78 -5.28 2.80 
    

Response = A x Conc.
2
 + B x Conc. + C  

Quadratic regression, 1/X weighting, origin: included 

* >15.0% outside acceptance criteria, not used for calculations 

. 
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Table 3S Intra-run (N=6) and inter-run (N=18) imprecision (expressed as CV%) and inaccuracy 

(expressed as RE%) of lithium heparinized rat plasma QC samples, based on 3 series of 6 replicates 

for each level. 

 
LLOQ QCL QCM QCH ULOQ 

Nominal levels (ng/mL) 10.0 30.0 1000 1600 2000 

Intra-run Mean 10.9 31.2 963 1464 1736 

Intra-run S.D. 0.176 1.97 69.4 38.8 32.4 

Intra-run CV% 1.61 6.30 7.21 2.65 1.86 

Intra-run RE% 9.41 4.10 -3.73 -8.52 -13.2 

Inter-run Mean 10.8 31.2 999 1411 1785 

Inter-run S.D. 0.494 2.22 64.9 43.8 68.6 

Inter-run CV% 4.59 7.10 6.50 3.11 3.84 

Inter-run RE% 7.74 4.05 -0.0702 -11.8 -10.8 

 

Table 4S Intra-run (N=6) and inter-run (N=18) imprecision (expressed as CV%) and inaccuracy 

(expressed as RE%) of RHB QC samples, based on 3 series of 6 replicates for each level. 

 
LLOQ QCL QCM QCH ULOQ 

Nominal levels (ng/mL) 20.0 60.0 1000 1600 2000 

Intra-run Mean 18.9 61.3 908 1405 2056 

Intra-run S.D. 2.42 2.26 25.3 31.4 22.7 

Intra-run CV% 12.8 3.68 2.79 2.23 1.10 

Intra-run RE% -5.52 2.18 -9.17 -12.2 2.82 

Inter-run Mean 18.5 59.2 1015 1559 2073 

Inter-run S.D. 1.67 2.85 25.7 37.6 71.9 

Inter-run CV% 9.04 4.82 2.53 2.41 3.47 

Inter-run RE% -7.54 -1.28 1.55 -2.55 3.66 
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Table 5S Carry-over assessment for tryptanthrin as analyte, and for (E,Z)-3-(benzylidenyl)-indolin-2-

one as I.S. in lithium heparinized rat plasma (N=10). 

Run 

number 
Replicate 

Peak response (counts) 
Carry-over (%) Mean Carry-over (%) 

Blank sample LLOQ 

Analyte IS Analyte IS Analyte IS Analyte IS 

1 1 214 *84649 1894 88280 11.3 *- 
12.4 *- 

 
2 229 *75240 1691 78955 13.6 *- 

2 1 256 0.00 2087 94992 12.3 0.00 
10.5 0.00 

 
2 170 0.00 1963 95081 8.67 0.00 

3 1 55.6 0.00 2558 154281 2.17 0.00 
2.36 0.0361 

 
2 49.5 87.0 1936 120559 2.55 0.0722 

4 1 184 0.00 2796 94349 6.60 0.00 
5.81 0.00 

 
2 125 0.00 2488 88433 5.02 0.00 

5 1 438 192 2666 99474 16.4 0.193 
18.5 0.242 

 
2 539 283 2624 97209 20.5 0.291 

     
Mean 9.91 0.0696 

  

*Contamination, carry-over of I.S. not calculated 

 

Table 6S Carry-over assessment for tryptanthrin as analyte, and for (E,Z)-3-(benzylidenyl)-indolin-2-

one as I.S in Ringer HEPES buffer (N=12). 

Run 

number 
Replicate 

Peak response (counts) 
Carry-over (%) Mean Carry-over (%) 

Blank sample LLOQ 

Analyte IS Analyte IS Analyte IS Analyte IS 

1 1 847 471 9387 94179 9.02 0.500 
8.61 0.465 

 
2 897 405 10941 94087 8.20 0.431 

2 1 1032 0.00 8137 90033 12.7 0.00 
13.2 0.00 

 
2 1014 0.00 7405 70891 13.7 0.00 

3 1 513 0.00 4783 41605 10.7 0.00 
9.66 0.00 

 
2 382 0.00 4441 44148 8.60 0.00 

4 1 240 0.00 4684 58675 5.12 0.00 
5.95 0.00 

 
2 345 0.00 5098 54825 6.77 0.00 

5 1 159 0.00 6004 116645 2.65 0.00 
2.83 0.0104 

 
2 149 21.6 4935 103819 3.02 0.0210 

6 1 233 0.00 5842 152568 0.00 0.00 
0.00 0.00 

 
2 254 0.00 5397 134481 0.00 0.00 

     
Mean 6.71 0.0793 
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Table 7S: Selectivity test at the LLOQ (10.0 ng/mL) for tryptanthrin, based on three different lithium 

heparinized rat plasma batches (N=6). 

Nominal level (ng/mL) 10.0 

Mean 10.4 

S.D. 0.365 

CV% 3.51 

RE% 4.02 

 

Table 8S: Selectivity test at the LLOQ (20.0 ng/mL) for tryptanthrin based on three different Ringer 

HEPES buffer batches (N=6). 

Nominal level (ng/mL) 20.0 

Mean 18.5 

S.D. 0.993 

CV% 5.37 

RE% -7.62 

 

Table 9S: Absolute extraction yields of tryptanthrin and I.S. (E,Z)-3-(benzylidenyl)-indolin-2-one for 

lithium heparinized rat plasma (N=6). 

Tryptanthrin nominal levels (ng/mL) 30.0 1000 1600 

Absolute recovery (%) 79.4 77.5 77.6 

CV% 8.73 4.90 4.80 

SD 6.93 3.80 3.72 
 

Internal final level (ng/mL) 750 

Absolute recovery (%) 110 

CV% 3.98 

SD 4.38 

 

Table 10S: Absolute extraction yields of tryptanthrin and I.S. (E,Z)-3-(benzylidenyl)-indolin-2-one 

for Ringer HEPES buffer (N=6). 

Tryptanthrin nominal levels (ng/mL) 60.0 1000 1600 

Absolute recovery (%) 60.8 78.6 88.0 

CV% 3.77 3.26 2.68 

SD 2.29 2.56 2.36 
 

Internal final level (ng/mL) 433 

Absolute recovery (%) 94.4 

CV% 1.81 

SD 1.71 
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Table 11S Dilution test in lithium heparinized rat plasma (N=6). 

Nominal level (ng/mL) 4000 

Dilution factor 10X 

Mean 3833 

S.D. 100 

CV% 2.62 

RE% -4.19 

Dilution factor 100X 

Mean 4314 

S.D. 104 

CV% 2.41 

RE% 7.85 

 

Table 12S Dilution test in Ringer HEPES buffer (N=6). 

Nominal level (ng/mL) 4000 

Dilution factor 10X 

Mean 3961 

S.D. 130 

CV% 3.29 

RE% -0.970 

Dilution factor 100X 

Mean 4186 

S.D. 105 

CV% 2.52 

RE% 4.66 

 

Table 13S Short-term stabilities in lithium heparinized rat plasma during storage in various conditions 

(expressed as RE%) (N=6). 

Nominal levels (ng/mL) 30.0 1600 

Three successive freeze/thaw cycles below -65°C -1.60 -13.5 

Stored rat plasma at RT for 4 h 4.70 -12.5 

Processed rat plasma at 10°C for 36 h -6.58 -12.8 

 

Table 14S Short-term stabilities in Ringer HEPES buffer during storage in various conditions 

(expressed as RE%) (N=6). 

Nominal levels (ng/mL) 60.0 1600 

Three successive freeze/thaw cycles below -65°C 9.74 3.24 

Stored RHB at RT for 4 h -1.32 3.27 

Processed RHB at 10°C for 19 h 8.12 -2.29 
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Table 15S Stability of tryptanthrin stock solution in DMSO stored below -65°C for 427 days and 6 

hours at RT (N = 6). 

 Peak area ratios 

Stock solutions tested New (t=0) SS of tryptanthrin + New SS of I.S. 

Mean 4.09 

S.D. 0.0716 

CV% 1.75 

Stock solutions tested Old (t=427) SS of tryptanthrin + New SS of I.S. 

Mean 4.03 

S.D. 0.0211 

CV% 0.524 

Difference % -1.59 

 

Table 16S Mean values of the most relevant in silico descriptors for permeability. 

Tryptanthrin (MW: 248.24 g/mol) 

QikProp descriptors (3D) 

donorHB: 0.00 

accptHB: 6.00 

LogPo/w: 1.01 

LogBB: -0.450 

Human Oral Absorption [%]: 84.4 

PSA [Å
2
]: 73.1 

Chemaxon Marvin (2D) 

LogPo/w: 2.40 

LogD7.4: 2.40 

PSA [Å
2
]: 49.7 
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3.3 Development and full validation of an UPLC-MS/MS method for the 

quantification of the plant-derived alkaloid indirubin in rat plasma 

Evelyn A. Jähne, Chethan Sampath, Veronika Butterweck, Matthias Hamburger, and Mouhssin Oufir 

 

Journal of Pharmaceutical and Biomedical Analysis 128 (2016) 247–252 

DOI: 10.1016/j.jpba.2016.05.018 

 

In the present study, we investigated key pharmacokinetic (PK) parameters for the anti-proliferative 

and anti-inflammatory compound (Z)-[2,3'-biindolinylidene]-2',3-dione (indirubin, Fig. 3) from Isatis 

tinctoria L.. Therefore, we developed a UPLC-MS/MS quantification method in lithium heparinized 

rat plasma and validated it according to current international guidelines. Indirubin was extracted from 

lithium heparinized rat plasma by using Waters Ostro™ pass-through sample preparation plates. 

Preliminary PK data were obtained from Sprague Dawley rats after intravenous administration of 

indirubin (2 mg/kg b.w.) and blood sampling up to 12 hours after i.v. injection. PK parameters were 

determined by non-compartmental analysis using PKSolver. A half-life (t1/2) of around 30 min, and a 

relatively high clearance (CL) of almost 3 L/h/kg was found for the alkaloid. 

 

 

 

Fig. 3: (Z)-[2,3'-biindolinylidene]-2',3-dione 

 

 

 

 

 

My contributions to this publication: development and validation of the UPLC-MS/MS method in 

lithium heparinized rat plasma, sample preparation and analysis, PK data analysis using PKSolver, 

writing the manuscript draft, and preparation of figures and tables. 

          Evelyn Andrea Jähne 
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a  b  s  t  r a  c t

An  UPLC-MS/MS  method  for  the  quantification  of indirubin in lithium heparinized  rat plasma was devel-

oped  and  validated  according  to current  international  guidelines.  Indirubin  was extracted  from rat plasma

by  using Waters  OstroTM pass-through sample preparation  plates. The method  was  validated with  a

LLOQ  of  5.00 ng/mL  and an  ULOQ  of 500  ng/mL. The calibration  curve was fitted  by least-square  quadratic

regression,  and a weighting  factor  of 1/X was applied. Recoveries of  indirubin and I.S.  were  consistent

and  ≥75.5%.  Stability  studies  demonstrated  that indirubin was stable in  lithium heparinized  rat plasma

for  at  least 3 freeze/thaw  cycles, for  3 h  at RT, for  96 h in  the  autosampler  at  10 ◦C,  and  for  84  days  when

stored  below −65 ◦C. Preliminary pharmacokinetic  (PK)  data  were  obtained  from Sprague  Dawley rats

after  intravenous administration  of  indirubin  (2  mg/kg  b.w.)  and  blood sampling  up  to  12 h after  injec-

tion.  PK  parameters  were  determined by  non-compartmental analysis.  Indirubin had a half-life  (t1/2) of

35  min, and  a relatively  high  clearance  (CL) of 2.71  L/h/kg.

© 2016  Elsevier B.V.  All  rights  reserved.

1. Introduction

The bis-indole indirubin is  the red isomer of the ancient blue

dye indigo. Both indigoids derive from colorless precursors found in

various plants including Baphicacanthus cusia (Acanthaceae), Poly-

gonum tinctorium (Polygonaceae), Indigofera tinctoria (Fabaceae)

and Isatis tinctoria (Brassicaceae), and in some marine mollusks

(Muricidae) [1,2]. The clinical interest in the compound was

aroused in the early 1980s when indirubin was  found to  be  the

active ingredient of Danggui Longhui Wan, a  mixture of 11 herbals

used in the traditional Chinese medicine to treat chronic myelo-

Abbreviations: AUC, area under the curve; C0, concentration at  time zero; Cal,

calibrator;  CV%, coefficient of  variation; ESI, electrospray ionization; I.S., internal

standard;  LLOQ, lower limit of  quantification; LTS, long-term stability; MRM,  mul-

tiple  reaction monitoring; MRT, mean residence time; PK, pharmacokinetic; QC,

quality control; QCH, quality control high; QCL, quality control low; QCM, quality

control medium; SS, stock solution; t1/2, half-life of elimination; TFA, trifluoroacetic

acid;  TQD, tandem quadrupole detector; ULOQ, upper limit of quantification;

UPLC-MS/MS, ultra-high performance liquid chromatography with tandem mass

spectrometric detection; Vz, volume of distribution; WS,  working solution.
∗ Corresponding author.

E-mail addresses: mouhssin.oufir@unibas.ch,  moussoufir@yahoo.com

(M. Oufir).

cytic leukaemia (CML) [1,3]. Indirubin showed potent inhibition

of cyclin-dependent kinases (CDKs) via interaction with the ATP-

binding site of the kinase [1]. The compound induced a  cell cycle

arrest mainly in G2 and/or G2/M phase leading to apoptosis of

the cell [1,4]. In addition to CDK inhibition, indirubin was  shown

to block other kinases, such as the glycogen synthase kinase-

3� (GSK-3) and the c-Src kinase [5]. Moreover, the alkaloid was

reported to inhibit the cell cycle via activation of the aryl hydro-

carbon receptor (AhR) [6,7]. Indirubin was  also shown to possess

anti-inflammatory properties, via  inhibition of interferon �  and

interleukin 6 production [8,9]. The compound was  found to sup-

press the NF-�B signaling pathway, and the expression of NF-�B

regulated-gene products involved in tumorigenesis [9]. Due to  the

potent anti-proliferative and anti-inflammatory activities, low tox-

icity, and reasonably drug-like properties indirubin served as a  lead

for medicinal chemistry efforts [3,10]. Considering the high interest

in the compound, it is  somewhat surprising that the pharmacoki-

netic (PK) properties of indirubin and indirubin derivatives have

not been evaluated. Up to  now, only one bioanalytical method

for quantification of indirubin in rat plasma has been published

[11]. However, the assay was using HPLC-UV and, therefore, does

not meet current requirements for bioanalytical methods in  terms

of selectivity, specificity, and sensitivity. Therefore, we developed

http://dx.doi.org/10.1016/j.jpba.2016.05.018

0731-7085/© 2016 Elsevier B.V. All rights reserved.
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Fig. 1. Chemical structures of (Z)-[2,3′-biindolinylidene]-2′ ,3-dione (indirubin) (A),

and internal standard (E,Z)-3-(benzylidenyl)-indolin-2-one (B).

and validated a quantitative UPLC-MS/MS method for indirubin

in rat plasma according to  the US Food and Drug Administration

(FDA) and European Medicines Agency (EMA) guidelines for indus-

try [12,13], and applied it  to  a  pilot PK study with intravenous

administration of indirubin in male Sprague Dawley rats.

2.  Experimental

2.1. LC–MS/MS analysis

2.1.1.  Chemicals and reagents

(Z)-[2,3′-biindolinylidene]-2′,3-dione (indirubin) (PubChem

CID: 5359405) (Fig. 1A) and the internal standard (I.S.) (E,Z)-3-

(benzylidenyl)-indolin-2-one (Fig. 1B) were synthesized according

to published procedures [1,14]. Both compounds showed a purity

of ≥99%, as determined by  HPLC and NMR  [15]. All used solvents

were of HPLC grade. Acetonitrile and dimethyl sulfoxide (DMSO)

were from Scharlau (Barcelona, Spain). Methanol was  supplied by

Lab-Scan (Gliwice, Poland). Formic acid and trifluoroacetic acid

(TFA) were purchased from BioSolve (Valkenswaard, Netherlands).

HPLC grade water was obtained by a Milli-Q (Merck Millipore,

Darmstadt, Germany) water purification system. OstroTM 96-well

plates were provided by Waters (Milford, MA,  USA), and blank

male Sprague Dawley rat plasma in  lithium heparin batches were

from Seralab (Haywards Heath, UK).

2.1.2. LC–MS/MS instrumentation and chromatographic

conditions

Sample analysis was performed on an Acquity UPLC system

coupled to an Acquity tandem quadrupole detector (TQD) (all

Waters Corp.). Chromatographic separation was performed on a

UPLC HSS T3 column (100 mm × 2.1 mm;  1.8  �m particle size)

(Waters Corp.). Column temperature was  set at 45 ◦C, and autosam-

pler temperature at 20 ◦C.  Mobile phase was delivered at a flow

rate of 0.5 mL/min. The mobile phase consisted of water contain-

ing 0.1% formic acid (Eluent A) and acetonitrile containing 0.1%

formic acid (Eluent B). The following gradient was  used: 30% of

B (0–1 min); 30–77% of B (1–5 min); 77–100% of B (5-5.01 min);

100% of B (5.01–6 min); 100–30% of B (6–6.01 min); 30% of B

(6.01–7 min). Total run time was 7 min. Weak and strong wash

solvents were water-acetonitrile (50:50, v/v) containing 0.2% TFA,

and acetonitrile-isopropanol-acetone (40:40:30, v/v/v) containing

0.2% TFA, respectively. The seal wash solvent consisted of  a water-

acetonitrile mixture (90:10, v/v). Extracted samples were dissolved

in DMSO and injected into the UPLC-MS/MS system in full loop

mode (2 �L).

The  TQD system was  equipped with an electro-spray ioniza-

tion (ESI) interface, and measurements were performed in  positive

ion mode (ESI +  ) with multiple reactions monitoring (MRM). Nitro-

gen, generated by a  nitrogen generator N2-Mistral (Schmidlin AG,

Neuheim, Switzerland), was  used both as desolvation and nebu-

lization gas.  Argon was used as collision gas. Capillary voltage was

4 kV for both analyte and I.S. Source temperature was  set at 150 ◦C,

and desolvation temperature was  400 ◦C. Flow rates for desolvation

gas and cone gas were 1000 L/h and 10 L/h, respectively. Data were

acquired with MassLynx V4.1 software and quantified by  means of

QuanLynx software (Waters Corp).

2.1.3. Sample preparation

Stock  solutions (SS) of analyte and I.S. were prepared in

DMSO. Working solutions (WS1) of  analyte (100 �g/mL) and I.S.

(10 �g/mL) were obtained by further diluting the corresponding

SS in  methanol. SS and WS1  were stored below −65 ◦C until use.

WS2 of I.S. was prepared freshly before each analytical run by

diluting WS1  with acetonitrile +  1% formic acid to a  final con-

centration of 1000 ng/mL. Seven calibration samples (calibrators,

cals) in  the range of 5.00–500 ng/mL, and quality controls (QCs) at

low, medium and high levels (QCL =  15.0 ng/mL, QCM =  250 ng/mL,

QCH = 400 ng/mL) were prepared in  lithium heparinized rat plasma

by serial dilution of WS1  of the analyte. Calibrators and QCs were

aliquoted into polypropylene tubes and stored below −65 ◦C until

analysis.

2.1.4. Extraction of plasma samples

Indirubin was extracted from rat plasma using Waters OstroTM

pass-through sample preparation plates. For  processing, the

OstroTM plate was  placed onto a  96-deep well plate (96-DWP)

serving as collection plate. To 50 �L  lithium heparinized rat

plasma, 150 �L  of I.S. WS2  at 1000 ng/mL were added. The

OstroTM/collection plate assembly was  shaken for 10 min  at RT

on an Eppendorf Thermomixer (1000 rpm). After mixing, the plate

assembly was  placed onto a positive pressure processor (Biotage®

PRESSURE+, Uppsala, Sweden), and a  pressure of 30–40 psi was

applied for 10 min. The OstroTM plate was  discarded, and the fil-

trate in  the collection plate was  dried under nitrogen (Evaporex

EVX-96, Apricot Designs, Monovia, CA, USA). Dried extracts were

reconstituted with 200 �L  of DMSO. The 96-DWP was  shaken for

45 min  at RT on an Eppendorf Mixmate and centrifuged for 2 min  at

3000 rpm (Megafuge, Heraeus Instruments AG, Switzerland). Due

to adsorption of the I.S. to the polypropylene of 96-DWP, the sam-

ples were transferred into 300 �L glass inserts in HPLC vials, prior

to injection in full loop mode (2 �L).

2.2. Bioanalytical method validation

The method was  fully validated according to  FDA and EMA

guidelines [12,13]. Seven calibrators ranging from 5.00–500 ng/mL

were injected at increasing concentrations, after a blank sample

(blank rat plasma) and a  zero sample (rat plasma only spiked with

I.S.). The calibration curve was  validated through six QCs (QCL,

QCM, and QCH), which were inserted randomly into each analytical

run. Calibrators and QCs were analyzed in duplicates. All  validation

runs were performed as described earlier [16,17]. Imprecision was

expressed by the coefficient of variation (CV%), and inaccuracy as

the relative error (RE%).

Specificity  and selectivity was  evaluated by six blank samples

and six QC samples of indirubin at the lower limit of quantifica-
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tion (LLOQ = 5.00 ng/mL) (duplicates, 3 different batches of lithium

heparinized rat plasma), respectively.

Intra-run repeatability and inter-run reproducibility of the

method were evaluated within one run (intra-run) and within three

runs on three consecutive days (inter-run), respectively, by inject-

ing six replicates of indirubin samples at five concentration levels

(LLOQ, QCL, QCM, QCH, and ULOQ).

Carry-over was assessed by directly injecting an extracted

blank after both replicates of the upper limit of quantification

(ULOQ = 500 ng/mL).

Absolute  recovery of indirubin was determined at three levels

(QCL, QCM, and QCH) by comparing the peak areas of  six extracted

QC samples with six unextracted samples (= 100% recovery).

Dilution integrity of the samples was tested by spiking blank rat

plasma with indirubin at a concentration of 2500 ng/mL, and by

further diluting the obtained dilution QC (QC Dil.) with blank rat

plasma in a ratio of 1:10 and 1:100. For each concentration level

(25.0 and 250 ng/mL), six replicates were analyzed.

Short-term stability was assessed through six replicates at two

concentration levels (QCL and QCH) after 3 h at RT, after 3 freeze and

thaw cycles, and after 96 h storage under autosampler conditions

(20 ◦C, light protected).

Long-term stability was determined by six replicates at three

concentration levels (QCL, QCM, QCH) after 84 days, when stored

below −65 ◦C. Stored samples were analyzed by a  freshly prepared

calibration curve.

Stock  solution stability for indirubin was assessed after storage

for 598 days below −65 ◦C, and for 6 h at RT. For this purpose, a

working solution (5 �g/mL) was  prepared in injection solvent from

the freshly prepared and the stored stock solutions, and injected

six times in the UPLC-MS/MS system. Stock solution stability of I.S.

after 190 days storage below −65 ◦C was already described by Oufir

et al. [16].

2.3.  Preliminary PK study

All  animal studies were performed according to the policies

and guidelines of the Institutional Animal Care and Use Committee

(IACUC) of the University of Florida, Gainesville, USA (NIH publica-

tion # 85-23), study protocol # 200802291 as previously described

[16]. Indirubin was dissolved in  DMSO and administered intra-

venously in male Sprague Dawley rats (N  =  4) at a dose of 2 mg/kg

b.w. Blood samples (300 �L) were collected from the sublingual

vein into Vaccuette® heparinized tubes at times of 0 (prior to dos-

ing), 2, 5, 10, 20, 30 min, 1, 2, 3, 4, 6, 8, and 12 h. Blood samples were

centrifuged at 4000 rcf for 15 min  at 4 ◦C. The plasma samples were

aliquoted into 1.5 mL  tubes and stored below −65 ◦C until analysis.

PK parameters were determined by non-compartmental analysis

using PKSolver 2.0  [18].

2.4.  Data analysis

Mean  plasma concentrations of indirubin after intravenous (i.v.)

administration versus time curves were generated in Graphpad

Prim (version 5.01, San Diego, CA, USA). PK parameters were deter-

mined by non-compartmental analysis using PKSolver 2.0 [18], and

included the concentration at time zero (C0), the terminal elimina-

tion half-life (t1/2), area under the curve extrapolated to infinity

(AUC0–∞), the elimination rate constant (Ke), the mean residence

time (MRT), the volume of distribution at terminal phase (Vz),

and the clearance (CL). AUC0→last was calculated using a  linear/log

trapezoidal method from time zero to the last detectable sampling

point 240 min  after administration.

Table 1
Intra-run (N =  6)  and inter-run (N = 18) imprecision (CV%) and inaccuracy (RE%) of

QC samples, based on 3 series of 6 replicates for each level.

LLOQ QCL QCM QCH ULOQ

Nominal level (ng/mL) 5.00 15.0 250 400 500

Intra-run Mean 4.97 13.8  238 418 490

Intra-run S.D. 0.304 0.414 5.65  14.3 14.3

Intra-run CV% 6.11 3.01 2.37  3.42 2.92

Intra-run RE% −0.564 −8.22 −4.73 4.51 −1.95

Inter-run Mean 5.17 13.6  233 412 498

Inter-run S.D. 0.385 0.512 3.70 10.6 13.5

Inter-run CV% 7.44 3.77 1.59  2.57 2.71

Inter-run RE% 3.46 −9.60 −6.66 2.96 −0.487

3. Results and discussion

3.1.  LC–MS/MS analysis

MS/MS  parameters were generated using Waters IntelliStart

software, and manually optimized according to Table S1. Due to

the slow inter-conversion at RT of the I.S., both E and Z iso-

mer peaks were integrated and quantified as previously described

[16,17]. Quantification was  achieved using MRM  transitions at

m/z 262.70 > 219.17 (Quantifier) and 262.70 > 190 (Qualifier) for

indirubin, and 221.8 >  194.0 for I.S. The fragmentation patterns of

indirubin and I.S. are shown in  Fig. S3.

3.2. Method validation

The  method of indirubin in rat plasma was  validated with

respect to specificity, selectivity, intra-run and inter-run repro-

ducibility, carry-over, extraction yield, dilution, and short- and

long-term stabilities. In accordance with FDA guidance, a  run was

considered to  be  valid if at least 75% of the calibrators were used

to generate the calibration curve. Moreover, at least one duplicate

of the LLOQ (Fig. 2A and B) and the ULOQ (Fig. 2C and D) had to be

accepted. Among the six QCs, four replicates in  total, and at least one

replicate at each level had to be valid. To fulfill the acceptance crite-

ria of FDA and EMA regulatory guidelines [12,13], imprecision (CV%)

should be below 15% of the nominal values for all levels (20% for the

LLOQ) and inaccuracy (RE%) should be within ±15% of  the nominal

values for all levels (±20% for the LLOQ). The calibration curve in

the range of 5.00–500 ng/mL was fitted by least-square quadratic

regression and a  weighting factor of 1/X was  applied (Table S2). The

mean coefficient of determination (R2) was  0.999 (Table S2).

Selectivity and specificity: The quantification method of indiru-

bin in rat plasma was  shown to  be selective (CV% =  11.9%,

RE% = −0.148%) (Table S3). The peak area of indirubin in  the blank

rat plasma samples (duplicates, 3  batches) was found to be below

20% (14.8%) of the LLOQ demonstrating that the method was spe-

cific (Table S4).

Intra-run  repeatability and inter-run reproducibility: Intra-run

imprecision (CV%) was  in  the range of 2.37% and 6.11% (Table 1),

and inaccuracy (RE%) was  between −8.22% and 4.51% of the nomi-

nal values (Table 1). Inter-run imprecision (CV%) ranged from 1.59%

to 7.44%, and inaccuracy (RE%) was between −9.60% and 3.46%

(Table 1), demonstrating that the acceptance criteria were met

(below 15%).

Carry-over: Mean carry-over (Fig. 2E and F) in blank rat plasma

samples was  2.60% (below 20%) for indirubin, and 0.00% for I.S.

(below 5%),  and thus met  requirements of the EMA  guideline for

industry [13] (Table S5).

Extraction  yield: The absolute recovery for indirubin was 78.5%

for QCL (5.00 ng/mL), 75.5% for QCM (250 ng/mL), and 87.0% for QCH

(400 ng/mL) (Table S6). Hence, recovery was consistent (Table S6).

For I.S. an absolute recovery of 105% was  found (Table S6).
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Fig. 2. Typical MRM  chromatograms of rat  plasma spiked with 5.00 ng/mL (LLOQ) of  indirubin (A), with 1000 ng/mL of I.S. (B), with 500 ng/mL (ULOQ) of  indirubin (C), with

1000 ng/mL of I.S. (D), of blank rat  plasma injected directly after the ULOQ and monitored for indirubin (E), and I.S. (F).

Dilution test: Dilution of samples up  to 100-fold did not  affect

precision and accuracy of the method, as the imprecision (CV%)

was below 15% (10× dilution: 3.04%, 100× dilution: 2.67%), and

the  inaccuracy (RE%) was within ±15% (10x dilution: −0.177%, 100x

dilution: 8.60%) of the nominal value (Table S7).

Short-term stability: Indirubin samples in rat plasma were sub-

jected to  3 freeze and thaw cycles. Imprecision (CV%) for the 6
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Table 2
PK  parameters after a  single intravenous dose of 2 mg/kg bw indirubin in rats (N  = 4).

Data were calculated by  PKSolver using non-compartmental analysis.

Parameter Mean SD

C0 (ng/mL) 1052 329

t1/2 (min) 35.0 4.20

Tmax (min) 5.00 0.00

Cmax (ng/mL) 811 140

AUC0–last (ng × h/mL) 737 190

AUC0–∞ (ng × h/mL) 763 177

MRT (min) 50.2 8.53

Vz (L/kg) 2.25 0.296

CL (L/h/kg) 2.71 0.520

SD: standard deviation; C0:  the concentration at time zero; t1/2:  half-life of elimi-

nation;  AUC0–last: area under curve from time zero to 240 min; AUC0–∞: area under

the  curve with extrapolation to  infinity; MRT: mean residence time; Vz:  volume of

distribution at the terminal phase; CL: clearance.

replicates at the QCL (15.0 ng/mL) and the QCH (400 ng/mL) was

below 15% (2.39% and 4.38%, respectively, data not shown), and

inaccuracy (RE%) was within ±  15% (−8.74% and −1.23%, respec-

tively) (Table S8). In addition, indirubin samples were kept for

3 h at RT. Imprecision (CV%) for the 6 replicates at low concen-

tration (15.0 ng/mL) was  3.96%, and 3.62% for the 6 replicates at

high concentration (400 ng/mL) (data not shown). Inaccuracy (RE%)

was  −8.54% for QCL, and −0.207% for QCH (Table S8). Processed

samples of indirubin were stored for 96 h under autosampler con-

ditions (20 ◦C, protected from light). At  both concentration levels

(15.0 ng/mL and 400 ng/mL), imprecision (CV%) was  below 15%

(4.14% and 4.67%, respectively, data not shown), and inaccuracy

(RE%) was within ±  15% of the nominal values (−9.29% and 1.61%,

respectively) (Table S8). Hence, according to  FDA and EMA guide-

lines indirubin was stable under the above conditions.

Long-term stability: Stability of indirubin in  rat plasma could be

confirmed for at least 84 days when stored below −65 ◦C (Fig. S1), as

the slope of the calculated linear regression was  0.944 (acceptance

criteria: 1 ± 0.15).

Stock solution stability: Indirubin SS (dissolved in DMSO) was

stored below −65 ◦C for 598 days and kept for 6 h at RT. Analysis

showed that the degradation expressed by  the percentage differ-

ences (-0.142%) was below 5%, indicating that the SS of indirubin

was stable after storage below −65 ◦C for more than 1.5 years (Table

S9). The DMSO SS of I.S. stored below −65 ◦C was stable up to

190 days, as already reported by Oufir et al. [16].

3.3.  Preliminary PK study

The  validated method was applied to the PK study of indiru-

bin in Sprague Dawley rats after single i.v. dose of  2 mg/kg b.w.

(N = 4). Typical MRM chromatograms of rat plasma samples are

given in Fig. S2. The main PK parameters of indirubin calculated

by non-compartmental analysis using PKSolver [18] are listed in

Table 2, and the mean plasma concentration versus time profile

is shown in Fig. 3.  The initial concentration (C0) of  indirubin was

1052 ng/mL, the clearance was 2.71 L/h/kg, the area under the

concentration-time curve (AUC) as calculated with the trapezoidal

rule was 737 ng × h/mL, and the half-life (t1/2) of  indirubin was

35 min  (Table 2). Previous PK data reported by  Deng et al. obtained

from male Wistar rats showed a  half-live of 1 h (i.v., 2.8 mg/kg)

[11]. The different t1/2 found in male Wistar rats (1  h) and Sprague

Dawley rats (35 min) may  be explained by differing cytochrome

P450 isozyme expression in  the two strains. Furthermore, Koster

et al. [19], reported that different strain suppliers, differences in

diet, husbandry, and microflora could additionally influence the

variability of isozyme expression [20]. Also, different administered

doses (male Sprague Dawley rats: i.v., 2 mg/kg vs. male Wistar rats:

i.v., 2.8 mg/kg) and body weight (male Sprague Dawley: 320–350 g

Fig. 3. Mean plasma concentration versus time profile of  indirubin in male Sprague

Dawley rats (N  = 4) after i.v. administration (2 mg/kg b.w.).

vs. male Wistar rats: 280–300 g)  might have impacted the excretion

of the compound. Independent of  that, our data obtained by a fully

validated UPLC-MS/MS assay are significantly more reliable than

the data in  the previous study which were obtained by HPLC-UV

analysis [11].

4.  Conclusions

A highly selective, rapid and sensitive UPLC-MS/MS assay for

quantification of indirubin in lithium heparinized rat plasma was

developed and validated according to current regulatory guidelines

[12,13]. The calibration curve in the range of 5.00–500 ng/mL was

quadratic, with a  weighting factor of 1/X and R2 >  0.999. The val-

idated method was  applied to a pilot PK study in  male Sprague

Dawley rats after intravenous administration (2 mg/kg b.w.), where

a relatively high clearance of 2.71 L/h/kg and a  t1/2 of 35 min  were

found. The assay will be subsequently used in a full PK study

addressing oral bioavailability in Sprague Dawley rats. Moreover,

in vitro metabolism of indirubin will be studied in human hepato-

cytes and liver microsomes.
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Figures 

 

Fig. S1: Long-term stability of indirubin in rat plasma, kept for 84 days below -65°C. 
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Fig. S2: Typical MRM chromatograms of rat plasma samples at t0 monitored for indirubin (A) and 

I.S.(B), of rat plasma samples at 30 min after i.v. injection monitored for indirubin (C) and I.S. (D), 

and of rat plasma sample at 120 min after i.v. injection monitored for indirubin (E) and I.S. (F). 
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Fig. S3: Fragmentation pattern of indirubin and its I.S.  
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Tables 

Table S1: Optimized MS/MS parameters in ESI positive mode for indirubin as analyte and (E,Z)-3-

(benzylidenyl)-indolin-2-one as I.S. 

Compounds MRM transitions Cone voltage (V) Collision energy (eV) Dwell time (ms) 

Indirubin Quan.: 262.70→219.17 58 25 108 

Qual.: 262.70→190 58 38 108 

I.S. 221.8→194.0 46 25 108 

 

Table S2: Calibrators and calibration curve parameters (N=8). Response: 

A × Conc.
2
 + B × Conc. + C, Quadratic regression, 1/X weighting, Origin: included 

Run 

number 

Nominal level (ng/mL) Regression parameters 

5.00 10.0 20.0 50.0 100 250 500 A B C R
2 

1 

  

4.45 10.5 19.7 51.3 100 240 500 
-0.0000385 0.403 0.224 0.999 

4.95 11.4 21.1 50.7 97.2 257 502 

2 

  

4.92 10.3 19.1 50.5 98.5 241 482 
-0.0000612 0.406 0.166 0.999 

5.12 *11.7 21.5 51.3 101 254 520 

3 

  

4.36 10.3 20.5 48.7 97.5 240 483 
-0.0000893 0.431 0.145 0.998 

5.42 9.50 20.9 56.1 103 247 524 

4 

  

4.74 10.5 19.7 49.2 94.8 239 501 
-0.000107 0.479 0.378 0.999 

4.91 10.5 22.2 54.9 105 249 505 

Mean 4.86 10.4 20.6 51.6 100 246 502 -0.0000741 0.430 0.228 0.999 

S.D. 0.342 0.559 1.03 2.61 3.32 6.93 15.0 0.0000304 0.0349  - - 

CV% 7.04 5.37 5.01 5.05 3.33 2.82 2.99 
    

RE% -2.82 4.05 2.96 3.14 -0.369 -1.65 0.444 
    

* >15.0% outside acceptance criteria, not used for calculations 

 

Table S3: Selectivity test at the LLOQ for indirubin (duplicates, 3 different batches of lithium 

heparinized rat plasma) (N=6). 

Nominal level (ng/mL) 5.00 

Mean 4.99 

S.D. 0.593 

CV% 11.9 

RE% -0.148 

 

Table S4: Specificity test of six blank samples (duplicates, 3 different batches of lithium heparinized 

rat plasma) (N=6).  

Matrix number Peak area LLOQ% 

1 
0.00 0.00 

30.7 14.8 

2 
0.00 0.00 

0.00 0.00 

3 
25.4 12.3 

0.00 0.00 

LLOQ 1 215 

 LLOQ 2 201 

 Mean 208 

  

  

112



 

 
 

Table S5: Carry-over assessment for indirubin as analyte, and for (E,Z)-3-(benzylidenyl)-indolinone 

as I.S. (N=8). 

Run 

number 
Replicate 

Peak response (counts) Carry-over  

(%) 

Mean Carry-over 

(%) Blank sample LLOQ 

Analyte I.S. Analyte I.S. Analyte I.S. Analyte I.S. 

1 
1 0.00 0.00 221 102421 0.00 0.00 

0.00 0.00 
2 0.00 0.00 218 97250 0.00 0.00 

2 
1 0.00 0.00 221 102421 0.00 0.00 

0.00 0.00 
2 0.00 0.00 218 97250 0.00 0.00 

3 
1 6.60 0.00 175 86466 3.77 0.00 

2.97 0.00 
2 4.61 0.00 213 85771 2.17 0.00 

4 
1 46.3 0.00 312 118087 14.8 0.00 

7.41 0.00 
2 0.00 0.00 301 110477 0.00 0.00 

     
Mean 2.60 0.00 

   

Table S6: Absolute extraction yield of indirubin and I.S. (N=6). 

Indirubin nominal level (ng/mL) 15.0 250 400 

Absolute recovery (%) 78.5 75.5 87.0 

CV% 8.34 5.64 3.46 

SD 6.55 4.26 3.01 

 

I.S. final level (ng/mL) 433 

Absolute recovery (%) 105 

CV% 3.13 

SD 3.29 

 

Table S7: Dilution integrity test at 250 ng/mL (10X) and 25 ng/mL (100X) (N=6). 

Nominal level (ng/mL) 2500 

Dilution factor 10X 100X 

Mean 2496 2715 

S.D. 75.9 72.6 

CV% 3.04 2.67 

RE% -0.177 8.60 

 

Table S8: Short-term stabilities in rat plasma during storage under various conditions (expressed as 

RE%) (N=6). 

Nominal level (ng/mL) 15.0  400  

Three successive freeze/thaw cycles below -65°C -8.74 -1.23 

Stored at RT for 3 hours -8.54 -0.207 

Processed plasma samples at 20°C for 96 hours -9.29 1.61 
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Table S9: Stability of indirubin stock solution in DMSO stored below -65°C for 598 days, and for 6 

hours at RT (N=6) 

 Peak area ratios 

Stock solutions tested New (t=0) SS of indirubin + New SS of I.S. 

Mean 510 

S.D. 4.39 

CV% 0.860 

Stock solutions tested Old (t=598 days) SS of indirubin + New SS of I.S. 

Mean 509 

S.D. 12.1 

CV% 2.37 

Difference (%) -0.142 
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3.4 Caco-2 permeability studies and in vitro hERG liability assessment of 
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Planta Medica 82 (2016) 1192-1201  

DOI: 10.1055/s-0042-110323 

 

To predict oral absorption of the anti-inflammatory tryptanthrin and indolinone, we screened the two 

alkaloids in the Caco-2 model. P-glycoprotein (P-gp) interactions were assessed by co-incubation of a 

P-gp inhibitor (verapamil) and by calculation of the efflux ratio. For exact sample quantification, both 

compounds were partially validated in Hank's Balanced Salt Solution (HBSS) according to the 

guidelines of the Food and Drug Administration (FDA) and the European Medicine Agency (EMA). 

Tryptanthrin displayed a high permeability across the Caco-2 monolayer and its transepithelial 

transport was dominated by passive diffusion. The efflux ratio below 2 and the unchanged apparent 

permeability coefficients (Papp) in presence of the P-gp inhibitor verapamil (50 µM) indicated that 

tryptanthrin was not involved in P-gp interactions. For indolinone, a low recovery was found in the 

Caco-2 assay. Further analysis using a High-Resolution Mass Spectrometry (HR-MS) system pointed 

to extensive phase II metabolism of indolinone (sulfonation and glucuronidation). Moreover, to 

identify potential human ether-a-go-go related gene (hERG) liabilities, the two compounds were 

screened against hERG channel inhibition by means of the patch-clamp technique. For both 

compounds, a weak hERG block was observed. In silico methods predicted a high oral absorption for 

trypatnthrin as well as slight inhibition of the hERG potassium channel in the µM range. 
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Abstract
!

Tryptanthrin and (E,Z)-3-(4-hydroxy-3,5-dime-
thoxybenzylidene)indolinone (indolinone) were
recently isolated from Isatis tinctoria as potent
anti-inflammatory and antiallergic alkaloids, and
shown to inhibit COX-2, 5-LOX catalyzed leuko-
triene synthesis, and mast cell degranulation at
low μM to nM concentrations. To assess their suit-
ability for oral administration, we screened the
compounds in an in vitro intestinal permeability
assay using human colonic adenocarcinoma cells.
For exact quantification of the compounds, vali-
dated UPLC‑MS/MS methods were used. Tryptan-
thrin displayed high permeability (apparent per-
meability coefficient > 32.0 × 10−6 cm/s) across
the cell monolayer. The efflux ratio below 2
(< 1.12) and unchanged apparent permeability
coefficient values in the presence of the P-glyco-
protein inhibitor verapamil (50 μM) indicated
that tryptanthrin was not involved in P-glycopro-
tein interactions. For indolinone, a low recovery
was found in the human colon adenocarcinoma
cell assay. High-resolution mass spectrometry
pointed to extensive phase II metabolism of indo-
linone (sulfation and glucuronidation). Possible
cardiotoxic liability of the compounds was as-
sessed in vitro by measurement of an inhibitory
effect on human ether-a-go-go-related gene tail
currents in stably transfected HEK 293 cells using
the patch clamp technique. Low human ether-a-
go-go-related gene inhibition was found for tryp-
tanthrin (IC50 > 10 μM) and indolinone (IC50 of
24.96 μM). The analysis of compounds using vari-
ous in silico methods confirmed favorable phar-
macokinetic properties, as well as a slight inhibi-
tion of the human ether-a-go-go-related gene po-
tassium channel at micromolar concentrations.
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Introduction
!

Tryptanthrin (1; l" Fig. 1) and (E,Z)-3-(4-hydroxy-3,5-dimethox-
ybenzylidene)indolin-2-one (indolinone) (2; l" Fig. 1) were pre-
viously identified as pharmacologically active alkaloids of the an-
cient anti-inflammatory plant Isatis tinctoria L. (Brassicaceae)
[1]. Tryptanthrin was found to possess a unique pharmacological
profile, since it potently inhibits COX-2, 5-lipooxygenase (5-LOX)
catalyzed leukotriene synthesis in vitro and in vivo via a not yet
fully elucidated mechanism [2–4], and iNOS catalyzed nitric ox-
ide (NO) production [5]. Indolinonewas found to block IgE-medi-
ated degranulation of sensitized mast cells at nM concentrations
without directly interfering with signaling upstream of the hista-
mine-containing granules [6]. To further evaluate the potential of
these alkaloids as novel anti-inflammatory and antiallergic leads,
an assessment of their ADMET properties was warranted. We al-
ready reported on the pharmacokinetic (PK) properties in
Sprague-Dawley rats and the in vitro blood-brain barrier (BBB)
permeation potential of the compounds [7–9].
Presently, little is known about the oral absorption of indolinone
and tryptanthrin. For this reason, we assessed the intestinal per-
meability in the well-established Caco-2 model [10]. As the
strongly expressed efflux transporter P‑gp in the intestine may
substantially affect in vivo absorption of a compound due to its
broad substrate specificity, we also assessed the P‑gp interaction
of tryptanthrin and indolinone in the Caco-2 assay. Besides P‑gp,
the hERG channel is a major anti-target in drug discovery, given
that drug-induced hERG inhibition is themost important risk fac-
tor leading to fatal cardiac complications, such as arrhythmia
[11]. We, therefore, studied possible hERG channel inhibition of
tryptanthrin and indolinone by means of a patch clamp assay in
vitro.

Results and Discussion
!

A full UPLC‑MS/MS method validation for tryptanthrin and indo-
linone in Ringer HEPES buffer was recently reported [7–9].
Therefore, only a partial validation was performed for the two
compounds in HBSS buffer (see Supporting Information). The cal-
ibration curves for tryptanthrin (10.0–1000 ng/mL) and indoli-
none (30.0–3000 ng/mL) were fitted by least-squares quadratic
regression, and weighting factors of 1/X (for tryptanthrin) or 1/
X2 (indolinone) were applied. Mean coefficients of determina-
tions (R2) were 0.997 for tryptanthrin and 0.995 for indolinone
(Table S1, Supporting Information). To fulfill the acceptance crite-
ria of the US Food and Drug Administration (FDA) [12] and the
European Medicines Agency (EMA) [13], imprecision (CV%)
should be below 15% for all levels (20% for the LLOQ as an excep-
tion), and inaccuracy (RE%) should be within ± 15% of the nomi-
nal values for all levels (± 20% for the LLOQ). The mean carryover
was 0.598% for tryptanthrin (0.00796% for I. S.) and 0.00% for in-
dolinone (0.484% for I. S.) (Table S2, Supporting Information). The
quantification methods of tryptanthrin (CV% = 7.17%, RE % =
− 5.37%) and indolinone (CV% = 8.15%, RE% = − 11.2%) were
shown to be selective (Table S3, Supporting Information). Peak
areas of tryptanthrin and indolinone samples (duplicates, three
batches) were found to be below 20% (0.00%, data not shown) of
the LLOQ, demonstrating that both methods were specific. Dilu-
tion of samples up to 100-fold did not affect the precision and ac-
curacy of the methods (Table S4, Supporting Information). Abso-
lute recoveries for tryptanthrin were 76.3% for QCL (30.0 ng/mL),

72.7% for QCM (500 ng/mL), and 71.3% for QCH (800 ng/mL) (Ta-
ble S5, Supporting Information). Absolute recoveries of indoli-
none were 90.2%, 91.1%, and 94.5% at concentrations of 90,
1500, and 2400 ng/mL, respectively (Table S5, Supporting Infor-
mation). Hence, recoveries were consistent within this concen-
tration range (Table S5, Supporting Information). Tryptanthrin
and indolinone were stable in HBSS for 4 h at room temperature,
and after three successive freeze/thaw cycles (Table S6, Support-
ing Information). Moreover, tryptanthrin and indolinone samples
in HBSS were stable up to 6 days (Table S7, Supporting Informa-
tion) when stored below − 65°C, as the slope of the calculated lin-
ear regressions was 0.8902 for tryptanthrin and 0.9822 for indo-
linone (acceptance criteria: slope 1 ± 0.15). The validated quanti-
fication methods were subsequently applied to an intestinal per-
meability assay using Caco-2 cells.
To evaluate the cell viability of the Caco-2 cells in the presence of
tryptanthrin and indolinone, the 3-(4,5-dimethylthiazol-2-yl)-
2,5-di-phenyltetrazoliumbromid (MTT) test was performed. In-
cubation with different concentrations of the compounds (1.25–
20 μM) for 4 h indicated that the cell viability was not affected
given that mean cell viabilities of 103% (tryptanthrin) and 94%
(indolinone) were found with the highest concentration (data
not shown). Test concentrations in the intestinal permeability as-
say did not exceed 10 μM.
The in vitro Caco-2 model formed a tight cellular barrier with
mean TEER values of 550 ± 12.7 Ωcm2 (data not shown), and a
mean Papp below 1.76 ± 1.79 × 10−6 cm/s for the integrity marker
sodium fluorescein (Na-F), which was screened in parallel. Mean
TEER values recorded after the experiments (487 ± 7.57 Ωcm2;
data not shown) were in a similar range prior to the assay, indi-
cating that the integrity of cell monolayers was maintained dur-
ing the transport experiment. The mean Papp for tryptanthrin
(5 μM) from A to B (Papp A→B) and the mean Papp from B to A (Papp
B→A) were 32.0 ± 6.86 × 10-6 cm/s and 37.2 ± 0.890 × 10−6 cm/s, re-
spectively (l" Table 1). Similar results were found when tryptan-
thrin was tested at a concentration of 10 μM (Papp A→B = 33.1 ±
3.36 × 10−6 cm/s, Papp B→A = 35.0 ± 2.70 × 10−6 cm/s). Compared to
the mean Papp values of the negative control Na-F (< 1.76 ± 1.79 ×
10−6 cm/s), mean Papp values of tryptanthrin were considerably
higher and demonstrated that tryptanthrin crossed the intestinal
barrier. The absorptive Papp A→B and the secretory Papp B→A

showed no significant differences at both test concentrations (5

Fig. 1 Chemical struc-
tures of tryptanthrin
(1), E/Z-indolinone (2),
and the I. S. (E/Z)-3-
(benzylidenyl)-indolin-
2-one (3).
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and 10 μM), indicating that the transport of tryptanthrin was
concentration-independent in this range (l" Table 1). To evaluate
whether tryptanthrin was a P‑gp substrate, the compound was
coincubated with the P‑gp inhibitor verapamil (50 μM) [14]. The
mean Papp values of tryptanthrin from A to B and vice versa re-
mained unaffected in the presence of verapamil, demonstrating
that tryptanthrin was not subjected to P‑gp efflux (l" Table 1).
As the calculated ER (Papp B→A/Papp A→B) was around 1 (5 μM:
1.12, 10 μM: 0.957; l" Table 1), we assumed that tryptanthrin
predominantly crossed the Caco-2 monolayer by passive diffu-
sion. These findings could be corroborated by results obtained
from control experiments. Mean Papp values of tryptanthrin
across membranes with a Caco-2 cell monolayer were 32.0 ±
6.86 × 10−6 cm/s and 31.5 ± 7.29 × 10−6 cm/s for control mem-
branes without cells, indicating that tryptanthrin crossed the cell
monolayer by passive diffusion (l" Table 1). Similar observations
for tryptanthrin have already been made in human and animal in
vitro BBB models, where comparable mean Papp values of approx.
36 × 10−6 cm/s were found in experiments with a cell monolayer
and control [9]. Moreover, the high permeability of tryptanthrin,

combined with its high lipophilicity, may explain the rather fast
elimination (t1/2 of approx. 40min) found in the pilot PK study
with Sprague-Dawley rats [9].
A previous study by Zhu et al. [15] on the transport characteris-
tics of tryptanthrin confirmed the high permeability and its
transepithelial transport by passive diffusion of tryptanthrin in
the Caco-2 model. However, their Papp values were significantly
(factor 2) higher than the Papp values obtained in our permeabili-
ty studies, even though Caco-2 cells from the same origin were
used (ATCC). Moreover, the ER in this study was 0.77 (vs. our ERs
of 0.957–1.12), suggesting greater permeability in the absorptive
directions. These differences might be explained by the Caco-2
comparison study of Hayeshi et al. demonstrating that besides
cell source, passage number and culture conditions can also im-
pact the transporter expression and thus the inter-laboratory
variability in permeability data [16]. In the previous study on
tryptanthrin, lower passage (31–40 vs. 60–65) and lower cell
density (5 × 104 cells/cm2 vs. 1.14 × 105 cells/cm2) were used for
the transport experiments in the transwell system. Moreover, it
should be noted that HPLC‑UV analysis was used in that study,

Table 1 Permeability data of tryptanthrin in the Caco-2 model (n = 3)

Concentration (μM) Transport direction Δt (min) Recovery (%)

mean ± S.D.

Papp (× 10−6 cm/s)

mean ± S.D.

ER

5 A→B 10 83.4 ± 17.3 32.0 ± 6.86 1.12

30 84.5 ± 19.1

60 83.7 ± 19.1

120 93.5 ± 17.8

Cell extraction –

Control without cells 78.7 ± 18.06 31.5 ± 7.29

Na-F (10 μg/mL) 90.5 ± 5.54 0.532 ± 0.0256

B→A 10 90.0 ± 4.49 35.8 ± 3.41

30 94.8 ± 8.92

60 93.7 ± 11.2

120 87.4 ± 4.23

Cell extraction –

Control without cells 89.3 ± 7.75 37.0 ± 3.78

Na-F (10 μg/mL) 98.6 ± 2.49 0.516 ± 0.0515

10 A→B 10 82.1 ± 6.18 33.1 ± 3.36 0.957

30 84.1 ± 3.06

60 84.0 ± 6.96

120 93.1 ± 5.11

Cell extraction –

Control without cells 105.4 ± 8.74 39.6 ± 1.56

Na-F (10 μg/mL) 88.7 ± 5.70 0.684 ± 0.0802

B→A 10 90.8 ± 4.50 35.0 ± 2.70

30 85.4 ± 2.63

60 85.8 ± 1.97

120 83.1 ± 3.12

Cell extraction –

Control without cells 99.4 ± 5.82 37.9 ± 1.73

Na-F (10 μg/mL) 95.6 ± 3.57 1.76 ± 1.79

5
+ Verapamil
(50 μM)

A→B 10 81.6 ± 1.50 29.4 ± 1.45 1.19

30 87.0 ± 3.85

60 81.0 ± 3.88

120 91.2 ± 3.28

Na-F (10 μg/mL) 86.1 ± 5.81 0.676 ± 0.132

B→A 10 99.4 ± 1.60 35.1 ± 0.472

30 95.6 ± 2.24

60 90.1 ± 1.23

120 86.0 ± 0.959

Na-F (10 μg/mL) 92.9 ± 1.99 0.611 ± 0.0386
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which does not meet current requirements for bioanalytical anal-
ysis in terms of selectivity, specificity, and sensitivity.
For an acceptable estimation of the Papp value, recovery should be
at least 80% [10,17]. Incomplete recovery might be due to ad-
sorption of analytes to the transwell plate, metabolism, or com-
pound retention within the cells [18,19]. In all experiments, the
mean recoveries of tryptanthrinwere in the range of 81.0 ± 3.88%
to 99.4 ± 1.60%, suggesting that the obtained Papp values were re-
liable.
For indolinone, calculation of the Papp values and ER was not pos-
sible due to a continued and significant loss of the compound
over time (i.e., after 120min, a recovery < 36.3% was determined;
l" Table 2). Binding of the compound to the plate could be ex-
cluded, as mean recoveries in the control experiments (without
cells) were all > 83% (l" Table 2). Cell extraction showed that com-
pound loss due to retention in the cells was also minimal, since
≤ 1.23% of indolinone was recovered after lysis (l" Table 2).
In Caco-2 cells, the expression levels of cytochrome P-450metab-
olizing enzymes are relatively low [20,21]. However, they express
phase II enzymes such as UDP-glucuronosyltransferases (UGTs),
sulfotransferases (SULTs), and glutathione-S-transferases (GSTs)

[22], and we therefore assessed a possible phase II metabolism
of indolinone. For both isomers of the compound, UPLC‑MS/MS
analysis showed a time-dependent decline of peak intensity.
However, a new peak that increased over the incubation time in
the Caco-2 assay appeared between those of the E- and Z-isomers
of indolinone (data not shown). This observation was made in
samples taken from both the A and B compartments, while this
peak was not observed in the Caco-2 cell lysate. High-resolution
MS analysis with a UHPLC Q‑TOF system and extracted ion chro-
matogram (EIC) at the mass-to-charge ratio (m/z) of 298.1074
([M + H]+ indolinone) indicated the formation of four metabolites
(l" Fig. 2). Metabolite identification (Met-ID) using the Mass-
MetaSite software proposed the formation of two sulfate and
two glucuronide conjugates (ions at 378.0642 and 474.1395m/z,
respectively) (l" Table 3). Sulfate and glucuronide conjugates
were excreted in comparable amounts to the A and B compart-
ments (data not shown). Phase II metabolism in the Caco-2 assay
has already been reported for various phenolic compounds, such
as apigenin (UGT and SULT) [23], curcumin (GST) [24], and emo-
din (UGT) [25]. For those examples, the compounds were first
metabolized in the cells, prior to active-mediated efflux.

Table 2 Permeability data of indolinone in the Caco-2 model (n = 3). *Due to the low recovery, no reliable Papp and ER calculations were possible.

Concentration (μM) Transport direc-

tion

Δt (min) Recovery (%)

mean ± S.D.

Papp (× 10−6 cm/s)

mean ± S.D.

ER

5 A→B 10 67.1 ± 12.6 * *

30 40.5 ± 4.78

60 17.8 ± 4.07

120 12.8 ± 0.708

Cell extraction 0.527 ± 0.129

Control without cells 110.0 ± 20.2 42.0 ± 2.05

Na-F (10 μg/mL) 82.1 ± 3.60 0.357 ± 0.0411

B→A 10 102.1 ± 3.75 *

30 87.9 ± 3.35

60 69.3 ± 5.08

120 36.3 ± 4.64

Cell extraction 1.23 ± 0.171

Control without cells 83.3 ± 9.09 34.0 ± 2.04

Na-F (10 μg/mL) 124.2 ± 14.0 0.356 ± 0.0758

10 A→B 10 38.6 ± 5.28 * *

30 31.4 ± 0.731

60 19.0 ± 2.53

120 12.3 ± 1.51

Cell extraction 0.363 ± 0.0228

Control without cells 113.8 ± 18.85 40.8 ± 3.96

Na-F (10 μg/mL) 74.1 ± 16.6 1.01 ± 0.0293

B→A 10 65.5 ± 5.18 *

30 53.4 ± 5.76

60 45.9 ± 3.19

120 27.4 ± 1.07

Cell extraction 1.12 ± 0.257

Control without cells 117.0 ± 4.62 47.8 ± 2.10

Na-F (10 μg/mL) 122.4 ± 11.9 0.227 ± 0.0115

5
+ Verapamil
(50 μM)

A→B 10 37.3 ± 4.34 * *

30 28.1 ± 3.66

60 29.1 ± 2.11

120 37.0 ± 1.29

Na-F (10 μg/mL) 82.7 ± 9.17 0.283 ± 0.155

B→A 10 68.5 ± 3.62 *

30 53.7 ± 4.10

60 51.1 ± 2.54

120 29.6 ± 2.60

Na-F (10 μg/mL) 90.8 ± 11.7 0.285 ± 0.124
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UGTs are capable of forming O-, N-, S-, or C-linked glucuronides
[26], while SULTs catalyze conjugationwith O-, N-, and S- accept-
or groups of a molecule. However, conjugation at a hydroxyl moi-
ety is the dominant reaction for both enzymes [26,27]. Besides
glucuronide conjugates M1 and M3 found at 474.1m/z, sodium
adducts ([C23H23NO10 + Na]+) at a mass of 496.1214m/zwere also
detected (l" Figs. 3 and 4). MS/MS experiments at two collision
energies (20 and 40 eV) were performed to locate the conjugation
site on the chemical structure (l" Fig. 5). However, the low con-
centrations of metabolites, intense adduct ions, and a fragmenta-
tion at the glycosidic linkage precluded a distinction between O-
or N-conjugation. Given the slow E/Z isomerization of indolinone
at room temperature, an assignment of the metabolite peaks to
the respective E or Z isomer was not possible [28].
The middle peak that appeared between those of the E and Z iso-
mers of indolinone by UPLC‑MS/MS analysis after an incubation
time of 120min was not observed when indolinone was coincu-
bated with the P‑gp inhibitor verapamil. Thus, we conclude that
one or more metabolites were involved in P‑gp efflux. However,
we were not able to identify which of the four metabolites iden-
tified by HR‑MS/MS coeluted in the UPLC‑MS/MS assay. As P‑gp
is only expressed on the A side in the Caco-2 assay and metabo-
lites were identified on both sides of the compartment, we con-
clude that the indolinone conjugates were not only involved in

P‑gp efflux. According to the literature, it is also possible that
multi-drug resistance proteins (MRPs, expressed on the apical
and basolateral side), the breast cancer resistance protein (BCRP,
expressed on the apical side), and organic anion transporting
polypeptides (OATPs, expressed on the apical side) are responsi-
ble for their efflux [29,30]. However, synthesis of the metabolites
and further experiments with the corresponding transport in-
hibitors would be required to fully understand the transport
mechanism of the indolinone conjugates.
We previously reported on the high BBB permeation potential of
indolinone in three human and animal in vitro BBB models. Sur-
prisingly, no metabolism was observed for indolinone in these
cell-based assays [8]. This finding was in agreement with a recent
study analyzing the expression pattern of phase II enzymes in
freshly isolated human brain microvessels, where only one iso-
form of SULTs and no UGTs could be detected [31,32]. Overall, in-
dolinone underwent extensive phase II metabolism, which in
turn may explain the fast elimination of indolinone found in the
previous PK study in rats (t1/2 of approx. 4min) [7]. However, in-
cubations with hepatocytes andmicrosomes are needed to assess
the metabolic stability of the compound in more detail.
A possible cardiotoxic liability of tryptanthrin and indolinone
was assessed in vitro by measurement of an inhibitory effect on
hERG tail currents in stably transfected HEK 293 cells (l" Table
4). A total of 6 experiments was used for data analysis (l" Fig. 6).
Representative current traces recorded for tryptanthrin and in-
dolinone are given in l" Table 4. For tryptanthrin, concentrations
of 0.3, 3, and 10 μM were tested. At the highest concentration
(10 μM), an inhibition of 36.0 ± 3.57% (n = 3) was found. Poor sol-
ubility of the compound precluded testing at higher concentra-
tions. The estimated IC50 was > 10 μM. Compared to strong hERG
blockers (e.g., E-4031, IC50 of 7.7 nM) [33], the IC50 of tryptan-
thrin was relatively high. In silico predictions proposed a plasma
protein binding of 91% for tryptanthrin (Table S8, Supporting In-
formation). Therefore, a low free plasma concentration is ex-
pected, which most probably results in a safety margin of
(IC50 hERG/free plasma concentration) > 30. Compounds with such
safety margins are assumed not to cause arrhythmias [34]. More-
over, according to the ICH (International Conference on Harmoni-
zation) safety guideline S7B [35], further nonclinical data (e.g., ef-
fect on sodium/calcium channels) are required to ensure cardiac
safety in humans. Previous studies in the functional Xenopus oo-
cyte assay (voltage clamp technique) proposed no IhERG inhibition
(0.00%) for tryptanthrin when tested at 100 μM [36]. However,
the potency of the compounds tested in the oocyte model is usu-
ally decreased three- to tenfold compared to mammalian cells (e.

Fig. 2 QTOF EIC at 298.1074m/zmass window ± 20 ppm (E/Z-indolinone)
at t = 0, 60, and 120, demonstrating a decrease of indolinone and the ap-
pearance of four metabolites.

Table 3 Met ID by using Mass-MetaSite. The software proposed the presence of two glucuronides and two sulfates with masses of 474.1391 and 378.0641m/z,
respectively.

Name Retention time

(min)

z m/z measured m/z shift Ion m/z

calculated

m/z Diff.

(ppm)

M1 + 176
(glucuronide)

4.88 1 474.1391 + 176.0321 [C23H23NO10 + H]+ 474.1395 0.71

M2 + 80
(sulfonic acid)

5.06 1 378.0641 + 79.9568 [C17H15NO7S + H]+ 378.0642 0.31

M3 + 176
(glucuronide)

5.85 1 474.1391 + 176.0321 [C23H23NO10 + H]+ 474.1395 0.24

M4 + 80
(sulfonic acid)

6.04 1 378.0641 + 79.9568 [C17H15NO7S + H]+ 378.0642 0.36

E-Indolinone
(parent)

6.41 1 298.1073 0 [C17H15NO4 + H]+ 298.1074 0.41
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g., HEK 293) [37,38]. For indolinone, four concentrations (1.0, 10,
30, and 100 μM) were tested, and an IC50 of 24.9 μM (Hill coeffi-
cient: 1.44) was found (l" Table 4). However, given the high plas-
ma protein binding (95%, predicted in silico, Table S8, Supporting
Information), the high metabolic instability (in vitro Caco-2 as-
say), and the fast clearance (in vivo PK study) [7] of indolinone, a
hERG block under physiological conditions appears rather un-
likely.
In vitro data obtained from the Caco-2 and hERG assays were cor-
roborated by in silico predictions using Percepta Profiler, Schro-
dinger Qik Prop, and the VirtualTox Lab. Along with no violations
of Lipinskiʼs rule of five, the ACD Percepta Profiler proposed a
high permeability in the Caco-2 assay, a 100% absorption in the
human intestinal models, and a relatively low probability (0.35)
for P‑gp interaction (Table S8, Supporting Information). In silico
predictions for indolinone indicated high permeability in the Ca-
co-2 assay, 100% absorption in the human intestinal model, and a
moderate probability (0.43) for P‑gp interaction (Table S8, Sup-
porting Information). Additionally, good oral absorption of both
compounds was predicted using QSAR modules for human oral
absorption (> 84%) and Caco-2 permeability (Papp > 60 × 10−6 cm/
s) in the QikProp application. For both compounds, inhibition of
the hERG potassium channel at low micromolar concentrations
(IC50 hERG and Kd hERG, respectively) was predicted with two con-
ceptually different in silico techniques (QSAR in QikProp, andmo-
lecular docking and scoring in the VirtualToxLab). The predic-
tions were thus in excellent agreement with experimental data
(Table S9, Supporting Information).

Materials and Methods
!

Chemicals and reagents
Tryptanthrin (1; l" Fig. 1), indolinone (2; l" Fig. 1), and the I.S. (E,
Z)-3-(benzylidenyl)-indolin-2-one (3; l" Fig. 1) were synthesized
according to established procedures [39,40]. Purity of the com-
pounds was ≥ 99%, as determined by HPLC and NMR [41]. All re-
agents were obtained from Sigma-Aldrich unless otherwise indi-
cated. All solvents were of analytical grade. Methanol was from
Lab-Scan. Formic acid (FA) and trifluoroacetic acid (TFA) were
supplied by BioSolve. Acetonitrile and dimethyl sulfoxide
(DMSO) were purchased from Scharlau. Tween 20 was provided
by Fluka. FBS “Gold”was from PAA Laboratories. MEM nonessen-
tial amino acids solution (NEAA) (100X) was supplied by Gibco.
HPLC grade water was obtained from aMilli-Q water purification
system (Millipore Merck). Tissue culture flasks were from BD Bi-
osciences, and 6-well plates and inserts were from Corning Co-
star.

Sample preparation
SS of tryptanthrin, indolinone, and I.S. were prepared in DMSO
and stored below − 65°C. Working solutions (WS1) of analytes
(100 μg/mL) and I.S. (10 μg/mL) were prepared in methanol by
further diluting the corresponding SS. For analytes, calibration
samples (Cals) and QCs at low, middle, and high levels were pre-
pared in HBSS (without phenol red) by serial dilution of the cor-
responding WS1 (range: 10.0–1000 ng/mL for tryptanthrin;
30.0–3000 ng/mL for indolinone). All Cals and QCs were ali-
quoted into polypropylene tubes and stored below − 65°C. Due
to the adsorption of tryptanthrin to the container surface, all
tubes were pretreated with 0.2% Tween 20. For the I.S., a second
WS at a concentration of 1000 ng/mL was prepared daily by fur-

Fig. 3 Zoom of the QTOF EIC after 120min at 298.1m/z (E/Z-indolinone),
378.1m/z (sulfate conjugates), and 474.1m/z (glucuronide conjugates).

Fig. 4 Mass spectra of glucuronide conjugates (474.1391m/z, M1 and
M3) and sulfate conjugates (378.0646m/z, M2 and M4).

Fig. 5 Proposed phase
II metabolites of indoli-
none.
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ther diluting WS1 in methanol. HBSS samples were extracted as
previously described by protein precipitation using acetonitrile
[7–9]. Due to nonspecific binding of the I.S. onto the 96-DWP,
each sample was transferred into a 300-μL glass insert of an HPLC
vial prior to analysis.

UPLC‑MS/MS settings
Method validation was performed on aWaters Acquity UPLC sys-
tem coupled to a Waters Acquity tandem quadrupole detector.
Chromatographic separation was performed on a Waters UPLC
HSS T3 column (100mm× 2.1mm; 1.8 μm particle size). Mobile
phase was delivered at a flow rate of 0.5mL/min (Table S10, Sup-
porting Information). Weak and strong wash solvents were
water-acetonitrile (50:50, v/v) and acetonitrile-isopropanol-ace-
tone (40 :30:30, v/v/v) containing 0.2% TFA. The seal wash sol-
vent consisted of a water-acetonitrile mixture (90:10, v/v). Sam-
ples were injected into the UPLC‑MS/MS system in full loopmode
(Table S10, Supporting Information). Mass spectrometric detec-
tion was in the positive ionization mode (ESI+). Nitrogen was
generated by a nitrogen generator N2-Mistral (Schmidlin AG)

and used both as a desolvation and nebulization gas. Argon was
used as the collision gas. MS/MS parameters were generated us-
ing Waters IntelliStart software, followed by manual optimiza-
tion (Table S11, Supporting Information). The capillary voltage
was 3.5 kV, the source temperaturewas set at 150°C, and the des-
olvation temperature was 400°C. Flow rates for the desolvation
gas and cone gas were 900 L/h and 10 L/h, respectively. Datawere
acquired with MassLynx V4.1 software and quantified by means
of QuanLynx software (Waters, Corp.).

Cell viability assays
Cytotoxicity of analytes in Caco-2 cells was determined with the
MTT assay in a 96-well format [42,43]. A suspension of the cell
line was seeded into a 96-well flat bottom tissue culture plate at
a density of 5 × 103 cells/well, and incubated in an incubator (37°
C, 5% CO2) for 48 h. Cells were treatedwith 200 μL of test samples,
dissolved in culture medium at final concentrations of 1.25–
20 μM, and incubated for 48 h. Afterwards, 20 μL of MTT reagent
(5mg/mL, dissolved in PBS) were added to each well. The plate
was kept on an orbital shaker at 100 rpm and 37°C for 4 h. Finally,

Table 4 Representative hERG current traces mean values of relative tail current inhibition, IC50, and Hill values for tryptanthrin (A, n = 3), indolinone (B, n = 3), E-
4031 (C, positive control, n = 4), and DMSO (D, negative control, n = 4).

Compound IC50 value (μM) Hill coefficient

Tryptanthrin > 10 0.73

Concentration (μM) Rel. tail current (%) Mean ± SEM

0.3 99.85, 96.28, 92.78 96.30 ± 2.04%

1.0 91.69, 88.28, 90.48 90.15 ± 1.00%

10.0 67.85, 56.84, 67.20 63.96 ± 3.57%

Compound IC50 value (μM) Hill coefficient

Indolinone 24.96 1.44

Concentration (μM) Rel. tail current (%) Mean ± SEM

1.0 99.78, 90.96, 101.9 97.55 ± 3.35%

10.0 82.38, 73.49, 86.08 80.65 ± 3.74%

30.0 40.97, 41.42, 41.77 41.39 ± 0.23%

100 14.03, 12.35, 15.61 14.00 ± 0.94%

Compound IC50 value (μM) Hill coefficient

E-4031 0.01163 1.20

Concentration (nM) Rel. tail current (%) Mean ± SEM

1.0 93.05, 98.47, 83.29, 92.57 91.85 ± 3.15%

3.0 83.93, 85.83, 78.10, 78.27 81.53 ± 1.97%

10 61.97, 65.57, 57.36, 49.75 58.66 ± 3.41%

30 21.69, 20.93, 22.86, 18.69 21.04 ± 0.88%

Compound IC50 value (μM) Hill coefficient

DMSO – –

Concentration (nM) Rel. tail current (%) Mean ± SEM

0.3 96.35, 96.84, 97.58, 101.18 97.99 ± 1.09%

Bath solution
0.3% DMSO perfused for > 12min

Fig. 6 Dose-response curves for the inhibition of
the hERG tail current by tryptanthrin, indolinone,
and the positive control E-4031. (Color figure avail-
able online only.)
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the medium was removed, 150 μL of DMSO were added, and the
plate was agitated on an orbital shaker for 15min. Absorbance
was measured at 570 nm on a microplate reader with a reference
filter of 620 nm. A set of wells with no test sample, treated with
the highest concentration of DMSO (1%), served as controls. Betu-
linic acid was used as a positive control. Cell viability was calcu-
lated according to the following equation:

Cell viability ð%Þ ¼Absorbance of test well
Absorbance of control

� 100

Caco-2 experiments
The human colon adenocarcinoma cell line Caco-2 was a gift of
Prof. H.P. Hauri, Biocenter, University of Basel, and originated
from the ATCC. Caco-2 cells weremaintained at 37°C in a humidi-
fied atmosphere with 5% CO2, and passaged at a confluence of
70–90%. Cells were cultured in Dulbeccoʼs modified Eagle me-
dium (DMEM) supplemented with FBS (10%), L-glutamine
(200mM), and nonessential amino acids (1%). For the permeabil-
ity assay, Caco-2 cells of passages 60 to 65 were seeded at a den-
sity of 3.58 × 105 cells/cm2 in 6-well Transwell inserts (translu-
cent polycarbonate membrane, 0.4 μm pore size, 1.0 × 108 pores/
cm²). Permeability experiments were performed 19–21 days
after seeding. Monolayer integrity was assessed by measuring
the TEER (before and after the experiment) with an epithelial vol-
tohmeter (EVOM,World Precision Instruments). Permeability ex-
periments were performed when TEER values of 400–600 Ωcm2

were reached.
Tryptanthrin and indolinone were screened at concentrations of
5 and 10 μM, together with sodium fluorescein (Na-F, 10 μg/mL)
as a paracellular barrier integrity marker. To evaluate whether in-
dolinone and tryptanthrin were P‑gp substrates, they were coin-
cubated (5 μM) with the P‑gp inhibitor verapamil (50 μM). Trans-
port experiments were performed in triplicate, and in a bidirec-
tional way. Therefore, 1.6mL test solution (5 or 10 μM dissolved
in HBSS + 0.2% BSA) were added either to the A (1.6mL, Papp
A→B) or the B side (2.8mL, Papp B→A). The receiver compartment
was spiked with HBSS + 0.2% BSA alone. After incubation at 37°C
on an orbital shaker at 100 rpm, sample aliquots (220 μL) were
collected from both A and B compartments after 10, 30, 60, and
120min, and stored below − 65°C until analysis. The fluorescent
marker (Na-F) was quantified by a Chameleon microplate reader
(λex = 490 nm, λem = 514 nm; Hidex), and the analytes by
UPLC‑MS/MS. The Papp for analytes and Na-F were calculated ac-
cording to the following equation [44]:

Papp ¼ VR

ðACD0Þ �
�CR

�t
ðcm=sÞ

VR = volume in the receiver compartment; A = surface area of the
filter membrane (4.7 cm2 for 6-well inserts); CD0 = initial concen-
tration in the donor compartment; ΔCR/Δt = change of concentra-
tion over time in the receiver compartment. The ER [44] was cal-
culated as follows:

ER ¼ PappB!A
PappA!B

An ER > 2.0 was considered as an indication for active efflux [35].
To ensure that the diffusion barrier was only provided by the cell
monolayer, control experiments were performed using inserts
without cells. Compound loss was assessed by calculating the re-
covery (mass balance) according to the following equation:

Recoveryð%Þ ¼CDfVD þ CRfVR

CD0VD
� 100

CDf = final concentration of the compound in the donor; CRf = final
concentration of the compound in the receiver compartment;
CD0 = initial concentration in the donor compartment; VD, VR =
volumes in the donor and receiver compartments, respectively.
All results are expressed as means ± S.D.

Cell extraction
Cell extraction was performed according to a published protocol
[45], with minor modifications. After the experiment, inserts
were washed with ice-cold DPBS (without Ca2+/Mg2+) and trans-
ferred into a petri dish (22.1 cm2). Subsequently, 750 μL of Tri-
ton™ X-100 solution (1% in HBSS) were added to the A side, and
dishes were shaken on an orbital shaker at 100 rpm for 15min at
37°C. Cells were scraped off the membrane using a cell scraper,
transferred into a 1.5-mL tube, and stored below − 65°C. Frozen
cell suspensions were thawed at 37°C under shaking at
1400 rpm (Thermomixer comfort, Eppendorf AG). To precipitate
proteins and extract indolinone, 750 μL of acetonitrile were
added to the cell suspension (750 μL). Samples were vortexed,
mixed for 10min on a thermomixer (37°C, 1400 rpm), and cen-
trifuged for 5min at 16100 g. Supernatants of the first extraction
were transferred into a fresh 1.5-mL tube and stored at 4°C. After
adding 750 μL of acetonitrile to the pellet, the pellet was homo-
genized with six pulses of an ultrasonic disintegrator (Branson
Sonifier 250, Branson Ultrasonic Corporation; settings: output
control 2, duty cycle 30%), followed by 10min of extraction (37°
C, 1400 rpm) and 5min of centrifugation (16100 g). The extrac-
tion was repeated, and all supernatants (of the first, second, and
third extraction) were combined in a 96-DWP and evaporated to
dryness under nitrogen flow. Dried samples were reconstituted
with 200 μL of injection solvent (Table S10, Supporting Informa-
tion) containing I.S., and transferred into 300 μL glass inserts of
HPLC vials prior to UPLC‑MS/MS analysis. Recovery was calcu-
lated by multiplying the measured concentrationwith the recon-
stituted volume.

Identification of metabolites
The metabolite search of indolinone was performed in a trans-
well system equally, as described for the Caco-2 transporter ex-
periments. To identify metabolites of indolinone in the Caco-2
assay, 7 μL of extracted HBSS samples were injected into the Agi-
lent 1290 Infinity UHPLC system consisting of a degasser, a binary
pump, an autosampler, a thermostat, and a column oven (Agilent
Series 1290, Agilent Technologies). The UHPLC system was con-
nected to an HR mass spectrometer (Agilent Series 6540 Q‑TOF,
Agilent Technologies) operating in the positive mode, using an
Agilent Jet Stream electrospray ion source (AJS). Chromato-
graphic separation was achieved at 45°C on an HSS T3 column
(C18) (100mm×2.1mm; 1.8 μm particle size; Waters Corp.). The
mobile phase was delivered at a flow rate of 0.5mL/min (Table
S10, Supporting Information), and the total run time was
20min. ESI source parameters were as follows: nebulizer pres-
sure 40 psi, nozzle voltage 1500 V, sheath gas flow of 11 L/min,
sheath gas temperature 300°C, drying gas flow of 7 L/min, and
drying gas temperature of 300°C. Capillary and fragmentor volt-
ages were set to 3500 V and 187 V, respectively. The Q‑TOF sys-
tem was running at 2 GHz in instrument mode at a resolving
power of 30000 (measured at m/z 1521). Acquired MS spectra
were automatically recalibrated with two internal references
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(121.0509m/z and 922.0098m/z). Data acquisition was per-
formed in targeted MS/MS mode, MS scan 100–1000, m/z at
1.5 Hz, and MS/MS 50–480m/z at 3 Hz. Precursor ions were iso-
lated based on retention time and accurate mass with a width of
1.3m/z in Q1. Samples were fragmented with two collision ener-
gies of 20 and 40 eV. The system was operated under the soft-
ware MassHunter Acquisition and Qualitative Analysis version
B.06.00 (Agilent Technologies), and data were analyzed using
the software Mass-MetaSite (Molecular Discovery,).

hERG screening
hERG currents were recorded in HEK 293 cells stably expressing
the hERG channel. The patch-clamp experiments were per-
formed as previously described by Hebeisen et al. 2015 [46]. Elec-
trophysiological measurements were carried out 24–72 h after
seeding. After formation of a Gigaohm seal between the patch
electrodes and the individual HEK 293 cell (pipette resistance
range: 2.0–7.0 MΩ; seal resistance > 1GΩ), the cell membrane
across the pipette tip was ruptured to assure electrical access to
the cell interior (whole-cell patch configuration). Once a stable
seal was established, hERG outward tail currents were measured
upon depolarization of the cell membrane to − 40mV for 3 s after
activation of the channels at + 20mV for 2 s. The holding potential
was − 80mVand the puls frequency was 0.1 Hz. Tryptanthrin and
indolinone were screened at concentrations of 0.3, 1.0, and
10 μM, and 1.0, 10, 30, and 100 μM, respectively (n = 3). Data ac-
quisition and processing were performed using PatchMaster
(HEKA electronics) and SigmaPlot 11.0 (Systat Software). Con-
centration response curves were fitted with a sigmoidal two-
parameter equation:

currentpeak;relative ¼
100

1þ X
IC50

� �H

X = compound concentration, IC50 = concentration of the drug at
half maximal inhibition, H = Hill coefficient.
Culture medium consisted of a 1:1 mixture of DMEM and nu-
trient mixture F-12 with L-glutamate supplemented with 10%
FBS and 1.0% penicillin/streptomycin solution. For electrophysio-
logical measurements, cells were seeded onto 35mm sterile cul-
ture dishes containing 2mL of medium without antibiotics. Dur-
ing the entire experiment, cells were continuously perfused with
an extracellular bath solution (137mMNaCl, 1.8mMCaCl2, 1mM
MgCl2, 4mM KCl, 10mM D-glucose, 10mM HEPES, adjusted to
pH 7.4 [NaOH]). Micropipettes were filled with an intracellular
pipette solution (130mM KCl, 1mM MgCl2, 5mM Mg-ATP,
10mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
[HEPES], 5mM ethylene glycol tetraacetic acid [EGTA], pH 7.2
[KOH]). As a negative control, four additional experiments were
conducted with bath solution containing 0.3% DMSO (l" Table
4). As a positive control, a dose-response curve of E-4031 was re-
corded [33]. Concentrations of 1 nM, 3 nM, 10 nM, and 30 nM
were tested (n = 4) (l" Table 4 and Fig. 6).

In silico prediction
In silico predictions of Caco-2 permeability and hERG inhibition
for tryptanthrin and indolinone were performed with Percepta
(ACD/Labs, ACD/Percepta Platform, version 12.01), Schrodinger
Qik Prop (QikProp, version 4.1, Schrödinger, LLC, 2014), and the
VirtualTox Lab (version 5.8) [47]. While Percepta and QikProp re-
ly on calculating physicochemical descriptors (according to, e.g.,
Lipinskiʼs rule of five) and determining pharmacologically rele-

vant properties (e.g., plasma protein binding, Caco-2 cell perme-
ability, ion channel inhibition) using trained QSAR models, the
VirtualToxLab in silico technology represents a fully 3D/4D‑based
approach, estimating the binding potential of a compound to-
ward a given macromolecular target employing flexible molecu-
lar docking, followed by quantification of the energy change as-
sociatedwith the transfer of the docked compound from an aque-
ous environment into the protein binding site.

Supporting information
Data of both full method validations and the in silico parameters
are available as Supporting Information.
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Method validation 

UPLC-MS/MS method validation was performed according to US Food and Drug Administration 

(FDA) and European Medicines Agency (EMA) guidelines. Seven calibrators ranging from 10.00 – 

1000 ng/mL (tryptanthrin), and 30.0 – 3000 ng/mL (indolinone) were injected at increasing 

concentrations, after a blank sample (blank HBSS) and a zero sample (HBSS only spiked with I.S.). 

Calibration curves were validated through six QCs (QCL, QCM, and QCH), which were inserted 

randomly into each analytical run. Calibrators and QCs were analyzed in duplicates. Carry-over was 

assessed by directly injecting an extracted blank after both replicates of the upper limit of 

quantification (ULOQ). Specificity and selectivity were evaluated by six blank samples and six QC 

samples at the LLOQ (duplicates, 3 different batches of HBSS), respectively. Intra-run repeatability of 

the methods was evaluated by injecting six replicates at five concentration levels (LLOQ, QCL, QCM, 

QCH, and ULOQ). To assess dilution integrity, a solution of analyte (4000 ng/mL tryptanthrin, or 

15000 ng/mL indolinone) in HBSS was prepared and then further diluted ten- and hundred-fold. 

Absolute recovery was determined at three concentration levels (QCL, QCM, and QCH) by comparing 

the peak areas of six extracted QC samples with six unextracted samples (= 100% recovery). Short-

term stabilities were assessed with six replicates at two concentration levels (QCL and QCH), after 3 

hours at RT, and after 3 freeze and thaw cycles. Long-term stability was determined by three replicates 

at the same concentration levels (QCL, QCM, and QCH). After storage of minimum 6 days (below -

65°C) samples were analyzed by a freshly prepared calibration curve. 
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Figures 

Fig. S1 Typical MRM chromatograms of blank HBSS injected after the ULOQ and monitored for 

tryptanthrin (A), for I.S. (B), of HBSS spiked at 10.0 ng/mL (LLOQ) of tryptanthrin (C), and 1000 

ng/mL of I.S. (D), of HBSS spiked at 1000 ng/mL (ULOQ) of tryptanthrin (E), and 1000 ng/mL of I.S. 

(F). 
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Fig. S2 Typical MRM chromatograms of blank HBSS injected after the ULOQ and monitored for 

indolinone (A), for I.S. (B), of HBSS spiked at 30.0 ng/mL (LLOQ) of indolinone (C), and 1000 

ng/mL of I.S. (D), of HBSS spiked at 3000 ng/mL (ULOQ) of indolinone (E), and 1000 ng/mL of I.S. 

(F). 
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Table S2 Carry-over assessment for both analytes and I.S. (n = 6-10)  

Compound Mean carry-over (%) 

Tryptanthrin 

I.S. 

0.598 

0.00796 

Indolinone 

I.S. 

0.00 

0.484 

 

Table S3 Selectivity test at the LLOQ, based on 3 different HBSS batches (n = 6) 

Compound Nominal level (ng/mL) 10.0 

Tryptanthrin Mean 9.46 

S.D. 0.678 

CV% 7.17 

RE% -5.37 

 Nominal level (ng/mL) 30.0 

Indolinone Mean 26.7 

S.D. 2.17 

CV% 8.15 

RE% -11.2 

 

Table S4 Dilution test (n = 6) 

Compound 
Nominal level (ng/mL) 4000  

Dilution factor 10X 100X 

Tryptanthrin Mean 3768 3788 

S.D. 163 266 

CV% 4.33 7.01 

RE% -5.79 -5.29 

Compound 
Nominal level (ng/mL) 15000 

 Dilution factor 10X 100X 

Indolinone Mean 14305 15443 

S.D. 894 332 

CV% 6.25  2.15 

RE% -4.63 2.96 

 

Table S5 Absolute extraction yield of analytes and I.S. (n = 6) 

Compound Nominal level (ng/mL) 30.0 500 800 

Tryptanthrin Absolute recovery % 76.3 72.7 71.3 

CV% 8.15 7.18 4.39 

RE% 6.22 5.22 3.13 

 Nominal level (ng/mL) 433   

I.S. Absolute recovery % 79.9   

CV% 4.62   

RE% 3.69   

 Nominal level (ng/mL) 90.0 1500 2400 

Indolinone Absolute recovery % 90.2 91.1 94.5 

CV% 12.8 7.23 3.66 

RE% 11.6 6.58 3.46 

 Nominal level (ng/mL) 444   

I.S. Absolute recovery % 83.1   

CV% 6.49   

RE% 5.40   
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Table S6 Short-term stabilities during storage at various conditions expressed as CV% and RE% 

(n  = 6) 

  CV% RE% 

Compound Nominal level (ng/mL) 30.0 800 30.0 800 

Tryptanthrin 3 successive F/T cycles below -65°C 6.13 8.04 -3.80 -12.0 

Stored samples at RT for 4h 10.9 5.98 -5.15 -10.4 

 Nominal level (ng/mL) 90.0 2400 90.0 2400 

Indolinone 3 successive F/T cycles below -65°C 5.41 4.94 -4.36 -0.388 

Stored samples at RT for 4h 3.31 3.91 7.22 4.30 

 

Table S7 Long-term stabilities expressed as difference (%) between t=0 and t=storage time (n = 3) 

Compound Nominal level (ng/mL) 30.0 500 800 Slope 

Tryptanthrin Stored samples below -65°C for 7 days 4.64 -12.1 -10.6 0.890 

Compound Nominal level (ng/mL) 90.0 1500 2400 Slope 

Indolinone Stored samples below -65°C for 6 days -8.71 -11.4 2.53 0.982 

 

Table S8 In silico parameters determined by ACD/Labs Percepta 

PhysChem profiling 

Compound Tryptanthrin Indolinone 

LogP 2.44 2.47 

MW 248.24 297.31 

H-donors 0 2 

H-acceptors 4 5 

Rot. bonds 0 3 

Rings 4 3 

Lipinski 0 violations 0 violations 

Lead-like 0 violations 0 violations 

Solubility 0.0008 mg/mL 0.009 mg/mL 

ADME profiling 

Caco-2 Pe=23.4 x 10
-6 

cm/s  

(highly permeable) 

Pe=17.2 x 10
-6 

cm/s  

(highly permeable) 

Plasma protein binding 91% 95%  

Central nervous system Score = -2.90 (penetrant) Score = -2.90 (penetrant) 

Human intestinal model 100% (highly absorbed) 100% (highly absorbed) 

Metabolic stability 0.65 0.55 

Drug Safety Profiling 

P-gp substrates 0.35 0.43 

 

Table S9 In silico parameters calculated by QikProp (Schrödinger software suite) and VirtualToxLab 

(3D based) 

Compound 
QikProp VirtualToxLab 

Human oral absorption 

(%) 
QPPCaco-2 

(x 10
-6

 cm/s)
a 

QP logHERG
b Kd hERG 

(µM) 
Tryptanthrin 84.0 76.5 -5.1 (7.9 µM ) 4.40 
Indolinone

c 91.0 62.8 -5.0 (10 µM) 1.80 
 

a
 Caco-2 permeability (x 10

-6
 cm.s

-1
): score below 2.5 = poor, above 50 = great 

b 
Values below -5 (i.e. IC50 below 10 μM; in brackets) should be of concern 

c
Average values calculated over two (E- and Z-) isomers 
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Table S10 Optimized UPLC parameters for tryptanthrin and indolinone. 

Eluents: A1: high purity water + 0.1% FA; B1: acetonitrile + 0.1% FA, B2: methanol + 0.1% formic 

acid. 

Optimized UHPLC parameters 

Compounds 
Total run 

time (min) 
Eluent Gradient 

Injection 

solvent 

Injection 

vol. (µL) 

Column 

temp. (°C) 

Autosampler 

temp. (°C)  

Tryptanthrin 

(MS/MS) 
6 A1 + B1 

30-100% B1  

in 5 min 
DMSO 2 45 20 

Indolinone 

(MS/MS) 
4 A1 + B1 

2-100% B1 in 

2.5 min 

35% A1 + 

65% B2 
5 45 10 

Indolinone  

(HR-MS) 
15 A1 + B1 

2-100 % B1 in 

13 min 

35% A1 + 

65% B2 
7 45 10 

 

Table S11 Optimized MS/MS parameters in ESI positive mode for tryptanthrin and indolinone as 

analyte, and (E,Z)-3-(benzylidenyl)-indolin-2-one as I.S.. 

Optimized MS/MS parameters 

Compounds MRM transitions Cone voltage (V) Collision energy (eV) 

Tryptanthrin 248.7 → 129.8 51 31 

Indolinone 297.7 → 265.0 46 38 

I.S. 221.8 → 194.0 46 21 
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4 Conclusions and outlook 
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For the three anti-inflammatory alkaloids tryptanthrin, indolinone, and indirubin, UPLC-MS/MS 

quantification methods in three different matrices (rat plasma, RHB, HBSS) were validated according 

to current international guidelines for industry
1–3

. The methods were successfully applied to an in vivo 

pilot PK study in Sprague Dawley rats (i.v. administration) and two in vitro permeability assays 

(Caco-2 and BBB models). Furthermore, hERG liabilities were determined by measuring the in vitro 

effect of the compounds on the cardiac hERG potassium channel by means of the patch-clamp 

technique. Data obtained from the in vitro assays were corroborated by various in silico methods.  

For tryptanthrin, a clearance of 1 L/h/kg and a relatively short t1/2 of around 40 min were determined in 

the pilot PK study. In the Caco-2 model, tryptanthrin displayed in both directions (A→B and B→A) 

high mean Papp values in the range of 35 x 10
-6 

cm/s, demonstrating that the compound crosses the 

Caco-2 monolayer very efficiently, and in a concentration independent manner in the tested range of 

5-10 µM. The calculated efflux ratio (ER = Papp B


A/Papp A


B) for tryptanthrin was around 1, which 

pointed to a predominantly passive diffusion across the Caco-2 monolayer. In addition, mean Papp 

values of tryptanthrin across the Caco-2 cells monolayer (32.0 x 10
-6

 cm/s) were very close to mean 

Papp values of the control experiments (without cells: 31.5 x 10
-6

 cm/s), confirming that tryptanthrin 

freely diffused across the cell monolayer. Moreover, mean Papp values of tryptanthrin from apical to 

basolateral and vice versa remained unaffected in the presence of the P-gp inhibitor verapamil. This 

observation demonstrated that tryptanthrin was not subjected to P-gp efflux. In addition, the ER below 

2 showed that the compound was not involved in active-mediated efflux. Similar findings regarding 

permeability and P-gp interaction of tryptanthrin were previously reported
4
. However, it should be 

noted that HPLC-UV analysis was used in these studies, which does not meet current requirements for 

bioanalytical quantitation in terms of selectivity, specificity, and sensitivity. 

Data obtained with our recently validated human in vitro BBB model
5,6

 using immortalized human 

brain microvascular endothelial cells (hBMEC cell line) demonstrated that tryptanthrin crosses the 

BBB very efficiently. Mean Papp values for the compound in the human BBB model were in a similar 

range (around 36 x 10
-6 

cm/s ) as the mean Papp values in the well-characterized animal in vitro BBB 

model using primary bovine brain capillary endothelial cells (BBECs) co-cultured with primary glial 

cells
7
. Mean Papp values of tryptanthrin across the membrane with cells and without cells were very 

close (36 x 10
-6

 cm/s). Hence, the transport of the compound across the BBB was dominated by 

passive diffusion. For the primary triple co-culture rat in vitro BBB model using primary rat brain 

capillary endothelial cells (RBECs), pericytes, and glial cells, mean Papp values were roughly twice as 

high as the permeability coefficients obtained in the human BBB model
8
. TEER values in the primary 

co-cultured BBB models (mean TEER values: 350 - 400 Ωcm
2
) were significantly higher than those 

observed in the immortalized BBB model (mean TEER values: 25 Ωcm
2
). However, the Papp values of 

the paracellular integrity marker Na-F in the human BBB model (3.10 - 3.20 x 10
-6

 cm/s) were in a 

similar range as those obtained in the primary BBB models (0.520 - 3.17 x 10
-6

 cm/s), indicating that a 
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reasonably tight barrier was formed by the hBMEC cells. Overall, data from the three in vitro BBB 

models showed good correlation and were indicative of a high BBB permeation potential of 

tryptanthrin. 

In the hERG safety assay, tryptanthrin was shown to slightly inhibit the hERG channel (IC50 of 

22 µM). Compared to strong hERG blockers (e.g. E-4031, IC50 of 7.7 nM)
9
, the IC50 of tryptanthrin 

was relatively high. In silico predictions proposed a plasma protein binding of 91% for the compound. 

Therefore, we would expect a low free plasma concentration, which most probably results in a safety 

margin (IC50 hERG / free plasma concentration) of > 30. Substances with such a safety margin are 

presumed not to cause arrhythmias
10

. Previous studies in the functional Xenopus oocyte assay (voltage 

clamp technique) proposed no IhERG inhibition (0.00%) for tryptanthrin when tested at 100 µM
11

. 

However, it should be noted that the potency of compounds tested in oocytes is usually three- to 

tenfold decreased compared to mammalian cells (e.g. HEK 293), as the lipophilic yolk can adsorb the 

compound and thus decreases the free fraction
12

. 

Along with no violations of Lipinski’s rule of five, the in silico methods predicted a high permeability 

for tryptanthrin in the Caco-2 assay, good oral absorption (> 84%), and a relatively low probability for 

P-gp interaction (0.35). The calculated polar surface area (PSA) of 73 Å
2
 (PSAQikProp) was not only 

well below the maximum acceptable threshold of 140 Å
2
 for good oral absorption, but also met the 

criteria for a passive permeation through the BBB (PSA < 90 Å
2
). In addition, the predicted in silico 

inhibition of the hERG potassium channel in the low µM range (IC50 hERG) was in very good agreement 

with the experimental data. 

Overall, numerous favorable drug-like properties (such as high permeability, good oral absorption, no 

P-gp interaction) were found for tryptanthrin. However, one major drawback of the compound was its 

high lipophilicity resulting in a relatively fast elimination of the compound (t1/2 around 40 min). A 

technical challenge which we encountered during sample preparation was the non-specific binding of 

tryptanthrin in aqueous buffer to various surfaces (e.g. the polypropylene tubes). This major issue 

could be solved by pre-treating the plastic tubes with 0.2% Tween 20. However, it clearly 

demonstrated the importance of method development and validation prior to sample analysis.  

For indolinone, a recovery of < 36% was determined after 2 hours of incubation in the Caco-2 assay. 

To avoid an underestimation of the Papp values, a recovery above 80% is needed
13,14

. Incomplete 

recovery is usually ascribed to adsorption to the Transwell plate, metabolism, or compound retention 

within the cells/in the cell membrane
15,16

. Binding of indolinone to the plastic could be excluded, as 

the mean recoveries of the control experiments (without cells) were all above 83%. Cell extraction 

demonstrated that indolinone was not trapped within the cells, as less than 1.23% of the compound 

was recovered after cell lysis. In contrast to the intestine, cytochrome P-450 (CYPs) metabolizing 

enzymes are poorly expressed in Caco-2 cells
17,18

. However, these cells express phase II enzymes, 
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such as UDP-glucuronosyltransferases (UGTs), sulfotransferases (SULTs), and glutathione-S-

transferases (GSTs)
19

. High resolution MS analysis with a UHPLC Q-TOF system indicated the 

formation of two sulfate conjugates and two glucuronide conjugates with molecular masses of 378.1 

and 474.1 m/z, respectively. Approximately similar amounts of both metabolites were found in the 

apical and basolateral compartments, while no significant levels of phase II metabolites could be 

detected in the Caco-2 cell lysate. 

Intestinal transport of glucuronide and sulfate conjugates are poorly described in literature, but it 

seems to be likely that MRPs (expressed on the apical and basolateral side), BCRP (apical) and OATP 

(apical) are responsible for their efflux, because these conjugates are transported this way in the 

liver
21,22

. It is generally believed that the main site of drug metabolism is the liver. But for some 

compounds, experimental evidence exists that they also undergo extensive intestinal conjugation and 

excretion
23

. Various polyphenolic compounds such as apigenin (UGT and SULT)
24

, curcumin 

(GST)
25

, and emodin (UGT)
26

 have been shown to undergo phase II metabolism in the Caco-2 assay. 

Besides natural products (particularly dietary flavonoids)
24

, only few studies reported on sulfation and 

glucuronidation of synthetic drugs (e.g raloxifene
27

 and methyldopa
28

) in the Caco-2 monolayer, 

followed by efflux of the metabolites.  

UGTs catalyze the addition of a glucuronic acid moiety to substrate molecules containing an O-, N-, 

S- or C- acceptor group
29

, while SULTs are capable of catalyzing the formation of O-, N- or S-linked 

conjugates
30

. However, conjugation at a hydroxyl moiety is the dominant reaction for both enzymes. 

Given the structure of indolinone, we assume that either O-linked (phenol) or N-linked (amide) 

glucuronide/sulfate conjugates were formed. To locate the exact conjugation site on the chemical 

structure, targeted MS/MS experiments (50-480 m/z at 3 Hz) in parallel with MS scan (100-1000 m/z 

at 1.5 Hz) were performed at two collision energies (20 and 40 eV). However, the low concentrations 

of metabolites, the intense sodium adduct ions, and the fragmentation pattern of the metabolites (loss 

of sulfate or glucuronide residues) precluded a differentiation between O- or N-conjugation. Due to 

the slow E/Z isomerization of indolinone at room temperature
31

, an assignment of the metabolite peaks 

to the respective E or Z isomer was also not possible.  

Previous studies reported on the metabolism of the indolinone derivative sunitinib (Sutent, Pfizer) 

after i.v./oral administrations of [
14

C] sunitinib in rats, monkeys, and humans. Sunitinib was found to 

be extensively metabolized in all species. But only minor sulfate and glucuronide metabolites could be 

detected in the feces and urine of rats and monkeys
32

. Fragment ions of the sunitinib glucuronide 

indicated that the glucuronidation occurred on the nitrogen atom of the indolylidene/demethylpyrrole 

moiety, while sulfation was observed at the O-atom after hydroxylation (phase I reaction) of the parent 

compound
32

.  
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Overall, indolinone underwent extensive phase II metabolism in the Caco-2 assay, which in turn may 

explain the fast elimination of indolinone found in the previous PK study in rats (t1/2 of approx. 4 

min)
33

. However, incubations with hepatocytes, microsomes, S9 fractions or isolated enzymes would 

be needed to assess the metabolic stability of the compound in more detail. An additional approach to 

determine the exact conjugation site would be the synthesis of the proposed metabolites. By 

comparing the retention time (RT) of the synthesized metabolites with the RT (in the HR-MS assay) of 

the metabolites obtained from the Caco-2 assay, metabolite identification could be possible. 

In the human and animal in vitro BBB models, indolinone was shown to cross the BBB
34

. However, 

due to its fast metabolism, it appears rather unlikely that the compound reaches the brain in a 

sufficiently high amount. Surprisingly, no metabolism was observed for indolinone in the cell-based 

BBB models. Publications on the presence of phase II enzymes at the BBB are conflicting since most 

of the data refer to brain homogenates instead of isolated brain microvessels
35,36

. A recent study
36

 

analyzing the expression pattern of phase II enzymes of freshly isolated human brain microvessels 

revealed that only one isoform of SULTs (SLUT1A1) is present in the BBB, while UGTs are 

completely absent from the human brain
36,37

.  

For indolinone, a hERG inhibition of approx. 86% was found when tested at 100 µM (IC50 of around 

25 µM). But given the high plasma protein binding (95%, predicted in silico), the high metabolic 

instability (in vitro Caco-2 assay), and the fast clearance (in vivo PK study)
33

 of indolinone, a hERG 

block under physiological conditions appears rather unlikely for the compound. 

In silico predictions for indolinone indicated no violation of Lipinski’s rule of five, a high human oral 

absorption (93.2%), and a moderate probability (0.43) for P-gp interaction. However, as the compound 

was extensively metabolized (Caco-2 assay) and thus quickly eliminated (PK studies), indolinone 

clearly needs to be chemically modified towards a metabolically more stable compound without losing 

its inhibitory activity on FcɛRI-receptor dependent mast cell degranulation. 

For indirubin, a short t1/2 of around 35 min and a relatively high clearance of almost 3 L/h/kg were 

determined in the preliminary PK study in Sprague Dawley rats. Previous PK data reported by Deng et 

al. obtained from male Wistar rats showed a t1/2 of 1 hour (i.v., 2.8 mg/kg)
38

. The different t1/2 found in 

male Wistar rats (1 hour) and Sprague Dawley rats (35 min) might be explained by differing 

cytochrome P450 isozyme expression in the two strains. Also, different administered doses (male 

Sprague Dawley rats: i.v., 2 mg/kg bw vs. male Wistar rats: i.v., 2.8 mg/kg bw) and body weight (male 

Sprague Dawley: 320 - 350 g vs. male Wistar rats: 280 - 300 g) may have impacted the excretion of 

the compound. Independent of that, our data were obtained by a fully validated UPLC-MS/MS 

bioanalytical method and are, therefore, significantly more reliable and robust than the data of the 

previous study obtained by only HPLC-UV analysis
38

. 
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In the in vitro permeability studies, indirubin precipitated even at low concentrations on the filter 

inserts of the Transwell systems. The software program EPI suite (ImageWare Systems, version 3.20) 

estimated a water solubility of indirubin of about 188 mg/L at room temperature. However, 

thermodynamic solubility studies investigating the saturated solution of indirubin in equilibrium 

demonstrated that indirubin is completely insoluble in aqueous buffer (RHB, HBSS). Addition of 

various solubilizing agents such as 0.2% Cremophor EL, 5 mg/mL Poloxamer 188, or 1% DMSO 

could not improve the solubility issue of indirubin in the transporter buffers (RHB, HBSS)
39

. Indirubin 

was also tested in the hERG assay at concentrations up to 3 µM. But again, the compound precipitated 

in the bath solution and precluded reliable predictions. For this reason, we decided to stop working on 

the compound in aqueous buffers, as structural modifications towards more soluble derivate and/or 

more complex formulations (e.g. liposomes or lipid-based formulations) are required. Schering AG 

already reported on the synthesis of more soluble indirubin (aryl-substituted and sulfur-containing) 

analogs
40,41

, while other research groups improved the bioavailability of indirubin by a nanoparticle 

formulation
42

. 

In summary, we were able to determine first key PK parameters in rats and a selection of 

physicochemical properties (such as permeability, solubility, metabolic stability) in in vitro assays for 

tryptanthrin, indolinone, and indirubin. However, to fully assess the drug-likeliness of a compound, 

additional in vitro tests such as human microsomal/hepatocyte stability, cytochrome P450 inhibition, 

and plasma protein binding are needed. To identify which UGT/SULT isoforms are responsible for the 

metabolism of indolinone in the Caco-2 assay, further in vitro studies with recombinant enzymes 

would be required
3
. The PK parameters obtained from Sprague Dawley rats after i.v. administration 

provided a preliminary insight about the in vivo performance of the compounds. All three compounds 

were rapidly eliminated (t1/2 4 – 40 min) and thus need to be chemically modified towards more 

soluble/metabolically stable compounds without losing their activity. Furthermore, to estimate the oral 

bioavailability of the compounds, oral administrations in Sprague Dawley rats would be required. 

Additionally, a new validated bioanalytical method including the four phase II metabolites of 

indolinone would be mandatory. The Caco-2 assay already gave preliminary information about the 

oral bioavailability of the compounds. According to the drug interaction guidelines from the FDA
3
, 

EMA
43

, and Japanese MHLW
44

, assessment of P-gp and BCRP interactions are recommended for new 

molecular entities. Tryptanthrin was already shown not to be a P-gp substrate. To investigate whether 

tryptanthrin is a P-gp inhibitor, co-incubation with a P-gp substrate (e.g. digoxin) would be needed
45

. 

In addition, further experiments on BCRP (substrate/inhibitor identification) would be reasonable. As 

we assumed that indolinone conjugates are actively excreted in the apical and basolateral compartment 

of the Caco-2 assay, it would also be interesting to see whether the efflux changes in presence of a 

BCRP (e.g. Ko143)
46

, MRP (such as MK-571 and leukotriene C4)
24

, or OAT (e.g. estrone sulfate)
24

 

inhibitor. Such experiments would enable us to identify which transporters are involved in the efflux 

of the indolinone conjugates. 
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In addition, bioavailability of poorly water soluble compounds can be increased by food, and by the 

presence of micelles of bile salts, phospholipids, and lipolysis products
47

. To simulate the intestinal 

fluid in the fasted (FaSSIF-TM) and the fed state (FeSSIF-TM), several attempts have been made to 

develop biorelevant transport media for the Caco-2 model
48,49

. As these media can essentially 

influence the drug solubility/stability and, therefore, the absorption of a compound, it would be 

worthwhile to study the effect of these biorelevant media on our alkaloids in the Caco-2 assay. In the 

in vitro hERG assay, indolinone and tryptanthrin displayed a weak hERG block. Besides the hERG 

potassium channel, sodium and calcium ion channels contribute to the cardiac action potential. 

Therefore, the ICH (International Conference on Harmonization) safety guideline S7B
50

 recommends 

further testing on sodium/calcium channels before moving into clinical trials
50

.  

Historically, natural products are the major source of new structural leads in drug discovery. But it 

should be emphasized that nowadays isolated natural products typically do not serve as new drug 

substances by themselves. Numerous natural products (such as β-lactams
51

 or paclitaxel
52,53

) with poor 

physicochemical properties (chemical/enzymatic instability or low permeability/solubility) have later 

become blockbuster drugs by means of adequate structural modifications (e.g. derivatization, addition 

of clavulanic acid) or formulations (albumin-bound formulation of paclitaxel, Abraxane
®
). Thus, given 

the novelty of the pharmacological profile of tryptanthrin and indolinone, we believe that structural 

modifications and further preclinical testing (including bioactivity) of these compounds would be 

worthwhile. 
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