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Abstract

Randomness is an inevitable aspect of biological networks. It has

been long accepted that variability of components in a network can

propagate throughout the network. In this thesis, we introduce a

method that allows us to decompose the total variability of a single

component into individual contributions from the other components

in a network. Our method of noise decomposition helps us investi-

gate key parameters and their relative impact on the total normal-

ized noise and also allows us to illustrate the importance of differ-

ent system modifications by adding or omitting biological processes.

With our generally applicable noise decomposition method, we are

able to determine the strength of individual correlations induced by

different co-regulation processes that connect different components

of a network. In bistable systems, variability can occur through

stochastic transitions from one steady state to another. Noise in-

duced transitions between two steady states are difficult to calculate

due to the intricate interplay between nonlinear dynamics and noise

in bistable positive feedback loops. We open multicomponent feed-

back loops at the slowest variables in order to calculate the transition

rates from one steady state to another. By reclosing the feedback

loop, we calculate the mean first passage time (MFPT) using the

Fokker-Planck equation. It is important to emphasize that the ac-

curate approximation of the open-loop results is not a sufficient con-

dition for a good prediction of the MFPT. We show that only the

opening at the slowest variable warrants an accurate prediction of

MFPT. Multiplicative interactions among different components can

introduce correlations among noises. We show that the introduced

correlations affect the mean and variance of the open-loop function

and consequently increase the transition rate between two steady

states in the closed-loop system. Our results indicate that the open-

loop approach can contribute to the theoretical prediction of the

MFPT. The theoretical results are shown to be in good agreement

with the results of stochastic simulation.
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Chapter 1

Introduction

Systems biology, as an inter-disciplinary field of science, investigates biological

species, molecular interactions, and how these interactions give rise to specific

behaviors in biological systems. Mathematical modeling has been long recog-

nized as a powerful tool to analyze complex interactions between components

of biological networks by proposing testable hypotheses and designing compu-

tational and theoretical models that can be validated by the experimental data.

Mathematical models are usually represented by dynamical systems since the

state of living systems evolve through the time. The main idea behind using

dynamical systems is to mathematically represent different cellular states as

attractors of the system which in turn define different cellular decisions. The

emergence of such attractors are dependent on the structure of biological net-

works. In particular, the existence of positive feedback loops in gene regulatory

networks is a necessary condition for the network to have multiple attractors, a

phenomenon known as multistability.

1.1 Dynamical system

Dynamical systems are mathematical formulations of physical or biological pro-

cesses by a family of evolution operators ϕt, parametrized by time t, that func-

tion in state space X (Figure 1.1). Dynamical systems can model deterministic

events where there is a unique state for each time point, or model stochastic

processes where there is a distribution of possible states for a time point [15].

The time evolution of many systems in nature can be predicted using their cor-

responding dynamical systems. The dimension of state space determines the

dimension of the dynamical system. The state of a system at any individual

time point is determined by its corresponding time evolution operator provided

that the initial state x0 is given. Parameter dependent dynamical systems can

1
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Figure 1.1: Evolution operator.

be represented by a set of first order ordinary differential equations (ODEs)

ẋ(t) =
dx(t)

dt
= f

(
x(t), µ

)
, µ, x ∈ R

n, (1.1)

with the unique time evolution operator ϕt

x(t) = ϕt(x0, µ), x0 = x(0),

that satisfies equation (1.1). Steady states of dynamical system (1.1) are given

by xs ∈ X such that f(xs;µ) = 0. Steady states can be either stable and absorb

all nearby trajectories or unstable and repel them.

1.1.1 Bifurcations

The quantity and stability of steady states of a dynamical system may change as

the parameter values are varied. When this change, which is also called qualita-

tive change, happens, a bifurcation is said to emerge in the state space of a given

dynamical system [55]. The qualitative change can occur generically by chang-

ing the value of one (co-dimension one) or more (co-dimension n) parameters.

Bifurcations can be classified into local bifurcations analyzed by local stability

analysis of steady states, and global bifurcations, which occur as a result of col-

lision of invariant sets of a system. Fold bifurcation (saddle-node bifurcation)

is an example of local co-dimension one bifurcations [26] in which two steady

states collide and annihilate each other at a specific parameter value which is

called the bifurcation point in the parameter space (Figure 1.2). Suppose that

the dynamical system (1.1) with a smooth f , has a steady state xc at µ = µc

that satisfies

f(xc, µc) = 0,
d

dx
f(xc, µc) = 0. (1.2)

2



1. Introduction

Figure 1.2: The fold bifurcation diagram. On the left half of the plane, system
(1.2) has two branches of steady states, one being stable and the other unstable.
Moving from left to right, the two branches of steady states collide and disappear
at the bifurcation point.

System (1.2) undergoes a generic fold bifurcation at steady state xc if

d2

dx2
f(xc, µc) 6= 0,

d

dµ
f(xc, µc) 6= 0.

The above inequalities are called the non-degeneracy and the transversality

conditions, respectively.

1.1.2 Bistability

In a dynamical system, bistability means that the system has two stable steady

states and, depending on the initial conditions, the system tends to one of the

two steady states. In the potential landscape, a bistable system has two wells

separated by a peak which is the unstable steady state. Bistability, which can be

generated by a positive feedback loop with ultrasensitivity, is a key element to

study the cellular memory in biological networks. One characteristic of bistable

systems is that they demonstrate a hysteresis behavior. The hysteresis curve

indicates the range of parameter values for which a system has two stable steady

states (Figure 1.3).

1.2 Stochastic Processes

A stochastic process is a random evolution of a set of variables over the course of

time. Random variables (state or/and time) can be discrete or/and continuous

[30]. More accurately, a stochastic process is a collection of random variables

X on probability space Ω indexed by time t, {Xt, t ∈ T}. The future state of

3
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Figure 1.3: Hysteresis curve. The fold bifurcation points are determined by the
two knees of the curve (black disk). For the values of a parameter between the
two knees, system has one unstable (dashed gray) and two stable steady states
(solid red and green).

a stochastic process Xt can be determined by its past and present states. A

Markovian process (Figure 1.4), known as a memoryless process, is a stochastic

process Xt in which the future of the process depends only on its present state.

This means that Xtk depends only on Xtk−1

P (Xtk |Xt1 , ..., Xtk−1
) = P (Xtk |Xtk−1

).

The above definition (known as Markov property) combined with conditional

probability allows us to reconstruct the hierarchy

P (X1, X2, X3|X1, X2) = P (X3|X2)P (X2|X1)P (X1).

The joint probabilty distribution function is then obtained easily by integrating

the above equation to get

P (X3|X1) =

∫ ∞

−∞
P (X3|X2)P (X2|X1)dX2,

which is known as the Chapman-Kolmogorov equation [30]. A Markovian

process can be described through Chapman-Kolmogorov equation as long as

the process has a finite and independent mean and variance. The continuous

stochastic processes along with the Markov property are known as Wiener pro-

cesses. A Wiener process W (t) is a continuous stochastic process characterized

by normal distribution N(0, σt) which means that the fluctuation arises linearly

in time. The Wiener processes with irregular motions are key processes to de-

scribe complicated stochastic processes. The standard Wiener process has the

4
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Figure 1.4: Markovian process is a stochastic process in which the future of the
process depends only on its present state.

zero initial condition W (0) = 0. The time evolution of a Wiener process can be

represented by a Gaussian white noise ξ(t)

d

dt
W (t) = ξ(t).

1.2.1 Master equation

The Chapman-Kolmogorov equation corresponds to the probability of being at

point x at time t+ dt given the initial position at time t

P (x|y, t+ dt) =

∫ ∞

−∞
P (x|z, t)P (z|y, dt)dz.

The transition probability from x to y for a short time period dt can be expressed

by adding the probability of transition from x to y to the probability of having

no transition during the time dt. This implies

P (y|x, dt) =
(

1− dt

∫ ∞

−∞
w(y|x)dy

)

δ(y − x) + dtw(y|x) + o(dt),

where δ(y − x) = P (y|x, 0) and w(y|x) is the transition probability from x to y

in a small time increment dt. By re-arranging Chapman-Kolmogorov equation

and dividing the result by dt, one gets

d
dt
P (x|x0, t) =

∫ ∞

−∞

[
w(x|y)P (y|x0, dt)− w(y|x)P (x|x0, dt)

]
dy,

which describes the time evolution of the probability of a system with regard to

a continuous time variable t, and is known as master equation [53].

1.2.2 Stochastic differential equation

By repeating a stochastic process many times, we will observe some repeated

averaged behaviors which are roughly in agreement by the deterministic descrip-

tion plus some fluctuations. This indicates the separation of the deterministic

part (X) of a stochastic variable X from the fluctuation α, which is proportional

5



1. Introduction

to the square root of the system volume

N

Ω
= X = X +

α√
Ω
, (1.3)

where N and X represent the number of molecules and the concentration, re-

spectively. In a network, each fluctuating component is presented in the form of

equation (1.3). The time evolution of a stochastic variable X in form of equation

(1.3) leads to the definition of the stochastic differential equation (SDE)

d

dt
X = F (X) + σ1 g1(X) ξ(t) + σ2 g2(X) ζ(t), (1.4)

where F
(
X
)

represents the deterministic part of the system and ξ(t) and ζ(t)

can represent intrinsic and extrinsic fluctuations with the intensity σi = 1√
Ω

.

The fluctuations can be additively [28] or multiplicatively [10] incorporated into

a system. From equation (1.4), the total diffusion is given by

Dtotal = σ2
1 g21(X)

︸ ︷︷ ︸

DIntrinsic

+ σ2
2 g22(X)

︸ ︷︷ ︸

DExtrinsic

. (1.5)

It should be noted that in real systems, fluctuations have non-zero auto-correlation

time. White noise is an idealized replacement of a time-dependent noise with

considerably short correlation time. This short memory will result in a depen-

dency between the state variable and the fluctuations, and can change the ex-

pectation value of X(t). Such dependency represents a correlation between the

system and the environmental noise known as extrinsic fluctuation [16]. From

the mathematical point of view, the absence or presence of such correlation can

be imposed to the system by different integration methods. In the absence of

correlation between the dynamic of the system and the stochasticity, the drift

can be obtained based on Riemann integration and the method is known as Ito

H
(
X
)
= F

(
X
)
, (1.6)

while in the presence of the mentioned correlation, Lebesgue integration will be

used and the method is known as Stratonovich

H
(
X
)
= F

(
X
)
+

1

4

d

dX
DExtrinsic. (1.7)

Although both methods are defined based on Brownian motion and describe

the same quantity, the results are different. In a given system, different sources

of stochasticity might have a common origin and be cross-correlated [6, 7]. A

6
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white cross-correlation between ξ(t) and ζ(t) in equation (1.4) will modify the

term of diffusion (1.5) as follows

Dtotal = σ2
1g

2
1(X)

︸ ︷︷ ︸

DIntrinsic

+ σ2
2g

2
2(X) + 2ρ σ1σ2g1(X) g2(X)

︸ ︷︷ ︸

DExtrinsic

, (1.8)

in which ρ = 〈ξ(t),ζ(t′)〉
σ1σ2

represents the correlation between ξ(t) and ζ(t).

1.2.3 Fokker-Planck Equations

In multidimensional systems with strong nonlinearities, master equations are

too complicated and difficult to solve. A large effort has been made to design

methods to simplify or approximate the master equation analytically or numer-

ically [19, 20, 27, 42]. The Fokker-Planck equation (FPE) as an approximation

of the master equation is an alternative approach for systems with complexities

[44]. FPE is the second-order truncation of Kramers-Moyal expansion of the

master equation [35, 40] with respect to system size Ω

d
dt
P (X) = − ∂

∂X
H(X)P (X) + 1

2Ω
∂2

∂X2Dtotal(X)P (X), (1.9)

where H(X) and Dtotal(X) are the drift and diffusion, respectively. In biology,

the system size is the cell volume. The Fokker-Planck equation describes the

dynamics of probability distribution functions over time by using partial differ-

ential equations. Equation (1.9) can be nonlinear with respect to the stochastic

variable X even though it is linear with respect to probability distribution P (X).

Equations (1.4) and (1.9) can be taken identical if the corresponding histogram

of a large collection of different stochastic trajectories satisfying equation (1.4)

satisfies equation (1.9). Hence, the dynamics of the probability distribution of

a stochastic process modeled by (1.4) can be represented by (1.9) in which the

tails of the probability distribution describe the size of variability. It should

be noted that (1.9) is obtained by the assumption of small perturbation, and

hence the larger fluctuations are, the less accurate the approximation will be

[54]. The fist term in equation (1.9) contains no fluctuation and can be inter-

preted as the deterministic part of the system. The second term in equation

(1.9) corresponds to the second order of Kramers-Moyal expansion of the master

equation and describes the lowest order of fluctuations. The time evolution of

the expectation value X and covariance matrix C corresponding to (1.9) can be

7



1. Introduction

linearized around the expectation value

Ẋ = H(X) = F (X) +
1

2

∑

i,j

d2F
(
X
)

dXidXj
Cij ,

Ċ = JC + (JC)T +B,

(1.10)

where J = d
dX

F
(
X
)

represents the Jacobian matrix. Matrix B contains the

intrinsic diffusion of all components and is given by

B = S Diag(V ) ST ,

where S and V are the stoichiometry matrix and the reaction rate vector, respec-

tively. The drift H(X) in the first equation in (1.10) is equivalent to equations

(1.6) and (1.7). In the presence of multiple extrinsic fluctuations, the drift

is represented by Stratonovich interpretation. Linearization of equation (1.10)

with respect to X is known as linear noise approximation (LNA) and can be

used for the multidimensional networks which are not strongly nonlinear [9].

Equations (1.10) are obtained based on local perturbation which means that

the results are valid at the vicinity of the corresponding basin of attraction.

This criterion describes the physical meaning of local and global stability and

shows the fact that such approximation cannot be used for global properties

like mean first passage time (MFPT). Normalization of the variance with mean

squared of component i results in the coefficient of variation

CV 2
i = η2i =

C2
ii

X
2
ii

. (1.11)

The coefficient of variation, known also as normalized noise, is applicable to

positive statistical samples like biological data.

1.3 Mean first passage time

In a multistable system, a trajectory can not deterministically cross the bound-

ary of a basin of attraction while in a stochastic system, due to fluctuations,

trajectories may reach the boundary in a finite time [32]. One should distinguish

between the exit time (T = ∞) predicted from a deterministic system and the

switching time (T < ∞) obtained from the stochastic system. The first passage

problem is referred to the time it takes the state of a system to reach a point

(or a boundary) for the first time which is denoted by τ(X) and associated with

a probability density fτ (X, t). Suppose that the probability distribution has an

8
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absorbing boundary R and a reflecting boundary R∗ at which

P (R) = 0,
d

dX
P (X) |X=R∗ = 0 (1.12)

The probability density fτ (X, t) can be interpreted as the time evolution of the

survival probability S(X, t) which is the probability being remained at X at

time t

fτ (X, t) = − d

dt
S(X, t) = − d

dt

∫ R

−∞
P (X|X0)dX. (1.13)

Mean first passage time T (X), the average time for a random variable to switch

from one state to another, is therefore

T (X) =

∫ ∞

0
tfτ (X, t)dt. (1.14)

From equations (1.9), (1.13) and (1.14), one can obtain

H (X)
d

dX
T (X) +

1

2Ω
Dtotal (X)

∂2

∂X2
T (X) = −1 (1.15)

with the boundary conditions

T (R) = 0,
d

dX
T (X) |X=R∗ = 0. (1.16)

Therefore, mean first passage time from Xl to Xh is obtained by solving equation

(1.15) with the boundary condition (1.16)

T (Xl → Xh) =

∫ Xh

Xl

1

V (Y )

(∫ Y

0

V (X)

Dtotal(X)
dX

)

dY, (1.17)

where

V (X) = −
∫

H (X)

Dtotal (X)
dX,

is the effective potential function. Kramers escape rate [2, 3] as an approxima-

tion of (1.17) describes the MFPT between local minimum Xs and maximum

Xu in a potential landscape

T (Xs)− T (Xu) =
2π

√

|V ′′ (Xs)V
′′ (Xu)|

e|V (Xs)−V (Xu)|, (1.18)

where V
′′
(X) is the second derivative of the effective potential function with

respect to the state variable X.

9
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1.4 Stochastic simulation algorithm

A common approach to investigate stochasticity is the stochastic simulation

algorithm (SSA). Each trajectory of a single SSA represents an exact sample

of the probability distribution function that is the solution of the master equa-

tion. The most well-known stochastic simulation algorithm has been introduced

by Gillespie [13]. One assigns an initial number of components and repeats a

loop until the system reaches the predefined termination conditions. The loop

includes five steps as follows:

1. Initialize the number of molecules (X) in the system. Generate random

numbers r1 and r2.

2. Calculate the probabilities for production and degradation of each com-

ponent for the next step based on the propensity vector ai(X).

3. Update the time τ of the occurrence of the next reaction

τ = −ln
( r1
∑

ai(X)

)

.

4. Determine the next reaction to occur. The next reaction Rj has the small-

est integer j satisfying

j
∑

i=1

ai(X) > r2a0(X).

5. Update the number of components based on the chosen reaction.

10



Chapter 2

Results

Randomness is an inevitable feature of biological interactions. Biological com-

ponents fluctuate due to the individual events considered as intrinsic noise or

due to the fluctuations in the environment known as the extrinsic noise. In a

network composed of different components, fluctuations in specific components

count as intrinsic noise for the components themselves and a potential source

of extrinsic noise for the other components [45, 47, 48]. For example, in tran-

scriptional regulation processes, transitions among different states of promoters

that control transcription [34, 43] or processes involved in degradation of RNAs

like enzymatic degradation, can be defined as extrinsic sources of fluctuation

to the level of RNAs. In order to characterize stochastic features of a system

based on the noise effects, it is necessary to decompose the randomness in a net-

work based on individual sources of noise. Variabilities in different components

may be strongly co-dependent, so any changes in the corresponding total proba-

bility distribution will potentially affect the marginal distribution as well. This

codependency shows the correlation between components and the environmental

stochasticity and can be imposed to the system through the Stratonovich inter-

pretation [16]. Existence of such correlation, which has a considerable effect on

transition time between basins of attraction of the network [37], indicates that

the drift is no longer static since it includes some stochasticity. In a multidimen-

sional system which is under the effect of different sources of stochasticity, there

are possibilities of coupling between different sources of noise. Components can

directly or indirectly interact with each other which means that their stochastic

effect will propagate through the system [36].

Coupling between components can introduce a hidden nonlinearity to the system

due to the multiplication of the corresponding noises. Such multiplication can

introduce a cross-correlation between fluctuation sources [6] which can happen

11



2. Results

between the internal and environmental (external) fluctuations or two external

noises. The strength of cross-correlation depends on different factors. Coupled

components can amplify or attenuate stochastic effects and speed up network’s

response [41]. Time scale and the intensity of coupled fluctuations can change

mean level and consequently the intrinsic noise [25]. The degree of stochasticity

in a network depends on the structure and the parameters [4, 38]. Ignoring

some fluctuations between different parts of a network may result in a wrong

conclusion [22, 51, 52].

Stochasticity is a distinct feature of biological networks which can play a cru-

cial role in the fate of the system. Kepler et al. [23] indicated that in systems

under the effects of fluctuations, bimodality can be observed even if the deter-

ministic system is monostable. Since in biological system the reactions are not

necessarily first order, there is a possibility of cross-correlation between noises.

Cross-correlation between noises in bistable systems has been introduced for the

first time by Fulinski [11]. Later Mei et al. studied the steady state properties of

a bistable system perturbed by cross-correlated noise with zero time correlation

[33]. They showed that variations in the cross-correlation strength can cause a

transition from unimodal to the bimodal distribution and therefore change the

bimodal region in the parameter space. Experimental evidences indicate that

the randomness has important consequences on a system behaviors like switch-

ing between different basins of attraction [10, 17]. It has been shown that the

cross-correlation between perturbed production and decay rates can induce a

switch process in gene transcriptional regulatory systems [29].

Mean first passage time (MFPT), the average time for a random variable to

switch from one steady state to another, can be interpreted as the cellular

memory which is a ubiquitous phenomenon in biology [8]. In physics, mean

first passage time can be viewed as the transition time between local minima

in a potential landscape. This can be considered as the time it takes for the

components to escape from a potential well by crossing a potential barrier which

is the unstable steady state. The escape rate approximation by crossing a po-

tential barrier has been introduced for the first time by Kramers [24] in 1940.

Chaudhuri et al. [7] studied the Kramers escape rate of a system under the

influence of cross-correlated intrinsic and extrinsic noises. Recently Ghosh et

al. [12] have used cross-correlated noises in order to show splitting of Kramers

escape rate in symmetric triple wells.
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A common method to approximate MFPT relies on the Fokker-Planck equation

[40], which is typically used for one-dimensional systems. However, most bio-

logically realistic feedback loops contain multiple components. Therefore, the

fluctuation effects of all components of the system should be incorporated into

the corresponding Fokker-Planck equation through the diffusion term. Although

a major attempt has been made to investigate the effect of different sources of

noise on what, no rigorous methods have been proposed to precisely identify the

diffusion. In order to characterize the diffusion term based on different noise

effects, it is necessary to decompose the randomness in a network based on in-

dividual sources of noise. The stochastic behavior in chemical kinetics can be

interpreted through the master equation [53], which is well-known in analyzing

stochastic properties. Unfortunately, the master equation can be analytically

solved only for simple systems. A good alternative method to investigate ran-

dom properties in complicated systems is the stochastic simulation algorithm.

Since simulation of large networks with a large number of variables and param-

eters can be computationally expensive, an analytical approach might be more

practical.

In this work, using Fokker-Planck equation (FPE) for multidimensional systems,

we decompose the total normalized noise of specific components based on the

contributions of different sources of fluctuation. An important feature of biolog-

ical systems with coupled interactions is the presence of different co-regulation

processes with different perturbation effects. It is interesting to investigate

the strength of induced correlations due to an individual co-regulation process.

Noise decomposition helps us decompose such correlations. It should be noted

that all the results are obtained at the steady state and confirmed by stochastic

simulation algorithm. In order to calculate mean first passage time, we provide a

method using Fokker-Planck equation in an open-loop setting to obtain the drift

and diffusion. Multiplicative interactions between different components indicate

that it is possible to have cross-correlation between components. Most of the

previous studies have focused on identifying the effect of cross-correlations and

paid less attention to the formulation of the correlation strength analytically.

Using our methodology and taking into account the classical definition of the

cross-correlation between different noises, we are able to incorporate the cross-

correlation effects into the total diffusion. We approximate the cross-correlation

strength using the variances of the components. Mathematical formulation of

the diffusion helps us investigate all possible modifications that can be intro-

duced into the model, before designing the experiments. We provide stochastic

13
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simulation algorithm to show that our formulation is in an excellent agreement

with the results of the master equation.

In what follows, we demonstrate our method of noise decomposition and then,

using the decomposed noise, we will decompose the induced correlation between

components induced by different co-regulation processes into individual contri-

butions. We imply our method to well-known sub-systems in gene regulation.

2.1 Noise decomposition

Our methodology relies on the decomposition of the total variability of a com-

ponent in a network based on different sources of fluctuation. To this end,

we use the corresponding equation for means, variances and co-variances of all

components in a network obtained from the Fokker-Plank equation [44]. The

decomposition indicates which reactions are responsible for high level of fluc-

tuations in a network. We can easily compare the system’s variability in the

presence or absence of different components and system’s modification in order

to control the level of fluctuations. For example, in gene regulation, the pres-

ence or absence of processes like co-transcription, co-translation and addition

of repressor to different parts of the system affect the level of fluctuation differ-

ently. Our method allows us to reconstruct biological networks by omitting or

replacing some processes which cause high fluctuations.

Consider a general system of n dimension in which X represents the vector of

all components. The components interact with each other through kinetic re-

actions sorted in a vector known as the reaction rate vector (also known as the

propensity function) V . The length of V represents the number of reactions

which occur in a system. The stoichiometry matrix S indicates which compo-

nents and reactions are involved as reactants and products. In the stoichiometry

matrix, rows correspond to specific components, and columns correspond to dif-

ferent reactions. Multiplication of the reaction rate vector and the stoichiometry

matrix describes the macroscopic rate law of the system. Using linear noise ap-

proximation, one can write the time evolution of the corresponding mean vector

X and covariance matrix C as follows






Ẋ = F (X) = S.V,

Ċ = JC + CJT +B,
(2.1)

where J = d
dX

F
(
X
)

is the Jacobian matrix. Matrix B cotains the internal
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diffusion terms of all components and is given by

B = S Diag(V ) ST . (2.2)

The steady state covariance matrix, which can be obtained by solving (2.1), con-

tains both intrinsic and extrinsic fluctuations. Replacing the intrinsic variance

of component i symbolically with

SInt(i, i) = − B(i, i)
∂Fi

∂Xi
+ ∂Fi

∂Xi

,

will help trace the effects of component i on other components’ variability. From

the fact that the covariance matrix C is a symmetric matrix (C(i, j) = C(j, i)),

the covariance between components i and j can be written as follows

C(i, j) = −

n∑

k=1
k 6=j

∂Fj

∂Xk
C(i, k) +

n∑

k=1
k 6=i

∂Fi

∂Xk
C(j, k)

∂Fj

∂Xj
+ ∂Fi

∂Xi

+ SInt(i, j), (2.3)

where SInt(i, j) is nonzero for i = j. By using (2.3), the normalized noise

(coefficient of variation) induced from component i to component j will be

η2(i, j) =
dC(j, j)

dS
Int

(i, i)

(
Xi

Xj

)2

η2
Int

(i),

where

η2
Int

(i) = η2(i, i) =
S

Int
(i, i)

X
2
i

,

denotes the intrinsic normalized noise of component i. Therefore, the total

normalized noise induced to the component j can be written as

η2total(Xj) =
n∑

i=1

η2(i, j). (2.4)

Noise decomposition helps us detect the components which make large contri-

butions to the variability of specific components. It should be noted that all

the results are obtained with the steady state assumptions. In the following,

we apply the proposed method of noise decomposition to several well-known

biological sub-systems.
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2.1.1 Example - Translational regulation

Consider a protein which is translated by RNA and decays linearly in monostable

system; RNA is transcribed at a constant rate and has a linear decay. The

corresponding equations for the mean vector X and the covariance matrix C

are given by equations (2.1) in which

X =

[

R

P

]

, S =

[

1 −1 0 0

0 0 1 −1

]

, V =










α

γ
R
R

λR

γ
P
P










,

denote the mean vector, stoichiometry matrix and reaction rates vector, respec-

tively, and

C =

[

C
RR

C
RP

C
RP

C
PP

]

, J =

[

−γ
R

0

λ −γ
P

]

, B =

[

2γ
R
R 0

0 2γ
P
P

]

,

represent covariance, Jacobian and diffusion matrices, respectively. The total

normalized noise to the level of protein will be decomposed using (2.4) into the

contributions of intrinsic and extrinsic fluctuations

η2total(P ) = η2
Int

(P )
︸ ︷︷ ︸

η2(P,P )

+
τ
A

τ
R
+ τ

A

η2
Int

(R)

︸ ︷︷ ︸

η2(R,P )

,

where

η2
Int

(P ) =
1

P
,

η2
Int

(R) =
1

R
.

τi represents the half-life of component i. Although highly irregular behavior

of RNA due to the low copy number can potentially affect the protein level,

the variability from transcriptional burst may fade away and limit its effect

on the regulation level because of the long life-time and stability of proteins.

Kuwahara et al. [25] showed that the variability from transcriptional burst can

substantially increase the mean of RNA and consequently the level of protein.

They suggested that the increase in the steady state level can be created by the

asynchronous nature of molecular reactions.
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2.1.2 Example - Transcriptional regulation

System’s modification by adding or omitting different components can substan-

tially affect the variability of a system. Consider a three-dimensional open sys-

tem (monostable) including a transcription factor P regulating the activity of

the promoter A; RNA production is regulated by the promoter, and all com-

ponents decay through linear processes. The corresponding equations for the

mean vector and covariance matrix are given by equations (2.1) in which

X =






P

A

R




 , C =






C
PP

C
PA

C
PR

C
PA

C
AA

C
AR

C
PR

C
AR

C
RR




 ,

are the mean vector and covariance matrix and

S =






1 −1 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 1 −1




 , V =














λ

γ
P
P

konP (1−A)

k
off

A

vmA

γ
R
R














,

represent the stoichiometry matrix and rate vector. Additionally

J =






−γ
P

0 0

kon −(k
off

+ kon) 0

0 vm −γ
R




 , B =






2γ
P
P 0 0

0 2k
off

A 0

0 0 2γ
R
R




 ,

denote the Jacobian and diffusion matrices, respectively. By using the same

strategy as shown in the previous example, we can decompose the total normal-

ized noise to the level of RNA into intrinsic and extrinsic noise

η2total(R) = η2
Int

(R)
︸ ︷︷ ︸

η2(R,R)

+
τ
A

τ
R
+ τ

A

η2Int(A)

︸ ︷︷ ︸

η2(A,R)

+
τ
P

τ
A
+ τ

P

τ
A

τ
A
+ τ

R

τA (τ
P
τ
R
+ τ

A
τ
R
+ τ

A
τ
P
)

τ
R
+ τ

P

η2
Int

(P )

︸ ︷︷ ︸

η2(P,R)

,

(2.5)
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where τi represents the half-life of component i and K
D
=

k
off

kon
, and

η2
Int

(P ) =
1

P
,

η2
Int

(A) =
K

D

P
,

η2
Int

(R) =
1

R
,

(2.6)

are the intrinsic normalized noises. Equation (2.5) shows how different param-

eters regulate the RNA fluctuation level. For example, longer half-lives of the

components increase the variability to the level of RNA while high concentra-

tions of components reduce the RNA variability.

2.1.3 Example - RNA enzymatic decay

In the previous example, the transcription factor P was involved in RNA pro-

duction. This introduces a positive correlation between the protein and RNA.

There are possibilities in which some components are involved in other compo-

nents’ decay process. In this example, we show that although the correlation

between such components is negative, the effect on normalized noise is positive.

We consider the system in the previous example and introduce an enzymatic

decay to RNA in which the corresponding enzyme is a Poisson process. We reg-

ulate the system’s parameters in a way that the level of RNA and consequently

the intrinsic noise does not change. Therefore, the corresponding equations for

the mean vector and covariance matrix are given by equations (2.1) in which

X =









P

A

E

R









, C =









C
PP

C
PA

C
PE

C
PR

C
PA

C
AA

C
AE

C
AR

C
PE

C
AE

C
EE

C
ER

C
PR

C
AR

C
ER

C
RR









, (2.7)

and

S =









1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1









, V =



















λ

γ
P
P

konP (1−A)

k
off

A

vmA

α

γ
E
E

γ
R
R E



















,
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J =








−γ
P

0 0 0

kon −(koff + kon) 0 0

0 0 −γ
E

0

0 vm −γ
R
R −γ

R
E







, B =








2γ
P
P 0 0 0

0 2koffA 0 0

0 0 2γ
E
E 0

0 0 0 2γ
R
R







.

The total normalized noise to the level of protein can be decomposed using (2.3)

into the contribution of different sources of stochasticity as follows

η2total(R) = η2
Int

(R)
︸ ︷︷ ︸

η2(R,R)

+
τE

τR + τE
η2
Int

(E)

︸ ︷︷ ︸

η2(E,R)

+
τA

τR + τA
η2
Int

(A)

︸ ︷︷ ︸

η2(A,R)

+
τP

τA + τP

τA
τA + τR

τA (τP τR + τAτR + τAτP )

τR + τP
η2
Int

(P )

︸ ︷︷ ︸

η2(P,R)

,

(2.8)

where τE is the enzyme half-life and

η2
Int

(E) =
1

E
.

Small changes in the level of enzymes make a considerable change in the nor-

malized noise of RNA. This shows that the extrinsic fluctuations from decay

processes are substantial sources of randomness in stochastic modeling and can

be controlled by changing specific parameters. Noise decomposition helps to an-

alytically predict and prevent undesirable behaviors in a system by modifying

the reactions which propagate the noise through a network. High order reactions

in a network can introduce a cross-correlation between components which can

affect the level of expectation values. These effects are not trivial and cannot

be captured by traditional methods [45, 46].

2.2 Co-regulation processes

In biological networks, it is common to have correlation between identical com-

ponents due to co-regulation processes. There might be several co-regulation

processes that connect two components. It is important to investigate how dif-

ferent processes are related and determine the strength of individual correlations

induced by each process, and also control the key parameters which affect the

strength of such correlations. For example, two identical RNAs can be corre-

lated by being decayed by the same enzyme and/or be regulated by the same

promoter. It is interesting to investigate whether there is a connection between

these co-regulation processes.
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∅
∅

Figure 2.1: Co-regulation processes. R1 and R2 are two identical RNAs which
are degraded by the same enzyme E and their promoters are regulated by the
same transcription factor P .

Suppose that Xi and Xj are identical components in a network which have the

same level of total normalized noises, and the component κ coregulates X i and

Xj by a specific co-regulation process. The extrinsic noises η(κ,X i) induced

by component κ to the level of X i and Xj are equal and can be calculated

using equation (2.3). The corresponding correlation coefficient to a specific co-

regulation process will be given by

ρκ(X i, Xj) =
η(κ,X i)

η
total

(X i)
=

η(κ,Xj)

η
total

(Xj)
. (2.9)

In the presence of different co-regulation processes, the total correlation between

two identical components regulated by such processes is simply the summation

of individual correlations

ρ
total

(Xi, Xj) =
m∑

t=1

ρκt
(X i, Xj) =

m∑

t=1

η(κt , Xi)

η
total

(X i)
. (2.10)

Decomposition of correlation induced by co-regulation processes helps us re-

construct a system with more desirable processes. In the following example we

decompose the correlation between two RNAs induced by different co-regulation

processes.

2.2.1 Example - Co-regulation processes

Consider the previous example (2.1.3) in which a transcription factor regulates

promoter activation; the promoter regulates the RNA production; and the en-

zyme is involved in RNA degradation. In addition, we add a second RNA which
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is identical to the first RNA and suppose that the promoter of the second RNA

is regulated by the same transcription factor and being degraded by the same

enzyme (Figure 2.1). The enzymatic decay and co-transcriptional regulation

are the co-regulation processes that connect the two RNAs. From (2.9), the

correlation between the two RNAs can be decomposed into the contributions of

co-regulation processes as follows

ρ(R1, R2) = ρ
E
(R1, R2) + ρ

P
(R1, R2),

where

ρ
E
(R1, R2) =

η2(E,R)

η2total(R)
, ρ

P
(R1, R2) =

η2(P,R)

η2total(R)
,

are the correlations induced by the enzymatic decay and co-transcriptional

regulation processes. The extrinsic normalized noises η2(P,R), η2(E,R) and

η2total(R) have been defined in the previous example. Although the induced

correlation by the co-transcriptional process does not affect the correlation in-

duced by the enzymatic decay and vice versa, variations in the value of a shared

parameter can regulate both correlations.

2.3 Mean first passage time (MFPT)

Mean first passage time (MFPT), the average time for a random variable to

switch from one steady state to another, can be interpreted as the cellular mem-

ory which is a ubiquitous phenomenon in biology. The most common method

for calculation of MFPT uses the Fokker-Plank equation (1.9) which results in

H (x)
d

dx
T (x) +

1

2
Dtotal (x)

∂2

∂x2
T (x) = −1, (2.11)

with the boundary conditions

T (R) = 0,
d

dx
T (x) |x=R∗ = 0. (2.12)

H (x) and Dtotal (x) represent the drift and diffusion, respectively, and T (x) is

the MFPT. In the absence of stochasticity, the potential function is given by

V (x) = −
∫

H (x) dx.

The stationary solution of the vector field H(x) corresponds to a delta dis-

tribution at the extremum of V (x). The diffusion, Dtotal(x), which is often
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Figure 2.2: A single-component feedback system in which a protein regulates
its promoter cooperatively, described by a Hill-function f(P ) with the Hill-
coefficient n = 2. The closed-loop system (left) is opened at the protein level
(right).

characterized with a considerable uncertainty, smoothens the distribution by

creating tails which determine the escape probability from one potential well

to another. In order to investigate the MFPT, we address the issue of how to

define the diffusion Dtotal (x).

2.3.1 Example - Feedback loop system with a single component

As a very simple example, consider a feedback loop with a single component,

which regulates its own production (Figure 2.2). The closed feedback loop is

described by the following ordinary differential equation (ODE)

d

dt
P = b+ vm

Pn

Kn
D + Pn

− γ
P
P, (2.13)

in which Kd denotes the equilibrium dissociation constant, b and vm are the

basal and maximum production rates and γ
P

stands for the decay rate constant

of the protein. The index of cooperativity, the Hill number, is denoted by n

and is taken to be two for all calculations. In all our examples, the parameters

have no physical dimension, but their values are representative for yeast when

the time and concentration units are expressed in hours and nM . System (2.13)

indicates that all the fluctuations are intrinsic. Therefore, the drift can be

calculated from the Ito interpretation (1.6) and the diffusion can be calculated

based on equation (2.2)

H(P ) = b+ vm
Pn

Kn
D + Pn

− γ
P
P,

Dtotal(P ) = b+ vm
Pn

Kn
D + Pn

+ γ
P
P.

(2.14)
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(B)(A)

Figure 2.3: A single-component system comprising protein. The mean (A)
and the variance (B) of the open-loop output with respect to the input are
obtained from the stochastic simulation algorithm (cyan circle) and the analyt-
ical approach (orange solid). The following parameters are fixed: KD = 110,
vm = 500, b = vm

100 , γP
= 1.

(B)(A)

Figure 2.4: A single-component feedback system comprising protein. (A) Mean

first passage time (MFPT) from the OFF to the ON state and (B) from the

ON to OFF state were calculated for the bistable range of the KD. The good

agreement between the stochastic simulation algorithm (cyan circle) and the

analytical approach (orange rectangle) indicates the accuracy of the method.

With the obtained drift and diffusion, MFPT was also calculated using the

Kramers method (1.18) (gray dashed). The following parameters are fixed:

vm = 500, b = vm
100 , γP

= 1.

With the above equations, equation (2.11) together with the boundary condition

(2.12) can be used to calculate MFPT. Figure 2.4 shows that there is an agree-

ment between the results of stochastic simulation algorithm (cyan circle) and

that of our theoretical approach (orange rectangle) which indicates the accuracy
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of the method. The gray dashed curve represents the Kramers approximation

and indicates the accuracy of this method provided that we have accurate drift

and diffusion.

2.4 Characterization of drift by the open-loop ap-

proach

In the study of complex networks in which a huge number of components inter-

act with each other, the quasi steady state assumption can reduce the dimension

of the system. The quantitative characterization of positive feedback loops has

been facilitated by system reduction. An efficient method for system reduction

is termed the open-loop approach [1], which can be used to determine whether a

positive feedback loop system displays bistability. By opening the feedback loop,

a feedback component is broken into a pair of input and output. The mapping

of the input into the output defines a single variable open-loop function, which

contains all essential information on bistability without the need to analyze the

complicated closed-loop system with multiple variables. If the open-loop func-

tion is sigmoidal, then the feedback loop has the potential to display bistability.

This deterministically formulated open-loop approach has important applica-

tions [1, 31, 39]. Experimentally, the open-loop response can be measured to

determine whether a multicomponent feedback gene network can display bista-

bility, without knowing any details on the reactions in the feedback loop. In

theoretical analysis, the open-loop approach can be used to determine the maxi-

mal bistable range of a single parameter in a multidimensional parameter space.

The open-loop function, η = f(ω), assigns to each value of the input ω an out-

put value η. Intersections of η = f(ω) with the identity line η = ω (black line,

Figure 2.5, left) represent the steady states for the closed-loop system. When

there are three intersections, the system is bistable (Figure 2.5, right). The

upper and lower stable steady states are denoted by “ON” and “OFF” states.

The open-loop function can be used to represent the drift. In a feedback loop

system with single variable, there is only one way of opening the loop (Figure

2.3). While the opening can be performed at any variable for the deterministic

characterization, this is not the case for stochastic calculations. Since only the

fast variable can be considered to be in equilibrium, the loop has to be opened at

the slowest variable which we are interested to obtain its MFPT. The output is

affected directly by intrinsic fluctuations and also indirectly by the fluctuations

of all components in the loop that are propagated to the output. Therefore,

the diffusion has to be re-defined for the single variable open-loop output that
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Figure 2.5: Steady states of a one-component system presented in open-loop (A)
and closed-loop (B) versions. The open-loop response is shown for KD = 100
(red) and KD = 220 (blue). The corresponding steady-state values in the closed-
loop system are indicated by dashed lines of the same color. The following
parameters are fixed: vm = 500, b = vm

100 , γP
= 1.

reproduces the effect of fluctuations due to all components in the original sys-

tem. Although the open-loop function contains all the information about the

nonlinearity that determines the number and the level of the steady-states, it

does not have to reflect any physical parameter separately. To predict transition

rates, all relevant parameters have to be specified, in particular the time scale of

the broken component. The open-loop function reduces a multivariable system

to a one-variable function. Similarly, the diffusion matrix has to be reduced.

2.5 Calculation of diffusion with uncorrelated white

noises

Equation (2.11), used to calculate the MFPT, is typically applied to one-dimensional

systems. However, most biologically realistic feedback loops contain multiple

components. In order to obtain the total diffusion induced to specific compo-

nents in a multidimensional system, we use equations (2.1) provided that the

sources of fluctuation are independent. This indicates that the drift is inde-

pendent of the fluctuation and the Ito interpretation is used. Therefore, the

steady-state mean values of all variables are identical to their deterministic val-

ues. It is important to emphasize that the LNA is applied to the open-loop

system. For closed-loop bistable systems, the LNA can be used only locally,

around the steady-states and not globally while it can be used at all values of

the input of the open-loop system. It is common in biological networks that
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some components have considerably shorter life times compared to the other

parts. Existence of unobservable configurations in a system may lead to sig-

nificant numerical stiffness. Elimination of fast components (by applying the

quasi-steady-state assumption) [21, 49] can reduce the complexity of the calcu-

lation as well as stiffness. Invoking timescale separation conditions can divide

systems of equations (2.1) into two sub systems which represent the mean of

fast and slow variables

d

dt
Xf = Hf ,

d

dt
Xs = Hs, (2.15)

and their variances

d

dt
Cff = JfCff + (JfCff )

T +Bf ,

d

dt
Csf = (Jf + Js) Csf +

(

Jf
s Cff

)T

,

d

dt
Css = JsCss + (JsCss)

T + Jf
s Csf +

(

Jf
s Csf

)T

+Bs.

(2.16)

The indices s and f stand for the slow and fast components, respectively. The

covariance, Jacobian and diffusion matrices are presented by fast and slow sub-

matrices

C =

[

Cff Csf

Csf Css

]

, J =

[

Jf
f Js

f

Jf
s Js

s

]

, B =

[

Bf

0

0

Bs

]

, (2.17)

where Cii = var(Xi) and Cij = cov(Xi, Xj), and

J j
i =

∂

∂Xj
(Hi (X)) . (2.18)

Applying the quasi-steady state assumption to systems (2.15) and (2.16) for

the fast component leads to the following slow sub-systems with a single slow

variable

d

dt
Xs = Hs

(
Xs

)
,

d

dt
Css = JsCss + CssJ

T
s +Dtotal,

(2.19)

where

Dtotal = Bs
︸︷︷︸

DIntrinsic

+ Jf
s

(

Jf
f + Js

s

)−1
Bf

((

Jf
f

)T
)−1(

Jf
s

)T

︸ ︷︷ ︸

DExtrinsic

, (2.20)
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Figure 2.6: A two-component system consisting of an RNA and a protein. The
closed-loop system (left) is opened at the protein level (right).

provided that fast components are uncoupled. For the sake of recognizing the

reduced system from the original system, we use the variables Xs and Css for

the reduced system. The total diffusion Dtotal for the slow variable Xs is the

summation of the intrinsic diffusion (DIntrinsic) and the diffusion induced by the

fast variables (DExtrinsic). With the total diffusion Dtotal and drift Hs

(
Xs

)
, we

can calculate the MFPT from equation (2.11) with proper boundary conditions.

2.5.1 Example - Positive feedback loop system comprising RNA

and protein

Consider a two-dimensional feedback loop system in which a protein (P ) regu-

lates transcription, an RNA (R) regulates the translation, and both components

have linear decays (Figure 2.6)

d

dt
R = b+ vm

P 2

K2
D + P 2

− γ
R
R

d

dt
P = λR− γ

P
P.

(2.21)

The translation and RNA decay rates are tuned so that the open-loop function

is identical to that of previous example. Consequently, the bistable ranges of

Kd are also identical in the feedback loop systems. By opening the feedback

loop, the part of the protein that regulates the RNA becomes the input ω, and

P becomes the output

d

dt
R = b+ vm

ω2

K2
D + ω2

− γ
R
R,

d

dt
P = λR− γ

P
P.

(2.22)

The output is then produced under the control of the input and unable to regu-

late the RNA (Figure 2.6). The corresponding time evolution of the covariance
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(B)(A)

Figure 2.7: A two-component system consisting of an RNA and a protein. (A)
The mean and (B) the variance of the output with respect to the input is
calculated by using stochastic simulation algorithm (cyan circle) and analytical
approach (orange solid). Mean and variance of RNA are shown in the inset.
The following parameters are fixed: KD = 110, vm = 1000, b = vm

100 , γRNA =
20, γ

P
= 1, λ = 10.

matrix to system (2.22) can be obtained from (2.1) in which

X =

[

R

P

]

, C =

[

CRR CRP

CRP CPP

]

,

are the mean vector and covariance matrix, and

J =

[

−γ
R

0

λ −γ
P

]

, B =

[

b+ vm
ω2

K2
D
+ω2 + γ

R
R 0

0 λR+ γ
P
P

]

,

are Jacobian and diffusion (based on (2.2)) matrices, respectively. The life time

of RNA is considerably shorter than that of the protein and therefore it can be

taken as the fast variable. Since system (2.22) contains only first order reactions,

the Ito method is applied. Applying the quasi-steady state assumption to system

(2.22) and the time evolution of its corresponding covariance matrix, one gets

the following reduced system

d

dt
P =

λ

γ
R

(

b+ vm
ω2

K2
D + ω2

)

− γ
P
P ,

d

dt
CPP = −2γ

P
CPP +Dtotal,

(2.23)

in which the total diffusion to the level of protein can be obtained from equa-
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(B)(A)

Figure 2.8: A two-component system consisting of an RNA and a protein. (A)
MFPT from OFF to ON state and (B) from ON to OFF state are calculated for
the bistable range of KD. MFPT is also calculated using the Kramers method
(1.18) (gray dashed). The following parameters are fixed: vm = 1000, b = vm

100 ,
γRNA = 20, γ

P
= 1, λ = 10.

tion (2.20)

Dtotal =
λ

γ
R

(

b+ vm
ω2

K2
D + ω2

)

+ γ
P
P

︸ ︷︷ ︸

DIntrinsic

+ 2
λ2

γ2R(γR
+ γ

P
)

(

b+ vm
ω2

K2
D + ω2

)

︸ ︷︷ ︸

DExtrinsic

.

(2.24)

Figure 2.7 shows the accuracy of the diffusion term (2.24). In order to calculate

the MFPT, we need to re-close the loop to recreate the multistable system.

With the drift and diffusion from (2.24) and (2.23), we can calculate MFPT

from equation (2.11) with the boundary condition (2.12) for different parameter

values. The MFPT is calculated for the entire bistable range of Kd. The

OFF → ON transitions are fast at the lower bistable boundary and increase

by increasing Kd. The MFPT was less for the two-variable system than for the

one-variable system because the RNA, varying between 0.5 and 50, introduces

low concentrations and large noise into the two-variable system although in

both systems, the protein concentration varies between 5 and 500 nM . To

validate our prediction, we compared the MFPT obtained from the Fokker-

Plank equation to the one calculated by the stochastic simulation algorithm

algorithm (SSA). The results show that there is a very good agreement between

the two calculation (Figure 2.8). We calculated the MFPT up to 105 hours,

which corresponds to the upper limit of experimentally realistic time-scale, i.e.
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Figure 2.9: A four-component system consisting of two RNAs and two proteins.
The closed-loop system (top) is opened either at P1 with the shorter half-life
(right) or at P2 with the longer half-life (left). In the closed-loop system, P2

regulates the transcription of R1 and P1 regulates the transcription of R2 coop-
eratively, with a Hill-coefficient of n = 2 at each promoter.

11 years. We have also checked the prediction of the MFPT by Kramers formula

(1.18), which was also in good agreement with the SSA.

2.5.2 Example - Opening the loop at the slowest components

is necessary in MFPT calculation

Opening the feedback loop from different components may not yield the same

results for the MFPT when using the analytical approach and the SSA. In the

following example, we explore a double activator feedback system, in which the

two proteins activate each other’s transcription. One of the proteins (P1) has

a five-time faster decay rate than the other (Figure 2.9). The translation rate
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constants are adjusted so that the maximum concentrations for both proteins

are equal. Since the RNAs encoding for the two different proteins are explicitly

modeled, we have the following four-dimensional system.

d

dt
R1 = f(P2)− γ

R
R1,

d

dt
P1 = λ1R1 − γP1P1.

d

dt
R2 = f(P1)− γ

R
R2,

d

dt
P2 = λ2R2 − γ

P
P2,

(2.25)

where

f(Pi) = b+ vm
Pi

2

K2
D + Pi

2 . (2.26)

The covariance matrix will be extended to the corresponding enzyme

d

dt
C = J C + (J C)T +B, (2.27)

where

X =










R1

P1

R2

P2










, C =











CR1R1 CR1P1 CR1R2 CR1P1

CR1R2 CP1P1 CP1R2 CP1R2

CR2R2 CR1P2 CP1P2 CR2P2

CR1P2 CP1P2 CR2P2 CP2P2











,

are the mean vector and covariance matrix, and

J =









−γ
R

0 0 0

0 −γP1 + Jη1 0 0

0 0 −γ
R

0

0 0 0 −γP2 + Jη2









,

representes the Jacobian matrix. Additionally,

B =








f(P1) + γ
R
R1 0 0 0

0 λ1R1 + γP1
P 0 0

0 0 f(P2) + γ
R
R2 0

0 0 0 λ2R2 + γ
P
P2







,

denotes the diffusion matrix. To illustrate the importance of the choice where

to open the loop, we open the feedback once at P1, that is, at the level of the

protein with the fast decay rate, and another time at P2, which is the protein
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(B)(A)

Figure 2.10: A four-component system consisting of two RNAs and two pro-
teins. The feedback loop is opened at P1. (A) The mean and (B) variance of
the output is calculated by the stochastic simulation algorithm for P1 (green
circle) and P2 (cyan circle) and by the analytical approach (brown and orange
solid, respectively). Means and variances for RNAs are shown in the inset. The
following parameters are fixed: KD = 110, vm = 1000, b = vm

100 , γR1 = γR2 = 20,
γ
P1

= 5, γ
P2

= 1, λ1 = 50, λ2 = 10.

with the slow decay rate. Opening from a protein Pj results in

Jηj = 0, Jηi =
d

dPi
f(Pi).

The life time of RNAs are considerably shorter than proteins and therefore RNAs

can be taken as the fast variables and put at the steady state. By opening

the feedback at Pj , Pi (i 6= j) should be taken at the steady state. Since

the open-loop system contains nonlinearities, the Stratonovich interpretation

is applied (see Section 1.2.3). In this example, we show that in a system in

which nonlinearity is caused by only one component, there is no cross-correlation

between sources of fluctuation. Applying the quasi-steady state assumption,

systems (2.25) and (2.27) are reduced to the following system provided that the

feedback loop is opened at Pj

d

dt
Pj = H(Pj),

d

dt
CPjPj

= −2γPj
CPjPj

+Dtotal,

(2.28)

where according to (2.20), the total diffusion to the level of protein will be
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(B)(A)

Figure 2.11: A four-component system consisting of two RNAs and two proteins.
The feedback loop is opened at P2. (A) The mean and (B) variance of the
output is calculated by the stochastic simulation algorithm for P1 (green circle)
and P2 (cyan circle) and by the analytical approach (brown and orange solid,
respectively). Means and variances for RNAs are shown in the inset. The black
dashed curves are functions fitted to mean and variance of P2 (see 2.8.2). The
following parameters are fixed: KD = 110, vm = 1000, b = vm

100 , γR1 = γR2 = 20,
γ
P1

= 5, γ
P2

= 1, λ1 = 50, λ2 = 10.

Dtotal

(
Pj

)
=

λj

γ
R




b+ vm

(
λj

γPi
γ
R
f(ω)

)2

K2
D +

(
λj

γPi
γ
R
f(ω)

)2




+ γPj

Pj

︸ ︷︷ ︸

DIntrinsic

+
2λ2

jλ
2
i vmf(ω)

γPi
γ2R(γR

+ γPj
)2(γPi

+ γPj
)








2vmK2
Dλjf(ω)

γPi
γ
R

(

K2
D +

(
λj

γPi
γ
R
f(ω)

)2
)2








︸ ︷︷ ︸

DExtrinsic(Ri→Pj)

2

+
2λ3

jf(ω)

γPi
γ2R(γR

+ γPj
)(γPi

+ γPj
)








2vmK2
Dλjf(ω)

γPi
γ
R

(

K2
D +

(
λj

γPi
γ
R
f(ω)

)2
)2








2

︸ ︷︷ ︸

DExtrinsic(Pi→Pj)

+
2λ2

j

γ
R
(γ

R
+ γPj

)




b+ vm

(
λj

γP1
γ
R
f(ω)

)2

K2
D +

(
λj

γP1
γ
R
f(ω)

)2






︸ ︷︷ ︸

D
Extrinsic (Rj→Pj)

.

(2.29)
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(B)(A)

Figure 2.12: A four-component system consisting two RNAs and two proteins.
The MFPT from OFF to ON state is calculated for (A) P1 and (B) P2 for
the bistable range of KD. A good agreement between the stochastic simulation
algorithm and analytical approach for the opening at P2 is observed in (B).
The results in (A) illustrate that this is the case for the opening at P1. This
indicates that in order to calculate the total diffusion, only variables that are
faster than the input and output can be considered to be in steady-state. The
black circles in (B) represent the MFPT values which are calculated using the
drift and diffusion fitted to the open-loop data. The following parameters are
fixed: vm = 1000, b = vm

100 , γR1
= γ

R2
= 20, γ

P1
= 5, γ

P2
= 1, λ1 = 50, λ2 = 10.

and

H(Pj) =
λj

γ
R




b+ vm

(
λj

γPi
γ
R
f(ω)

)2

K2
D +

(
λj

γPi
γ
R
f(ω)

)2




− γPj

Pj

+
v2mλjK

2
D (λj + γ

R
+ γPi

)

γ2
R
(γ

R
+ γPi

)

(

K2
D − 3

(
vmλi

γ
R
γPi

f(ω)
)2

)

(

K2
D +

(
vmλi

γ
R
γPi

f(ω)
)2

)3 .

(2.30)

Although the analytical open-loop results with both opening options are in good

agreement with the stochastic simulation algorithm (Figures 2.10 and 2.11), the

predicted transition rates, when the feedback is opened from P1, deviate from

results of stochastic simulation algorithm (Figure 2.12). This confirms the ex-

pectation that the loop has to be opened at the slowest variable. If the loop

is opened at P2, that is, the protein with the slowest decay, the predictions are

improved significantly and are in good agreement with the SSA. It is important

to note that the predictions for the open-loop variance are equally good. The

transitions are generally slower relative to the feedback loop with a single pro-

tein (compare Figures 2.12 and 2.8). This is because the four-variable system

contains two promoters and the binding to both promoters is cooperative.
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2.6 Hidden nonlinearities

In systems with high order reactions, LNA can considerably underestimate the

stochastic properties of components [14, 50]. Multiplicative interactions among

different components of a system can create a hidden nonlinearity and introduce

correlations among noises. These correlations can take positive or negative val-

ues depending on whether they are induced by production or degradation pro-

cesses while the overall effect on the normalized noise is always positive [43]. The

strength of such correlations depend on different factors. If components have

considerably short half-lives or high concentrations, small correlations might

be observed. The drift can be dependent on fluctuations due to the existence

of nonlinearities. This dependency is shown mathematically by Stratonovich

interpretation [7] and can shift the level of expectation values.

2.7 Calculation of diffusion with correlated white noises

As mentioned before, in a network with different sources of noise, there might

be cross-correlated fluctuations which can create complexities in the calculation

of the total diffusion. In order to avoid such complexities, we calculate the

individual diffusion induced by independent noises from equation (2.20), and

then include the cross-correlation effects based on equation (1.8). Consider an

arbitrary multidimensional system

d

dt
X1 = F1(X1) + σUgX1(X1)ξ (t) ,

d

dt
X2 = F2(X1, X2) + σUgX2(X1, X2)ζ(t),

(2.31)

where ξ(t) and ζ(t) are white noises and σU is the white noise intensity. Ap-

plying the Fokker-Planck equation (2.1) to system (2.31), one gets the following

equations which indicate the time evolution of the mean vector X and the co-

variance matrix C

d

dt
X = H(X),

d

dt
C = J C + (J C)T +B,

(2.32)

where

X =

[

X1

X2

]

, H(X) =

[

F1(X1)

F2(X1, X2)

]

, J =
∂

∂X
(H (X)) ,
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denote the mean and drift vectors and Jacobian matrix, respectively, and

C =

[

CX1X1 CX1X2

CX1X2 CX2X2

]

, B =

[

σ2
Ug

2
X1

(X1) 0

0 σ2
Ug

2
X2

(X1, X2)

]

,

represent the covariance and diffusion matrices, respectively. We apply the

quasi-steady-state assumption to system (2.31) since X1 has a fast time-scale

compared to X2. Therefore, system (2.31) will be reduced to a one-dimensional

system in which the effect of different noises are presented individually

d

dt
X2 = F2(X2) + σUgX2(X2)ζ(t)

︸ ︷︷ ︸

Intrinsic Fluctuation

+σX1gX1X2(X2)X1(t)
︸ ︷︷ ︸

Extrinsic Fluctuation

, (2.33)

where σ2
X1

= CX1X1 and

g2X1X2
(X2) =

2
(

∂
∂X1

F2

)2

(
∂

∂X2
F2 +

∂
∂X1

F1

) , (2.34)

is the induced extrinsic diffusion from X1 to X2. For the sake of recognizing the

reduced system from the original system, we use X2 and CX2X2 for the reduced

system. Nonlinear interactions between the stochastic variables X1 and X2

in the second equation in (2.31) indicate that the Stratonovich interpretation

should be applied (see Section 1.2.3). System (2.32) can be reduced to the

dynamics of X2 provided that X1 either has a fast time-scale or is already at

the steady state

d

dt
X2 = H(X2) = F2(X2) +

1

4

d

dX2

DExtrinsic,

d

dt
CX2X2 = 2

dF2(X2)

dX2

CX2X2 +Dtotal.

(2.35)

From equation (2.33) with the assumption of having independent noises, the

total diffusion Dtotal is given by

Dtotal = σ2
Ug

2
X2

(X2)
︸ ︷︷ ︸

DIntrinsic

+ σ2
X1

g2X1X2
(X2)

︸ ︷︷ ︸

DExtrinsic

. (2.36)

In the reduced system (2.33), X1(t) and ζ(t) are the two sources of noise and

the cross-correlation between them modifies the total diffusion (2.36) based on
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equation (1.8)

Dtotal = σ2
Ug

2
X2

(X2)
︸ ︷︷ ︸

DIntrinsic

+ σ2
X1

g2X1X2
(X2) + 2ρX1,ζ σUσX1gX2(X2) gX1X2(X2)

︸ ︷︷ ︸

DExtrinsic

,

where ρX1,ζ = 〈X1(t),ζ(t)〉
σX1

σU
is the correlation between X1(t) and ζ(t). Since ρX1,ζ

cannot be calculated directly, we decompose it into the correlation between two

components ρX1X2 , multiplied by a normalization factor which reflects the ratio

between the variance of X2 induced by X1 and the intrinsic variance of X2.

Therefore, we have

Dtotal = σ2
Ug

2
X2

(X2)
︸ ︷︷ ︸

DIntrinsic

+ σ2
X1

g2X1X2
(X2) + 2ρX1X2NCσUσX1gX2(X2) gX1X2(X2)

︸ ︷︷ ︸

DExtrinsic

,
(2.37)

where the correlation between X1 and X2 is given using the steady state solution

of the covariance matrix C from (2.32)

ρX1X2 =
CX1X2

√
CX1X1CX2X2

. (2.38)

The normalization factor will be obtained from

NC =
1√
2

√
√
√
√
√
√
√

σ2
X1X2

σ2
X1

σ2
IntX2

σ2
U

, (2.39)

where using equations (2.31) and (2.34), we get

σ2
X1X2

= −
σ2
X1

g2X1X2

2 ∂
∂X2

F2

, σ2
IntX2

= −
σ2
Ug

2
X2

2 ∂
∂X2

F2

. (2.40)

The former is the induced variance from X1 to X2, and the latter is the intrinsic

variance of variables X2 and X1. In fact,

CX2X2 = σ2
X1X2

+ σ2
IntX2

.
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Figure 2.13: A two-component system consisting of an enzyme and a protein.
The closed-loop system (left) is opened at the protein level (right).

2.7.1 Example - The effect of multiplicative interactions on

MFPT

Multiplicative interactions between components induce correlations between

them which can amplify the fluctuations and even shift the mean values. A good

example of such phenomena is enzymatic decay in which an enzyme combines

with other components to degrade them. With respect to stochastic control, it

is particularly interesting to examine how extrinsic components affect the tran-

sitions in a feedback loop system. For this purpose, we introduce an enzymatic

decay to a protein so that the degradation rate of the protein is multiplied by

the concentration of an enzyme and the protein regulates its production within

a simple feedback loop. The enzyme displays a Poisson-distribution due to a

birth-death process (Figure 2.13)

d

dt
E = α− γ

E
E + σU

√

(α+ γ
E
E) ξ (t) ,

d

dt
P = f(P )− γ

P
EP + σU

√

f(P ) + γ
P
EP ζ(t),

(2.41)

where ξ(t) and ζ(t) are white noises, σU = 1 (for simplicity) is the white noise

intensity and

f(P ) = b+ vm
P 2

K2
D + P 2

. (2.42)

If we open the feedback loop at the level of protein, with the mean vector and

the covariance matrix

X =

[

E

P

]

, C =

[

CEE CEP

CEP CPP

]

,

the reaction rates vector and the stoichiometry matrix will be

V =
[

α γ
E
E f(ω) γ

P
EP

]T

, S =

[

1 −1 0 0

0 0 1 −1

]

,
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(B)(A)

Figure 2.14: A two-component system consisting of an enzyme and a protein.
(A) The open-loop response and (B) the variance of the output with respect
to the input are calculated by the stochastic simulation algorithm (cyan cir-
cle) and the analytical approach when the fluctuations are uncorrelated (orange
solid) or cross-correlated (magenta solid). For uncorrelated fluctuations, the
Ito method is used whereas the Stratonovich interpretation is used for cross-
correlated noises. The protein is degraded by an enzyme, which displays a Pois-
son distribution due to a birth-death process, with α = 1.25, γ

E
= 0.25. The

black dashed curves are functions fitted to the mean and variance of P2 (see
2.8.1). The following parameters are fixed: Kd = 110, vm = 500, b = vm

100 ,
γ
P
= 0.2 and n = 2.

and

J =

[

−γ
E

0

−γ
P
P −γ

P
E

]

, B =

[

α+ γ
E
E 0

0 f(ω) + γ
P
EP

]

,

denote the Jacobian and diffusion matrices, respectively. Therefore, the time

evolution of the corresponding mean vector X and covariance matrix C for

system (2.41) will be obtained from (1.10) which can be reduced to the following

system provided that the enzyme is at the steady state (see equation (2.35))

d

dt
P = f(ω)− γ

P
EsP = HI(P ),

d

dt
CPP = −2γ

P
EsCPP +Dtotal,

(2.43)

where using equation (2.20), the total diffusion induced by independent white

noises will be

Dtotal = f(ω) + γ
P
EsP

︸ ︷︷ ︸

DIntrinsic

+
2
(
γ
P
P
)2
Es

(γ
E
+ γ

P
Es)

︸ ︷︷ ︸

DExtrinsic

. (2.44)
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(B)(A)

Figure 2.15: The same model as in Figure 2.14 is studied with the following
differences. The production rate of the enzyme is tuned to α = 0.25

CV 2
E

to adjust

the coefficient of the enzyme variation level at the steady-state CV 2
E
. To keep the

decay of protein constant, the decay rate constant γ
P

is varied to compensate
the variations in the enzyme concentration: γ

P
= CV 2

E
. (A) The open-loop

response and (B) the variance of the output with respect to CV
E

are shown
for Input = 125, KD = 130. The stochastic simulation algorithm results (cyan
circle) match with that of the analytical approach with correlated noises (solid
magenta). The total diffusion is shown for the correlated noise (solid black).

For the sake of recognizing the reduced system from the original system, we use

P and CPP for the reduced system. With the drift and diffusion from (2.43) and

(2.44), the calculated MFPT values from (2.11) are deviated considerably from

the ones obtained from the stochastic simulation algorithm (orange and cyan

curves in Figures 2.16−2.18). Furthermore, the value of the open-loop output is

deviated slightly but consistently from the values obtained from the stochastic

simulation algorithm (orange and cyan curves in Figures 2.14 and 2.15). This

is not surprising because it has been known that in the presence of high-order

reactions, the LNA is not accurate anymore. Nonlinear interactions in (2.41)

will introduce a cross-correlation effect to the total diffusion (2.44). Therefore,

from equation (2.37), the total diffusion containing the cross-correlation effect

will be modified as follows

Dtotal = f(ω) + γ
P
EsP

︸ ︷︷ ︸

DIntrinsic

+
2
(
γ
P
P
)2
Es

(γ
E
+ γ

P
Es)

− 2ρEPNC γ
P
P

√

2Es

(γ
E
+ γ

P
Es)

(
f(ω) + γ

P
EsP

)

︸ ︷︷ ︸

DExtrinsic

,

(2.45)
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(B)(A)

(D)(C)

(F)(E)

Figure 2.16: The MFPT from OFF to ON state for system (2.41) is calculated

for the bistable range of the KD with the following fixed parameter values:

b = vm
100 , γP

= 1
Es

, (A) vm = 50, γE = 0.5, Es = 5, (B) vm = 5000, γE = 0.5,

Es = 5, (C) vm = 500, γE = 0.25, Es = 5, (D) vm = 500, γE = 0.5, Es = 5,

(E) vm = 500, γE = 0.5, Es = 3, (F) vm = 500, γE = 0.5, Es = 10. The black

circles represent the MFPT which is calculated using the drift and diffusion

fitted to open-loop data.
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(B)(A)

(D)(C)

(F)(E)

Figure 2.17: The MFPT from ON to OFF state for system (2.41) is calculated

for the bistable range of the KD with the following fixed parameter values:

b = vm
100 , γP

= 1
Es

, (A) vm = 50, γE = 0.5, Es = 5, (B) vm = 5000, γE = 0.5,

Es = 5, (C) vm = 500, γE = 0.25, Es = 5, (D) vm = 500, γE = 0.5, Es = 5,

(E) vm = 500, γE = 0.5, Es = 3, (F) vm = 500, γE = 0.5, Es = 10. The black

circles represent the MFPT which is calculated using the drift and diffusion

fitted to open-loop data.
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Figure 2.18: The closed-loop result of the model was studied in Figure 2.15. The
MFPT for protein from the OFF to ON state is shown as CV

E
was varied. The

good agreement between the results of the stochastic simulation algorithm (cyan
circle) and the analytical approach (magenta rectangle) reflects the importance
of the correlation between noises. The parameters are fixed at vm = 500, b =
vm
100 , γP

= CV 2
E
, γ

E
= 0.25, α = 1

4CV 2
E
, KD = 130.

where Es represents the steady-state concentration of enzyme and

ρEP =
CEP√

CEECPP

=
− γ

P
EsP

(γP Es+γ
E )

√

1
γ
P

(

(γP P)
2
Es

(γP Es+γ
E )

+ (f(ω))

) .

Having σ2
EP and σ2

P,Int based on equations (2.40), the normalization factor NC

is calculated from (2.39)

NC =
1√
2

√
√
√
√
√
√

σ2
EP

σ2
E

σ2
IntP

σ2
U

=

√
(
γ
P
P
)2

2 (γ
P
E + γ

E
) (f(ω))

.

The nonlinear interactions between protein and enzyme correlate the determin-

istic and stochastic part of the system obtained by Stratonovich interpretation

HS

(
ω, P

)
= HI

(
ω, P

)
+

1

4

d

dP
DExtrinsic

= f(ω)− γ
P
EsP +

1

4

d

dP
DExtrinsic.

(2.46)

The drift in the Ito interpretation, HI , corresponds simply to the dynamics

of the deterministic system. The drift in the Stratonovich interpretation is

extended by adding the derivative of the external diffusion with respect to the

system variable P to HI . Figures 2.14 and 2.15 (magenta curve) show that
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Figure 2.19: A three-component system consisting of an enzyme, a protein and
a protein dimerization. The closed-loop system (left) is opened at the protein
(right).

the introduction of cross-correlated noises decrease the discrepancy between

the stochastic simulation algorithm and the theoretical results in the open-

loop system. With the drift and diffusion from (2.44) and (2.45), after closing

the loop, we can calculate the MFPT from equation (2.11) with the boundary

condition (2.12) for different parameter values. The mean first passage time from

low to high and from high to low protein concentrations is calculated for the

range of bistability with respect to KD. The satisfactory agreement between the

results of the stochastic simulation algorithm (cyan circle) and the analytical

approach (magenta rectangle) implies the importance of the cross-correlation

between noises (Figures 2.16−2.18).

2.7.2 Example - The effect of different nonlinearities on MFPT

In order to validate our analytical method with different nonlinearities, we re-

place the simple positive feedback loop in the previous example with a protein

dimerization and cooperative binding (Figure 2.19). Therefore,

f(ω) = Vm

ωn1
id dox

n2

k1 + ωn1
id dox

n2
+ b, (2.47)

where

ωid = ω +
κ−

√
4ωκ+ κ2

2
.

With the drift and the total diffusion obtained from equations (2.45) and (2.46)

and the input function (2.47), we can calculate the mean first passage time us-

ing equation (2.11) with the boundary condition (2.12). The satisfactory agree-

ment between the stochastic simulation algorithm and the analytical approach

indicates the validity of our approach for systems with different nonlinearities

(Figure 2.20).
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(B)(A)

Figure 2.20: The MFPT for protein from OFF to ON state is shown for (A)
Es = 10 and (B) Es = 20. The good agreement between the results of the
stochastic simulation algorithm (cyan circle) and the analytical approach (ma-
genta rectangle), and the discrepancy with the results obtained from uncorre-
lated noises (orange rectangle) indicate the importance of the correlation be-
tween noises.

2.8 Experimental applications of the open-loop ap-

proach

The above results indicate that the drift and diffusion of the open-loop output

faithfully reflect the stochastic system dynamics and can be used to calculate

the MFPT even when the expectation value of the output is shifted by noise.

The question remains as to how the above findings can be used to predict the

MFPT from experimental measurements in which neither the drift nor the dif-

fusion can be measured analytically.

The open-loop function can be used to identify the steady-state expression of the

output and consequently map the steady-state expression levels for the closed-

loop system [1]. The open-loop function reflects only the relationship between

the input and output and lacks information on the time scale of the reactions

and key parameters, which are required to predict the transition rates. The

above analytical approach can help us determine proper functions to fit to the

data obtained from the open-loop systems. Those functions can be later used

in the closed-loop system to calculate the MFPT. In order to model the drift

and diffusion which are necessary elements in the MFPT calculation, we need

to incorporate all possible sources of noise into the function that we use to fit

the mean and variance of the output. The open-loop function can be used to

distinguish the underlying molecular mechanism. Preliminary knowledge of the
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kinetic reactions involved in the system lead us to design a construct and write

the corresponding equations for mean values and co/variances. The validity of

the model can be examined using the stochastic simulation algorithm for both

mean values and the variances. We come up with alternative modifications in

the later stages of our analysis.

For the time dependent behaviors, the open-loop function has to be extended

into a model, which incorporates information on the time-scale of the reactions

as well. The following relations provide the link between the drift and diffusion

and fitted functions to the mean (f(ω)) and variance (C
P
(ω)) of the output

using experimental measurements. The diffusion and variance are linked by the

decay rate of the output γ
P

Dtotal(ω) = −2γPCP
(ω, η), (2.48)

and the drift can be obtained directly from

H(ω) = γ
P
(f(ω)− η) . (2.49)

Upon reclosing the loop, ω = η, we obtain the functions for the drift and

diffusion in the closed-loop system, and therefore, the MFPT can be predicted.

The chosen functions to be fitted to the open-loop data can create a considerable

discrepancy between MFPT predicted by theoretical approach and that obtained

from experimental data.

2.8.1 Example - A two-component system consisting of an en-

zyme and a protein

Consider the two-dimensional closed-loop system (2.41) in which the enzyme

is an external source of fluctuation for the protein. By opening the feedback

loop at the protein level and considering the quasi-steady state assumption for

enzyme, the time evolution of the corresponding mean values and co/variances

can be reduced to a one-dimensional system with the drift and total diffusion

obtained from (2.46) and (2.29), respectively. Nonlinear regression is used to fit

the parameters of the open-loop function f(ω) obtained from (2.42) to the open-

loop results of the stochastic simulation algorithm. The corresponding function

to fit the variance C
P

in an open-loop system, which is obtained from equation

(2.45), contains both input and output as variables. Since the open-loop results

are calculated at the steady state, the output can be replaced by its equivalent

value which is the fitted open-loop function. Therefore, we use the fitted open-
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Figure 2.21: The ratio (R) between the steady states mean (red) and variance
(green) of the open-loop system (2.43) obtained from the FPE, and those ob-
tained by fitting the parameters to the open-loop results of stochastic simulation
algorithm with respect to input. The closer the value of R to one is, the closer
the two methods predictions will be.

loop function as a constant to fit the parameters in the corresponding variance

function. Thus,

C
P
=

Dtotal

2γ
P

=
f(ω) + γ

P
EsP

2γ
P

+
γ
P
EsP

2

(γ
E
+ γ

P
Es)

∣
∣
∣
∣
P=f(ω)

.

Figure 2.21 shows the ratio between the stochastic properties of the open-loop

system (2.43) obtained from the FPE and those obtained by fitting the param-

eters to the open-loop results of the stochastic simulation algorithm. It should

be noted that the type of nonlinearity in the mentioned fitted functions plays a

crucial role in the MFPT calculation in the closed-loop system. After reclosing

the loop, those terms in which the output is replaced by a fitted open-loop func-

tion should be again replaced by the output. The total diffusion and the drift

can be obtained using the mentioned fitted functions based on equations (2.48)

and (2.49). With the drift and diffusion, we can use equation (2.11) with the

boundary conditions (2.12) to calculate the MFPT. Figure 2.16(C) and 2.17(C)

show an agreement between the MFPT calculated by using the fitted drift and

diffusion (2.49) and (2.48) (black circles), and that predicted by the stochastic

simulation algorithm (cyan circle).

2.8.2 Example - A four-component system consisting of two

RNAs and two proteins

Consider the four-dimensional closed-loop system (2.25) with the assumption

of P2 having the slowest time scale. Therefore, by opening the feedback loop
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Figure 2.22: The ratio (R) between the steady states mean (red) and variance
(green) of the open-loop system (2.28) obtained from the FPE, and those ob-
tained by fitting the parameters to the open-loop results of stochastic simulation
algorithm with respect to the input. The closer the value of R to one is, the
closer the two methods predictions will be.

at P2 and considering the quasi-steady state assumption for RNAs and P1,

the time evolution of the corresponding mean values and co/variances will be

reduced to the one-dimensional system (2.28) with the drift and total diffusion

obtained from (2.30) and (2.29), respectively. Nonlinear regression is applied

to fit the parameters of the open-loop function f(ω) and the output variance

C
P

to the open-loop results of stochastic simulation algorithm. The open-loop

function f(ω) is defined in equation (2.26) and the output variance C
P

can

be obtained using (2.48) and (2.29), respectively. Figure 2.22 shows the ratio

between the stochastic properties of the open-loop of the mentioned system

obtained from the FPE and those obtained by fitting the parameters to the

open-loop results of the stochastic simulation algorithm. The total diffusion

and the drift can be obtained using the mentioned fitted functions based on

equations (2.48) and (2.49). With the drift and diffusion, we can use equation

(2.11) with the boundary conditions (2.12) to calculate the MFPT. Figure 2.16

shows an agreement between the MFPT, calculated by using the fitted drift and

diffusion (2.48) and (2.49) (black circles), and that obtained from the stochastic

simulation algorithm (cyan circle).

2.8.3 Example - The effect of homodimerization and coopera-

tivity on transition rate

Consider a feedback loop incorporating cooperative binding with protein dimer-

ization which introduce nonlinearities into the system. The effects of such non-

linearities on cellular memory are investigated through the transition rates ob-
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f(c)

Figure 2.23: A feedback loop system incorporating protein dimerization and
cooperative binding. The RNA has an enzymatic decay and regulates the level
of protein. Active promoter (A) regulates the level of RNA. The enzyme (E)
and the protein (monomer P and dimer C) have a linear decay.

tained for the slowest variable. Noise induced transitions between the two states

of a system require that both states become populated which results in a bimodal

distribution. The interplay between noise and the slow transient induction may

create a broader bimodality area than the bistability area in the parameter

space. Feedback opening can help identify the molecular mechanisms that are

responsible for such an expansion. In the mentioned system, nonlinear regres-

sion is used to fit the open-loop function f(ω) to the data obtained from the

open-loop systems. To reconstruct the feedback loops, the open-loop system

is re-closed by setting the input ω equal to the output RNA. The validity of

the obtained closed-loop system is approved by having a good agreement be-

tween the closed-loop steady-state obtained from the analytical approach and

that predicted by experimental data. The experimental data in this example

are provided by Hsu et al. [18]. Preliminary design of the construct suggests

to have the Hill function for cooperative binding to promoter along with the

protein dimerization process. Alternative modifications are introduced in the

later stages (Figure 2.23). The function fitted to the experimental open-loop

data of the monomeric cooperative binding to the promoter P[tetO]7sc is given

by

f(ω) = Vm
ωn1doxn2

k1 + ωn1doxn2
+ b, (2.50)

while for the dimeric cooperative binding to the promoter P[tetO]7 , the fitted

function is

f(ω) = Vm

ωn1
id dox

n2

k1 + ωn1
id dox

n2
+ b, (2.51)

where
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Figure 2.24: The feedback loop is composed of a dimeric protein and the pro-
moter P[tetO]7 . (A) The hysteresis curves are depicted for b/Vm equals 0.004
(blue), 0.0176 (green), 0.051 (red), 0.177 (cyan) and 0.243 (purple). (B) Bista-
bility range varies by modulating basal expression level. The geometric mean
of stable steady states, labeled with GM, is calculated at the dox value of the
geometric mean of the bistability boundaries.

ωid = ω +
κ−

√
4ωκ+ κ2

2
. (2.52)

The introduced fitting function contains the following lumped parameter

κ =
δ2mo(Kd + δdi)

4δ2dika
, (2.53)

where δmo, δdi, ka and Kd are the monomer and dimer decay rate constants, and

association and dissociation rate constants in the dimerization process, respec-

tively [5]. Figures 2.24 and 2.25 correspond to the hysteresis and the bistability

area with respect to the concentration of doxycycline [dox] and the dynamic

range of the open-loop response b/Vm.

So far the introduced open- and closed-loop systems have been considered at

the steady state. In the analysis of time dependent behaviors, the information

on the time-scale of the reactions should be taken into account. Considering the

time scale of the RNA and γR and using equation (2.49), one can get the time

evolution of the output RNA as follows

d

dt
R = γR(f(ω)−R), (2.54)

where R represents the concentration of RNA. The corresponding closed-loop

system is given by
d

dt
R = γR(f(R)−R). (2.55)

In order to check the validity of the introduced model, the results of the analyt-
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Figure 2.25: The feedback loop is composed of a monomeric protein and the
promoter P[tetO]7sc . (A) The hysteresis curves are depicted for b/Vm equals
0.0077 (blue), 0.0116 (green), 0.0156 (red), 0.0245 (cyan), 0.033 (purple) and
0.061 (dark blue). (B) Bistability range varies by modulating basal expression
level. The geometric mean of stable steady states, labeled with GM, is calculated
at the dox value of the geometric mean of the bistability boundaries.

ical approach are compared to the ones obtained from the stochastic simulation

algorithm. The detection of transition rates are preceded by a pre-run for a

time period of the protein half-life to obtain the probability distribution for a

given initial condition. In order to include the fluctuations, the one-dimensional

system is extended to include other stochastic components. In the simplest

multivariable system, the protein dynamics are added to equations (2.54) and

(2.55). Thus, the reactions for the RNA and protein turnover are specified in

the following open-loop system

d

dt
R = γR

(
f(ω(P ))−R

)
,

d

dt
P = ρω − γPP,

(2.56)

where ω(P ) = γPP
ρ

. The corresponding co/variance equations are obtained

based on equation (2.1) with the diffusion matrix

B =

[

2γRR 0

0 2γPP

]

. (2.57)

The closed-loop system can be reconstructed by putting ω = R in equation (2.56).

Although the open-loop data confirm the validity of the introduced model, the

transition rates predictions by closed-loop system (2.56) are overestimated com-

pared to the experimental results. This shows that the closed-loop system needs

to contain more fluctuations. In the next step, system (2.56) is extended to in-

corporate two active promoters Ab and Af which produce RNA, and an enzyme
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Figure 2.26: Mean values of the output in the system with dimeric binding to
the promoter P[TetO]7 . Comparison between the results of experimental data
(triangles), fitted model (solid line) and the stochastic simulation algorithm
(circles) of system (2.58). The results are depicted for the dox values of 0.06
(cyan) and 3.6 (orange).

E which degrades RNA

d

dt
Ab = λonb

(1−Ab)− λoffAb,

d

dt
Af = λonf

(1−Af )− λoffAf ,

d

dt
E = α− γEE,

d

dt
R = Vm(Af +Ab)− γR

E

Es
R,

d

dt
P = ρω − γPP.

(2.58)

The promoter activation rates λonb
and λonf

are defined as follows

λonb
=

λoffb

Vm − b
, λonf

=
λofff(

γPP
ρ

)

Vm − f(γPP
ρ

)
. (2.59)

In order to set the same burst size for the promoters, the same inactivation rates

λoff are taken for both promoters. The time evolution of the covariance matrix

corresponding to system (2.58) is given by

Ċ = JC + CJT +B, (2.60)

in which J is the Jacobian matrix of system (2.58), and
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Figure 2.27: The measured and predicted transition rates for the dimeric binding
to the promoter P[tetO]7 . The dashed gray lines correspond to the bistability
boundaries. The red circles represent the experimentally measured transition
rates. The green and blue triangles denote the transition rates for the 2D-model
(2.56) in the closed-loop setting with and without transient kinetic, respectively.
The purple and cyan curves indicate the transition rates after closing system
(2.58) with and without transient kinetic, respectively. (A) Transition rates from
low to high concentrations. (B) Transition rates from high to low concentrations.
The parameters are fixed at ρ = 0.54, abs = 2.11, id = 1.407, µ = 0.2291, δ =
0.0095, V1 = 74.4773, n1 = 1.46191, n2 = 1.32, k1 = 0.0356466, κ = 719.655,
Vm = µV1abs/id, koff = 13.33, Es = 21, di = ln(2)/120, ki = 1, ni = 0.751286.
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, (2.61)

is the covariance matrix. Additionally

B =











2λoffAb 0 0 0 0

0 2λoffAf 0 0 0

0 0 2γEE 0 0

0 0 0 2γRR 0

0 0 0 0 2γPP











, (2.62)

is the diffusion matrix. In the extended system (2.58), the closed-loop system

can be reconstructed by taking ω = RNA. All the parameters of system (2.58)

are obtained from experimental data, except the inactivation rate of promoters

λoff and the enzyme steady state level Es. These two parameters are calcu-
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Figure 2.28: The measured and predicted transition rates for the monomeric
binding to the promoter P[tetO]7 . The dashed gray lines correspond to the bista-
bility boundaries. The red circles represent the experimentally measured transi-
tion rates. The green and blue triangles denote the transition rates for 2D-model
(2.56) in the closed-loop setting with and without transient kinetic, respectively.
The purple and cyan curves indicate the transition rates after closing system
(2.58) with and without transient kinetic, respectively. (A) Transition rates
from low to high concentrations. (B) Transition rates from high to low con-
centrations. The parameters are fixed at ρ = 4.836, abs = 2.31, id = 2.295,
µ = 0.2291, δ = 0.0095, V1 = 54.6379, n1 = 1.94223, n2 = 1.9, k1 = 8.70762,
Vm = µV1abs/id, koff = 11.52435120, Es = 21, di = ln(2)/120, ki = 1,
ni = 0.751286.

lated in a way that the normalized noise of the closed-loop system predicted

by the analytical approach has the same values as it is predicted by the exper-

imental data. Although the extended system (2.58) predicts the experimental

data from the open-loop systems accurately, there is still a considerable discrep-

ancy between transition rates measured by experimental data and the stochastic

simulation algorithm. In order to track this problem, the time evolution of the

output is being analyzed. Interestingly, the induction of expression is slower

than the half-life of the protein and RNA. The slow induction can arise due to

the slow transient kinetics in the open-loop system and slow down the transi-

tion rates in the closed-loop system. In order to introduce such modifications,

an Ornstein-Uhlenbeck process i(t) with the decay rate of di is included in the

open-loop system which modifies the parameter k1 in the fitted functions (2.50)

and (2.51)

k1new = k1(1 + kii(t))
ni ,

where parameter ni, ki and di are calculated by fitting the new output to the

experimental data. A system can experience unexpected frequent transitions

when the steady states are close to each other. Therefore, separation of the
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Figure 2.29: Transition rates predicted by the stochastic simulation algorithm
(contour diagram) and obtained from the experimental data (circles) in a two-
dimensional parameter space. Parameter values for the observed transition rates
are given in Figures 2.27 and 2.28. The difference between the transition rates
predicted by the stochastic simulation algorithm and experimental data can be
seen by the distance in the color-scale. (A) Transition rates from OFF to ON
in the system with dimeric binding to the promoter P[tetO]7 . The inset in the
bottom left corner depicts the transitions from ON to OFF steady state. (B)
Transition rates from OFF to ON in the system with monomeric binding to the
promoter P[tetO]7sc .

peaks of the probability distribution can be taken as a robustness measure of

cellular memory. It is important to investigate the conditions under which the

two peaks of a distribution merge and the distribution becomes unimodal. The

extrema of the probability distribution can be obtained using

H(P ) = ρf(
γPP

ρ
)− γPP − 1

4

d

dP
D(P ) = 0,

d

dP
H(P ) = 0,

(2.63)

where D(P ) is the diffusion. The range of bimodality predicted by (2.63) is rel-

atively broader than the bistability range and can be explained by a high level

of fluctuations in the extended system (2.58). In order to calculate the tran-

sition rates, we perform the stochastic simulation algorithm for the extended

system (2.58) in the closed-loop setting. In order to obtain the distribution for

the given initial condition, a pre-run for the time period of the protein half-life

is performed. For the low initial condition, only the basal expression is present

in the pre-run, while for the high initial condition, the whole system is taken

into account. For the pre-run in the extended system (2.58), the promoters

are assumed to be inactive (Af = Ab = 0) and the enzyme is taken at the

steady state level. Taking the experimental conditions into account, the doxy-

cycline concentrations 0 and 19.5 µM are applied in the pre-run for the low and

high initial conditions, respectively. Afterwards, doxycycline concentrations are
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2. Results

replaced with the actual values and the simulation continues until the concen-

tration of the protein reaches a pre-defined threshold. In order to define this

threshold based on experimental assumptions, we get the geometric mean of the

steady state concentrations of the protein calculated at the geometric mean of

the bistability area. Figures 2.27 and 2.28 show transition rates for different

dox concentrations in system (2.58) in the closed-loop setting with and with-

out dimerization. In feedback loops, the expression range, which is the ratio

between the basal and the maximal induced gene expression, plays an impor-

tant role. Therefore, we tune the doxycycline concentration and the expression

range independently in the prediction of the transition rates. The transition

rates obtained from experimental data and the ones predicted by the stochas-

tic simulation algorithm are compared in the two-dimensional parameter space

containing the concentration of doxycycline and the expression range (Figures

2.27−2.29).
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Chapter 3

Conclusions

We derived an analytical method that allows us to decompose the total vari-

ability of a component into individual contributions of all other components in

a network. Noise decomposition helps us determine how much of the variability

in a specific component results from a specific kinetic reaction and therefore il-

lustrates the importance of different system modifications by adding or omitting

biological processes. In particular, we showed the effect of nonlinear degradation

on RNA’s variability in gene regulatory networks. We then formulated a gen-

eral relation between the strength of correlations among different components,

and the decomposed normalized noise. Different components of a network can

be correlated due to different co-regulation processes. In the presence of multi-

ple co-regulation processes, the individual correlations induced by each process

equals the ratio between the extrinsic normalized noise induced by such pro-

cesses and the total normalized noise of a component.

Noise in bistable networks plays an important role in transitions between steady

states. The transitions can be independently modulated by deterministic pro-

cesses (drift) and random fluctuations (diffusion). The Fokker-Planck equation

(FPE) is a suitable tool to calculate the transition rates and can be conveniently

used for single variable systems. However, most feedback loop systems are mul-

ticomponent systems. In order to involve the variability of all components of

a network, we applied FPE to a multidimensional system in an open-loop set-

ting to obtain the total diffusion, and used a quasi-steady state assumption to

reduce the system to the slowest variable. The open-loop function can be used

to identify the steady-state expression of the output and consequently map ac-

curately the steady-state expression levels for the closed-loop system. With the

drift and total diffusion, after reclosing the loop, we calculated the MFPT for

the reduced closed-loop system which was in good agreement with the results
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of stochastic simulation of the multidimensional system. It is important to note

that the accurate approximation of the open-loop system is an important but

not sufficient condition for a good prediction of the MFPT. Only the opening

at the slowest variable warrants an accurate prediction of MFPT. This is an

important difference to classical deterministic loop opening, where it does not

matter where to open the loop.

It should be noted that in real systems, fluctuations have short but non-zero

correlation time. This short memory results in a hidden nonlinearity in the sys-

tem and can be shown mathematically by Stratonovich method. When different

components of a network interact multiplicatively, the system description with

uncorrelated white noises in the Ito-interpretation does not predict correctly the

system behavior. This is not surprising because it has been known that in the

presence of high-order reactions, the FPE with independent white fluctuations

is not accurate [14, 50]. Different approaches have been introduced to resolve

the discrepancy [46]. In this work, we included correlations between the two in-

teracting components and used the Stratonovich interpretation. Our approach

explained both the noise-induced shift in the open-loop function and the high

variance in the output. Furthermore, the predicted MFPTs were shown to be

accurate at a broad range of realistic values of external noise.

The above results indicate that the drift and diffusion obtained by the open-loop

approach faithfully reflect the stochastic system dynamics and can be used to

calculate the MFPT even when the expectation value of the output is shifted by

external noise. The loop opening facilitates the calculation of time scales of the

reactions and the mean and variance of the output. An appropriate function

can be fitted to the measured open-loop mean and variance to obtain the drift

and diffusion, which are then used to determine the MFPT.
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