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Introduction

Noise is defined as random fluctuations of a signal in time. The fundamental requirement for
noise is some sort of randomness. Noise is well-known and infamous to every experimentalist -
whether he is working in the field of electronics, optics, acoustics or anywhere else - since such
fluctuations are inherent and unavoidable in many systems.

For most of us, the word noise has a negative connotation. It is considered to be an unwanted
disturbance superposed on a useful signal, which tends to obscure the signal’s information. The
natural reaction to this nuisance is trying to reduce it as much as possible, be it with a longer
averaging time or an improved setup. In this respect, the signal-to-noise ratio, which compares
the level of the desired signal with the level of the superposed noise, is the relevant quantity.
A signal-to-noise level larger than one has to be achieved in order to observe the requested
signal. In fact, noise is often a limiting factor in experiments and there are many examples
where a reduced noise level led to the revelation of unexpected features.

In this sense, noise seems to be a tedious, annoying matter and it is a fair question to ask
why one would make it the topic of an entire thesis. While noise is primarily an experimental
affair, theoretical studies on the statistics of these fluctuations have been carried out for a long
time, too. These studies draw an interesting picture. Measuring the average current through
a system delivers partial information on the mechanisms responsible for conduction. But a
more complete description and further information on the conduction mechanisms are given
by the probability distribution of the current, containing both the average current and its
fluctuations.

Even though the fluctuations appear randomly, they are caused by well-defined processes
like the thermal motion of charges, the discreteness of charge carriers and the probabilistic
character of scattering [1]. Each noise source exhibits distinct characteristics. Measuring the
noise properties of a system and knowing the underlying process, one might be able to infer
complementary insight beyond what is possible with the mean current. Hence, a profound
knowledge of the noise processes does not only help to find a way for reducing the noise level,
but can also be used as a diagnostic tool [2].

It was Einstein who realised in 1909 that electromagnetic fluctuations differ if the energy is
carried by waves or particles [3]. He derived a linear relation between the mean energy and the
corresponding fluctuations for waves, whereas the fluctuations scale with the square root of the
mean energy for particles. Another example where fluctuations can provide information about
the charge carriers was proposed by Schottky in 1918 in the context of vacuum tubes [4]. Shot
noise (which is not a dangerous effect at all despite its name) arises from the granularity of
charge and therefore scales with the unit of charge. Indeed, the doubled charge of Cooper pairs
[5] and the fractional charge of Laughlin quasiparticles appearing in the fractional quantum
Hall state [6, 7] was confirmed in this way. In 1928, the dependence of fluctuations due to
thermal agitation was studied experimentally by Johnson [8] and theoretically by Nyquist [9].
In the following, the extrapolation of thermal noise to zero amplitude was used to determine



the absolute zero of temperature and a value for the Boltzmann constant was deduced from
the temperature dependence of thermal noise.

Typical currents that occur in nanoelectronics are tiny. Current fluctuations coming from
these samples are even smaller and more challenging to detect and one has to come up with
a clever measurement scheme. We are mainly interested in shot noise, whose spectral density
is frequency-independent up to a few gigahertz. In contrast, electronic components add an
undesired noise contribution, which is inversely proportional to the frequency f. At gigahertz
frequencies, the amplitude of this 1/f-noise is considerably reduced. Moreover, measuring at
high frequencies has a second advantage. Higher frequencies enable us to measure with a larger
bandwidth and consequently to acquire more signal. For these reasons, we started the noise
project by building up a microwave measurement scheme.

Our main interest lies in noise studies of high-resistance mesoscopic devices, such as quan-
tum dots. However, the combination of high-frequency measurements with impedances on the
order of R = 100 k2 suffers from the large impedance mismatch to the standard characteristic
impedance of the measurement line, Zy = 50 2. According to voltage division, the suppression
of detectable signal power on the 50  side is on the order of (Zy/R)?. Hence, there is a solu-
tion needed to enhance the transmission from the device to the instrument. This is achieved
with impedance matching, for which we use a so-called stub impedance-matching circuit. It is
a resonant circuit based on transmission lines.

This thesis about noise detection with a stub impedance-matching circuit is structured as
follows: It starts in chapter 2 with an introduction to the characteristics of microwave transmis-
sion lines, which are the building blocks of the later used microwave circuit. The development
of carbon nanotube samples with an integrated stub impedance-matching circuit for noise
detection as well as building up the high-frequency measurement setup were important exper-
imental parts of this PhD project. For this reason, it is documented in detail in the thesis.
A description of the stub impedance-matching circuit’s properties is found in chapter 3. It
also mentions impedance matching with an LC' circuit and ends with a comparison of the two
approaches. All fabrication considerations and recipes are collected in chapter 4. Chapter 5
gives an overview of the measurement setup, which is partially inside a dilution refrigerator.
The remaining two chapters are devoted to results from a quantum dot formed in a carbon
nanotube. Chapter 6 discusses RF reflectometry in the presence of a stub impedance-matching
circuit. It is shown how to extract the circuit parameters and the device impedances from the
reflection spectrum. Finally, noise measurements and their analysis are presented in chapter 7.
The good agreement of our noise data in the single quantum dot regime with previous studies is
a confirmation that the developed methods for noise detection with stub impedance matching
and for calibration are well suited and allow for accurate noise results.



Microwave Transmission Lines

This introductory chapter is devoted to the question how to transmit microwave signals and
how to characterise such transmission lines. It provides some background for the radio-
frequency (RF) circuits discussed in subsequent chapters.

In simple words, a transmission line is an arrangement of conductors for a guided wave prop-
agation. After explaining in general how to model a transmission line and introducing the basic
quantities, the following section focuses on coplanar transmission lines. Later, transmission
line resonators are discussed and it is demonstrated in theory and experimentally how they
can be used to determine the properties of transmission lines.

2.1. Lumped-Element Circuit Model for Transmission Lines !

The description of circuit elements differs strongly if the wavelength of the electrical signal
is much larger than or comparable with the element size. In the first case, the voltages and
currents within the element are constant and a lumped-element description of the circuit is
justified. This usually does not hold for gigahertz frequency signals since the voltages and
currents are varying within a circuit element and hence a description with one lumped element
is no longer accurate. Instead, it has to be treated as a distributed element.

A transmission line (TL) is clearly a distributed element. Still it can be modelled as a series
of infinitesimal lumped-element pieces of length Axz. One of these pieces is shown in Fig. 2.1.
In order to carry transverse electromagnetic (TEM) modes, a TL has to consist of (at least)
two conductors, illustrated by the top and the bottom lines. The quantities R, G, L and C
are all per unit length and describe the following properties:

e IR is the series resistance for both conductors caused by conductor losses.
e (5 is the shunt conductance due to dielectric losses.
e L is the inductance of the two conductors.

e (' is the capacitance between the conductors.

2.1.1. The Telegraph Equations

Considering the lumped-element model of TLs, standard circuit theory can be applied to derive
the voltage and current distributions along a TL. Kirchhoff’s voltage law applied to the circuit
in Fig. 2.1 leads to the relation

N - I -
V(z,t) — RAzI(x,t) — LAwaf;i’t) —V(z+ Ax,t) =0, (2.1)

!This section closely follows chapter 2 in [10]
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Figure 2.1.: Lumped-element circuit model for an incremental TL piece of length Az. A de-
scription of the elements is found in the text.

and Kirchhoff’s current law results in

oV (z + Az, t)

I(z,t) — GAzV (z + Az, t) — CAx 5

—I(xz + Az, t) = 0. (2.2)

Dividing both equations by Az and taking the limit Az — 0 results in

Viz,t) = —RI(z,t) — L(?I(ac,t) and
oI (x,t) B ~ oV (z,t) '
P -GV (x,t) — Ci@t :

These two coupled first order partial differential equations are called the telegraph equations.
They can be combined to the following pair of equations:

aif/ = Lcaif/ + (RC + GL)QV + RGV
9% - 9% - d - - ‘
521 = LCo51+ (RC+GL) 5 I + RGI.

2.1.2. Wave Solutions of the Telegraph Equations

Egs. (2.4) describe voltages and currents along a TL. In the lossless case, when R = G = 0,
only the first term on the right-hand side does not vanish and one ends up with wave equations
for V and I, whose solutions are plane waves. One can extend the plane wave ansatz to the
general lossy case and write

V(z,t) = Re{V(z) - e} o s
I(z,t) = Re{I(z) - €'}, 25)

where w is the angular frequency. V(x) and I(x) are the voltage and current amplitudes,
respectively. With this ansats, Egs. (2.4) read

82

@V(ﬂﬁ) —¥*V(z) =0
s (2.6)
wf(w) —*I(z) =0,



where the complex propagation constant in units [1/m] is defined as

7y = /(R +iwl)(G +iwC) = a + if. (2.7)
The general solutions to Eqs. (2.6) are

Viz)=VTe ™ £V e®
. o (2.8)

I(x)=1Te 7"+ 1 €™,
which is a superposition of right-moving and left-moving waves, whose amplitudes are denoted
with plus and minus signs, respectively. A relation between current and voltage can be derived
with the help of the telegraph equations (2.3):

v

T _
@) = R L

[VvHe —vmen]. (2.9)

The characteristic impedance Zj is defined as the ratio of the voltage to current amplitudes

vt V-
= (2.10)

Zoy = —

Comparing Eq. (2.9) with the second line of Eq. (2.8) leads to the expression for the charac-

teristic impedance
R +iwlL R+ iwL
Zo = = . 2.11
0 v V G+ iwC (2.11)

The current of Eq. (2.8) can be written in the form

I(@) = —e "% — —_¢7, (2.12)

By inserting the first line of Eq. (2.8) and the definition of v in Eq. (2.7) into Eq. (2.5), the
voltage along a TL becomes the form

V(z,t)=V7T . e cos(wt — Bx) + V7 - e cos(wt + fz). (2.13)

The real part of the propagation constant v in Eq. (2.7), «, causes an amplitude damping.
The movement of the wave is given by the cosine terms. Considering the first term, to stay on
a fixed point of the wave requires that the argument wt — S = const. With increasing time ¢,
the position x is moving to the positive direction. The phase velocity is the speed at which a
specific point x on the wave is changing position:

y da:_d(wt—const.) L w
Prode de

B B
with the wavelength \ = %’r being the peak to peak distance at a certain time.

The wavenumber for a plane wave in a lossless medium is given by the permittivity € and the
permeability p and reads k = w, /€. The dielectric constant (or relative permittivity) e, = % is
defined relative to the permittivity of free space, €y. In the same way, the relative permeability

Ly = ﬁ is defined with respect to the permeability of free space, pg. The propagation constant
Vertir

c

=\, (2.14)

reads with these relative parameters k = w . Here, we have used that the speed of light is



c= \/;)%. In order to extend the free propagation of plane waves in an homogeneous medium
to the guided wave propagation in a TL, we set the imaginary part of the wavenumber 5§ = k,
leading to
NG
B =¥l (2.15)
c
Here, it is assumed that p, = 1 and the effect of the dielectric substrate and the TL geometry
are combined in the effective dielectric constant eo. According to Eq. (2.14), a phase velocity

vp = ¢/ /€et is obtained. Since it is frequency independent, there is no dispersion in a TL.

2.1.3. Low-Loss Approximation

In most practical cases, especially when using superconducting metals, the loss « is small, which
allows to make some useful approximations. Stopping the Taylor expansion of the propagation
constant v given in Eq. (2.7) after the first two terms leads to

1 C L _
TR (R\/;—FG\/;) +i-wvLC, (2.16)

and thus the wavenumber § ~ w+/ LC is the same as in the lossless case. In the same way, the
characteristic impedance of Eq. (2.10) can be approximated to

L
Zo ~ \/; (2.17)

which is again the same as for a lossless TL.

2.2. Terminated Transmission Line

So far, infinitely long TLs were considered. Now, the we will discuss the effect of a load
impedance Z1, terminating the TL as sketched in Fig. 2.2.

Z, —_— V(x) — I(x) Z, q, B Z

A
x

-d 0

Figure 2.2.: Schematic of a transmission line with length d, characteristic impedance Zj, loss
« and wavenumber 3, which is terminated by a load impedance Zi,.

We start by assuming that a right-moving wave of the form V1 - e~% is excited at the left
side of the TL. At this moment, the voltage to current ratio is Zy. But this ratio has to be
Zy, after the wave arrived at the load resistance. To fulfil this condition, a second reflected



wave has to be evoked. In general, the total voltage and current on the line have the form [see
Eq. (2.8)]
Viz)=VTe " +Ve®
v+ V- (2.18)

R P £
I(x) Zoe de .

The boundary condition at the end of the line (x = 0) mentioned above requires that

+ —
5 VO _, VIV

TR e (2.19)

Solving for the amplitude ratio of reflected to incident voltage, called the reflection coefficient,
gives

| _ZL_ZO

lN=—=—"————. 2.20
V+ 2y, + 2y ( )
Generalising Eq. (2.19) to a distance d away from the load leads to
_ + ivd — —ivd
Z. - V(—d) _z Ve +V=e (2.21)

I(—d) ~ 20 Viend —y-end

By using the boundary condition at d = 0 [Eq. (2.19)], the input impedance looking towards
the load at a distance d can be brought to the form

Z1, + Zy tanh(yd)

Zin(d) = Zo - .
(d) = Zo Zo + Zy, tanh(vd)

(2.22)

In words, the impedance along the TL - the ratio of the total incoming and reflected voltage
to the total current - becomes position dependent. Due to the imaginary part of v, Zi,(d) is
periodic.

The two special cases of an open (Z1, = 0o0) and a short end (Z1, = 0) are like mirrors for
microwaves. The reflection coefficient I' of Eq. (2.20) is +1 and —1 respectively. And Eq. (2.22)
for the impedance along the TL simplifies to

Zopen = Zg coth(yd)

2.23
Zahort = Zo tanh(yd). (2.23)

One can also calculate the average power in the line at position d by combining Egs. (2.18)
and (2.20) to be

1 1|V 5

P=—-Re{V(d)'I(d)}==z——(1-T 2.24

3 RelV(@) T(@)} = 575 (1-ITF). (2.24)

where the star symbol (*) denotes the complex conjugate. The equation shows that the power is

constant along the line (independent of d), even though the impedance is changing periodically.

1|VH?

In the case of a matched load impedance, when I' = 0, all the incident power =

5 7 18 delivered

to the load while if I' is non-zero, a fraction |T'|? of the power is reflected.



(a) (b) B-field
E-field

Figure 2.3.: (a) Ilustration of a coplanar transmission line. The centre conductor width is s
and the size of the gap to the ground planes is w. The metal thickness is ¢ and
the substrate thickness h. (b) Electric and magnetic field lines of the fundamental
quasi-TEM mode.

2.3. Coplanar Transmission Line

A coplanar transmission line (CTL), as sketched in Fig. 2.3 (a), is composed of a centre con-
ductor and ground planes on both sides. All conductors are on the same plane, which makes
them convenient to fabricate and which is probably the reason why CTLs are so widespread.

The centre conductor of width s is separated by a gap of size w from the ground planes
on both sides. These metallic parts of thickness ¢ lie on a substrate of height h and with
dielectric constant €,. To minimise the conductor losses, we use niobium, which becomes
superconducting below 9.25 K. As a substrate, we take undoped silicon with a thin layer of
silicon oxide on top. It is important to have an undoped substrate because free charge carriers
in the substrate would absorb energy from the microwave field and hence would increase the
dielectric loss significantly. The silicon oxide layer helps for the fabrication, as explained later
in the fabrication section 4.2.2.

2.3.1. Basic Properties

The fundamental, preferred mode in a CTL is quasi-TEM, meaning that it is a TEM mode in
a good approximation [11]. A rough sketch of the electric and magnetic field lines is shown in
Fig. 2.3 (b).

(a) w, s w (b) w, s w (c) w, s w
t t t
h
€ h o 1 € h
2 }hz

Figure 2.4.: Cross-sections through different kinds of coplanar transmission lines. The grey
area is metal and the white are dielectric. (a) Basic type as already shown in
Fig. 2.3. (b) Substrate consisting of two dielectric layers. (c) With grounded
back plane.

The CTL dimensions and the dielectric constant of the substrate determine its characteristic
impedance Zj and its wavenumber 3. For this, the conformal mapping method can be used. It
basically maps the CTL geometry to a plate capacitor, for which it is straightforward to derive
the desired quantities. A cross-section through the basic CTL type is shown in Fig. 2.4 (a). If
the finite metal thickness ¢ is neglected, which is a good approximation since usually this is by



far the smallest dimension of the structure, the effective dielectric constant is found to be [12]

& —1 K(k)K(k))
2 K(K)K(ko)

cef = 1+ (2.25)

The functions K are the complete elliptical integrals of the first kind. Their arguments are
defined by the CTL geometry as

s

ko = 5+ 2w

ko =+/1—k3

b — sinh(7s/4h) (2.26)
"7 sinh(7(s + 2w)/4h)

Ky =\/1— k2.

The wavenumber f3 is related to the effective dielectric constant via Eq. (2.15). Moreover, the
characteristic impedance is
_30m K (kp)
" Ve K(k)
Because of the elliptical integrals, the influence of the CTL parameters on Zj is not intuitive.
Fig. 2.5 helps to capture the main characteristics. The dependence of Zy on the centre con-
ductor width s and gap size w is plotted in Fig. 2.5 (a) when assuming a silicon substrate with
e, = 11.9 [10] and thickness h = 500 pym. Zy = 50 €2 is highlighted by the red contour line.
As long as the substrate height h is by far the largest dimension (h > s, w), the characteristic
impedance does almost not depend on h. It can be seen in Fig. 2.5 (b) that Zj is inversely
proportional to the dielectric constant ¢,.

. (2.27)

(@) - e =119 (®)
" h =500 pum -
o 60 ~ 80
nF 40 12 N
20
16 w (um)

12 g
s (um) 4

Figure 2.5.: (a) Characteristic impedance Zy of a CTL as a function of conductor width s and
gap size w. Eq. (2.27) for a basic CTL as shown in Fig. 2.4 (a) is used. The red
contour line marks Zy = 50 €. (b) Dependence of Z; on the substrate’s dielectric
constant for a geometry on the red 50 (2 line in panel (a).

The CTL properties are altered by other environment configurations, like a conducting back
plane or a layered dielectric substrate. These are actually the situations occurring in our
experiments, but the deviations to the results for a basic CTL given in Egs. (2.25) and (2.27)
are tiny in our cases.

Our Si/SiO; bilayer substrate has a SiO9 top layer with dielectric constant €,; and a bulky
Si bottom layer with €.o. For this bilayer substrate, as depicted in Fig. 2.4 (b), the formulas



are modified to [13]

rl — €r2 ] K(kl)K(ké) + €ro — 1 ] K(kg)K(k‘é)

2 K(k)K(ko) 2 K(ky)K(ko)
_30m K(K))
"~ Ve K(ko)

If the top layer height is h; and the height of the bottom layer ho, the arguments of the
elliptical integrals are

€
€off = 1+
(2.28)

0

s
ko = s+ 2w
ke — sinh(7s/4h1)
Y7 sinh(n(s + 2w) /4hy) (2.29)
by — sinh(ws/4(h1 + h2))

sinh(7(s + 2w)/4(h1 + h2))

ki =1/1—k? with i = 0,1, 2.

Even though the SiOq layer is closest to the CTL and thus penetrated by the largest fields, it
only has a minor effect in our case since its thickness of 170 nm is very thin compared to the
silicon thickness of 500 pm.

Printed circuit boards (PCBs) usually have a conducting back plane, which is also grounded.
Also our samples are placed on a grounded plane. For this situation, as sketched in Fig. 2.4 (c),
the formulas are [14]

K (k1)K (kg)
L+ R@)R(R)
K (k1)K (ko) (2.30)
7 60 1
07 e Eko) Kk’
“f Ry TR0
with the elliptical integral arguments
S
ko —
07 5 + 2w
by — tanh(ws/4h) (2.31)
tanh(7(s + 2w)/4h)

K =+/1—k2 with i = 0, 1.

It is not very surprising that a back plane behind a 500 pm-thick substrate does not affect the
fields around the CTL much.

Nowadays, there also exists software to conduct electromagnetic simulations of CTLs and
actually any structure you can imagine. They are especially helpful when dealing with more
complex structures, for which analytical expressions are lacking, or to figure out parasitic
effects of junctions, discontinuities and so on. In our lab we use Sonnet, a finite-element
analysis software. It basically solves Maxwell’s equations with the boundary conditions given
by the structure by dividing the space into small boxes of constant electromagnetic fields.
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2.3.2. Kinetic Inductance

As stated by Lenz’ rule, a change of current through a conductor is opposed by a change in

the induced magnetic field. The corresponding self-inductance or magnetic inductance for a

CTL can be calculated with the conformal mapping technique [15]:
_ ko K (k)

b =0 Koy

(2.32)

In an ideal conductor, a change of current is additionally opposed by the mass of the charge
carriers, since they have to be accelerated. Although the origin is different, the effect is the
same as for a magnetic inductance and hence a second inductance, the kinetic inductance Ly
is defined. For the kinetic inductance to be significant, the collision time of the charge carriers
has to be much longer than the inverse of the AC signal frequency. Otherwise, the effect of
accelerated charge carrier is lost rapidly by collisions. Therefore, kinetic inductance is only
relevant in superconductors or in normal metals at optical frequencies.

Again, conformal mapping leads to an expression for the kinetic inductance of a supercon-
ducting CTL [15]:

AL(T)?
Lk:MO’ LES) -g(s,w,t), (233)
with the geometry factor g arising from conformal mapping to be
1 t s t 2(s 4+ w) g )}
=———=|-In{—)— 1 1 . 2.34
g 2k3 K (ko)? [ n<43> s+ 2w n(4(3+2w))+ s+ 2w n(s+w (2.34)

The London penetration depth Ar, is the depth to which supercurrents flow. Since the derivation
for Ly assumes a uniform current distribution, Eq. (2.33) is only correct for thin films with
thicknesses t < 2Ar,. If the thickness is larger, it might be more accurate to use 2y, instead of
the actual thickness t.

The temperature dependence of the kinetic inductance is implicitly given by the penetration
depth, which reads in the BCS theory [16]

AL(0)

V1= (T/Te)*

Here, Ap,(0) is the penetration depth at 0 K and 7¢ is the critical temperature. If the temper-
ature is raising, Ar, increases and hence Ly as well. The reason for this increase of the kinetic
inductance with decreasing Cooper pair density is that to maintain a constant current at a
lower density, the velocity has to be higher and as a consequence the kinetic energy is higher,
too. Kinetic inductance photon detectors [17] exploited the fact that photons impinging on
superconducting CTLs break Cooper pairs and in turn change Ly of high-kinetic inductance
superconductors.

In conclusion, the appearance of an extra series inductance in superconducting CTLs, the
kinetic inductance Ly, causes a temperature dependent increase of the characteristic impedance
Zy and a reduction of the resonance frequency of TL resonators, as seen later.

AL(T) = (2.35)

2.4. Transmission Line Resonators

As the name suggests, the purpose of TLs is to transmit microwave signals. Still, they can
also be utilised to store electromagnetic waves when arranged into a resonant configuration.
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According to Eq. (2.20), short and open TL ends completely reflect microwaves like a mirror.
Thus, terminating a TL segment with an open or short end on both sides gives a Fabry-Pérot
type resonator.

The shortest version of a TL resonator is a A/4-resonator and is schematically drawn in
Fig. 2.6 (a). It consists of a TL segment that is a quarter of the fundamental resonance
wavelength long and terminated by one open and one shorted end. The boundary condition at
the open end is that the current is zero and therefore the voltage has a maximum. In contrast
to the short end, where the current is maximal and the voltage zero. For a discrete set of
frequencies, the waves bouncing back and forth in the resonator add up constructively to a
standing wave. Fig. 2.6 (b) displays the fundamental mode voltage and current distributions
along a A/4-resonator. This first mode contains one quarter of a full wave, the next higher
mode three quarters and so on.

(a) Zya B (b) VY /

A
<
<

0 A4 0 A4

Figure 2.6.: (a) Illustration of a CTL segment of length A/4 with an open and a shorted end.
(b) Voltage and current amplitudes of the first resonant mode. This forms a
so-called \/4-resonator.

Superconducting TL resonators are used nowadays in a variety of applications [18], be it
for radiation detectors [17, 19], for parametric amplifiers [20, 21] or for circuit quantum elec-
trodynamics [22]. Our application is more modest. We have seen that a CTL is completely
characterised by knowing Z, €. and its damping « (see section 2.1.2). While the first two
parameters can be calculated as described for CTLs in section 2.3.1, a strongly depends on the
experimental conditions and TL materials and has therefore to be determined experimentally.
In order to achieve a measurable effect caused by a tiny loss «, we make resonators with CTLs,
such that the long signal lifetime in the resonator multiplies the effect of CTL losses.

In Fig. 2.7, there is a collection of pictures of our A/4-resonators. A theoretical description
of their properties is given in this section and measurements are presented in section 2.4.4.

Fig. 2.7 (f) illustrates a cross-section of the resonators. We sputter a niobium film on a
silicon/silicon oxide substrate and then use photo or electron-beam lithography followed by
plasma etching to make the transmission line pattern. Details of this process are found in
section 4.2.2.

For excitation and read-out, the resonators are capacitively coupled to the measurement line,
as shown in Figs. 2.7 (b) and (d). The configuration in Fig. 2.7 (a) allows for reflectometry.
One common line - connected to the bond pad on the left hand side - is used for the incoming
and the reflected signal. On the other hand, the resonator can be coupled to a feedline as in
Fig. 2.7 (¢), through which the transmission is measured.

Compared to reflection, transmission measurements with a feedline have two advantages.
Firstly, several resonators with different resonance frequencies can be coupled to one common
feedline. Secondly, we observe a much weaker frequency dependence in transmission than in
reflection. Our explanation for this goes as follows. Such a frequency dependence is caused by
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2. Microwave Transmission Lines

(a)
\_/ i:l\\:__
(b)
z - (d)
350 um
( ) 400 pm
Nb (150 nm
(A ¢

N
SiO, (170 nm)

LS

Figure 2.7.: Images of \/4-resonators with their first mode at about 3 GHz. (a) Configuration
for reflection measurements. The input and output launcher is the pad on the
left side. (b) Magnified coupling capacitor. (c) Configuration for transmission
measurements by coupling to a feedline. (d) Coupling capacitor and (e) shorted
end. (f) Sketch of the cross-section.

the interference with waves, which are reflected at imperfections along the line (for example
at connectors). When measuring reflection, one reflection at an imperfection is enough to see
an interference effect. But in transmission, only higher order processes including at least two
reflections - one back and one forth - lead to an observable interference. These two advantages
are the reason why we focus on transmission experiments in the following.

2.4.1. Scattering Parameters

A common way to describe the properties of microwave elements are scattering parameters or
short S-parameters. Considering an general N-port network, they relate the wave amplitudes
incident to the ports to those coming back from the ports. The amplitude of the incident
voltage on port i is labelled VZ-+ and accordingly the voltage amplitude of the wave coming
out from port ¢ is labelled V;~. The amplitude vectors with N elements are related by the
scattering matrix S via Vo =58Vt A specific element of the scattering matrix is found by
measuring the outcoming voltage V;~ from port ¢ when port j is driven by the voltage Vj+:

V-
Sij = — with ¢,k,7 =1,2,...,N. (2.36)
3 VF=0 for k#j

The incident waves on all other ports than j have to be zero, which means that all ports
must be terminated in matched loads to avoid reflections. These S-parameters can be accessed
directly with a network analyser.
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2.4.2. Resonator Basics

In the context of A\/4-resonators coupled to a feedline as in Fig. 2.7 (c), Sa1 denotes the trans-
mission coefficient from one to the other end of the feedline. It can be derived using the
impedance formula for a TL [Eq. 2.22], as explained in appendix A. In the low-loss limit
(a < 1) and close to fy (the resonance frequency of the first mode) the transmission spectrum
can be approximated by [23]

Sgin +i- 21 5L

Sn(Af) = ; Af
]. +1- 2@1%

: (2.37)

with the relative frequency defined with respect to the resonance frequency to be Af = f — fy.
Here, the two fit parameters are S}, the amplitude of the resonance and @, the loaded quality
factor. In fact, three additional fit parameter are used to account for the setup properties, as
described at the end of appendix A.4. These are the background attenuation, its slope and an
asymmetry factor to take into account contributions from standing waves in the setup.

While the relevant expressions for quality factors are given in the following, the derivations
of these formulas are found in appendix A.1. The quality factor is a measure of the loss
of a resonator. The lower the loss, the higher the quality factor. Furthermore, the quality
factor is inversively proportional to the bandwidth or full width at half minimum Apwmgy of

Jo

77
ArFwHM

a resonance:

Q= (2.38)

where Apwpn is defined as the frequency range where the transmission coefficient So; is less
than (1 + S§m)/2.

The total, loaded quality factor ()1 can be separated into an internal part (); arising from
damping in the TL and a coupling part (). caused by leakage to the measurement line. The
quality factors add like resistors in parallel:

1o
Ql B Qi Qc.

In the so-called overcoupled regime [18], where Q. < Q;, the measured quality factor is domi-
nated by Q.. With C. being the coupling capacitance, the coupling quality factor is

(2.39)

1

Qe = 87(fZoCo)° (2.40)

In the other undercoupled limit, @) is restricted by internal losses (expressed by i), which
is therefore the preferred regime to determine o. The internal quality factor is related to the
CTL parameters via

p

Qizﬁa

where the wavenumber  is given by the CTL geometry, as discussed in section 2.3.1.
The relation of the resonance amplitude, the second fit parameter in Eq. (2.37), to the
quality factors is
Qc

Gmin _ __¥¢ 2.42
21 Qi + Qc ( )

(2.41)
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min

Hence, the two parameters ()1 and S37™ obtained by fitting a resonance spectrum to Eq. (2.37)
can be transformed to another set of parameters with the help of Egs. (2.39) and (2.42):

Q= o
21 (2.43)
Q. = @
¢ 11— Spin?

which eventually allows to deduce the CTL loss « by using Eq. (2.41).
The bare resonance frequency of the resonator f; is reduced due to the coupling (expressed
by Q) to the measured resonance frequency

Jo=fe <1 - ’/in) : (2.44)

With the relation between frequency and wavelength given in Eq. (2.14) and the fact that the
resonator length [ = \g/4, the bare resonance frequency can be written as

c c 1
B )‘Ox/eeff B 4l\/£eff B 41\ L ’

where Ao denotes the wavelength at resonance and the low-loss approximation given in Eq. (2.16)
is used for the last step. Remembering from section 2.3.2 that the inductance in a supercon-
ducting CTL is the sum of the magnetic inductance Ly, and the temperature dependent kinetic
inductance Ly, the resonance frequency becomes

Jfr (2.45)

1

(T) = UVLnC\/1+ L (T) /L

(2.46)

Since everything else is set by the CTL geometry, this formula for the bare resonance frequency
can be used to extract the kinetic inductance. The temperature dependence of Ly as described
by Egs. (2.33) and (2.35) contains the parameter )\, the London penetration depth at 7" = 0.
In other words, a fit of Ly with Eq. (2.33) results in a value for Ag.

In conclusion, TL resonators are, apart from multiple other applications, a handy tool to
measure the loss a of a CTL. But where are these losses originating from?

2.4.3. Loss Mechanisms

Loss sources for superconducting CTLs in different temperature and power regimes and for
several materials are well described in the literature. Here is a short summary of the findings.

As already assumed in the lumped element circuit model for TLs (see Sec. 2.1), there are
conductor losses leading to a finite R and dielectric losses, for which G is used. Dielectric
loss stems from microwave absorption of nearby two-level states (TLSs) located at defects in
the dielectric substrate and at the metal-air and metal-substrate interfaces [24]. The choice
of an appropriate substrate is important to minimise these losses. Sapphire [23] and high
resistivity silicon [18, 24] are shown to be good candidates. Silicon dioxide and silicon nitride
introduce more losses [24, 25], but for some fabrication processes, a thin layer of them is helpful.
Another possibility to decrease dielectric losses is to minimise the number of coupled TLSs at
the interface. It is shown that an extensive substrate cleaning before the metal deposition
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reduces the number of TLSs and an extremely deep anisotropic substrate etching in the gap
between the centre conductor and the ground plane moves the interface away from the high
electric field region what in turn reduces the coupling to interfacial TLSs [26]. With increasing
temperature or power, all TLSs get saturated and they cannot absorb energy any more. Hence,
dielectric losses are most relevant at low temperatures.

High quality resonators are fabricated from various superconductors like aluminium [18, 24]
and materials with a higher 7 like niobium [25], niobium titanium nitride [26] and molybdenum
rhenium [23]. But loss and superconductors, this seems like a contradiction at first sight.
The point is that at finite temperatures, apart from superconducting electrons, there are also
thermally excited quasiparticles. The coexistence of superconducting and normal electrons is
captured in the so-called two-fluid model [16]. A DC current lower than the critical current can
flow without resistance because the normal and superconducting electrons provide two channels
in parallel and obviously, the zero-impedance superconducting channels carries all the current.
The situation changes when an ac current is applied since it acts on all charge carriers, in
particular also on the normal electrons, which experience ohmic losses. According to the BCS
theory, the number of quasiparticles in a superconductor with an energy gap A is proportional
to e 2/k8T Since conductor losses are proportional to the number of quasiparticles, they
increase exponentially with temperature, as well.

2.4.4. Measurements at 4.2 K

After the introductory sections from before, some resonator data are discussed. The resonator
shown in Fig. 2.7 (c) is put inside a copper box for characterisation in liquid helium at 4.2 K
with the dipstick setup (see section 5.5). A picture of the box containing the sample chip is
in Fig. 2.8 (a). The two SMA connectors on the outside are connected to both ends of the
feedline and the box is closed with a metallic cover for the measurements. The transmission
coefficient is detected with a vector network analyser (VNA). The fundamental mode of the
coupled \/4-resonator is plotted in Fig. 2.8 (b). By applying Egs. (2.37) and (2.43), one can
extract the internal and the coupling quality factor, as indicated in the figure. Details on the
fitting procedure are given at the end of appendix A.4.

The power applied to the TL is —34 dBm, which corresponds to 0.4 uW. The simple
dipstick setup used does not contain amplifiers (see section 5.5). Therefore, a rather high
power is needed to achieve a clear signal. But since there is no power dependence of the
resonance observed from —24 dBm down to —64 dBm (not shown here), we conclude that the
obtained results are reliable and no high-power effects obscure the results.

This measurement serves as a confirmation that the quality of the sputtered niobium is
alright and that our fabrication process is suitable for high quality resonators. The same kind
of resonator experiments will appear again in section 4.1.2. There, the compatibility of RF
circuit fabrication with carbon nanotube growth and the influence of a silicon nitride layer is
examined.

One has to say that the quality factors of resonators, which are even fabricated together and
are on the same feedline, scatter quite a lot. Quality factors as high as 8000 were measured on
several resonators, but other resonators showed only half of it without any optically observable
defect in the CTL. In conclusion, we see that with our way of fabrication, it is not possible
to achieve consistent quality factors. Nevertheless, we learn the range which we can expect,
which is already helpful for further planning.

Looking at the temperature dependence of the resonance leads to further insights. Fig. 2.8 (¢)
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Figure 2.8.: (a) Picture of the copper box with a resonator chip inside for dipstick measure-

ments. The horizontal feedline on the chip is slightly visible. (b) Transmission
spectrum for one of the resonators together with a fit. (c) Temperature depen-
dence of the spectrum and the internal quality factor (inset). (d) Extracted bare
resonance frequency f; and kinetic inductance Ly with a fit to the BCS-prediction.
The power applied to the feedline is —34 dBm for all measurements.

shows the resonance evolution at higher temperatures. As expected, the resonance frequency
is decreasing with increasing temperature because of the rising kinetic inductance (see sec-
tion 2.3.2) and the quality factor is dropping due to enhanced quasiparticle loss (see sec-
tion 2.4.3).

With the help of Eq. (2.44), the measured resonance frequency can be transformed to the
bare resonance frequency fr. The resulting frequencies are plotted in fig. 2.8 (d). The CTL
has a conductor with s = 12 ym and a gap size w = 6.5 ym and consists of a niobium layer
on 170 nm silicon dioxide with ¢, = 3.9 and silicon beneath with ¢, = 11.9. For this bilayer
substrate, Eq. (2.28) can be applied and leads to a capacitance of 175 pF/m and a magnetic
inductance Ly, = 411 nH/m. Knowing this, one can extract from the resonance frequency the
kinetic inductance according to Eq. (2.46), with the results plotted in the figure. However, we
will see in the next paragraph that the London penetration depth of niobium is short and the
condition ¢ < 2y, is not fulfilled for the lowest temperatures, which might add some deviation.

The critical current of our niobium films was previously determined to be 9.25 K. A fit of
the kinetic inductance to the temperature dependence given by the BCS theory [Eq. (2.35)]
gives a London penetration depth at 7" = 0 of A;,(0) = 62 nm, which is quite close to the 43 nm
stated in literature for similar niobium film thicknesses [27]. One can conclude from the figure
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that at milli-Kelvin temperature, where we want to conduct our later experiments, the kinetic
inductance of our niobium films is tiny compared to the magnetic inductance and hence its
influence can be neglected when planning the geometry of CTLs and resonators operating at
these temperatures.

2.5. Miscellaneous

2.5.1. Transmission Line versus Waveguide

In the literature, transmission lines (TLs) and waveguides are not always strictly and consis-
tently separated. The distinction between the two terms used in this thesis is motivated and
explained in the following paragraph.

TLs and waveguides are both structures to carry electromagnetic waves. But due to their
geometry, they support different kinds of modes. TLs on the one hand consist of at least two
conductors, which are separated by an insulator. Their operating mode is quasi-TEM and
they transmit signals from DC up to high frequencies. The most important kind of TLs for
this work is a coplanar transmission line. More details on this type are found in section 2.3.
Another prominent example is coaxial cables.

On the other hand, waveguides are either made out of one conductor usually in the form of
a metallic pipe or out of dielectrics with different dielectric constants, like for instance optical
fibres. The transmission in waveguides happens due to reflections at the metallic boundaries
or at the dielectric interfaces. The standing wave condition inside the waveguide sets a lower
bound to the supported signal frequency depending on the waveguide’s lateral dimension. The
electromagnetic field pattern in waveguides is either transverse electric (TE) or transverse
magnetic (TM), but not TEM.

2.5.2. Why 50 Q?

The common characteristic impedance of coaxial cables is 50 €2. Thus, to be impedance
matched and avoid signal reflections, that is also the standard input and output impedance of
most components and instruments. A plausible explanation for this convention goes as follows.
The attenuation constant « for an air-filled (e, = 1) coaxial cable has a minimum at 77 Q. The
maximum power handling is limited by voltage breakdown above an electric field of 3-10° V/m
for room temperature air at sea level pressure. For air-filled coaxial cables, maximal power
handling is achieved for a characteristic impedance around 30 2. Hence, 50 €2 represents a
compromise between both requirements of minimal loss and maximal power handling [10].
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Impedance Matching

This chapter deals with the electronic engineering task of impedance matching. In particular,
it focuses on a microwave impedance-matching circuit based on coplanar transmission lines
(CTLs), called stub impedance-matching circuit or short stub tuner. While the general prop-
erties of CTLs are the topic of the previous chapter, this chapter contains a detailed description
of the CTL-based stub tuner and some proof-of-principle measurements of this circuit. Details
on the circuit fabrication and more measurements are found in subsequent chapters. At the
end of the chapter, an alternative way of impedance matching with an LC' circuit is presented
and compared to stub impedance matching.

________________________

Impedance-
matching circuit Yo Zy

________________________

Figure 3.1.: (a) Schematic for simple noise detection without impedance matching. The noise
voltage V1, generated at the load impedance Z, is measured over an impedance
Zp. (b) An impedance-matching circuit transforms the detection impedance Zj
to the load impedance Zi,.

But what is our motivation for impedance matching? The aim of this thesis is to detect
noise generated by high-resistance devices. Noise emitted by a device of impedance Z1, can
be modelled as a voltage source in series. The problem with noise detection of high-resistance
samples gets apparent in Fig. 3.1 (a). A high-impedance device of typical impedances Zy, ~
0.1 — 1 M emits the voltage noise V1,. When measuring the voltage noise with an instrument
of input impedance Zy = 50 €, only the tiny fraction Zy/Z;, of the emitted voltage V1, is
measured. This fraction can be increased by adding an impedance-matching circuit between
the load and the instrument, as shown in Fig. 3.1 (b). At full matching, the circuit transforms
the impedance seen by the load from Zj to Zy,.

In principle, it is possible to achieve matching between any complex load impedance and
Zy for a certain frequency. Impedance matching is a standard task in electronic engineering
and there are different types of impedance-matching circuits readily found in textbooks [10].
However, the physical implementation of each method has a limited range of applications for
which it works reliably.

One possibility is to use a network consisting of an inductor and a capacitor. While lumped-
element LC networks are easy to assemble and well suited up to a few hundreds of megahertz,
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parasitic effects get more pronounced at higher frequencies. For example the equivalent circuit
of a real inductor consists of the ideal inductance in parallel with an inter-winding capaci-
tance. Whereas at low frequencies this capacitance represents a high-impedance path with low
influence, at higher frequencies it starts to become important. Nevertheless, we have recently
started to work on a microwave implementation of an LC' matching network because it provides
a large bandwidth of high transmission. More on this is found in section 3.2.

However, for the operation at GHz frequencies, it seems more natural to use a distributed
element approach to achieve well reproducible results. Such a circuit is the so-called quarter-
wave transformer; a section of CTL with intermediate characteristic impedance Z§ = \/ZyZ1,
and a length of one quarter of the wavelength at resonance. In order to match a device with an
impedance in the order of 10 k{2, a characteristic impedance Z; of a few k(2 is needed, which is
difficult to obtain (see section 2.3.1). For this purpose, a CTL containing a series SQUID array
at the centre conductor has been developed to boost the CTL inductance [28]. An advantage is
that by changing the magnetic field through the SQUID loops, one can change the inductance
and thus has a tunable matching circuit for free.

A possibility for a matching circuit made out of low characteristic impedance CTLs is the
stub tuner; the main matching circuit utilised in this thesis. As presented in this and the next
chapter, stub tuners are easily fabricable and computable. In earlier experiments, stub tuners
were fabricated on a PCB, to which the nearby mesoscopic device was bonded [29]. Later on,
stub impedance matching has been integrated on-chip [30].

3.1. Stub Impedance-Matching Circuit

An image of a stub tuner made with niobium on silicon together with a schematic are found
in Fig. 3.2. Looking from the left low-impedance side, the stub tuner consists of two parallel
CTL segments with characteristic impedance Zy. One CTL segment of length Dy has an open
end, whereas the other one of length D; is terminated by the load impedance Z1,. Both lengths
are close to \g/4, with Ao being the wavelength at resonance.

The working principle of a stub tuner can be understood by considering it as an interfer-
ometer. In a simplified picture, an incident wave at the low-impedance input is split at the
T-junction. The wave reaching the open end is completely reflected, while the amplitude and
phase of the reflection at the other end depends on Zy, (see section 2.2). In the matched sit-
uation, the lengths D; and Dy are such that for a specific frequency and load impedance the
reflected waves add destructively at the T-junction, meaning that nothing is coming back from
the stub tuner. But now let us turn to a more rigorous description of the circuit.

3.1.1. Matching with a Lossless Stub Tuner

First, the simple case of a stub tuner with lossless CTLs is treated since it has analytical
solutions [10] and it provides an illustrative picture of the basic properties. A schematic of the
stub circuit is shown in Fig. 3.2 (b).

Stub tuning makes use of the fact that the impedance on a terminated CTL depends on the
distance from the load, as expressed by Eq. (2.22). The admittance at the T-junction looking
along the terminated CTL is denoted by Yp;. If the load impedance is separated according to
Z1, = R+ 1i- X, the admittance stemming from the terminated CTL reads

1 1 Zo+i-(R+i- X))t

Vi = — = —. : : , 3.1
PV 70l Zy (R+i-X)+i- Zoh (3:-1)
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Figure 3.2.: (a) Image of an open stub tuner with 150 nm-thick niobium (light area) on a
Si/SiOg substrate (grey). The stub tuner input is on the left side. The launcher is
connected with bond wires (black). At the T-junction, where the two CTLs split,
there are three bond wires (black) serving as airbridges between the ground planes.
The device area is on the top-right CTL end. Bond wires around the sample edge
establish a good connection of the ground plane to the setup ground. The pattern
is defined with photolithography followed by plasma etching. (b) Schematic of a
stub tuner (on a yellow background) consisting of two CTLs in parallel (orange).

with the abbreviation t; = tan(8yD1) and Sy being the wavenumber at the matched frequency
fo. Separating the expression for Yp; = G1 + i - By into its real and imaginary components
leads to

o — R(1—12)
'TR2 (X + Zot)? (52)
B — Rty — (Zo — Xt1)(X + Zot1) :
L=

20 [R2 + (X + thl)Z]
In contrast, the admittance of the open-ended CTL at the T-junction is purely imaginary and
reads [see Eq. (2.23)]

1
YDQ =1- BQ =1- 7 . tan(ﬁng). (33)
0

The input admittance seen from the low-impedance side in front of the T-junction is the sum
Yin = Yp1 + Yp2 and is in general complex. Impedance matching requires that Yi, = 1/Z,
which results in the two conditions for the real and imaginary parts

1

Gl:?()

and B = —B,. (3.4)

The first condition gives a quadratic equation for ¢£; with the two solutions

X +/R[(Zo— R?+ X7 [Z,

tl = tan(ﬁoDl) = R_ Zo

for R # Zy. (3.5)

Solving for Dy leads to the following two shortest lengths (in terms of \g, the wavelength at

resonance)
Dy — g‘—fr arctan(ty), fort >0 (3.6)
! 20 [arctan(ty) + 7], fort <0’ .
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Due to the periodicity of tangents, D1 + n - A\/2 are also (longer) solutions, where n is a non-
negative integer. The corresponding imaginary components are found by inserting ¢ in By of
Eq. (3.2). The second condition that B; has to be cancelled by the open-ended CTL leads to
the lengths [using Eq. (3.3)]

A
Dy = —2—0 -arctan(B1 Zp), (3.7)
T

with periodicity Ao/2, too. If one of the lengths turns out to be negative, Ag/2 has to be added.
If we restrict ourselves to a real load impedance (X = 0) and to R > Zj, we find the two
principal solutions

A R A A R—Z
D, = ﬁ - arctan <\/;0> and Dy = ?0 - ﬁ -arctan ( \/RiZ(?> (3-8)

XA / A -7
or Dy = ?0 - ﬁ - arctan ( Z) and Dy = ﬁ - arctan (IT/R*ZOO> . (3.9)

If there is some loss in the CTL, it is not possible any more to find analytical solutions for the
stub tuner lengths. One can use numerical methods to find the minimum of I', as for example
with the NMinimize function of Mathematica. Although being quantitatively not exact, the
lossless results from above still capture the features of a stub tuner qualitatively as long as the
losses are small and thus they are used for the following analysis.

Without loss of generality, we focus on the solution of Eq. (3.8). The lengths needed for
matching at a resonance frequency fo = 3 GHz as a function of load resistance are plotted in
Fig. 3.3(a). D; is always shorter than Dy. The order would be reversed with the other set
of solutions. For large matched resistances Ryt the arctan-terms are converging towards
m/2 and both lengths are approaching Ag/4. The flattening for large load resistances points
out a fabrication limitation. Small deviations in the CTL lengths (also indirectly induced
by changes of the effective dielectric constant e, or Zy) cause a larger shift of the matched
resistance the larger the desired Ryatcn. In other words, the stub tuner becomes more sensitive
to fabrication-induced deviations the larger the matched resistance is.

3.1.2. Input Impedance of a Stub Tuner

By looking at the schematic of a stub tuner in Fig. 3.2 (b), it is obvious that the input ad-
mittance Yj, seen from the low-impedance side is the sum of the admittances of the two CTL
arms. Adding these two contributions given in Egs. (3.1) and (3.3) and taking the inverse leads
to the stub tuner input impedance

1

. —
Yp1 + Ypo

Zy + Zy, - tanh(yDy) (3.10)

Zy, [tanh(vDy) + tanh(yD2)] 4+ Zo [1 + tanh(yD;) tanh(yD2)]”

This is the general expression including a finite CTL loss a. The absolute value of the input
impedance over a large frequency range is plotted in Fig. 3.4 (a) for a load R = 100 k2. The
stub tuner is matched at 3 GHz to this resistance Ryatcn = 100 k€2. In the zero-frequency limit,
it approaches R as expected. The behaviour at higher frequencies is somewhat peculiar. Away
from the matched frequency, the stub tuner looks like a short. Only close to matching, the
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(a) Stub tuner lengths needed to match at 3 GHz with a lossless stub tuner. Red
dots indicate the solution at R = 100 k2, which are used for the remaining plots
and for Fig. 3.5, too. (b) Reflectance amplitude dependence on frequency and
load resistance. (c) Amplitude and phase of the reflectance as a function of load
resistance at the resonance frequency, which corresponds to a horizontal cut of (b)
at 3 GHz. (d) Reflectance amplitude when a capacitor C' is added in parallel to

the load resistor, while the real part is kept at 100 k(2.

impedance rises to some finite value, as seen in Fig. 3.4 (b). As desired, the input impedance
reaches 50  at full matching (red curve). If R is higher than the matched resistance (blue
curve), Zi, goes above 50 2 at the resonance frequency and if R is smaller than the matched

resistance (green curve), Zj, stays below 50 Q.

3.1.3. Reflectance of a Lossless Stub Tuner

The purpose of reflection measurements on a stub tuner is twofold. First of all, it enables
to obtain the stub tuner parameters «, Dy and Dy from fitting the reflection spectrum at a
known load impedance Zp, (see section 3.1.5). Once the stub tuner parameters are known, the
variable load impedance value can be deduced from the reflection amplitude (see section 6.3.2).
In this way, reflectometry on a stub tuner is a fast and sensitive way to measure impedances
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Figure 3.4.: Input impedance magnitude of a lossless stub tuner matched at 3 GHz to a load of
100 k2. (a) Plot over a large frequency range with the load being R = Rpaten =
100 k2. (b) Enlarged around the first resonance for three different load resistances.

at high frequencies [31].

The reflection coefficient at an impedance step from Zy to Zi, is defined in Eq. (2.20) to
be I' = (Zin — Z0)/(Zin + Zy). For a lossless stub tuner, the input impedance of Eq. (3.10)
becomes

Z = 7 Zo+i- 2, tan(ﬂDl)

0 Zy, [tan(BD;) + tan(BDs)] + Zo [1 — tan(BD1) tanh(5D3)]’ (3.11)

As seen in section 3.1.2, the stub tuner transforms the load impedance to Zy at full matching
and thus the reflection coefficient I" vanishes. The general load impedance Z1, can be divided
into real and imaginary parts: Z;, = R+ i-X. In the beginning, we will consider a purely real
71, = R. The reflectance amplitude given a matched load resistance R = 100 k{2 is plotted in
Fig. 3.3 (b) as a function of frequency and load. If the load resistance R moves away from the
matched value, the resonance dip is increasing, but the resonance frequency stays constant.

The influence of a load resistance modification on the reflection coefficient becomes more
evident in Fig. 3.3 (¢), which is a cut of Fig. 3.3(b) at f = fy. The phase is jumping by 7
when crossing the matched load and the reflection dip is increasing by moving away from the
matched load. This shows the possibility to deduce the load resistance R from I' when knowing
the stub tuner parameters D and D».

The influence of an imaginary part X in the load Zi, is different. For example, a capaci-
tance C parallel to the load resistor leads to the load impedance 1/Z;, = 1/R + i - wC. The
corresponding reflectance spectrum is shown in Fig. 3.3 (d). Here, the real part is kept at the
matched value of 100 k2 while the capacitance is increased. In addition to the change of the
resonance amplitude because one is moving away from matching, the resonance frequency is
decreasing. This demonstrates the use of a stub tuner as a capacitance or inductance detector.

Now, we will turn back to a purely real load resistance. For a more quantitative discussion,
Fig. 3.5 (a) shows the reflectance spectrum at different load resistances, which corresponds to
vertical cuts in Fig. 3.3 (b). The plots reveal the resonant nature of a stub tuner. In the limit
R > Zj, the two CTL segments have both roughly the length A\g/4. The sum of these two
segments can be considered as being a A/2-resonator with one open end and one almost open
end. In contrast to the usual \/2-resonators used in circuit QED [18], the coupling to the
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resonator is not capacitive. Instead, the 50 €2 measurement line is directly connected at the
voltage node in the centre of the stub tuner CTL. The direct connection of the RF line to the
stub tuner allows to apply a DC voltage in addition to the RF excitation to the device via the
same port.

@ (b) : ; —
| T 20kQ ]|
0.8}
/2
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Figure 3.5.: Reflection spectrum of a lossless stub tuner for several load resistances, with the
matched load being 100 k2 at 3 GHz. (a) Amplitude and (b) phase.

When considering the stub tuner as a resonator, the load resistance R represents a resonator
leak. This leak gives rise to a load quality factor (see section 2.4.2), which is in the limit

R > Zy R
Vs
QL_Z'Za

as derived in appendix B.1.2. On top of the resonance dip behaviour discussed earlier, one
observes in Fig. 3.5 (a) a monotonic decrease of the bandwidth with rising resistance, which
can be understood with the proportionality of the load quality factor to the resistance.

The phase dependence of I' on the resistance is found in Fig. 3.5(b). The slope at the
resonance frequency has a different sign for resistances below and above matching. This phase
jump when crossing the matched resistance is also seen in Fig. 3.3 (c).

(3.12)

3.1.4. Effect of Losses

A stub tuner consisting of a lossy CTL can be described as a resonator with a second, internal
leak in addition to the load leak. This leak gives rise to an additional quality factor, Q);. The
same argument as for \/4-resonators given in appendix A.l leads again to the expression for
an internal quality factor P

Qizﬂ-

According to Eq. (2.39), the total quality factor is a combination of the load and internal
quality factors: @ = QLQ:i/(QL + Qi). In order to be sensitive to the load resistance, the
internal quality factor must be larger than the external one. In this case, the total quality
factor is dominated by the load quality factor, and consequently the resonance is sensitive to
changes of the load.

(3.13)
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Figure 3.6.: In all three figure, the stub tuner is fully matched for Rpaten, = 100 k€ and
fo = 3 GHz. (a) CTL lengths D; and Dy needed to achieve full matching as
a function of a. (b) Reflection amplitude and phase dependence on « at the
resonance frequency. The circuit is matched when o = 0.028 m~!. (c) Reflection
amplitude dependence on the load resistance at the resonance frequency when
being matched for three different losses «.

In case of a lossy stub tuner, there is no analytical formula to find the required CTL lengths
Dy and Dy for matching, as it exists in the lossless case [see Egs. (3.8) and (3.9)]. Instead, the
reflection coefficient amplitude

T = |(Zin — Z0)/(Zin + Z)|- (3.14)

can be minimised numerically. Here, Zj, is the stub tuner input impedance from Eq. (3.10).
The resulting CTL lengths needed to match a load of 100 k2 at 3 GHz as a function of damping
a are plotted in Fig. 3.6 (a). The higher the loss, the larger is the difference between D; and
Ds.

Fig. 3.6 (b) shows the reflection amplitude and phase dependence on a when being matched
to one specific value of a. The important message is that there are two possible values of «
for one given reflectance amplitude. Consequently, fitting to the magnitude of a resonance
spectrum as for instance done in Fig. 3.7 (b) can converge to two different values of a. To find
the correct damping, one can either take into account the phase of I' or compare the bandwidth
of the measured spectrum with fo/Qint = fo - 2a/5 [see Eq. (3.13)]. Those two bandwidths
are only equal for one a.

Fig. 3.6 (a) confirms that full matching with a lossy stub tuner is still possible. A larger
difference between the CTL lengths compensates for a finite a. But as expected, loss reduces
the sensitivity of the stub tuner resonance on the load resistance. In Fig. 3.6 (c), the reflection
amplitude at the matched frequency is plotted as a function of load resistance. When the
loss is increasing, the curves get flatter or in other words the resonance dip is less sensitive to
resistance changes.

3.1.5. Reflection Measurements of an Open Stub Tuner

We will discuss now the first experiments we carried out with stub tuners. The bare stub tuner
shown in Fig. 3.2 (a) was cooled down to 4.2 K and later even to milli-Kelvin temperatures
for reflection measurements. The area at the end of the upper CTL, where we eventually
intend to connect the high resistance device, is left open in this sample. These measurements
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serve as a test of the circuit fabrication and of the fitting routine used to extract the stub
tuner parameters from the reflection spectrum. Furthermore, since these were one of the first
measurements performed on the newly build cryogenic RF setup, they also served as a check of
the setup. While this section is devoted to the measurements results, the stub tuner fabrication
procedure is explained in section 4.2.2.
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Figure 3.7.: Measurements of the open stub tuner shown in Fig. 3.2 (a). (a) Reflection coef-
ficient with and without airbridges close to the T-junction at 4.2 K probed with
-24 dBm. (b) Close-up view in the range of the red dashed area in (a). Dots are
measured points of the stub tuner resonance probed with -34 dBm. The fitted
curve is plotted in red and the corresponding parameters are written in the figure.
(c) Resonance at higher temperatures. The fitted values of « are indicated. (d)
The same stub tuner in the dilution refrigerator with a base temperature of 20 mK
measured with an excitation power of —102 dBm.

Considering first the green reflectance curve of Fig. 3.7 (a) measured at 4.2 K, one sees
apart from the narrow stub tuner resonance a broad resonance. The difference to the blue
curve, where the broad resonance is absence, it that there are no airbridges yet close to the
T-junction. Such airbridges, connecting the different ground planes close to the junction where
the CTL splits, can be seen as black lines in Fig. 3.2 (a). These airbridges prove to be crucial
to suppress spurious resonances evolving from potential variations between the different parts
of the ground plane. For the same reason, it is important to nicely connect the ground plane
all along the sample edges with bond wires to the sample holder ground. Still, the bond wires
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around the chip turn out to be not enough, as they were already there when the green curve
was measured.

This measurement is conducted in the RF dipstick (see section 5.5). In the large range
scan of Fig. 3.7 (a), wiggles on top of the background reflection appear. From their period,
a wavelength in the range of meters is estimated. Therefore, they are attributed to standing
waves in the coaxial cables going to the instrument. These resonances could be damped with
attenuators interrupting the coaxial cable.

A close-up view on the reflection amplitude is given in Fig. 3.7 (b). It can be accurately
fitted to Eq. (3.14) with reasonable parameters. The fitting parameters «, €., D1 and Dy can
be found in the figure. Details on the fitting method can be found in appendix B.1.1. The
requirement that Q; > @, to be sensitive to the load (see section 3.1.4) allows to judge the
usability of this stub tuner with a loss of & = 0.017 m~!: The load quality factor is dominating
as long as the load resistance is smaller than ~ 300 k2.

In Fig. 3.7 (c), the temperature dependence of the stub tuner resonance is investigated.
With higher temperatures, the increased loss broadens the resonances and the increased kinetic
inductance lowers the resonance frequency. This behaviour is very similar to what is observed
with A/4-resonators in section 2.4.4.

The reflection of the same open stub tuner probed in a dilution refrigerator with a base
temperature of 20 mK can be seen in Fig. 3.7 (d). The loss « is almost as high as at 4.2 K. The
most striking difference to the 4.2 K data is the lineshape, which is much more asymmetric.
Reasons for the enhanced asymmetry can be spurious modes in the setup or an enhanced
effect of spurious modes in the niobium ground plane due to lower temperatures [32]. Since
several later measurements on other samples showed more symmetric resonances in this setup,
the asymmetry is attributed to not ideal grounding of this sample. Probably, the asymmetry
could be lowered by making the bond wires to the ground plane around the chip denser than
the chosen spacing of about 0.5 mm.

The findings from the open stub tuner measurements are very similar to the ones from the
A/4-resonator measurements in section 2.4.4. For CTL characterisations alone, \/4-resonators
are preferable because of their less complex structure, which results in fewer fit parameters and
a more straightforward and reliable analysis. In addition, A/4-resonators need less space, which
makes it is easier to couple several of them to one feedline for obtaining statistics. However,
the stub tuner circuit is the one we intend to use for noise studies and in this respect, the
open stub tuner measurements presented here give us more confidence to go towards the final
circuit with a nanoscaled device attached to the stub tuner.

3.1.6. Output Impedance of a Stub Tuner

So far, the input impedance of a stube tuner seen from the low-impedance side and the resulting
reflection properties were discussed. Intuitively, it is quite obvious that at matching, when there
are no reflections for a signal entering the stub tuner, a signal generated at the device can leave
the stub tuner without reflections, too. With the formulas given above, this argument can be
confirmed. According to the schematic in Fig. 3.1 (b) that the output impedance seen by the
load looking towards the stub tuner input is

Zout,T +1i- Zy tan(ﬂDl)

Zout = 2o -
out 0 Zo+1- Zouth tan(ﬁDl)’

(3.15)
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where Zou, 1 = ZoZp2/(Zo + Zp2) is the output impedance at the T-junction. Using Eq. (3.3)
and inserting the matching conditions given in Eqs. (3.5) and (3.7), a lengthy but simple
calculation leads indeed to the result Z,,w = Z;, = R+ ¢ - X. In summary, the matching
circuit transforms Zy, to an input impedance Zj and in turn, looking into the other direction,
transforms Zj to an output impedance of Z1..

This conclusion does not entirely hold any more when introducing loss in the CTL. Full
impedance matching is always possible from both sides, because adjustments of the stub tuner
lengths can account for the loss contributions [see Fig. 3.6 (a)]. But since the stub tuner is not
a symmetric circuit, one ends up with a different set of stub tuner lengths depending on which
side needs to be matched.

3.1.7. Transmission Coefficient of a Stub Tuner

Now, we turn to the transmission properties of a stub tuner. What is relevant for noise
measurements is to know the transmission function from the high-resistance device side to the
50 €2 instrument side. The goal of this section is to derive an expression for the transmission
coefficient and to clarify its properties.

(b)

Figure 3.8.: (a) Sketch showing the stub tuner consisting of two CTL segments (orange) on a
yellow background. It is connected to a load of resistance R and to the measure-
ments line of impedance Zy. (b) Schematic for wideband detection in the absence
of any impedance-matching circuit.

In Fig. 3.8, a schematic of a stub tuner is drawn. It is equivalent to the schematic of
Fig. 3.2 (a) from before. We consider the case when a real load resistance R is attached.
According to Eq. (2.8), the voltage in a CTL has the general waveform V(z) = Ve 74V ~—e1®
resulting from the telegraph equations. The voltage coefficients of the left CTL segment, where
0 < x < Dy, are called Vfr and V| for the waves moving in positive and negative direction,
respectively. It is derived in appendix B.2.1 how the boundary conditions at the two CTL ends
and at the T-junction lead to the following expressions for the voltage coefficients:

Zo 1
R+ Zy Ty +e2P1.[1+2coth(yDy)] (3.16)
Vit =V - e?P1 (1 4+ 2coth(vyDy)],

Vi =—Vg-

by using the definition I't, = (R — Zy)/(R + Zy), which is the reflection coefficient directly at
the load before the stub tuner.

We assume a noise voltage Vg to be emitted by the device with resistance R. What is
detected at the stub tuner input side is the voltage V' (D;) dropping over a resistance of Zj.
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Using the coefficients from Eq. (3.16) leads to the voltage transmission function of a stub tuner

V(D
tv(f) = E/Rl)
Ve D1 4 y=erDr
_ 3.17
. (3.17)
27 eP1 . coth(yDs)

T R+Zy T+ enDi [+ 2coth(vDs)]’

All relevant stub tuner parameters can be deduced from reflection measurements, as demon-
strated in the previous section 3.1.5. The frequency dependence is implicitly given by the
frequency dependent wavenumber /3 appearing in the propagation constant v = «a + i - 3 [see
Eq. (2.7)].

Under some conditions, the transmission function can be simplified, as derived in ap-
pendix B.2.2. If the stub tuner is fully matched to a resistance R at fy, R > Zy and fur-
thermore the frequency is close to resonance (Af < fy, where Af = f — fy), the voltage
transmission function is well approximated by

s

Af 7
270 5 7 TVE

' Z : Af "
R T4 +i- 2w

The upper (lower) signs are valid for the set of solutions in Eq. (3.9) [Eq. (3.8)], where D1 > Do
(D1 < D2), respectively. See the end of appendix B.2.2 for more details on this.
In both cases, the amplitude squared has approximately the form of a Lorentzian:

2 %0 !

N4R.1+(g.%.%)2'

tv(Af) ~ (3.18)

ltv (AS)]

(3.19)

The transmission peak value at Af = 0 is |ty|?> = 1/4 - Zy/R. For comparison, the schematic
in the absence of an impedance-matching circuit is drawn in Fig. 3.8 (b). In this case, the
voltage transmission squared would be 3, ~ (Zy/ R)? when R > Zy due to voltage division.
In contrast, the 1/R-dependence of the stub tuner peak value implies a significantly higher
transmission within a small frequency window when dealing with high load resistances R. The
FWHM of the transmission function in Eq. (3.19) is found to be A fpwnm = fo - 4/7 - Zo/R,
which is the same result as in Eq. (3.12) obtained for the reflection coefficient.

Some example spectra of the stub tuner transmission amplitude, assuming lossless CTLs, are
shown in Fig. 3.9 (a). These curves are calculated using Eq. (3.17). The load resistance is fixed
to the matched value for each curve. Full matching happens at f = 3 GHz. The required CTL
lengths for this matching conditions are obtained via Eq. (3.8). In agreement with Eq. (3.19),
the peak values and the bandwidth are both proportional to 1/R. It gets apparent that the
stub tuner behaves like a band-pass filter.

The peak values at the matched frequency of 3 GHz as a function of load resistances are
plotted in Fig. 3.9 (b). The red curve represents an upper bound of the transmission achiev-
able with any impedance-matching circuit since the matching is perfect at each point. In
contrast, the blue curve shows the peak transmission with the stub tuner lengths fixed to get
full matching at 100 kS2.

Fig. 3.9 (c¢) focuses on the bandwidth of the transmission resonance. Again, the bandwidth
when being matched to each resistance is plotted in red and the bandwidth when being matched
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Figure 3.9.: Voltage transmission amplitude [t/|? of a lossless stub tuner. (a) Frequency de-
pendence when being matched at 3 GHz to four different load resistances. (b)
Peak value at the matched frequency as a function of load resistance R. While the
red curve shows the optimum achieved by matching to each resistance R, the stub
tuner parameters are fixed for the blue curve to have full matching at 100 k2. (c)
Full width at half maximum (FWHM) again matched to each load resistance (red)
and matched to 100 k€2 (blue). The insets show two spectra for resistances below
and above 100 k2. (d) Transmission amplitudes integrated over frequency.

only at 100 k2 is plotted in blue. Surprisingly, there is a crossover at 100 k2. For lower
resistances, the bandwidth for perfect matching is larger. However, the order changes above
100 k€2 and the bandwidth is even larger in the not perfectly matched case. The situation
becomes more evident by looking at the two sample spectra shown in the insets. The peak
transmission at fp is lower for both resistances when not being matched (blue curves). But
while the bandwidth of the non-matched blue curve is smaller for resistances below matching
(left inset), the bandwidth for resistances above matching (right inset) is in fact larger when
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being not matched (blue curve) than when being matched (red curve).

In our experiments, we are going to detect the transmitted signal integrated over a frequency
range. The integrated transmission coefficients over all frequencies from zero to infinity are
shown in Fig. 3.9 (d). Below the matched resistance of 100 k€2, the integrated signal shown in
blue is smaller than the optimal value achieved when always being matched. But above 100 k{2,
the effects of lower peak values and larger bandwidths seen in the right inset of Fig. 3.9 (¢)
compensate each other and it is possible to gain as much signal without full matching as with
perfect matching. However, being matched is still favourable in terms of signal to noise. In
order to reach the same integrated signal, the required integration bandwidth is larger without
matching than with perfect matching, but a larger integration bandwidth implies picking up
more background noise, as well. If the signal integrated over a small frequency range around
fo was plotted, the matched circuit would always deliver a larger signal than the non-matched
one. This is further explained in the next paragraph.

3.1.8. Figure of Merit for Noise Measurements

In this last section about stub tuners, we are going to quantify the benefit of a stub tuner for
noise measurements. To this end, the situations with and without impedance matching are
compared. In the later case, the signal is strongly reduced due to impedance mismatch, but it
offers significantly more bandwidth. However, in reality, the bandwidth (BW) is not infinite
but always limited by circuit components like circulators and amplifiers. In our setup, the
component with the smallest bandwidth of about 500 MHz is the circulator (see appendix D).

Schematics for the two cases of narrowband detection with a stub tuner and of wideband
detection without impedance matching are in Fig. 3.8 (a) and 3.8 (b), respectively. In any
case, the voltage drop over Zj caused by a voltage generated at the resistance side, Vg, can be
expressed with the help of the transmission function as V(D1)? = V3 - [gwltv|* df. Then, the
signal power detected over Zy and integrated in a bandwidth BW is

po [ VD7

BW 2o

_ Vi,
-4

Bw\tv|2 df. (3.20)

In the absence of impedance matching, the transmission function is simply a constant given
by voltage division:

_ Zo %o
~ Zy+R R’
for R > Zj. Hence, the detected power of Eq. (3.20) can be evaluated without impedance
matching to be

ty (3.21)
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For a lossless stub tuner at full matching, the transmission function of Eq. (3.19) can be
integrated analytically over the stub tuner bandwidth fy-4/7 - Zy/R:

/ P par= 2. (Z°)2 (3.23)

—BW/2 R

Py=BW- (3.22)

where fj is the resonance frequency. This leads to the ideal detected signal power for a lossless
stub tuner at full matching

fo V32
Psu =
tub 4 R2

, (3.24)
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In comparison with Py of Eq. (3.22), the stub tuner provides an improvement in detected power
as soon as fo/4 > BW.

One may argue that it is not worth making the setup more complex by adding a stub tuner
in consideration of the small gain in signal. However, the real strength of a stub tuner is that it
enables to measure with a much smaller bandwidth of only some MHz. To make this evident,
one has also to consider the background noise which is added after the matching circuit. The
main noise source in our setup is coming from the amplifier chain. Assuming a constant
background noise power spectral density Sy, the collected background noise depends linearly
on the measurement bandwidth. In this respect, narrowband detection is very beneficial. This
is captured by the signal to noise ratio (SNR), which is given in general by

P JpwltvPdf VE

SNR = —
SpgBW BW  SpeZ0’

(3.25)

when using Eq. (3.20) for the signal power. Without matching circuit, the signal power given
in Eq. (3.22) leads to

VEZy
SpgR?
While the BW drops out in the case of no impedance matching, the SNR of a stub tuner
depends on the chosen BW. Integrating the transmission function of a lossless stub tuner at
matching, as done in Eq. (3.19), results in

Vi fo
7 Spg RBW

SNRy =

(3.26)
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The BW dependence of the SNR is plotted in Fig. 3.10 (a). It is maximal at zero BW and
decreases for higher BWs. On the other hand, the signal increases with larger BWs. This
interplay is captured by the product SNR - P, where P is the signal power of Eq. (3.20). For
a lossless stub tuner at matching, this product becomes

Vi fe Zo
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It has a maximum slightly higher than the FWHM, as illustrated in Fig. 3.10 (b). Setting its
derivative to zero leads to the optimal bandwidth

BW°P' = 1.39 . FWHM = 1.39 - f; -

(3.29)
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Thus the choice that BW = FWHM which we made for the signal power in Eq. (3.24) and
which we continue to use is close to the optimal value and moreover simplifies the calculations.
With the signal power of Eq. (3.24), the SNR of a stub tuner matched to a resistance R > Z
is
T V}%
16 . SbgR
This is an upper bound in the absence of loss and at full matching. The transmission function
of Eq. (3.17) can be integrated numerically to obtain the SNRg, under realistic conditions.
In order to compare the efficiency of a matching circuit for different matching conditions
and even different impedance-matching circuits, we introduce the figure of merit gsng =

SNRstub =

. (3.30)
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Figure 3.10.: (a) The SNR for measurements with a lossless stub tuner at full matching is
decreasing monotonically with the bandwidth (BW). The SNRy without stub
tuner of Eq. (3.26) would be five orders of magnitude lower. (b) The product
SNR times signal power P has a maximum slighly above the FWHM, which is
indicated by the red dashed line.

SNRmatching/SNRg. With the help of Egs. (3.25) and (3.26), the general expression for the
figure of merit is found to be

SNR (R)2 Jswltv[*df

_ _ 3.31
ISNE = SNRy ~ \ Zo BW (3.31)

and Eq. (3.30) gives an optimal figure of merit of a lossless stub tuner at perfect matching:

T R

=— . —. 3.32
gSNR 16 Z, ( )
As the load resistance R is in our case much larger than Zj, a stub tuner provides a tremendous
increase in performance for noise measurements and other experiments for which a high signal

transmission is crucial.

3.2. LC Matching Network

Another, more common lumped-element approach for impedance matching is a combination
of an inductor and a capacitor. In this section, the properties of a simple LC' matching circuit
are introduced and compared with stub impedance matching. Later on, our concept for a
microwave LC circuit is briefly mentioned.

3.2.1. Basic Properties

The circuit drawn in Fig. 3.11 is one possibility of an LC matching circuit (not including
losses). At first, the matching conditions on L and C' are derived. For that, we consider the
input impedance seen from the low-impedance side, which is

1 _ R+iw- (L —CR?+ w?LC?*R?)
1/R+iwC 1+ w2C2R? '

Zin = iwL + (3.33)
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The requirement for matching is that Zi, = Zy. Equating the real and imaginary parts results

in
1 v RZ
C~ and L~ 7 9. (3.34)

- wWovV RZO wo

if R > Zy and with wg being the angular frequency at matching. Equivalently, these relations
can be written as

1 L
= — d — = RZj. 3.35
wo C an C 0 ( )
L =
R
@ % %z | v

Figure 3.11.: Schematic of a simple lossless LC' matching circuit.

The next step is to find a formula for the transmission function from the load to the low-
impedance side. Kirchhoff’s laws lead directly to the expression

_Vao _ Zo 1

== == . 3.36
VR R 142 —w2LC+iw-(CZy+ %) (3.36)

ty

When the circuit is matched to the load R and frequency fy, the frequency can be written
in terms of the matched frequency as f = fo + Af and the capacitance and inductance of
Eq. (3.34) can be inserted. This leads to the transmission function

Zo 1

ty = — - 3 (3.37)
Boatrzrio/a(1+40)-(1+4)
which can be approximated when R > Z; to

2o 1
ty ~ —— ——— 3.38
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In this limit, the amplitude squared of the transmission function takes on the Lorentzian
lineshape

1 [ Zo\? 1
wia (2L (330
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4 \ R N
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From this, the FWHM can be directly inferred to be

The integral of the transmission in Eq. (3.39) can be evaluated to be
T Zo 3/2
tvlPdf=fo- = (= , 3.41
| kar=n-%- () (341)
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when the bandwidth is set to the FWHM. This leads to the signal power detected with a
lossless LC circuit of [see Eq. (3.20)]

WfoV]% 20
Pr = oy =. 3.42
LC R RS ( )
With the help of Eq. (3.25), the SNR becomes
T V2
SNRy¢c = — - —£& 3.43
Y716 SR (3:43)

and finally the figure of merit for measurements with an LC' circuit is obtained by Eq. (3.31):
T R

=Tz o 3.44
gSNR = 16 7 (3.44)
FWHM Signal power SNR JSNR
A 2o | SVE JZo [Zo |l x V2 | 2 R
Stub tuner | fo- - -3 TRV Ve~ E'Sbe 5 =
. Zo | TfoVE Z ~ V2 * R
LC circuit | fo-2¢/% | —g &~ \/% . Sbe E-£

Table 3.1.: Summary of the key properties of stub tuner and LC matching circuits in the
absence of loss, at full matching and when R > Zj.

For comparison, table 3.1 summarises the key parameters of stub tuner and LC matching
circuits. The bandwidth of the high transmission window of an LC' circuit is larger than
the one of a stub tuner by a factor 7/2 - \/R/Zy. Also the power of the detectable signal is
enlarged by the same factor. This is not very surprising since the peak transmission coefficient
at the matched frequency is fixed to |ty|> = 1/4 - Zy/R for any matching circuit and only
the bandwidth varies from circuit to circuit. Consequently, the larger signal power of an LC
circuit and the increased background noise due to the larger bandwidth compensate each other,
leading to the same SNR and figure of merit gsng than for a stub tuner.

In conclusion, an LC matching circuit provides the same increase in SNR than a stub
tuner. But the bandwidth for an LC circuit scales with /Zy/R instead of Zy/R for a stub
tuner, which results in a much higher bandwidth when the load resistance is large. This has
advantages and disadvantages. If one wants to reduce the read-out time, an LC' circuit is a
better choice. The downside of a large bandwidth is that the unavoidable frequency dependence
of the signal transmission through the setup complicates the calibration. Within the stub tuner
bandwidth of some megahertz when being matched at 3 GHz to a high-resistance sample, the
setup transmission is well approximated by a linear curve. But for larger bandwidths, a better
knowledge of the frequency dependence is necessary.

At the end of the discussion on how to optimise the SNR, we want to note that it is equally
important to minimise the background noise Sy in the first place, as for instance with Joseph-
son parametric amplifiers [20, 21]. Furthermore, the SNR is not the only limiting characteristic
of an experiment. What counts experimentally is to reach a certain SNR which is high enough
for the intended accuracy. Any further increase of the SNR does not reveal new features. But
the larger the figure of merit, the smaller is the averaging time needed to reach the same SNR.
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3.2.2. Towards a Microwave Realisation

The capacitance and inductance values needed for matching are obtained by Eq. (3.34). For
example, to match a load of 100 k2 at 3 GHz, a capacitance as low as C = 24 pF and
an inductance as high as L = 120 nH are needed. Parasitic capacitances and resistances of
commercial lumped-element inductors with such a high inductance make it difficult to operate
at gigahertz frequencies.

Our approach is to use superconducting spiral inductors [33, 34] as shown on the test sample
in Fig. 3.12 (a). As a low-loss substrate, we use an undoped silicon substrate with a 170 nm-
thick layer of silicon oxide. This substrate is compatible with our usual fabrication process
for nanoscale devices. Therefore, it would be possible to place the high resistance device on
the same chip between the inductor and the ground plane. In this way, the stray capacitance
between the matching circuit and the device - which would lead to an RC-filtering effect - is
minimised. The light grey area in Fig. 3.12 is 150 nm-thick sputtered niobium. The inductor
pattern with 9 turns is written by PMMA-base electron-beam lithography and subsequent
etching with an Ar/Cl plasma in an inductively coupled plasma (ICP) machine. The outer
diameter of the inductor is 240 pm, the line width is 2 pum and the spacing between the lines
2 pm, as well.

In order to connect the planar coil centre to the outside, a bridge is needed. In the test
resonator of Fig. (3.12), the bridge is directly connected to the ground plane. The idea for
later samples is to place the high-resistance device between bridge and ground. A closer look
on the bridge can be taken in Fig. 3.12 (b). The niobium bridge has a width of 3 um and is
supported by a crosslinked PMMA layer with a height of about 500 nm, which looks black
in the picture. Crosslinking PMMA is achieved with an e-beam dose approximately 10 times
higher than its clearing dose. The bridge fabrication including two additional lithography steps
is actually more difficult than the fabrication of the planar inductor itself.

(a)

Device would
come here

Ground plane™”

Feedline

Figure 3.12.: (a) Picture of a spiral inductor with an inductance of about 80 nH. It is made
with niobium on Si/SiOs. is connected to a feedline on the bottom and at the
other side to ground via a bridge. The high-resistance device is going to be placed
between bridge and ground. (b) Rotated close-up view on the niobium bridge,
which is supported by crosslinked PMMA, which looks black in the picture.

The test sample in Fig. 3.12 (a) is an LC' resonant circuit, with the capacitance arising from
stray capacitances to the nearby ground plane and to the back plane. A resonance spectrum
is gained by measuring the transmission of the attached feedline. By fitting to an appropriate
model, values for L and C' are obtained. A simple LC model applied to the first measurements
on this kind of circuits reveal an inductance in the order of 80 nH for an inductor with 9 turns.
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The work on LC matching circuits is successfully carried on by the PhD student Cezar
Harabula. In the meantime, he did an extensive study on parasitic effects, worked on a more
comprehensive and accurate model than the simple one presented here and achieved good
matching to a carbon nanotube quantum dot.

3.3. Bode-Fano Criterion

In the context of the discussion about the resonant circuit bandwidth, the question arises
whether there is any fundamental bandwidth limit. This small section is meant as a side
remark, as it is not the intention of this thesis to push the bandwidth to the limit.

(a) (b) I
M) Lossless cL | |r 1
<D | matching circuit T L rt
0 —> > O
Aw

Figure 3.13.: (a) Matching network with a parallel RC load as an example for the Bode-Fano
limit. (b) Example reflection coefficient with a transmission window of size Aw.

The Bode-Fano criterion [10] gives a theoretical limit of the bandwidth achievable with any
(lossless) impedance-matching circuit. The criterion depends on the type of load impedance.
In case the load consists of a resistance R and a capacitance C' in parallel, as illustrated in
Fig. 3.13 (a), the Bode-Fano criterion states that

/Ooolog (M) dw < % (3.45)

It sets a restriction to the frequency dependent reflection coefficient I'(w). More precisely, a
small reflection coefficient (or good matching) is only possible in a limited frequency range. To
clarify this, let us assume we wish to design a circuit with the reflection characteristic shown
in Fig. 3.13 (b). Then, the Bode-Fano criterion leads to the restriction

/Ooolog (]F(lw)|) dw = /Awlog (\1“1m|> dw = Aw - log (1“1m> < R% (3.46)

It shows the trade-off between large bandwidth Aw and small reflection minimum I'y,. A
perfect matching, meaning that I';,=0, is only possible for a discrete set of frequencies with
Aw = 0.
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Fabrication of Carbon Nanotube Samples

Quantum dots (QDs) formed in single-wall carbon nanotubes (CNTs) have been intensively
investigated in our group for a long time. In particular when combining quantum dot physics
and superconductivity, exciting results have been achieved. Hybrid device geometries consisting
of CNTs with superconducting and normal leads have resulted in the observation of highly-
efficient Cooper pair splitting [35], in studies of the interplay between the Kondo effect and
superconductivity [36] or in detailed sub-gap spectroscopy revealing Andreev processes [37,
38], to name only a few. In these experiments, the average currents were measured using
low-frequency lock-in techniques. Our aim is to extend the measurement scheme by a stub
impedance-matching circuit, which allows to additionally measure the noise on top of the
average current. These measurements can provide otherwise unattainable insight into transport
processes. In spite of profiting from the CNT fabrication knowledge acquired over many years
in the group, some adaptions were necessary to make it compatible with the on-chip microwave
circuit fabrication.

For optimal RF results with a stub tuner attached to a CNT device, the following require-
ments should be fulfilled:

1. The microwave losses of the stub tuner must be kept as small as possible, such that its
internal quality factor exceeds the load quality factor up to large device resistances (see
section 3.1.4).

2. The distance between the stub tuner and the device must be as short as possible. The
device resistance together with the stray capacitance of the line, which connects the
device with the stub tuner, form an RC low-pass filter. In conclusion, a long distance
between the device and the stub tuner causes a signal reduction.

During the PhD time, I have carried out several fabrication test runs and investigations to live
up to these requirements. The resulting fabrication procedure is presented in this chapter. A
table with a step-by-step description can be found in appendix C.

4.1. Carbon Nanotube Stamping

4.1.1. Carbon Nanotube Growth

CNTs are grown by chemical vapour deposition (CVD) at high temperatures. During the PhD
thesis of Jiirg Furrer, a dedicated CVD oven was built and a growth recipe was developed,
which delivers a large amount of single-wall, high-quality CNTs [39, 40].

The basis for the growth are catalyst particles. We use a mixture of small iron, molybdenum
and aluminium oxide particles, which are diluted in isopropanol. This dilution is sonicated with
strong power to separate all particle clusters. Then, the catalyst dilution is spin coated on
the substrate. If desired, CNTs can be grown locally by spin coating the catalyst on a resist
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mask. A careful resist lift-off still keeps most of the catalyst particles on the unprotected
area. Finally, the growth is done for 10 minutes at 950 °C in a hydrogen/methane atmosphere.
While heating up and cooling down, the oven is flushed with a mixture of argon and hydrogen.
The detailed growth recipe can be found in appendix C.

4.1.2. How to Get an On-Chip Stub Tuner

The best way to bring the CNT sample and the matching circuit close together is to place
them on the same chip. Apart from minimising the RC-filtering effect as mentioned above,
this makes the circuit performance more reproducible, as well. The RF properties of bond
wires are not easy to model and to reproduce because they depend strongly on the wires’
length, shape and their surrounding.

Combining a microwave circuit with CNTs is complicated by the fact that CNT growth is
done at high temperatures. These growth temperatures destroy the superconducting properties
of niobium. In contrast, niobium nitride is supposed to be robust against high temperatures. In
fact, thermal annealing even causes a higher critical temperature due to less lattice distortions
[41]. In order to test the RF quality of niobium nitrite after CNT growth, we studied the
resonance of A/4-resonators, as it is demonstrated in section 2.4.4. We observed that the
quality factors drop below 100 at 4.2 K. In conclusion, fabricating a stub tuner and then
growing CN'Ts on-chip is not an option.

Therefore, we have checked a reversed fabrication order. The idea was to grow CNTs first
locally, protect this area with a resist layer and then sputter niobium. Niobium is lifted off
in the CNT area and in the following, a stub tuner can be patterned on the niobium layer
close to the CNTs. Finally, a CNT can be chosen and connected to the stub tuner in a last
evaporation step.

As a test, we have fabricated \/4-resonators on substrate, which was in the CVD oven
before. Again, these resonators showed a drastic quality factor reduction to values below 100
at 4.2 K. A possible reason might be amorphous carbon deposited during growth. To confirm
this assumption, the substrate surface was cleaned with a long oxygen plasma between growth
and niobium deposition. Indeed, the resonances got sharper and quality factors around 500
were measured at 4.2 K, which is on the other hand still considerably smaller than the quality
factors of about 5000 obtained with pristine substrate. This indicates that the growth process
is also harmful to the Si/SiOg substrate itself. Even though a SiOs reduction in hydrogen
requires temperatures above 1000 °C [42], a reaction at lower temperatures might be possible
at defect sites on the surface. When we etch 10 — 20 nm of the SiOg surface after growth
with an Ar/Cly plasma and then make resonators, the quality factors reach again values up to
3000. An increased surface roughness induced by the plasma etching might be the reason why
the quality factors are not anymore as high as with pristine substrate. We observed a similar
quality factor degradation with a silicon nitride substrate.

In summary, the results obtained with the order CNT growth and then stub tuner fabrication
are not ideal either. This brought us to the idea to make CNT growth and the microwave circuit
on two separate substrates and to transfer the CNTs later on.

4.1.3. Stamping Procedure

To overcome the problem of oxide degradation during CN'T growth as discussed in the previous
section, we have adapted a CNT stamping procedure developed in the group of Takis Kontos
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[43]. Fig. 4.1 illustrates our CNT stamping process.

Growth substrate

Target substrate

Figure 4.1.: Illustration of the CNT stamping process. CNTs are transferred by pressing the
growth substrate and the target substrate together in a mask aligner. The growth
silicon substrate is shown on the left half, containing an area of pillars. The left
close-up view shows one pillar before CNT growth with dark catalyst particles
in the centre. The pillar after growth containing CNTs on the surface is seen in
the right close-up view. Images of the target substrate are shown on the right
half. Bottom gates (dark lines), markers and T-shaped connecting lines to the
surrounding microwave circuit are already prepared. The bottom picture shows
an example of stamped CNTs on bottom gates. (Reprinted with permission from
[44]. © 2015 by The American Physical Society.)

The growth substrate is silicon with a 170 nm-thick thermal oxide. We want to pattern a
2 x 2 mm?-large area full of little squares with electron beam (e-beam) lithography. The resist
has to stay on the exposed squares, which means we are looking for a negative resist. HSQ is a
good candidate because it is very resistant to plasma etching. On the other hand, we also need
wet HF etching for the stamp fabrication, which easily removes HSQ. Since PMMA withstands
HF etching and is easy to remove in solvents, we use a bilayer of thick PMMA (~ 1 pm) resist
and a thin layer of HSQ on top. The HSQ development in TMAH after e-beam writing only
removes the unexposed HSQ, while the PMMA remains everywhere. A three-step etching
leads to the pillars, as described in the following. First, the PMMA not covered with HSQ
is removed by an oxygen plasma. In the second step, SiOs is removed with HF wet-etching.
HF also removes the HSQ layer and thus only a PMMA mask remains. The third step is to
etch deeply into silicon with an SFg plasma and finally to remove the PMMA on the pillars
in acetone. The result are square pillars as shown on the bottom left of Fig. 4.1 with a size of
50 pm and a height of 4 ym.

What remains is to grow CNTs. As explained before in section 4.1.1, Fe/Mo catalyst particles
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are spin coated and then the CVD process is done in the growth oven. When stamping, only
a small amount of the CNTs plus some catalyst particles are transferred. Therefore, we wish
to have a high CNT density on the growth substrate. This is why we use the original catalyst
solution [39] without further dilution and we spin coat catalyst solution for 5 times.

In the meantime, the target substrate is prepared. As visible in Fig. 4.1 on the right side,
the stamping area contains a grid of bottom gates and markers and connecting lines to the
surrounding RF circuit (not visible). For the CNT stamping process, the growth substrate
is glued with PMMA on a transparent glass plate and mounted in a mask aligner, which is
normally used for UV lithography. The two substrates are aligned with the optical microscope
to be on top of each other and pressed together. Since the growth substrate is not transparent,
only a rough alignment is possible and the pillar area is larger than the bottom gate area
to account for some misalignment. Alternatively, one could use a transparent quartz growth
substrate, which would allow for a much preciser alignment with the cost of a more laborious
pillar etching process. Once the growth substrate is glued on the glass plate, it is important to
do the alignment and stamping quickly in order that the PMMA glue still remains soft and is
able to balance any gap caused by not perfectly horizontal substrates. In my experience, one
usually ends up with about 3 — 6 straight CNTs of usable length crossing some bottom gates
if there are six bottom gate areas on the target substrate, as shown in the top right picture.
This is enough for our purpose, since there is only space for 3 stub tuners around one stamping
area.

The yield of transferred CNTs decreases rapidly if one uses the same stamp a second time.
But the stamps can be reused in the following way. By wet etching with HF, approximately
10 nm of the SiO, pillar surface is removed. One gets back a clean pillar surface, which allows
to spin coat catalyst again and grow CNTs for a next stamping.

A crucial point for successful stamping is that there are no dirt particles on the pillar surfaces,
which would act as spacers during the stamping. For that, the stamp substrate needs to be
cut to the final size and thoroughly cleaned before spin coating catalyst. The catalyst solution
itself needs to be sonicated for a long time with high power to avoid big particle clusters, which
would also separate the two substrates while stamping. The reason for doing many small pillars
instead of one large one goes in the same direction. Like this, the contact area is reduced and
with it the chance that a big particle on the surface reduces the stamping yield.

This way of stamping transfers many CNTs in a random manner. In contrast, there are
also more elaborate ways to stamp single CNTs precisely on source and drain contacts of an
otherwise fully prepared and already bonded sample at room temperature [31, 45] or even
inside a cryostat [46].

4.2. Fabrication Steps

This section is devoted to the fabrication procedure. It contains descriptions of the different
fabrication parts, which lead eventually to a CN'T device connected to an on-chip stub tuner.
Whereas the main text concentrates on more general considerations and highlights some crucial
steps, all fabrication details are listed in appendix C.

4.2.1. Bottom Gates

As mentioned in section 2.4.3 about coplanar transmission line (CTL) loss sources, one cannot
build a low-loss RF circuit on a doped substrate. Therefore, the often used gating with a global
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doped-substrate backgate [47] is not an option and alternative local gates are needed to define
and tune QDs in CNTs.

Si,N, (50 nm)
SiO, (170 nm)

Figure 4.2.: Different kinds of bottom gates, which are covered by SisNy. (a) Area with narrow
gates, allowing to form single and double QDs. The little crosses between the gates
are markers. (b) Cross-section showing the gates in yellow (not to scale) (c) Long
and wide gate stripes to form single QDs. (d) SizN4 window etched to contact the
gate later on.

Two examples of bottom gate structures are shown in Fig. 4.2. Multiple QDs can be formed
by the version with several narrow gates illustrated in Figs. 4.2 (a) and (b). With the wide
gates in Figs. 4.2 (¢) and (d), a single QD can be defined.

In any case, a 100 x 100 ym?-large area is covered with bottom gates and markers to locate
CNTs later on. One stamping area contains six of these gate areas close to each other, as
shown in Fig. 4.1 on the right side. The gates are patterned with standard PMMA-based
e-beam lithography and subsequently, 5 nm of titanium and 30 nm of gold are deposited in an
e-beam evaporation system. The gates are isolated by a silicon nitride (Si3Ny4) layer on top with
a thickness of 50 nm, which is deposited in a plasma-enhanced CVD (PECVD) process. This
is done externally in the PSI. The temperature of about 300 °C in the PECVD chamber makes
it impossible to use any resist mask and therefore the SizNy layer covers the entire substrate.
We open windows at the ends of the gates in the next step to make the gates accessible, as
shown in Fig. 4.2 (d). The windows are defined with e-beam lithography and etched with a
CHF3/02 plasma.

4.2.2. Stub Tuner

Having the covered bottom gates ready, the next step is to fabricate the stub tuner and in the
same step bond pads for the gate lines and their connection to the stamping area. A picture of
the resulting circuit with three stub tuners and ten bond pads for the DC gates located around
the central stamping area is shown in Fig. 4.3 (a). For this, we cover the bottom-gate area
with PMMA resist and deposit 100 — 150 nm of niobium in a magnetron sputtering machine.
Lift-off removes the Nb layer on top of the bottom gate area. Then, the CTLs for the stub
tuners are defined with e-beam lithography. The same structures could also be patterned with
photolithography since our line widths are not smaller than 5 pum. While photolithography
is faster and the available writefield is much larger, the structure can be easily modified with
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e-beam lithography. This flexibility is an important advantage during the development of a
new circuit and the writing time for one stub tuner of about 5 minutes is still reasonably fast
for our purpose. The e-beam writefield limitation of our system to 2 x 2 mm? is the reason for
the meander-shaped CTLs shown in the figure.

Figure 4.3.: (a) Image of the entire chip. The stamping area in the centre is surrounded by
three stub tuners and ten DC gate lines. The blue area is SiO2 and the green area
SizsNy. (b) Example of a CTL open end made with niobium on SiO3. (c¢) Side
view on an edge of (b). The cross-section shows the 150 nm-thick niobium layer
(light grey) and the SiOg below (dark grey). (d) Edge of another structure using
the same plasma etching process as in (c¢) but on a silicon substrate without oxide
on top. Many pillars appear on the etched surface due to the high etch rate of
silicon.

Niobium etching is done in an inductively coupled plasma (ICP) machine. Anisotropic
etching is achieved with an Ar/Cly plasma. An example of an open-ended CTL fabricated
with niobium on SiO3 and a tilted close-up view on the edge are shown in Figs. 4.3 (b) and (d),
respectively. The etch rates of SisN4 and SiOs are not much lower than the one of niobium.
It can be seen that the trenches are almost twice as deep as the niobium thickness. First of
all, the over-etching ensures that all niobium is definitely gone and secondly, deep etching of
the substrates moves possible two-level states (TLS) at the substrate away from the high-field
region and can reduce dielectric losses of the CTL [26]. The deep etching of the trenches for
the stub tuner removes the entire 50 nm-thick SigNy layer beneath and the SiOs substrate
appears in blue in Fig. 4.3 (a). In the central bottom gate area, niobium is removed by lift-off
and hence the SizNy layer is visible in green.

The etch rate of Si is 2-3 times larger than of niobium. As a consequence, it is problematic to
have silicon directly beneath niobium. Niobium residue islands building at the instance when
almost the entire niobium layer is etched, act like etch masks for the fast Si etching and lead
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to pillar-like structures on the Si surface, as it is visible in Fig. 4.3 (d). Because of its smaller
etch rate, SiO2 beneath niobium leads to a much smoother surface [see Fig. 4.3 (¢)]. The same
is true for SigN4, which has a similar etch rate to that of SiOs.

We applied two different fabrication orders. The first one goes as follows. Bottom gates
are fabricated, then the CN'Ts are stamped and already contacted and afterwards the niobium
layer for the stub tuner is sputtered with some overlap between the CNT contact metal and
the end of the stub tuner. Niobium on palladium or gold leads to reliable ohmic contacts.

Later on, we changed the order in the sense that the stub tuner is fabricated first and then
the CNTs are stamped on the empty central area. The contact between the CNT and the
stub tuner end is fabricated as a last step. Niobium oxidises quickly and therefore a short
in-situ plasma etching of the oxide layer is needed before evaporating metal on top of niobium.
Because the plasma etching would attack the CNT, it is not possible to make a direct connection
between the stub tuner end to the CNT at once. Instead, we make short palladium contacts to
the stub tuner end, the ground plane and the gate line even before CN'T stamping. Such lines
are visible in the top right image of Fig. 4.1 as T-shaped elements with light beige colour. This
additional lithography step requires more work with the advantage that less lithography steps
have to be done after the CNT is on the chip. This reduces the amount of resist residues on
the CNTs, which can be harmful to their quality. Furthermore, when making superconducting
lead contacts to CNTs (see section 4.2.5), it is crucial to do the lead evaporation as a last step
owing to the low melting point of lead and indium.

4.2.3. Normal Metal Contacts to Carbon Nanotubes

After stamping, the CN'Ts are located and selected with a scanning electron microscope (SEM).
To make the CNTs visible, or more precisely to observe their screening effect on the substrate,
a low acceleration voltage of 1 kV and the in-lens detector are used [48].

Obviously, we are looking for CNTs crossing a bottom gate and with a reasonable length of
at least a micrometre such that it can be contacted on both sides. Apart from that, there is no
strict rule how to select the CNTs. Straight CNTs are preferred since curvature and angles are
attributed to defects in the CNT lattice. Moreover, very bright and thick CN'Ts are possibly
multi-wall and therefore ignored.

(a)

stub tuner end

gate
-£ 500 nm

ground

Figure 4.4.: (a) Picture showing the palladium source, drain and gate connections between
the device and the surrounding niobium. (b) Palladium (Pd) source and drain
contacts to a CNT.
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Contacts to the selected CN'Ts are patterned by e-beam lithography. Instead of the standard
PMMA resist, we switched to the resist ZEP for all lithography done after the CNT is on the
chip. ZEP is shown to leave less resist residues than PMMA and hence resulting in a higher
contact yield [49]. Certainly, clean CNT-metal interfaces are an important prerequisite for
reliable metal-CNT contacts. Still, our contact resistances scatter within more than an order of
magnitude even for samples on the same chip, which have all experienced the same fabrication
conditions.

If a completely transparent contact to a CNT was achieved, the resulting resistance would
be h/4e? =~ 6.5 k2 according to the four channels present in a CNT due to the two-fold spin
and valley degeneracies. The observed resistances however are often much higher, indicating
the formation of a barrier at the metal-CNT interface. On the one hand, these barriers lead to
a charge confinement in the CNT for free. On the other hand, the lack of control and tunability
of the barrier heights sets limits on experiments with such naturally formed QDs and is one
of the main obstacles for the large scale integration of CN'Ts in mesoscopic devices. In spite
of several theoretical and experimental studies on contact resistances, partly contradicting
results were obtained and no general conclusion on the underlying mechanism could be drawn
yet [50, 51].

The textbook argument for the electrical properties of a metal-semiconductor interface is
given by the Schottky-Mott rule [52]. It is based on the different Fermi levels of the two
materials. If they are brought into contact, the Fermi level difference is equilibrated by a
charge flow across the interface, which in turn leads to the formation of a Schottky barrier.
However, experimental data of bulk materials do often not agree with predictions from the
Schottky-Mott rule. This is explained by the Fermi-level pinning due to interface states.
For one-dimensional semiconductors on the contrary, such as CNTs, Fermi-level pinning is
predicted to play a minor role [53]. Nevertheless, it is an experimental fact that metals with
similar work functions yield different contacts to CNTs. Interestingly, first-principles studies of
the interface properties on the microscopic level reveal the importance of the chemical bonding
between metal and CNT [54-58]. According to their studies, the contact resistance depends
strongly on the metal’s wetting properties and the hybridisation between metal and CNT.

In any case, it is established that both palladium [59] and titanium [56, 60] can provide
highly transparent contacts to CN'Ts and these are therefore our two materials of choice to
contact CN'Ts.

4.2.4. Superconducting Niobium Contacts to Carbon Nanotubes

In order to observe interesting Cooper pair-involved physics like Andreev processes [61-63],
one superconducting contact to the CNT is needed. The type-1I superconductor niobium with
a relatively large gap (bulk value A = 1.45 meV [64]) offers the potential to resolve subgap
features up to high magnetic fields [38].

The recipe used here for niobium contacts to CNTs is developed by Jens Schindele [51]
and Jorg Gramich [65]. The actual contact to the CNT is established via a 4.3 nm-thick
titanium layer, which is sputtered with a very low power. We believe that a too high power
might destroy the exposed CNT part. At least we measured very high contact resistances with
higher sputtering power. The titanium thickness is a compromise between good CN'T wetting
and keeping the titanium layer well proximitised by the niobium above.

An example of a niobium-contacted CNT is shown in Fig. 4.5 (a). The white parts at the
edges are sticking out flakes, which are sputtered on the resist walls. We intentionally use a
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Figure 4.5.: (a) CNT on a silicon nitride substrate with a wide bottom gate beneath. It is
contacted on one side with titanium/niobium (Ti/Nb) and on the other side with
palladium (Pd). The titanium thickness is 4.2 nm and the niobium is 40 nm-thick.
(b) and (c) Differential conductance in the single dot regime at a base temperature
of 20 mK. (b) When the magnetic field B = 0 T, the conduction suppression for
bias voltages eVhias < A is apparent (with A being the superconducting energy
gap). (c) The superconducting gap is completely suppressed at B = 1 T and the
conduction triangles touch.

vertical resist profile. The reason is that sputtering happens quite isotropically and the entire
undercut area would be filled with metal, leading to a rather unpredictable stripe width. In
contrast, a large resist undercut is desirable to fabricate the thermally evaporated palladium
contact. It simplifies the lift-off step, flakes along the edge are not present and since thermal
evaporation is anisotropic, no metal residues are left in the undercut area.

The DC conductance of this CNT device with one superconducting niobium contact at a
base temperature of 20 mK is shown in Fig. 4.5 (b). A single QD is formed, whose energy
levels can be tuned by the wide bottom gate. The superconducting density of states causes
a current suppression for bias voltages Vias < A/e. A superconducting gap A ~ 0.7 €V is
inferred. At a magnetic field of 1 T, the gap is completely closed and the Coulomb blockade
triangles touch, as shown in Fig. 4.5 (c).

4.2.5. Lead Contacts to Carbon Nanotubes

Another large-gap superconductor is lead, which is of type I. Its bulk value of the superconduct-
ing gap is A ~ 1.3 eV [66]. Contact to CNTs is achieved with a three-layer system, deposited
successively in an e-beam evaporation machine. This process is developed by Jorg Gramich
[67]. The 4.5 nm-thin palladium layer on the bottom makes the actual contact to the CNT.
A sample stage cooling to a temperature below -40 °C is crucial to obtain a homogeneous
layer. Due to their low melting points, the lead and indium layers are evaporated at a sample
stage temperature below -90 °C. The indium capping layer prevents lead from oxidising. It
is important that lift-off is done at room temperature, without heating. No high-temperature
process is possible at all after lead is evaporated due to the low melting point of lead and
indium.

Fig. 4.6 (a) shows a CNT with one lead and one palladium contact. A ring of particles
around the lead stripe is observed. Measurements of such a sample are very unstable due to
charging and discharging of particles next to the CNT. Diffusion of indium and/or lead to the
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Figure 4.6.: (a) CNT device with one palladium/lead/indium (Pd/Pb/In) contact (thicknesses
4.5/110/20 nm) and one Pd contact. There is a side gate plus a wide bottom gate,
which is covered with silicon nitride. The Pb stripe is surrounded by a ring of
particles. (b) A 500 nm-wide Pb stripe with the same capping layers as in (a)
on a SiOy substrate. There are almost no particles around the stripe because the
substrate could be thoroughly cleaned before the ZEP-based lithography.

undercut area causes this particle ring, which is observed on SiOs and SigNy4 substrate.

If the same lithography with ZEP is repeated on a well cleaned substrate, on which no previ-
ous fabrication was done, the number of diffused particles is negligible, as seen in Fig. 4.6 (b).
The main difference is that the CNT sample substrate has undergone three PMMA and one
ZEP steps before and a thorough surface cleaning was not possible any more because it would
destroy the CNT. Resist residues probably turn the substrate surface from hydrophilic to
hydrophobic, which enhances the metal diffusion.

In summary, for combining a CNT device with lead contacts and a RF circuit on-chip, a
method has to be found to turn the substrate surface hydrophilic again before the lead step
without attacking the CNT or perhaps all PMMA steps for fabricating the stub tuner could
be replaced by using a thick ZEP resist, which obviously leaves much less residues.
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Microwave Measurement Setup

A prerequisite for measurements with quantum dots and superconductors is to cool the device
to milli-Kelvin temperatures. Only in this temperature range, the thermal energy is well below
the energy gap of the superconducting material and the addition energy of a typical quantum
dot. We deduced a gap size A ~ 0.7 meV for our sputtered niobium (see Fig. 4.5 (b)) and the
addition energy of our quantum dots defined in carbon nanotubes is of the order of 15 meV
(see Fig. 6.10).

We were in the lucky position to receive a new dilution refrigerator for our project, an
Oxford Triton cryogen free system, to build up a dedicated microwave measurement setup. It
offers a lot of space inside to place bulky RF components at cold temperatures. The setup
is designed to perform RF and DC measurements simultaneously. Inside the cryostat, a base
temperature of 20 mK is reached. However, due to the small electron-phonon coupling at
low temperature, the conduction electron temperature is higher. Thermal noise measurements
indicate an electron temperature of about 100 mK (see Fig. 7.9 (d)) for a device connected to
the RF coaxial cable. This corresponds to a thermal energy of kT =~ 90 ueV.

Two pictures of the cryostat are shown in Fig. 5.1. The system contains several plates,
which are thermally isolated. The temperature decreases stepwise from the top plate to the
mixing chamber plate. In operation, metallic cans around the plates act as radiation shields
and the entire system is in vacuum to suppress heat exchange. There are two independent,
closed cooling cycles. A pulse tube cooler runs the pre-cooling cycle and brings the system to
an intermediate temperature. In conventional wet dilution refrigerators, this job is done with
a liquid helium bath, which needs to be refilled regularly. Secondly, the dilution cycle running
with a mixture of 3He and “He and cools the sample stage to milli-Kelvin temperatures.

Even though the cryostat images look fancy, a clearer understanding of the setup is gained
with the help of the sketch in Fig. 5.2. It shows the entire setup and serves as the basis for the
rest of the chapter. A detailed list of all components with brand, part numbers and technical
specifications is given in appendix D. Since our project included building up the measurement
setup, this chapter contains some details on different parts of it and in the end some ideas
about possible improvements.

In the meantime, we even received a second cryostat from BlueFors for our project. It is a
cryogen free system, too. In this croystat, we built up a very similar RF setup as in the Triton
with some additions. Apart from a measurement line for operation around 3 GHz, there are
also lines for 1 and 6 GHz. A very useful component for calibration is a low-temperature RF
switch right before the sample holder. It enables to switch the RF connection from the actual
device to a reference sample and back. The switching is achieved by sending a voltage pulse
to the switch. However, all results presented here are conducted on the Triton setup.
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Low-pass filter Bias tee

Directional coupler

A Sample puck

Figure 5.1.: (a) The Triton cryostat without any cans and without magnet. The sample puck
is mounted on the circular docking station from below. There are five thermally
isolated plates with decreasing temperature from top to bottom. (b) Mixing cham-
ber (MC) plate showing the mounted RF components (without circulator). The
MC plate has a diameter of about 40 cm.

5.1. Sample Puck

In this section, we consider the lowermost part, where the sample is mounted. The sample
resides inside a so-called puck. A picture of it is seen in Fig. 5.3 (a). The sample holder in
the middle is hanging on the DC wires and the coaxial cables. The puck’s top part, which is
plugged into the docking station of the cryostat, is shown in Fig. 5.3 (b). In this picture, the
puck is closed by a metal shield. Round SMP RF connector are visible, which are connected
by pressing (not screwing like SMA connectors).

A printed circuit board (PCB) serves as a sample holder. The first PCB version I designed
is shown in Fig. 5.3 (c). Samples are glued into the central area. All connectors are on the
front side. There are two SMP connectors for connecting to the coaxial cable and two nano-
connectors, which are connected to the two DC looms in the cryostat. The connector pins
are soldered to metal lines on the PCB. They lead to the bond pads around the sample area.
There are in total 18 pads to connect to DC wires and 2 RF pads. The PCB back side consists
of one large ground plane, which is connected by many vias to the ground plane on the front
side. The PCB is screwed on a copper plate.
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Figure 5.2.: Sketch of the cryogenic measurement setup. For reflection measurements, a vector
network analyser (VNA) is used and for noise measurements a signal and spectrum
analyser (SSA) with only the RF output line attached.

The puck is placed in the centre of a vector magnet with maximum fields of 6 T in the
vertical direction and 1 T in the other two directions. The magnet’s hysteresis is determined
with a Hall bar sample to be in the range of 3 mT.

Thanks to the bottom loading system, the puck can be exchanged while the system is kept
cold with the pre-cooling cycle. This way, a sample exchange can be done within 24 hours
until reaching base temperature again.

5.2. RF Wiring

We now follow the RF signal path depicted with arrows in Fig. 5.2. The input line is attenuated
at each temperature step to damp radiation leaking from the high-temperature to the low-
temperature side. The total attenuation of the input line is ~ 72 dB around 3 GHz. A
stainless steel coaxial cable with a low thermal conductivity is used. On the mixing chamber
(MC) plate, the signal is fed into a directional coupler. It transmits the signal with 20 dB
attenuation to the sample’s source contact, where some fraction is reflected. The drain side of
the sample is grounded.

The directional coupler guides the reflected signal into a separate output line. The bias tee
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Figure 5.3.: (a) Sample puck with the metal shield removed. DC cables (colored) and two
coaxial cables lead to the PCB, which is in the centre. (b) View on the top of
the puck. This top plate is plugged into the cryostat’s docking station. The puck
is now closed with the metal shield. (c) Sample holder PCB. Samples are glued
to the middle area and bonded to the PCB pads around. Close to the PCB edge,
there are two high-frequency SMP connectors and two tiny nano-connectors for
DC cables from Omnetics. (d) Measurement schematic concentrating on the DC
part. The bias voltage is applied to the source (S), while the drain (D) lead is
grounded. The DC current is measured on the source side, as well.

enables to apply from this side a DC voltage to the RF port of the sample. A circulator prevents
radiation going the way back to the sample, in particular noise generated by the amplifier. A
low-temperature amplifier with a gain of about 35 dB is placed on plate 2, followed by one (or
for noise measurements even two) room temperature amplifiers, each with a gain ~ 35 dB. In
an amplifier chain, the noise added by the first amplifier is magnified the most or in other words
the dominant noise source is the first amplifier if its amplification is high enough compared
to the amplification of the following one. Therefore it is crucial to use a low-noise cryogenic
amplifier.

For reflectometry, the input and output lines are connected to a vector network analyser
(VNA). It combines a signal generation unit used for the input signal and a homodyne detection
unit to quantify the signal on the output line. The impedances of both ports are Zy = 50 2.
In contrast, noise measurements do not need any RF input signal and a signal. We use a
spectrum analyser (SSA) to detect the power on the output line. Also with the SSA, the
power dissipated over a resistance of 50 €2 is measured.

5.3. DC Wiring

To apply DC voltages to the sample, there are two looms going up the cryostat, each containing
24 constantan wires. Outside the cryostat, the looms are split in a break-out box to access
them independently.

What follows is a short description of the way we bias the sample and measure source-drain
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current. The corresponding sketch is in Fig. 5.3 (d). The sample’s source (S) is connected
to the RF line and the drain (D) is grounded. For DC measurements, one wire of the loom
is merged with the RF line on the MC plate with the help of a bias tee. We measure the
DC current I from source to ground with an I/V-converter, where an offset voltage on the
I/V-converter establishes the source-drain bias voltage Vpjas.

RF grounding of the drain contact immediately after the sample is necessary for RF mea-
surements. But with respect to DC measurements, there are two disadvantages if one can only
access the source side. The loom bridges the large temperature difference from room tempera-
ture to milli-Kelvin temperatures. Since the loom material connecting the sample’s source and
the cryostat ground material on the drain have different Seebeck coefficients, we encounter a
thermal voltage of 6.9 mV between source and drain. If the wires leading to source and drain
were of the same material, thermal voltages on both lines would cancel each other. Another
issue is that applying a low-frequency excitation to the I/V-converter offset and recording the
resulting voltage with a lock-in amplifier gives extremely noisy results. We therefore measure
the DC voltage with a multimeter. To circumvent these two issues, we started to place a second
bias tee on the drain side. In this way, the RF part is still grounded via a capacitor, whereas
the DC part is fed into a loom. The RF grounding has to happen as close to the sample as

possible, preferably on-chip.
(b) (c)
/
6cm é\

Figure 5.4.: (a) Open filter box with 25 silver-epoxy filters on two layers and Cinch connectors
on both sides. The epoxy wall in the middle is a radiation shield between the left
and the right side. (b) Pictures of three filter fabrication steps in fabrication order
from left to right. (c) Transmission of one filter at room temperature. For that,
SMA connectors are attached to both filter ends as shown in the inset.
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Like for the coaxial cables, an effective filtering of high-temperature radiation is crucial for
the DC cables, too. I constructed a filter box using the design of Scheller et al. [68], which
is installed on the MC plate. A filter box with a removed cover is shown in Fig. 5.4 (a). It
contains one silver-epoxy filter rod for each wire. A wall in the middle made out of silver epoxy
closes the radiation leak from the left to the right half. How one of these filters looks like is
clarified in Fig. 5.4 (b). It shows the result after three fabrication steps in fabrication order
from left to right. The core is a copper rod of 3 mm diameter. It is covered with some layers
of silver paint (from Plano GmbH, article number G302), which results in a soft surface. Next,
a 1 m long isolated copper wire (diameter 0.25 mm) is wound around the rod. The last step
is to cover the coil with silver epoxy (article number E4110 80Z, weight ratio between part A
and B is 10:1).

The inductance of the coil plus the capacitance to the nearby grounded rod and silver
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epoxy layer of C' = 2 pF lead to an LC-filtering effect. But interestingly, it is found that
filtering due to the skin-effect is equally important in these filters [68]. The small skin depth
at high frequencies reduces the current cross-section to a small annulus. The excellent filtering
properties (with a 3 dB point at 6 MHz) are visible in the room temperature transmission
measurements of Fig. 5.4 (c). These boxes additionally guarantee a decent thermalisation of
the electrons in the DC lines to the phonon temperature of the MC plate. This is confirmed
with a commercial Coulomb blockade thermometer (CBT) from Aivon, which is fixed on the
sample puck and connected to a DC cable. The CBT thermometer holds 33 tunnel junctions
in series. The electron temperature can be deduced from the bias width of the conductance
dip in Coulomb blockade [69]. We obtain an electron temperature of the DC wires of 32 mK
at a base temperature of 20 mK.

5.4. Possible Improvements of RF Wiring

Reflection and noise measurements presented in the following two chapters 6 and 7 confirm that
our setup is suited for RF measurements. In the meantime, we gained a good understanding
of the circuit’s RF properties and found a way for an accurate calibration, as explained in
section 7.3.2. Nonetheless, there is room for improvements of the RF wiring.

When the Coulomb blockade thermometer (CBT) was connected to a DC wire, we measured
a decent temperature of 32 mK. But the electron temperature of the RF wires seems to
be considerably higher. Thermal noise measurements conducted on a metallic wire suggest
that its electron temperature is around 100 mK [see Fig. 7.9 (d)]. To get a more accurate
value, one could once connect the CBT to the RF line. So it might be beneficial to work
on the thermalisation. While the coaxial cable’s outer conductor is thermally anchored at
each plate, the centre conductor is only thermalised through the dielectric between outer and
centre conductor. To enhance the centre conductor thermalisation, the coaxial cable can be
interrupted on the MC plate by a piece of stripline on a sapphire substrate [70]. Sapphire is
a dielectric with a good heat conductivity. In addition, we suspect that the 50 ) terminators
on the circulator and the directional coupler deviate at low temperatures from their nominal
resistance and thus, they do not absorb all radiation. Therefore, we are going to replace them
with cryogenic ones. Likewise, we suspect the characteristic impedance of the coaxial cables
to deviate at milli-Kelvin temperatures. An increased dielectric constant results in a higher
capacitance and therefore in lower characteristic impedance [see Eq. (2.17)].

In principle, the stub tuner in front of our devices is a good filter for microwave radiation since
it reflects all signals, whose frequencies are away from resonance (see Fig. 3.5). Yet, the stub
tuner has higher resonant modes and its transmission properties for very high-frequency signals
is not clear. There is evidence that quasiparticle generation by infrared light is a mechanism
for loss in superconducting resonators [71]. This suggests that attenuating high-frequency
signals might be beneficial. Filters made out of Eccosorb material are a good candidate for
this purpose [72]. Eccosorb CR-110 is a material that absorbs microwaves above 18 GHz and
the attenuation continues at least up to optical frequencies. Eccosorb filters consist of a section
of stripline inside a copper box that is filled with Eccosorb.
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5.5. RF Dipstick

For the test experiments with A/4-resonators (section 2.4.4) and open stub tuners (section 3.1.5)
we built a simple dipstick setup. It is very useful for quick measurements at 4.2 K by dipping
into a helium dewar. Two pictures of the dipstick are found in Fig. 5.5. It consists of a tube
with two stainless steel coaxial cables and DC wires inside. The overall attenuation of the
coaxial cables from top to the sample is approximately 14 dB at 3 GHz. They are attached on
the right cold side to the sample copper box with two SMA connectors. Inside the box, the
sample is glued in the centre of a PCB, which makes the link between the bond pads and the
connectors. There is a thermometer mounted next to the sample box.

(a) (b) ,
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Figure 5.5.: (a) Image of the dipstick for measurements in a helium dewar. The cold part is on
the right hand side. Two coaxial cables and DC wires are leading inside a tube to
the head, which contains connectors. (b) Close-up view of the cold sample part.
There are two SMA connectors at the copper sample box. When cooling down,
the copper can is mounted around the sample box.

We directly measure the reflection and transmission coefficients with a vector network anal-
yser without amplification. Because there are no attenuators, circulators or directional cou-
plers, the background standing waves are rather high and a cable calibration is necessary,
especially for reflection measurements. For the threefold calibration at room temperature, we
replace the sample box by an open, 50 € and a short termination and record the S-parameters
for each termination. During the measurements of the actual sample, the network analyser
calculates the calibrated coefficients according to the calibration data acquired with the three
terminations. It turned out that the setup properties do not change significantly when it is
cold. Therefore, using the room temperature calibration data leads to satisfying results.
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Conductance in the Quantum Dot Regime

Quantum dots (QDs) are small, quasi one dimensional islands for electrons (or holes) with
typical sizes from nanometres to a few microns. The strong electron confinement in a QD
leads to a discrete energy spectrum and the addition or removal of a single charge becomes
observable. The electronic properties of QDs and of atoms show many similarities. Therefore
QDs are sometimes called artificial atoms [73]. The experimental control over QDs however
is much better than over atoms; with the gate voltage, one can change the electron number
on the dot and hence scan through the entire periodic table of such an artificial element. We
access the QD via tunnel coupled source and drain contacts and use them to probe the energy
spectrum with electronic transport.

Since their first preparation by Endo et al. [74], carbon nanotubes (CNTs) have attracted a
great deal of attention, not least because of their unique electronic properties. After discovering
how to synthesise CNTs consisting of one cylincrical wall [75], the majority of experiments
were conducted with single-wall CN'Ts. If we are talking about CNTs, we therefore mean more
specifically single-wall carbon nanotubes. As described in the fabrication sections 4.2.3 to 4.2.5,
CNTs can be contacted with various normal and superconducting metals. Given that a natural
tunnel barrier forms between metal and CNT, one ends up with a CNT QD by fabricating two
contacts on the CNT, which are close to each other.

The purpose of this chapter is twofold. In the beginning, there are two theory sections
introducing the electronic structure of CNTs as well as properties of quantum dots in general
and when formed in CNTs. The remaining part of the chapter focuses on the low-temperature
conductance of CNTs in the QD regime probed with DC and RF reflectometry.

6.1. Electronic Structure of Carbon Materials !

A carbon atom has six electrons. Two of them occupy the inner 1s shell and are tightly
bound to the nucleus. The remaining four electrons, occupying the 2s and 2p orbitals, are
bound weaker. Since the energy difference between the 2s and 2p states is small compared
to the binding energy of chemical bonds, different hybridisations are possible and hence the
four valence electrons can make two, three or four bonds to other atoms. Therefore, carbon
materials are found in a variety of forms with very distinct properties like three-dimensional
diamond and graphite, two-dimensional graphene, one-dimensional CNTs and zero-dimensional
fullerene.

6.1.1. Graphene Bandstructure

The starting point to understand the bandstructure of CN'Ts is graphene, because a CNT can
be thought of a rolled-up graphene sheet. Graphene is a flat single layer of carbon atoms. Its

!This section summarised parts from reference [76)
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well-known hexagonal honeycomb lattice with a lattice constant of ag = 1.44 A can be seen
in Fig. 6.1 (a). The two lattice vectors d; and d@y span the marked unit cell, which contains
two carbon atoms. Fig. 6.1 (b) shows the graphene lattice in reciprocal space. The reciprocal
lattice vectors b; and 52, defined via &’igj = 27d;;, as well as the corresponding first Brillouin
zone are indicated. It has six corners, of which the three labelled with K and K’ are connected
with lattice vectors, what makes them indistinguishable.
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Figure 6.1.: (a) Hexagonal lattice of graphene in real space. Carbon atoms are on each corner.
The two lattice vectors d; and ds span the unit cell marked with the blue area,
containing two atoms. (b) Reciprocal lattice points with the first Brillouin zone
in orange. b1 and bg are the primitive reciprocal lattice vectors. (c) Graphene
bandstructure calculated using the tight-binding method (adapted from [77]).

The bandstructure of graphene can be calculated with the tight-binding method, taking into
account only nearest neighbour interactions. The result is plotted in Fig. 6.1 (c). There are
two bands, which touch at the six corners of the first Brilloin zone. In the case of undoped
graphene, the lower band is filled and the upper one is empty. Hence, the Fermi energy Ey is
located at the crossing points of the conduction (red) and valence band (blue). For energies
close to the Fermi energy - the principal energy range of interest - the bands have the shape
of cones and can be approximated by the linear dispersion relation

E(k) = +hoplk|, (6.1)

with the Fermi velocity vp = 8.2 x 10° m/s. The energy E is relative to the Fermi energy
and the wavenumber k is measured with respect to the K or K’ points. Because the same
dispersion relation also describes massless fermions in the Dirac equation, the points where the
bands touch are known as Dirac points, and the nearby bands as Dirac cones. Only one third
of each cone is inside the first Brillouin zone and instead, one can consider two full Dirac cones
at the positions K and K'. These two cones give rise to a new degree of freedom, the valley-
spin or iso-spin. The two distinct states with wavevectors k+ K and k + K’ are energetically
degenerate.

6.1.2. From Graphene to Carbon Nanotubes

A CNT can be thought of a graphene sheet rolled up to a cylinder with a diameter of roughly
1-5 nm. The rolling process is illustrated in Fig. 6.2 (a). There are infinitely many ways how to
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select a stripe for rolling up. The CN'T structure is specified by the chiral vector ¢. It indicates
the direction, in which the graphene sheet is rolled up and goes along the CNT equator. With
the help of the real space lattice vectors, the chiral vector is expressed as ¢ =n-d; +m - ds,
where n and m are integers with m < n. The special case when m = 0 is called a zigzag CNT
because a cut of such a tube on the equator has a zigzag edge. Accordingly, the case when
n = m is called an armchair CNT. All other cases are named chiral CNTs.

(b) (c)

Metallic

Semiconducting

\

Figure 6.2.: (a) Honeycomb lattice of graphene. The green area is rolled up to a CNT with
the chiral vector ¢. (adapted from [78]) (b) The quantisation of k; corresponds
to slicing the graphene Dirac cone. If the slice goes through the Dirac point, the
CNT is metallic. (c) If the slice misses the Dirac point, the bandstructure has a
gap E, and the CNT is semiconducting. (adapted from [63])

With respect to the CNT symmetry, we split the momentum into two components: k;
along the CNT and k; along the CNT equator. A periodic boundary condition leads to a
quantisation of k; with spacing

Ak, -md = 2m, (6.2)

where d is the CNT diameter. Using this condition, one can construct the one-dimensional
bandstructure of CNTs out of the two-dimensional bandstructure of graphene. The quan-
tisation of k) corresponds to cutting slices out of the graphene Dirac cone, as depicted in
Figs. 6.2 (b) and (d). Although the slicing produces many subbands, the CNT diameter in the
nanometre range results in a subband separation in the range of electron volts. Hence, already
at room temperature, only the lowest subband is populated and talking of one-dimensional
transport is completely justified.

In case the cut hits the Dirac point, the CNT bandstructure is not gapped and the CNT
turns out to be metallic. In the other case, the bandstructure is gapped. With this argument,
approximately one third of the CN'Ts are metallic and the other two thirds are semiconducting.
But experiments revealed that even nominally metallic CN'Ts have small bandgaps. These gaps
were explained either by structural deformations like curvature and strain or by the formation
of a Mott insulating state arising in a model, which takes electron-electron interactions into
account [79, 80].

6.2. Quantum Dots in Carbon Nanotubes

A CNT naturally confines the electronic wavefunction to one dimension. Tunnel barriers can
be introduced in CNTs either with contacts (see end of section 4.2.3) or in semiconducting
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CNTs by depleting a short CNT section. If two tunnel barriers in a CNT are close together,
the electronic wavefunction in the short CNT segment between is confined in all directions and
a QD is formed, as illustrated in Fig. 6.3 (a). When confined to such a small space, Coulomb
interactions between electrons (or holes) become important, which makes for instance charging
by a single electron observable or in particular gives rise to suppressed shot noise. But as a
start, this section gives a brief theoretical description of QDs. In the first part, the energy
states arising in QD are explained and in a second part, electronic transport via these states
is considered.

6.2.1. Quantum Dot States

The strong charge confinement in a QD gives rise to two kind of energy levels. On the one hand,
there is the quantum mechanical confinement energy. Like in the particle-in-a-box problem,
the confinement of a single particle leads to a discrete energy spectrum. The level spacing is
increasing when the QD size is decreasing. For a QD defined in a CNT, the single-particle
level spacing is well approximated by [81]

A ~ 1 meV/L(pum), (6.3)

where L is the QD length in pm. The confinement energy (or single-particle energy) of an
electron in state n is denoted by &,.

er. oty o @ E g
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Figure 6.3.: (a) A CNT segment with Ti/Al (4/60 nm-thick) source (S) and drain (D) con-
tacts, forming a quantum dot (QD) between. A large bottom gate is below a
silicon nitride layer (not visible). (b) Capacitance model of the QD shown in (a).
The tunnel coupling rates to source and drain are I's and I'p, respectively. The
potential on the QD can be tuned via the gate voltage. (c) Energy level diagram
of a QD containing N electrons. The QD is separated with tunnel barriers from
source and drain, which are both at the electrochemical potential 4 = pug = pp.
Ground states are indicated with solid lines and excited states with dashed lines.

Coulomb interaction is not yet considered in this picture, but will prove to play a major role
in QDs. It is captured within a capacitance model [82]. As depicted in Fig. 6.3 (b), we consider
the QD to be a metallic island with capacitive couplings to source, drain and the gate. The
induced charge at the metallic object ¢ is given by

3
Qi=0Q" + > GV, (6.4)

J=0
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where Q,EO) is the offset charge when all potentials are at zero as resulting from doping or
impurities. Source, drain and gate have indices ¢+ = 1,2,3. The voltages applied to them are
known, but @); are not. The index ¢ = 0 denotes the QD itself. Here, Vf is unknown but
the charge is known to be a multiple of the elementary charge, Qo = —|e|N. Solving for the
potential on the dot leads to

3
— C
vy = QO Z OJV (6.5)
with Cx, = Cyg = — Z?:l Cy; being the sum of the capacitances around the QD. The lever
arms of the gates a; = —Cp;/Cyx, are given by the geometry. Now, the electrostatic energy

required to add N electrons on the dot can be determined:

(0> —le|N 2N2
E(N) = / o VadQo= |eyNZ o,V (6.6)
0

The total energy of a QD, which is populated with IV electrons, is the sum of the confinement
energy &, and the electrostatic energy:

2 N2 3
FEiot (N Zs + 50y —[e|N Y a;V;. (6.7)
j_

In the constant interaction model, it is assumed that the capacitance Cy and the confine-
ment energy &, are both independent of the QD occupancy N. In this approximation, the
electrochemical potential of the QD is

2

pN = Eiot(N) — Eyoy(N — 1) = Ex + C% <N — ) le] Zaj (6.8)

The electrochemical potential is the energy needed to fill the QD with the N-th electron. Due
to the constant interaction approximation, the electrochemical potential describes a ladder

with equal spacings
2

—unN_1=A+ — )
KN — UN—-1 +C’2 (6.9)

This so-called addition energy expresses how much more energy is required to add the next
electron on the QD. The term E. = €%/Cy is called charging energy and originates from
classical electrostatics. An expression for the single-particle level spacing in CNT QDs is given
in Eq. (6.3). The size of QDs in CNTs is such that usually E. > A. The potential ladder
is illustrated in Fig. 6.3 (¢). The solid lines mark the electrochemical QD potentials. At zero
temperature, the leads are filled up to the Fermi level us = pp and the number of electrons on
the QD is fixed to N. The QD is said to be in Coulomb blockade since Coulomb interaction
prohibits the addition of more charges. According to Eq. (6.8), the QD levels can be moved
linearly with the gate voltage. Only if the lead Fermi levels are at the same height as uy, the
Coulomb blockade is lifted and the number of electrons fluctuates between N and N — 1.

So far, we neglected the valley degeneracy discussed in section 6.1.1 and the spin degeneracy.
Hence, each quantum mechanical state in CN'Ts can be filled with four electrons without paying
the energy A and the ladder spacing of Eq. (6.9) becomes N-dependent. If a new confinement
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state is occupied, the full addition energy A + E. is needed. But filling the three subsequent
levels only requires an addition energy of FE..

Finally, we consider that electrons can be in excited confinement states. To include this, the
QD energy of Eq. (6.7) is labelled by Et(k)( N) with the integer k, where £k = 0 denotes the
ground state. The labelling of the electrochemical potential is extended to u(k ) = Et(ft) (N) —

Et(é)t(N —1). Again, the ground state ,u§v 0 — . Some excited state levels are indicated in
Fig. 6.3 (¢) by dashed lines.

6.2.2. Transport through Quantum Dots 2

The previous section was devoted to an equilibrium situation. Now, electronic transport
through QDs is considered arising from the tunnel coupling of the QD to source and drain
leads and an applied bias voltage. Large tunnel couplings imply on the one hand a well mea-
surable transport signal but on the other hand relax the charge localisation on the QD. The
following argument sets a limit to the tunnelling resistances Ry to observe single electron tun-
nelling. With Cyx;, being the QD capacitance and R; the tunnelling resistance between one
lead and the QD, the time to charge the QD via this lead is given by the RC-time constant:
At = R{Csx. The Heisenberg uncertainty relation states that AEAt > h. The requirement
to resolve at least the charging energy AE = E. = €?/Cyx, translates to a lower bound for the
tunnelling resistance:

h

In words, the tunnelling resistance must be larger than the resistance quantum h/e? = 25.831 k€.
Taking into account the thermal energy leads to a second criterion for charge quantisation
on the dot:

kpT < —. (6.11)

Figure 6.4.: (a)-(c) Three energy level diagrams with an applied bias voltage Vsp, not includ-
ing excited states. Electron tunnelling is sketched with arrows. (d) Schematic
Coulomb blockade diamonds in the presence of fourfold degeneracy, not consider-
ing excited states. The number of electrons is fixed in the white areas and current
can flow in the grey areas. The points which correspond to the level diagrams in
(a)-(c) are marked with arrows.

Charge transport in the QD-lead system is determined by the positions of the electrochem-
ical potentials. Three possible configurations are illustrated in the energy level diagrams of

2 According to chapter 18 in [82]
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Figs. 6.4 (a)-(c). If a bias voltage Vgp is applied between source and drain, their electrochemi-
cal potentials ug and up differ by eVgp. The energy range between these Fermi levels is called
bias window. If a QD level is inside the bias window, electrons can tunnel on and off the dot.
Because of the finite bias, sequential tunnelling from one to the other lead occurs trough the
QD.

The tunnelling dependence on the gate and bias voltages leads to the characteristic Coulomb
blockade diamonds sketched in Fig. 6.4 (d). In the white diamond-shaped areas, first-order
tunnelling is energetically forbidden. Hence, the number of charges on the dot is fixed and the
QD is called to be in Coulomb blockade. This Coulomb blockade is lifted in the grey areas,
where a finite current is flowing and the charge number on the dot is fluctuating. The Coulomb
blockade boundaries can be readily determined with the capacitance model. Along the line
with negative slope s—, the QD level stays aligned with up, as depicted in Fig. 6.4 (¢c). We
assume that the drain side is on ground. The general expression for the QD potential is in
Eq. (6.5). A change of the dot potential by Vi has to be fully compensated by the source:

Ca Cs _ AV = Cg

YeApL = U8 A _ __%
el L R N Cs

(6.12)

Likewise, the QD level is fixed to ug along the line with positive slope s™. This situation is

sketched in Fig. 6.4 (a). A QD potential change is compensated by the bias voltage, while also
taking into account the influence of the source potential on the QD level:
Ca

7AVG = AVSD — gAVS = + CG
b

__te 1
Cs, C T Ca+Op (6.13)

The addition energy sets the size of the Coulomb blockade diamonds. The pattern arising
from a fourfold level degeneracy as it is present in clean CNT QDs is sketched in Fig. 6.4 (d).
The charging energies can be read out from the bias needed to close the diamonds, as marked
in the figure.

(@ Vv p 0=y (b) (c) (d)
g Sequential tunnelling Elastic cotunnelling Inelastic cotunnelling
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Figure 6.5.: (a) Schematic of one Coulomb blockade diamond, including the presence of one
excited state with electrochemical potential ,us\lf’o). A cotunnelling current appears
in the blue Coulomb blockade areas and a sequential tunnelling current in the grey
areas. (b)-(d) In these energy diagrams, the corresponding transport processes

for three points marked in (a) are sketched.

Apart from transitions involving the QD ground state, there can also be elastic transitions
via excited states. Such a sequential tunnelling event is drawn in Fig. 6.5 (b). The conditions

are that ,ul(\ll 9 and the ground state pun are both in the bias window. This additional transition
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channel via an excited state enhances the chance of a charge transfer and therefore leads to an
increased current in the dark grey area of Fig. 6.5 (a).

While first-order tunnelling processes are not allowed inside the Coulomb blockaded region,
second-order processes can occur. Heisenberg’s uncertainty principle allows to break the law
of energy conservation for a short time. Because it has to happen quickly, the tunnelling rates
need to be large in order to observe cotunnelling. As illustrated in Fig. 6.5 (c), an electron can
tunnel from source to drain via a virtual state on the QD, which is higher in energy than ug.
The process is elastic (energy-conserving) in the sense that the QD is kept in the same state
before and after the charge transfer.

But inelastic cotunnelling events are possible, as well. One of them is drawn in Fig. 6.5 (d),
where two electrons tunnel in a correlated fashion. First, an electron leaves the dot by tun-
nelling to drain, before another electron enters from the source lead. During this process, the
QD is brought from the ground state to the excited state. For this, the applied bias has to be
at least A, the single-particle level spacing.

Both, elastic and inelastic cotunnelling result in a small current in the Coulomb blockade,
indicated as blue area in Fig. 6.5 (a). The dark blue area marks the bias regime where inelastic
cotunnelling is possible.

6.2.3. Double Quantum Dots

Two QDs in series can be formed in a CNT with the help of more than one bottom gate. The
characteristics of double QDs are briefly mentioned here as the last part of the introductory
section.

A complete capacitance model of two QDs in series is drawn in Fig. 6.6 (a). An electron
transfer from source to drain involves three sequential tunnelling events from source to QD1,
form QD; to QD2 and finally from QDs to drain. The dots’ electrochemical potentials are
dominantly tuned by the voltage on the respective closest gate.

The so-called charge stability diagram is given in Fig. 6.6 (b). The z-axis is the potential on
gate 1 and the y-axis the potential on gate 2. Inside the hexagonal regions, the charges on the
dots is fixed. A level diagram for the situation when a level of QD; is on the same height as
the source Fermi level is shown in Fig. 6.6 (¢). The corresponding transition line in the charge
stability diagram (b) between the charge states (N — 1, M) and (N, M) is not vertical but has
a negative slope due to the small capacitive coupling of the second gate to QD;.

But owing to the interdot coupling, the charge state on one QD influences the electrochemical
potential on the other dot. The level positions in QD2 in the diagram of Fig. 6.6 (¢) depend
on whether uy is occupied or not. This interdot level depencence gives rise to the lines with
positive slope in the charge stability diagram. They mark the situation when interdot charge
transitions are happening [(N — 1, M) + (N, M — 1)]. The two ends of these lines are called
triple points. At these points, the two QD levels and the lead Fermi levels are all aligned.
As drawn in the level diagrams of Figs. 6.6 (d) and (e), the two triple points correspond to
the situations when the empty and occupied dot levels are aligned with the lead Fermi levels,
respectively.

Charge transport from source to drain via sequential tunnelling is only possible at the triple
points. At the lines with negative slopes in the charge stability diagram, a current can only
flow with the help of cotunnelling processes, whereas no current at all is flowing to the leads
along the lines with positive slopes. In summary, the lines with negative slopes are only visible
when all tunnel couplings are large and the lines with positive slope are not visible at all.
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Figure 6.6.: (a) Capacitance model for a double dot system. Source (S), QD1, QD2 and drain
(D) are tunnel coupled in series. The QD levels are tuned by two gates. (b) Charge
stability diagram marking the gate voltage regions with fixed charges. The upper
and lower labels denote the charge number on QD; and QDs, respectively. The
lines mark the situations when one or both QDs are on resonance with the Fermi
level of the adjacent lead. The corresponding positions for the level diagrams in
(c)-(e) are marked. (c) Energy level diagram on a transition line of QD;. (d)
Level diagram at the triple point, where both dot levels aligned to the lead Fermi
level are empty. (e) These levels are occupied at the other triple point.
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The situation is different when the double dot system is coupled to an RF resonator. Interdot
charge transitions and transitions between one dot and a lead cause a capacitance change,
which is detected as a resonance frequency shift [31, 83, 84] [see section 6.5 and Fig. 3.3 (d)].

6.3. Conductance Measurements of a Quantum Dot

After the theoretical introduction to QDs, this section is devoted to measurements. To start
with, the investigated sample is introduced. According to the recipe described in section 4.2
and listed in more detail in appendix C, we fabricated a CNT device with an on-chip stub
tuner attached to the source contact. An image of the CNT part is shown in Fig. 6.7 (a) and
a schematic cross-section in Fig. 6.7 (b) for clarity. The stamped CNT crosses four parallel
bottom gates coloured in yellow; two narrow ones of width 100 nm in the centre and two wider
ones of width 300 nm on the sides. These wider gates are partially beneath the leads and
meant to adjust the doping of the CNT segments there. The CNT is separated by the gates
with a 50 nm-thick silicon nitride layer. Normal metal contacts to the CNT are established
with Ti/Au leads of thicknesses 10/40 nm.

After finishing the fabrication of the CNT device, it is protected with a resist mask and
the stub tuner is fabricated next to it. An overview picture of the final sample is shown in
Fig. 6.7 (c). The CNT device resides in the dark left area. Its source is connected to one end
of the stub tuner, whereas its drain is connected to the ground plane. The stub tuner input
launcher is on the right. As discussed in section 3.1.5, the two black bond wires next to the
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Figure 6.7.: (a) False-color image of the CNT connected to Ti/Au leads (orange) and bottom
gates underneath (yellow), which are covered with silicon nitride. (b) Sketch of
the cross section. The gates called source gate (SG), drain gate (DG), left gate
(LG), and right gate (RG) are covered with silicon nitride. The CNT is stamped
on top and contacted with Ti/Au leads. (c) SEM image of the stub impedance-
matching circuit made with niobium. The 50 € side is at the launcher on the
right, and the CNT device is located at the bottom left. The two bond wires on
the right next to the RF launcher are airbridges to connect the ground planes.
There are two square bond pads for the gates visible close to the CNT. (Reprinted
with permission from [44]. © 2015 by The American Physical Society.)

T-junction, where the CTLs split, are essential to suppress spurious modes. The meander
structure of the two CTL arms is used to squeeze the stub tuner into the e-beam writefield
of 2 x 2 mm?. The ground plane is well connected to the sample holder ground via densely
spaced bound wires all around the chip edge (not seen in the figure). The bottom gates are
connected to large bond pads; two of them are visible in the figure close to the CNT.

The measurement setup within the Triton cryostat is explained in detail in chapter 5. Basi-
cally, the stub tuner is connected to an RF input and output line for reflectrometry experiments.
Furthermore, a DC cable coupled to the RF line via a bias tee enables to apply a DC bias and
to record the DC current simultaneously with RF measurements. We reach a base temperature
of 20 mK, but the electronic temperature on the source side is rather in the range of 100 mK,
as discussed in section 7.3.2.

An overview of the CNT device characteristics is gained with Fig. 6.8 (a). It shows the DC
current dependence on the gate voltages on the left and right narrow gates (Vi and Vrg).
The two gates below the contacts, called source gate (SG) and drain gate (DG), are both kept
at a potential of —3 V to have p-doped CNT segments next to the leads. This scan over large
gate voltage ranges can be divided into four main regions, (I)-(IV). They are separated by
stripes of zero current, where the bias window is inside the band gap in a CNT segment above
one of the gates.

The sketches in Fig. 6.8 (b) show roughly the valence and conduction band edges along the
CNT for the four regions. In region (I), the two central gates define one large QD. In the
enlarged current map of Fig. 6.8 (¢), parallel resonance lines with slope —1 are visible. Hence
the QD levels can be equally tuned with both the left or the right gate.
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Figure 6.8.: (a) DC current as a function of the voltages on the left gate (LG) and right gate
(RG) over a huge range at a base temperature of 20 mK. The source-drain bias
is at 1 mV and the source gate (SG) as well as the drain gate (DG) are kept at
—3 V to have p-doped leads. The current is suppressed between the red dashed
lines, where the Fermi level lies inside the bandgap for a long CNT segment. These
bandgap transitions separate regions (I)-(IV). The yellow horizontal dashed line in
region (I) marks the gate voltage range used for all following measurements in the
single QD regime. The left gate is fixed to Vi, = 1076 mV. (b) Rough sketches
of the valence (Evy) and conduction (E¢) band edges with respect to the Fermi
level (EFx) for the four regions of the current map. (c) Enlarged current map in
the single QD regime of region (I) and (d) in the double QD regime of region
(III). (Reprinted with permission from [44]. (© 2015 by The American Physical
Society.)

The situation is less clear in regions (II)-(IV). In some areas, clear double dot features appear,
like in the enlarged current map of Fig. 6.8 (d). In other areas, the features are hardly visible
due to a strongly suppressed current or they are washed out due to large tunnel couplings.
Furthermore, there are areas where lines with a third slope hint at the presence of a triple dot
(not shown in a separate figure). There are several possible reasons for the various features
observed in zones (II)-(IV). For instance, impurities in the substrate below the CNT can locally
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change the potential or disorder in the CNT can introduce an additional barrier.

In any case, we stay in the single QD regime of region (I) for all following experiments. More
precisely, we fix the left gate to Vi, = 1076 mV and sweep Vrg along the yellow dashed line
in Fig. 6.8 (a) to change the QD level. In this way, we are able to form a clean single QD.

6.3.1. Stub Tuner Characterisation

Now, we turn our attention to the other part of the sample, the stub impedance-matching
circuit. The resonance frequency of the fundamental mode is close to the planned value of
3 GHz and is well inside the setup bandwidth. We consider first the stub tuner response when
the QD is in the Coulomb blockade. The measured reflection amplitude spectrum around the
resonance frequency is plotted as blue triangles in Fig. 6.9 (a). This spectrum in the blockade
serves as a reference for extracting the stub tuner parameters. Like already demonstrated with
the open stub tuner in section 3.1.5, one can extract the circuit parameters from the reflection
spectrum. A detailed description of the fitting procedure is given in appendix B.1.1. A fit to
Eq. (3.14) assuming G = 0 leads to the set of parameters given in the figure caption. The stub
tuner lengths are close to the design values. The damping o = 0.046 m~! corresponds to an
internal quality facor of about 1600. The frequency-dependent background reflection is taken
into account by a linear curve, represented with a black solid line in the figure. The values for
the two CTL parameters, the characteristic impedance Zj = 44.8 Q2 and the effective dielectric
constant e, = 6, are obtained by simulations with the software Sonnet.
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Figure 6.9.: Stub tuner properties at a base temperature of 20 mK. (a) Amplitude squared of
the reflection coefficient I' around the resonance frequency. Symbols are measured
and lines fitted or calculated. The stub tuner loss @ = 0.046 m~! as well as
the two CTL lengths D; = 10.355 mm and Dy = 10.589 mm are extracted by
fitting (solid red line) to the spectrum in the Coulomb blockade regime of the
QD (blue triangles), where G = 0 is assumed. The black solid line represents the
linearised background reflection. The upper spectrum for a finite DC conductance
of G = 0.2 ?/h is plotted with a shift of 1 dB for clarity (green circles). It matches
well the calculated reflection coefficient (dashed red line) using the previous fit
parameters. (b) This plot shows the calculated conductance dependence of the
reflectance amplitude at the resonance frequency using the previous fit parameters.
The two values corresponding to the spectra in (a) are marked. (c¢) Calculated
stub tuner input impedance for two conductances of the attached load. (Reprinted
with permission from [44]. © 2015 by The American Physical Society.)
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The second spectrum in Fig. 6.9 (a), shown with green circles, is measured at a point where
the DC differential conductance is G = 0.2 e?/h. There is a good agreement to the calculated
reflection spectrum for this conductance when inserting the stub tuner parameters extracted
in the blockade to Eq. (3.14), as shown by the red dashed line. This example indicates that
all relevant parameters to characterise the stub tuner are gained by fitting to the reflection
spectrum in the Coulomb blockade and we are going to use these parameters for all following
calculations concerning this sample.

Even though the curves are shifted vertically, it is already visible that the resonance for
G = 0.2 e?/h is shallower. Knowing the stub tuner parameters, one can calculate the full
load conductance dependence of the resonance. The reflection amplitude dip at the resonance
frequency fo is shown in Fig. 6.9 (b) as a function of conductance. The resonance is deepest
when G = 0, meaning the circuit is best matched to low conductances. The monotonic increase
with conductance suggests that the differential conductance can be derived from the resonance
amplitude. This possibility is further investigated in the next section.

The stub tuner input impedance Z;, of Eq. (3.10) is the impedance experienced at the in-
put launcher towards the direction of the device. Fig. 6.9 (c) shows its calculated frequency
dependence for this sample around fy for two conductances. As already mentioned in sec-
tion 3.1.2, the stub tuner looks at the input as an almost zero-impedance circuit for gigahertz
frequencies. Only close to the resonance frequency, the impedance rises. The peak impedance
of this stub tuner at best matching, when G = 0, is still well below the full matching case of
Zin = 50 2, meaning that perfect matching is never achieved with this sample. In agreement
with Fig. 6.9 (b), a load of G = 0.2 €?/h is more away from matching and hence the impedance
peak is lower.

6.3.2. DC and RF Conductance

For the following experiments, we keep the CNT device in the single QD regime. The left gate
is fixed to V1, = 1076 mV and the right gate is used as a plunger gate. The used gate voltages
are indicated in the gate-gate map of Fig. 6.8 with the yellow dashed line.

Fig. 6.10 shows two differential conductance maps for the same gate and source-drain voltage
(Vsp) ranges. For panel (a), the DC current I is recorded and its derivative dI /dVgp is plotted.
The Coulomb diamond contours are marked. The first and the fifth diamonds is larger then the
rest. This is the same pattern as sketched in Fig. 6.4 (d) for fourfold spin and valley degenerate
QD states in CNTs. The observation of the fourfold degeneracy is a sign for a low-disorder
CNT segment forming the QD island. A charging energy F. = 12 meV can be directly read
out from the height of the small diamonds. The single-particle level spacing A is equal to the
spacing of the excited states, which amounts to about 8 meV. With the relation between A
and the QD length in CNTs stated in Eq. (6.3), one obtains a QD length L ~ 130 nm. This
leads to the conclusion that the QD is located mainly between the two central gates, which
are separated by 100 nm.

The conductance shown in Fig. 6.10 (b) is derived from reflectometry. For that, the reflection
amplitude at the stub tuner resonance frequency fy is detected. Then, the amplitude dip
dependence on conductance, as plotted in Fig. 6.9 (b), is exploited. Since the function |I'(G)|?
of Eq. (3.14) can not be inverted by hand, we are looking for an easily invertible approximate
function. We found that |T'(G)|? can be well approximated by

\F(G)\Qza.((l;—b>c+d N G(]F])zK'F'a_d)er]_l, (6.14)
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with the parameters for this stub tuner being a = 2560 1/Q, b = —21.1-10% Q, ¢ = —0.85
and d = 0.55. This function is purely empirical and has no further physical meaning. G(|T'|)
directly converts the measured reflection amplitude at resonance to the device conductance.
Before the conversion, the background reflection has to be taken into account. This is done by
subtracting (in decibel scale) the background value (black line in 6.9 (a)) at fy from |I|.
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Figure 6.10.: Measurements in the single QD regime along the yellow dashed line in Fig. 6.8.
(Vg = 1076 mV, Vsg = Vpg = —3 V) at a base temperature of 20 mK. (a)
Derivative of the DC current (dI/dVsp) as a function of the voltage on the right
gate and of the source-drain bias. The contour of the CB diamonds is highlighted
by the dashed line. (b) Differential conductance deduced from the reflection
amplitude. The procedure is explained in the text. (Reprinted with permission
from [44]. © 2015 by The American Physical Society.)

One can see a good agreement between the RF and DC conductance maps in Fig. 6.10, at
least qualitatively. The same features are visible in both plots. To confirm the quantitative
agreement, a cut at Vgg = 1296 mV along the green dashed line in Fig. 6.10 (a) is shown in
Fig. 6.11 (a). In spite of the DC conductance being noisier (it is the numerical derivative), the
two conductance curves overlap quite well.

Spectra at the same gate voltage as a function of Vgp are shown in Fig. 6.11 (b). The
resonance dip is deepest (black) inside the Coulomb blockade. The diamond boundaries are
marked with arrows. There, the conductance spikes lead to a clearly visible dip increase.
This colourmap points out that there is only little conductance dependent resonance frequency
shift. The same spectrum maps are recorded in the entire gate voltage range of Fig. 6.10. The
observed frequency shifts relative to the resonance frequency in the blockade fy = 2.9218 GHz
[see Fig. 6.9 (a)] are plotted in Fig. 6.11 (c). The Coulomb blockade diamonds are slighly
recognisable. The frequency shifts inside the blockade downwards by about 120 kHz. This
converts to a quantum capacitance change of about 120 aF [see Fig. 3.3(d)], which is on
the same order than literature values [85]. Compared to the stub resonance bandwidth of
about 3 MHz, the frequency shift is less than one twentieth. Thus the mistake is small when
converting the reflection amplitude at the fixed frequency fy to conductance.

The speed limit of conventional direct conductance measurements is set by the RC' time
constant. The cutoff frequency for measuring a resistance R with a wiring of capacitance C' is
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Figure 6.11.: (a) Differential conductance G along the green dashed line in Fig. 6.10 (a), where
Ve = 1296 mV. The blue curve is the numerical differential conductance
dI/dVsp obtained from the DC current, whereas the green curve is extracted
from the reflection amplitude at the resonance frequency fy. (b) Reflection am-
plitude spectra around the resonance frequency as a function of bias voltage at
the same gate voltage as in (a). The red arrows mark the Coulomb blockade
boundaries. (c) A reflection spectrum is recorded at each point in the bias and
gate range of Fig. 6.10. The colour plot shows the resonance frequency shift A fj
relative to fo = 2.9218 GHz in the blockade [see blue spectrum in Fig. 6.9 (a)],
when comparing the frequencies at the reflection amplitude minima.

given by
1

fe= 2nRC
assuming a device of 100 k) and a typical capacitance of the cryostat wiring of 1 nF result-
ing from the coaxial cables and filters. With the help of impedance transformation, one can
circumvent this RC-time limitation. The group of Jason Petta has pushed the speed of con-
ductance read-out to the limit by coupling a double QD to a gigahertz resonant circuit and
by the use of a Josephson parametric amplifier. They succeeded to obtain a charge stability
diagram of a double QD device within 20 ms [86]. So far, we have not exploited the potential
of fast measurements yet. First of all, one needs the suitable equipment, for instance a fast
analog-to-digital converter. Secondly, we are also recording the DC current simultaneously,
which makes the read-out slow. Especially in the beginning, it is important to double-check G
extracted from reflectometry with the DC value. Moreover, differences between RF and DC
conductance might even reveal interesting physical effects [87, 88].

~ 1.6 klz, (6.15)

6.4. Quantum Dot with One Niobium Lead

The CNT device with one normal Pd and one superconducting Nb contact is already introduced
in the fabrication section 4.2.4. A picture of the CNT part of the sample can be seen in
Fig. 4.5 (a). The Pd drain lead is grounded and the Ti/Nb source lead is connected to a stub
tuner. There is a wide bottom gate below a silicon nitride layer. Fig. 4.5 (b) and (c) show the
suppressed conductance of this device when the bias window lies inside the superconducting gap
and the closing of the gap with magnetic field, respectively. In this section, we are discussing
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some more data from this sample, especially focusing on states inside the superconducting
gap. The attached stub tuner was not matched well enough to the high resistances in the gap.
Therefore, we only present DC measurements, meant as a brief outlook.
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Figure 6.12.: DC measurements of the device shown in Fig. 4.5 (a) at a base temperature of
20 mK. The CNT has one superconducting niobium contact and one normal lead.
A single QD is formed and tuned by the wide gate beneath. (a) Differential
conductance as a function of gate voltage (Vgate) and of source-drain voltage
(Vsp). (b) and (c) Close-up views of the conductance inside the superconducting
gap for two neighbouring resonances marked with rectangles in (a). The Coulomb
blockade diamond edges are indicated with black dashes lines.

The overview map of Fig. 6.12 (a) shows clear Coulomb blockade diamonds. The conduc-
tance triangles are not touching as an effect of the gapped density of states (DOS) of the
superconducting source. It is known that the superconducting lead with its peaked DOS en-
hances the resolution of spectroscopic features [89, 90]. Indeed, Figs. 4.5 (b) and (c) prove that
the clearly visible excited state lines fade away when the superconductivity is suppressed with
a magnetic field.

Note that all blue lines in Fig. 6.12 (a) correspond to a negative differential conductance.
This is another manifestation of the peaked DOS in the superconducting lead. According to
Fermi’s golden rule, the tunnel current is proportional the DOS and is peaked whenever a QD
level is resonant with the superconducting lead [91]. This translates into a peak-dip structure
of the differential conductance.

Figs. 6.12 (b) and (c) show two enlarged conductance maps for low bias voltages. Surpris-
ingly, resonance lines are visible in the gap parallel to the diamond boundary lines. Their
conductance is one order of magnitude lower than the conductance on the lines outside the
gap. Especially in Fig. 6.12(b), one line with a negative slope connecting the two triangle
corners is visible (marked with the horizontal arrow). The existence of this line is a hint for
quasiparticles in the gap, possibly due to imperfections in the RF setup, as explained in sec-
tion 5.4. In contrast, the lines with a positive slope (marked with vertical arrows) indicate
the presence of distinct subgap states. Their energy spacing of about 300 peV is smaller than
the spacing between the excited states of approximately 500 peV. A plausible origin of these
subgap lines are resonant and inelastic Andreev tunnelling events, which are recently observed
in our group with similar devices [38].

Unfortunately, the matching of the stub tuner for the low conductances inside the gap was
too poor to get enough signal for noise detection. It would be interesting to investigate in
future experiments the noise emitted on these subgap lines. Shot noise could confirm the

71



Cooper-pair nature of the charge carriers involved in the Andreev tunnelling processes inside
the gap. Cooper-pairs have twice the charge of a single electron and hence the shot noise of
Cooper-pair tunnelling events is doubled, too (see section 7.1.2).

6.5. Reflectometry on a Carbon Nanotube Double Dot

With the help of bottom gates, two QDs in series can be defined along a semiconducting CNT,
as shown in Fig. 6.8 (d). Detailed reflection experiments on such a double dot system with
a stub tuner attached to one lead were carried out in our group by Vishal Ranjan [31]. The
studied sample is very similar to the one shown in Fig. 6.7 (a). The main difference is that the
CNT is suspended between the leads, which is achieved by fork stamping of a CNT on a pre-
fabricated lead and bottom gate structure. In the following, some results from this double dot
sample are briefly discussed. The sample fabrication and the measurements are done by Vishal
Ranjan. The author of this thesis built parts of the measurements setup and contributed to
the development of the stub tuner fabrication recipe.
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Figure 6.13.: (a) Charge stability diagram over a large voltage range of the left gate (V1) and
right gate (Vgg). This colourmap shows the DC current measured at a bias of
10 mV. (b) Simultaneous measurements of the DC current as well as the reflection
amplitude and phase at resonance probed with an RF power of -110 dBm. The
corresponding gate range is marked by the rectangle in (a). The arrow points at
spurious gate-tunable lines. Circles mark inter-dot tunnelling lines visible by a
phase shift. (Reprinted with permission from [31]. © 2015 by Nature Publishing
Group.)

For the start, we look at the charge stability diagram in Fig. 6.13 (a). It shows the DC
current at a bias voltage of 10 mV. The cross-like region of zero current (marked by orange
dashed lines) arises because the bias window is in the bandgap of this semiconducting CNT
in a segment above one of the gates. The high currents in the upper right region suggest that
the leads are n-doped.

Fig. 6.13 (b) concentrates on the p-p double dot regime inside the dashed rectangle in panel
(a). While the left panel shows the DC current, the remaining panels show the amplitude
(middle) and phase (right) of the reflected signal at the resonance frequency of the stub tuner,
which is close to 3 GHz. The characteristic honeycomb structure of a double dot, which is
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introduced in section 6.2.3 [see Fig. 6.6 (b)], is visible in all measurements. The lines with
negative slopes are well visible in all plots and arise when one dot is resonant with its lead,
while charge transfer through the other dot happens via cotunnelling. But the interesting
part is best visible in the phase plot on the very right. The encircled short lines mark the
positions where inter-dot tunnelling events happen. As stated at the end of section 6.2.3, these
transitions do not lead to a current from one the the other lead, but they cause a change of
the susceptance, to which RF measurements are sensitive.

In the RF plots, some additional gate-tunable spurious lines appear, which are marked by
an arrow. Most probably, they stem from charging and discharging of a lead state, which does
not contribute to a net current, but changes the susceptance.
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Noise Measurements with Stub Impedance
Matching

In this last chapter, we come to the key experimental results of the thesis. Shot noise emitted
by a quantum dot (QD) is measured with the help of a stub tuner. But the chapter starts with
an introduction to noise and different sources of electronic noise. The second part focuses on
noise measurement techniques; the general overview is followed by a more detailed discussion
of our method using a stub tuner. In the end, results in the single QD regime are presented
and analysed.

7.1. Noise Characteristics

Noise in general is the random fluctuation of an observable in time. In the context of electronics,
noise usually denotes stochastic current or voltage fluctuations [82].

It

%

t

Figure 7.1.: Example of a current fluctuating in time around its mean (I).

A typical current signal measured over time is plotted in Fig. 7.1. When talking about
current, one usually means more specifically the mean current (I). The temporal current
fluctuations around its average value are denoted by

AI(t)=1(t) — (I). (7.1)
To characterise noise, the current-current correlator or autocorrelation function is defined as
C(r) = (AI()AI(t+ 7)), (7.2)

where () denotes an average over time ¢t. The properties of this function are as follows: At
time delay 7 = 0, it is identical to the mean current fluctuation amplitude squared,

C(0) = (AI*(t)) > 0. (7.3)
In the other limit of large time delay, the correlation function diverges to zero:
Tll}rinOO C(r) =0. (7.4)
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That describes the fact that current fluctuations at a certain instant are totally uncorrelated
to fluctuations far back in the past (or far in the future).
The Fourier transform of the correlation function is

[e.e]
Silw)= [ cmeTar. (7.5)
—0o0
According to the definition of the Fourier transform, the frequency w goes from —oo to oo.
But experimentally, it is not clear at first sight what a negative frequency means and in most
cases, one cannot distinguish positive from negative frequencies. More on this is found in
section 7.1.5. Moreover, in the low-frequency classical limit (hiw < kgT, €V'), one finds that
S;(—w) = S7(w). Therefore, the current noise spectral density is usually defined as

S1(w) = Sr(w) + Sy (—w) = 2- /_ ZC(T)eiw dr. (7.6)

The unit of the current noise (spectral density) is [A%/Hz].
Often, the decay of the correlation function is approximately exponential and described by

C(r) = C(0) - e/, (7.7)
with 7. being the characteristic decay constant. In this case, the spectral density is

00 ) Te 2
Srw)=2- /_OOC(O)e*T/TCe*W dr = W, (7.8)

according to Egs. (7.3) and (7.6). Hence, the spectral density at low frequencies (w < 1/7¢) is
constant. Noise with a frequency-independent spectral density is also called white noise.
There are several physical processes which lead to electronic noise. The two most impor-

tant noise sources for our experiments and their characteristics are briefly introduced in the
following.

7.1.1. Thermal Noise

One contribution to noise is caused by the thermal motion of charge carriers. It is called thermal
noise or Johnson-Nyquist noise. The sketch in Fig. 7.2 (a) shows a conductor of conductance
G at a finite temperature 1. The electron’s thermal motion leads to a current I~ to the left
and I to the right side. On average, the currents in both directions are equal and there is no
net current. But at some instances, there can be more electrons moving in one direction than
in the other. The resulting current fluctuations are an equilibrium phenomenon also appearing
when no bias is applied. Thermal noise is inherent to every conductor and arises as soon as
both ends of a conductor are connected.
The formula for the thermal noise current spectral density reads [92]

1 1 4kpTG  if kT > hw
Sr(w) = 4Ghw (ehN/kBT 1" 2) {2hwG if kpT' < hw o

In the low-frequency limit, it describes a white noise spectrum. The contribution in the high-
frequency limit stems from zero-point fluctuations, as further described in section 7.1.5.
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Figure 7.2.: (a) Graphics showing a conductor of conductance G in thermal equilibrium with
its environment of temperature 1. The two ends are connected by an ideal con-
ductor. The electron’s thermal motion causes currents It and I~ moving in the
two directions. (b) Schematic of a tunnel junction, through which an average
current (I) is flowing. (c) The current through such a junction consists of a series
of random charge pulses.

7.1.2. Shot Noise

Shot noise arises from the quantised nature of charge carriers, which are moving in an uncorre-
lated, random manner. In contrast to thermal noise, shot noise only appears when the system
is driven out of equilibrium. Shot noise is a phenomenon observed only in mesoscopic con-
ductors, not in macroscopic ones, which can be thought of consisting of many independently
fluctuating domains. If the number of these noisy domains is large, the net shot noise cancels
to zero.

As an example, we consider a tunnel junction with an average tunnelling current (I), as
depicted in Fig. 7.2 (b). In the case of high tunnel barriers, one can assume completely un-
correlated tunnelling events. Hence, the time-resolved current consists of random pulses, as
represented in the schematic of Fig. 7.2 (c). Each pulse carries the charge e. This is described
by

I(t) =" ed(t —ty). (7.10)
k
With the use of Egs. (7.1) and (7.2), one finds for the autocorrelation function

O(r) = e()3(7), (7.11)

assuming charge pulses at completely random times ¢;. Applying Eq. (7.6), the resulting
current noise spectral density reads
Sr = 2el(I)], (7.12)

which is the formula first obtained by Schottky for current fluctuations in vacuum tubes [4].
The reason for the factor 2 is the summation of the contributions from negative and positive
frequencies. In this classical case, Schottky noise has a white spectrum.

The statistics of charge tunnelling is Poissonian and therefore Schottky noise is also called
Poissonian noise. The Schottky value of a tunnel junction is conventionally used as a reference
for any shot noise S;. To this end, the Fano factor F' is introduced as the ratio

St

=L 1
ST (7.13)

where |I| is the average current and e the elementary charge. Shot noise with F' > 1 is called
super-Poissonian and with F' < 1 sub-Poissonian.
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The scattering theory of Laundauer and Biittiker can be applied to determine the shot noise
in a coherent conductor. We assume N modes connecting the source and drain leads with
transmission probabilities Ty (k = 1,2,...,N). When a source-drain bias V is applied, the
shot-noise current spectral density is expressed by [93]

2 N
e
Sy = Ze\V]ﬁZTk(l —Ty). (7.14)
k=1

Thus, for a ballistic conductor, for which all T3, = 1, shot noise is suppressed. This is reasonable
because of the absence of randomness in the charge transfer. Every charge arriving at the
source is certainly transmitted to the drain and consequently a ballistic conductor does not
add any fluctuations. In the other limit when all 7 = 0, the shot noise also vanishes, since
there is no current at all. The maximum shot noise is coming from a channel with 7}, = 1/2.
This dependence on transmission is confirmed with shot-noise experiments of quantum point
contacts [94, 95]. In the limit of one low-transmissive channel with transmission probability
T < 1, the Schottky formula of Eq. (7.12) is recovered by using that the current |I| =
e2/h-T-|V]|.

The generalised formula for the noise of a tunnel junction at a finite temperature T' takes
into account thermal and shot noise and reads [96]

1 = 2elt]coth (55— ). (7.15)
In the limit eV < kT, one can use the approximation coth(xz) ~ 1/x for x < 1. What
follows is the thermal noise formula in the low-frequency case as stated in Eq. (7.9). As soon
as eV > kpT, the coth-term approaches one and the Schottky formula of Eq. (7.12) is valid.
In summary, thermal noise dominates when eV < kpT' and shot noise dominates in the other
case when eV > kpT'. This crossover can be seen in Figs. 7.9 (b)-(d).

There are several mechanisms which may lead to enhanced or suppressed shot noise. On
the one hand, shot noise is proportional to the effective charge of one charge carrier. For
example, super-Poissonian noise has been reported when Cooper pairs are involved [5, 97, 98]
and sub-Poissonian noise has been observed for Lauglin quasiparticles in the fractional quantum
Hall regime [6, 7, 99]. On the other hand, interactions between the charge carriers, such as
the Coulomb interaction or the Pauli exclusion principle, lead to reduced shot noise, since
correlations reduce the randomness in the charge transfer [1]. In summary, current fluctuations
due to shot noise depend on the kind of charge carriers and the interactions they experience
in the studied system. This points out that shot-noise studies can deliver information beyond
what is accessible by the average current [2].

7.1.3. Shot Noise in Different Wire Regimes

The Fano factor of a wire is a matter of its length relative to the characteristic length scales of
electron motion. As drawn in Fig. 7.3 (a), there are four regimes [100]. When the wire length
L is shorter than the mean free path, it is in the ballistic regime. This case has already been
discussed in connection with Eq. (7.14) derived by the Landauer-Biittiker formalism. Due to
the absence of randomness in charge transport, there is no shot noise.

In the phase-coherent regime, the wire is longer than the mean free path but still shorter than
the inelastic electron-electron scattering length (lo < L < le—e). A phase-coherent wire exhibits
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a Fano factor F' = 1/3, as predicted theoretically [101-103] and confirmed experimentally [104].
For a derivation with the Landauer-Buttiker formula of Eq. (7.14), the phase-coherent wire
can be described as consisting of many parallel channels, whose transmission coefficients are
binomially distributed [101].
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Figure 7.3.: (a) Fano factors for different wire lengths L. The characteristic length scales of
the conduction electrons are the mean free path [, the electron-electron scattering
length l._. and the electron-phonon scattering length l._pn. (b) Sketch of the
electron temperature 7T, along the wire axis x for a wire in the hot-electron regime.
Te is plotted relative to the reservoir temperature T'.

The hot-electron regime appears when the wire length is between the electron-electron scat-
tering length [ and the electron-phonon scattering length l._,,. When a bias is applied
to the wire, the electrons accelerated through the wire loose part of their kinetic energy via
electron-electron scattering, which leads to an increased electron temperature T, compared
to the temperature T of the two reservoirs. Cooling of the wire occurs by diffusion of hot
electrons to the reservoirs. The electron temperature profile along the wire axis x as derived in
reference [105] is sketched in Fig. 7.3 (b). The temperature of this heated electrons increases
with bias and so thus their thermal noise. The resulting Fano factor is F = 1/3/4 in the limit
eVhias > kpT' [105-107].

In wires which are longer than the electron-phonon scattering length lo_pp, hot electrons are
cooled via phonons and hence the shot noise is reduced until it vanishes in the macroscopic
limit. In this limit, the wire can be considered to consist of many individually fluctuating
domains. When summing up all the shot-noise contributions, it averages to zero due to the
uncorrelated nature of the fluctuations.

7.1.4. Other Noise Sources

Apart from shot noise and thermal noise discussed before, there are two other noise sources
in mesoscopic systems, both appearing in a nonequilibrium situation. The characteristic of
random telegraph noise is a random current switching between discrete states. The origin of
these switches is commonly attributed to charging and discharging of charge traps near the
current path.

Flicker or 1/f noise is present in almost all electronic devices. As the name suggests, its
power spectral density is 1/ f-dependent. Typically, this noise source dominates at frequencies
below about 10 kHz. There are several studies proposing different mechanisms for 1/f noise
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and the origin is still on debate [108]. Due to the great variability of systems in which these
fluctuations occur, no universal mechanism is found.

7.1.5. Quantum Noise

So far, we have dealt with noise in the classical regime. Only in the context of thermal noise
[Eq. (7.9)], the high-frequency regime was mentioned. In this section, we are going to take a
closer look at the so-called quantum regime, when hf > eV, kgT. In a quantum-mechanical
treatment, the current in Eq. (7.1) is replaced by the current operator and the square bracket
in Eq. (7.2) becomes the quantum statistical average. Since operators do not commute at
different times, the autocorrelation function is now a complex value. Consequently, the noise
spectral density of Eq. (7.5) is different for negative and positive frequencies: Sr(—w) # Sr(w)
[109].

A physical interpretation for the asymmetry of Sy(w) in the quantum regime is given in the
review [110] and measurements showing this asymmetry are found in [111]. The negative part
S;(—w) is a measure of the noisy system’s ability to emit photons to the environment. At
zero temperature, the system is in the ground state and does not emit any photons and thus
S;(—w) = 0. The positive part S;(w) is a measure of the system’s ability to absorb photons
from the environment. This spectral part does not vanish even at zero temperature. Because
of zero-point fluctuations in the environment, there is always the chance for absorption.

Often, exciting phenomenon are observed when being in the quantum regime. This is for
once not true for noise measurements. Quantum noise is dominated by zero-point fluctuations
[112] and does not yield more informations than conductance. Therefore, we do not want to
work at too high frequencies.

7.2. Noise Detection Techniques

This section gives an overview of the existing measurement schemes used to detect noise. It
will help to put our approach using a stub impedance-matching circuit into a wider context.

7.2.1. Low-Frequency Cross-Correlation

A straightforward, simple way of measuring noise is sketched in Fig. 7.4 (a). Noise generated
by the device with resistance R can be modelled as a voltage source AVg in series. These
voltage fluctuations are amplified and frequency-resolved measurements of the average squared
fluctuations (AV?2) can be done using a spectrum analyser. A disadvantage of this method is
that it also measures noise added by the amplifier. This noise is modelled as a voltage noise
source (AV2) and a current noise source (AI3) referred to the input of an ideal noise-free
amplifier, as drawn in the figure. Taking these amplifier noise sources into account, the total
voltage fluctuations measured by the spectrum analyser are

(AV2) = g ((AVR) + (AVR) + RHALR)) (7.16)

where g is the amplifier’s power gain. Today’s commercial cryogenic HEMT amplifiers have
an equivalent noise temperature of at least 4 K or more. This amplifier contribution is often
much larger than the noise signal one is actually interested in. Recently developed parametric
amplifiers [20, 21] reach a much lower noise level of about 300 mK at f = 7 GHz, which is
comparable to the vacuum noise level hf /2kp.
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Figure 7.4.: (a) Simple noise measurement setup. Voltage fluctuations from the device (AVg)
are amplified and recorded with a spectrum analyser, which itself adds some volt-
age noise AV and current noise Alp. (b) Cross-correlation scheme with two
independent amplifiers. The amplifier voltage noise contributions are eliminated
in the mixed signal, which is fed into a spectrum analyser.

A smart method to get rid of the amplifier noise is the cross-correlation scheme [113], of
which a schematic is shown in Fig. 7.4 (b) and which looks similar to a four-terminal measure-
ments scheme for conductance. It uses two independent amplifiers, adding uncorrelated noise
contributions. The two amplified noise signals are multiplied with a mixer and then fed into
the spectrum analyser. After mixing, the remaining averaged signal is

(AVIAVS) = g ((AVE) + R¥(ALR,) + RH(ALR,)) (7.17)

with AV; and AVs denoting the voltage fluctuations at the output of the two amplifiers.
The uncorrelated amplifier voltage fluctuations drop out and only the correlated device noise
remains plus a contribution from the amplifier current noise, which goes through both amplifiers
and is therefore correlated.

The combination of the device resistance R with the wire and filter capacitance C' produces
an RC low-pass filter in this kind of circuits. When dealing with high-resistance samples with
resistances in the range of 100 k€2, the RC-time limit sets an upper frequency bound of some
kilohertz [see Eq. (6.15)]. However, the amplifier noise power has a 1/ f behaviour, as explained
in section 7.1.4. Therefore, it would be desirable to measure at higher frequencies.

7.2.2. Resonant Circuit for Intermediate Frequencies

One way to push up the measurement frequency is to use a resonant circuit [7, 114], to which
impedance-matching circuits belong, too. Fig. 7.5 shows a schematic of such a noise measure-
ment scheme including an impedance-matching part between the device and the amplifier. The
matching circuit acts as a bandpass filter and provides a window of high noise transmission
around the resonance frequency. Impedance matching and the cross-correlation technique are
combined in reference [115].

Noise detection with impedance matching is also our approach. The stub tuner as a gigahertz
resonant circuit and its transmission properties are introduced in section 3.1.7. An alternative
with an LC' matching circuit is mentioned in section 3.2. The narrowness of these resonant
circuit’s high transmission windows might seem to be a disadvantage at first sight. But the
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Figure 7.5.: Noise measurements with the help of a resonant impedance-matching circuit. Volt-
ages fluctuations from the device (AVR) are fed into the resonant circuit, amplified
and then detected with a spectrum analyser. The amplifier adds input-referred
voltage noise AV, and current noise Alx.

analysis in section 3.1.8 proves the opposite. The introduced figure of merit compares the
desired noise signal with the unwanted background noise. In this regard, a resonant circuit is
very beneficial, since the picked-up background noise remains small when integrating over a
narrow frequency band, whereas the transmitted noise signal is large.

7.2.3. High-Frequency Schemes Using Rectifying Elements

There are several techniques suited for high-frequency noise detection. Their common feature
is a rectifying element to convert high-frequency radiation to a DC signal.

One possibility is the use of a diode [94], as sketched in Fig. 7.6 (a). For low noise powers,
the diode is a square-law detector, meaning that the DC voltage measured after the diode
is proportional to the square of the voltage fluctuations: Vp o< (AV?). In order to reduce
the amount of detected amplifier noise, one can apply a lock-in technique. The device bias is
modulated at a low frequency and the rectified voltage is fed into a lock-in amplifier.

A superconductor-insulator-superconductor (SIS) junction can be used for radiation detec-
tion, as well [111, 116, 117]. The quasiparticle density of states of the two superconducting
junction parts are sketched in Fig. 7.6 (b). The noise source is capacitively coupled to the
SIS junction. Radiation on the junction with frequencies f > (2A — eVgis)/h induce photon-
assisted tunnelling events, which are recorded as a DC current. Here, A is the superconducting
gap and Vgrg is the junction bias. The SIS detector is only sensitive to the noise emission spec-
trum of the source device [S(—w)] in the sketched situation when eVgg < 2A. At a larger
bias, the junction is not noiseless any more, which in turn provides photons to be absorbed
by the source device. These absorption events lead to a reduced tunnelling current across the
junction. In principle, the SIS junction can be used in this configuration as a detector for the
absorption spectrum S(w). But since the current reduction occurs on top of a large tunnelling
current, it is difficult to measure [109].

Also a single quantum dot (QD) can be utilised as a noise detector, when it is capacitively
coupled to a nearby noise source [118]. The detection principle can be understood with the
help of Fig. 7.6 (¢). The configuration in this energy level diagram is such that the charge
on the dot is fixed in the absence of radiation. But an impinging photon with a frequency
above a certain threshold can excite the electron from the QD ground state to a lead. If an
excited state is in the bias window, this photo-ionisation event takes the QD out of Coulomb
blockade and a transient sequential tunnelling current is flowing as long as the ground state is
not occupied again. This noise detection scheme is only sensitive to the emission spectrum of
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Figure 7.6.: (a) Detection scheme with a diode. The voltage fluctuations of the device AVy
and the amplifier fluctuations AV and A, are fed into a diode. The recti-
fied voltage Vp is proportional to the noise power. (b) Superconductor-insulator-
superconductor (SIS) junction as a radiation detector. The quasiparticle density of
states (horizontal axis) of both superconductors is sketched. Electromagnetic radi-
ation generates a photon-assisted quasiparticle tunnelling current for bias voltages
Vais < 2A/e. (c) Radiation detection with a single quantum dot (QD). The en-
ergy level diagram illustrates the radiation-induced excitation of an electron from
the QD ground state (GS) to the drain lead. This event gives rise to a transient
sequential tunnelling current via an excited state (ES), which is in the bias win-
dow. (d) Double QD scheme for radiation detection. The energy level diagram
shows an an electron excited from QD; to QD5 by the absorption of a photon.
The electron may leave to the drain, followed by the loading of QD1 by a source
electron. The adjustable detuning ¢ enables a frequency-selective detection. (e)
Double QD configuration with a reversed bias compared to (d), which is sensitive
to the emission spectrum of a noise source.

the noise source, denoted by S(—w).

On the contrary, a double QD represents a complete quantum spectrum analyser, meaning
that it is able to measure separately the absorption and the emission parts of the noise spectrum
[119, 120]. As depicted in Fig. 7.6 (d), the double dot is tuned to a stable charge configuration.
But the irradiation of photons can induce inelastic tunnelling events: The excited electron
on QD2 may leave to the drain lead and a new electron enters to QD; from the source. The
frequency of absorbed photons is fixed to f = §/h since there are two discrete QD energy levels
involved. Here, § denotes the electrochemical potential difference between the two QD levels.
The tunability of 6 enables a frequency-selective detection. For a bias as drawn in Fig. 7.6 (d),
the double-dot system is sensitive to the emission spectrum S (—w) of the source noise. If the
bias is reversed, as sketched in Fig. 7.6 (e), the detector is made sensitive to the absorption
spectrum S (w) since the QD sends out noise that can be absorbed by the studied system.
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7.2.4. Full Counting Statistics

An interesting, different approach to obtain noise information starts in the time domain. In
reference [121], a QD is capacitively coupled to a nearby quantum point contact (QPC). The
QD is the studied noise source and the QPC serves as a charge detector. A change in the
number of electrons on the QD modifies the current through the QPC. An example time
trace in a regime with fluctuating charge occupation is shown in Fig. 7.7 (a). The QPC current
exhibits random telegraph noise - random switching between two or more states due to charging
and discharging of the QD. A measurement bandwidth up to 30 — 40 kHz was achieved, which
corresponds to a time resolution in the order of 30 us.

(a) T T T T T T (b)

current
counts

time N

Figure 7.7.: Drawings to explain the principle of full counting statistics (not real measure-
ments). (a) Time trace of the current through a charge detector, which is coupled
to a noise source. (b) Histogram for full counting statistics. The time trace is
divided in small segments with equal spacings and the number of events happening
in each segment is counted.

The acquired time traces can be analysed by means of full counting statistics. For this, the
time traces are divided into segments with equal lengths AT. The number of switching event
in each segment is plotted in a histogram, which may look similar to Fig. 7.7 (b) and contains
interesting information [121, 122]. The mean value of the histogram (V) is called in statistics
the first central moment. It describes the average current through the QD (I) = e(N)/AT.
The histogram width is the second central moment or variance ((N — (N))?), which is related
to the current fluctuations via (AI?) = e?((N — (N))2)/AT. Playing this game further, one
can derive even higher central moments from these histograms.

7.3. Noise Detection with a Stub Tuner

The general idea of measuring noise with the help of a resonant circuit is discussed in sec-
tion 7.2.2 and it is mentioned that the resonant circuit we utilise is the stub tuner. In this
section, the properties of such a detection scheme are explained. In particular, it is discussed
how to calibrate the circuit.

7.3.1. Setup Analysis

Our entire high-frequency setup is described in chapter 5. The illustration in Fig. 7.8 focuses
on the noise measurement chain. We plan the stub tuner’s fundamental mode to be around
3 GHz, because it is the centre frequency of the circuit components’ bandwidths in our setup
(circulator, directional coupler and amplifer). At this frequency, the 1/f-noise contribution
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is small (see section 7.1.4). At very high frequencies, when hf > eWya.s, kT, one enters
the regime of quantum noise (see section 7.1.5). As mentioned earlier, we want to stay in the
classical shot-noise regime. Regarding the bias voltage, this is fulfilled as soon as Viias > 15 pV.
Assuming a temperature of about 100 mK, 3 GHz is already close to the quantum regime. In
summary, we assume the QD sample to emit classical white noise under our measurement
conditions.

This white noise signal first passes through the stub tuner. It has a bandpass behaviour
with a centre frequency around the matched value and a conductance-dependent bandwidth
a few megahertz. The stub tuner parameters are known from reflectometry, as explained in
section 6.3.1.

Subsequently, the noise signal is amplified by a low-temperature amplifier and two room-
temperature amplifiers with a total gain g. Section 7.3.2 deals about the calibration of g
with the help of a reference sample with well-known noise characteristics. The first room-
temperature amplifier is matched to the low-temperature amplifier in the sense that its noise
is much smaller than the noise of the low-temperature amplifier times the gain. Hence the
background noise is effectively stemming from the low-temperature amplifier.

The spectrum analyser detects the noise power dissipated over 50 2. We record the inte-
grated power spectral density over a certain bandwidth, in which the stub tuner has a high
transmission. As found towards the end of section 3.1.8, the optimal bandwidth for the best
signal-to-noise ratio is about the full width at half maximum (FWHM) of the transmission
function [see Eq. (3.29)].

(a) Source Stub tuner Amplifiers Spectrum analyser
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Figure 7.8.: (a) Illustration of the noise detection chain using a stub tuner. The source’s
white noise passes through the stub tuner with a characteristic voltage trans-
mission function [ty/[2. Then, the signal is amplified with low-temperature and
room-temperature amplifiers. In the end, the spectrum analyser measures the
power spectral density integrated over a certain bandwidth of high transmission,
indicated here in orange. (b) Schematic of this measurement scheme.

After measuring the noise power arriving at the spectrum analyser, the challenge is to extract
the part emitted by the device of interest. In order to derive a calibration formula, we look
at the measurement chain of Fig. 7.8 in the reversed direction. The integrated noise power
measured with the spectrum analyser is denoted by (APssa). As a first step, the background
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noise (AP;,) added after the stub tuner is subtracted:
(ARy) = (APssa) — (APhg). (7.18)

As discussed later in this section, we take the noise at zero bias as the background value with
the assumption that the background noise is independent of the device conductance. This
assumption holds for the amplifier voltage noise AVy. But the conversion of the amplifier’s
current noise Al to an equivalent voltage noise depends on the impedance seen at the input
looking towards the attached circuit in front of the amplifier. In our setup, the circulator
between the stub tuner and the amplifier ensures that this impedance is the terminator value
of 50 €2, independent of G.

Next, the noise power dissipated on Zy = 50  at the network analyser is converted to
voltage fluctuations via

(AVF) = Zo - (ARy). (7.19)

Dividing by the amplifier power gain g and the integrated stub transmission function leads to
the voltage noise on the device
_ (AW

9 Jewltv>df’
where BW is the integration bandwidth. Finally, the conversion from voltage to current noise
is done by

Sy (7.20)

Sr =Sy -G?, (7.21)

with G being the device differential conductance. Combining Eqs. (7.18) - (7.21) results in the
expression

(APssa) — (AP)
g- fBW|tV|2df ’

which converts the integrated noise power on the spectrum analyser to the current noise spectral
density of the device.

S =G*Z, -

(7.22)

7.3.2. Setup Gain Calibration

For the calibration of noise data via Eq. (7.22), it is crucial to know precisely the power gain g
of the setup, which is the sum of the three amplifier gains and the cable losses. To this end, the
QD sample with the stub tuner is replaced by a metal wire resistor in the hot-electron regime
with the well-established Fano factor F' = v/3/4 ~ 0.43 (see section 7.1.3). In this section, it
is explained how we infer from the noise data of such a wire the setup gain.

A picture of the studied metal wire is in Fig. 7.9 (a). It is a gold wire of length L = 50 um
on a silicon substrate. Its width w = 680 nm and thickness of 30 nm lead to a residual
resistance R = 39 Q) at 4.2 K. This is determined after the noise experiment in a four-terminal
measurement. Since we do not observe a resistance decrease between 10 and 4.2 K any more,
we assume that 39 €) is the wire resistance at milli-Kelvin temperature, too. It results in a
sheet resistance Rs = R-w/L ~ 0.5 Q. The wire is attached to two rather big copper pads of
size 300 x 300 pm? and thickness 500 nm, acting as heat sinks.

An estimate of the electron-electron scattering length is obtained by Altshuler’s formula for
a quasi one-dimensional wire [100, 123]:

@e::[¢§.<h>2.;¥ilug. (7.23)

kg e
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A typical value for the diffusion coefficient D of a gold wire is 120 cm? /s [100]. One ends up
with an electron-electron scattering length l._. of about 20 pm at 0.1 K.
The electron-phonon scattering length is estimated via

1.31
lefph = \/ﬁ7

where the electron-phonon coupling parameter I' is found to be about 5 - 10 m—2K=3 for
gold wires [124]. Hence, we expect an electron-phonon scattering length l._pn ~ 600 pm. In
conclusion, our gold wire is definitely in the hot-electron regime, where lo_o < L < lo_ph [see
Fig. 7.3 (a)].

The measurement scheme to detect noise of the gold wire is drawn in Fig. 7.9 (a). A current
I is applied to the DC side of the bias tee, whereas noise is measured via the RF side of
the bias tee. The wire resistance of 39 Q is close to Zyg = 50 2, such that there is a high
RF power transmission to the amplifier without impedance matching. A signal and spectrum
analyser (SSA) detects the noise power spectral density dissipated over Zj and integrates over
a bandwidth BW.

But how to extract the noise generated by the wire from the noise power of the SSA?
According to Eq. (3.21), the mismatch between the wire resistance and Zj is taken into account
via the transmission coefficient ty = Zy/(Zy + R). Assuming no frequency dependence of the
gain within the measurement bandwidth, the formula to convert from the integrated noise
power at the SSA ((APsga)) to the shot-noise current density of the wire (S7) is readily
derived from Eq. (7.22) to be

(7.24)

_ (Z+R)*> 1 (APssa) — (APy)
5= i . (7.25)

For the background noise (AP;), the value at zero current is used, where only thermal noise
and amplifier noise is present, but no shot noise.

In order to calibrate the gain which is present for the quantum dot measurements of sec-
tion 7.4, we measure the noise power at the same centre frequency fy = 2.9218 GHz and
with the same bandwidth of 10 MHz (see section 7.4.2). Since the gain ¢ in Eq. (7.25) is
still unknown, the quantity S7 - g is plotted in Fig. 7.9 (b) as a function of the full Schottky
noise 2el. The flat part close to zero current corresponds to the regime where thermal noise
is dominant. At intermediate currents, the shot noise is increasing linearly with current, as
indicated with the red lines. A noise reduction is visible for the highest currents, where elec-
trons start to get cooled by phonons. In the linear regime, the shot noise of this wire with hot
electrons is expected to exhibit a Fano factor of v/3/4. Consequently, the slopes a of the two
red lines must be 4¢ - v/3/4. Or in other words, one can deduce the gain from the slopes via
g[dB] = 10 - log;, (\a! : 4/\/5) From the data in the figure, we infer a power gain of 97.9 dB.
This is the average from the left and the right side, which both lead to very similar gains.
It is a reasonable value considering a gain of about 35 dB from each of the three amplifiers
and subtracting a few dB loss from the coaxial cables. Another cross-check is that by using
this gain to calibrate the quantum dot data, reasonable Fano factor values are extracted, as
explained in connection with Fig. 7.11.

The measurements in Fig. 7.9 (b) are done at the base temperature of 18 mK. The noise
evolution with increasing temperatures is shown in Fig. 7.9 (¢). It shows the SSA’s raw data of
integrated noise power. This time, the bandwidth is 500 MHz and the centre frequency 3 GHz.
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Figure 7.9.: (a) Measurement scheme to calibrate the amplifier gain g. The noise source is a

50 pm-long gold wire, which is attached to two large copper pads. The noise power
is measured at the RF side of the bias tee. The signal is amplified and fed into a
signal and spectrum analyser (SSA). At the DC side of the bias tee, a current I is
applied. (b) Noise data of the wire shown in (a) at the base temperature of 18 mK.
The spectrum analyser recorded the integrated noise power over a bandwidth of
10 MHz around the centre frequency of 2.9218 GHz. The plot shows S; - g as
a function of the full Schottky noise 2el. From the slopes in the linear regime
(marked with red lines), a power gain g = 97.9 dB can be extracted. Details on
the analysis are in the text. (c) Noise power raw data for different temperatures.
The integration bandwidth is 500 MHz and the centre frequency 3 GHz. (d)
Thermal noise increase with temperature, compared to the base temperature value
at 18 mK. The current noise density differences are extracted from the minima in
panel (c). The thermal noise increase in the linear regime (red line) corresponds
to a setup gain g = 96.6 dB. (Reprinted with permission from [44]. © 2015 by
The American Physical Society.)

The effect of an increasing thermal noise for higher temperatures gets apparent in two ways.
On the one hand, the flattening around zero current becomes broader and on the other hand
the background increases.

To analyse the thermal background in more detail, we can look at Fig. 7.9 (d). It considers
the minima at I = 0 in panel (c), where there is no shot noise. With the help of Eq. (7.25), S;-g
is calculated without subtracting any background yet ((AP;) = 0). Then, the current noise
differences relative to the base temperature value at 18 mK, ASy - g, are plotted as a function
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of temperature. The thermal background is only increasing above 100 mK. We conclude that
the electron temperature on the RF line is around 100 mK. As discussed in section 5.4, we are
currently working on setup improvements to reduce the electron temperature.

At higher temperatures, the thermal noise seems to increase roughly in a linear manner. A
linear fit is shown with red lines. Comparing the slope a of the fit with the thermal noise
formula St = 4kpT /R [see Eq. (7.9)] yields another way to obtain the setup gain. We deduce
a gain g = aR/(4kp) ~ 96.6 dB. It is in the same range than the 97.9 dB extracted before
from the shot noise. However, there are not many data points for this linear fit and therefore
the gain extracted from thermal noise is not very precise. Furthermore, the bandwidths of the
two measurements are very different. In summary, the gain deduced from thermal noise serves
as a check if the temperature increase is in a reasonable range, but the gain obtained from
shot noise is the accurate value.

7.4. Noise Measurements in the Single Dot Regime

Now, we turn our attention to noise measurements of a single quantum dot (QD) formed in
a carbon nanotube (CNT). Owing to the strong electron confinement in QDs, interactions
play an important role for charge transport through QDs and one can for instance expect to
observe sub-Poissonian shot noise under some circumstances (see section 7.1.2). Thus, QDs
are an interesting playground for noise studies. The sample used here is already introduced in
chapter, namely in section 6.3. Pictures of the CNT device with an attached stub tuner are
shown in Fig. 6.7 and conductance plots in the single QD regime are presented in Fig. 6.10. The
noise measurements are done in the exact same gate voltage range than for the conductance
plots.

7.4.1. Stub Tuner Transmission

Section 6.3.1 deals with the reflection characteristics of the stub tuner on this sample. Here,
the stub tuner parameters from reflection are used to find the transmission properties of this
circuit. The general voltage transmission function of a stub tuner is discussed in general in
section 3.1.7 and thoroughly derived in appendix B.2.1. Using the parameters obtained from
the reflection spectrum in the Coulomb blockade [Fig. 6.9 (a)], Fig. 7.10 (c) shows the calculated
transmission functions for three device conductances. They can be compared with the optimal
curves in Fig. 3.9 (a) for a lossless circuit at full matching. The conductance G = 0.26 e%/h
corresponds to a resistance of 100 k2. While the transmission maximum for this conductance
reaches [ty|?> = 1.2- 107 in the optimal case, our stub tuner has a five times lower maximum
of [ty|? = 2.2-107° for the same conductance.

The signal-to-noise ratio (SNR) is a measure of the detection sensitivity. Regarding noise
measurements, the SNR is the ratio of desired noise signal to the background noise. In sec-
tion 3.1.8, the figure of merit gsnyg was introduced to quantify the benefit of an impedance-
matching circuit for noise detection. It is defined as the ratio of SNRs with and without
matching. The maximum figure of merit achieved with a lossless stub tuner at full matching
is given by Eq. (3.32) and amounts to gg\g ~ 400 for a resistance of 100 k2. With the param-
eters of our actual stub tuner and a detection bandwidth of 10 MHz, Eq. (3.31) yields a ten
times lower figure of merit ggng ~ 35 for R = 100 kQ. Eq. (3.29) suggests a bandwidth slightly
larger than the FWHM for a maximal figure of merit. Considering the transmission functions
of Fig. 7.10 (a), it gets evident that the chosen bandwidth of 10 MHz is too large. This has two
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reasons. Firstly, we were not aware at the time of the measurements that the optimal band-
width is only the FWHM and secondly, we wanted to make sure that the bandwidth covers the
high-transmission windows for all occurring resistances. If we had wisely chosen the bandwidth
to be the FWHM, we could have increased the figure of merit for measurements with this stub
tuner to gsnr =~ 80 when R = 100 kS2. However, since the FWHM is resistance-dependent and
the resistance of typical QD devices changes over more than an order of magnitude, one has
always to make a compromise when using a fixed bandwidth.

7.4.2. Noise Calibration
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Figure 7.10.: (a) Conductance-dependent voltage transmission function of the stub tuner used
for the experiments (using the stub tuner characteristic impedance Zj = 44.8 Q).
The parameters are gained from reflectometry, as explained in Fig. 6.9 (a). (b)
Noise power raw data as measured with the spectrum analyser. The integration
bandwidth is 10 MHz. The device is a quantum dot and the z-axis is its bias
voltage Vsp. (c) Eq. (7.22) applied to the data in (a) leads to the current noise
spectral density of the quantum dot. The plot corresponds to a vertical cut in
Fig. 7.11 (a) at Vrg = 1330 mV. (Reprinted with permission from [44]. © 2015
by The American Physical Society.)

Section 7.4.3 discusses the complete shot-noise results gained from the QD. But before, the
detection settings and the noise calibration method are exemplified here on the basis of data
measured at a randomly fixed gate voltage of Vrg = 1330 mV.

Fig. 7.10 (b) shows the bias dependence of the noise power raw data (APgsga) obtained from
the spectrum analyser when integrating within a window of 10 MHz around the stub tuner
resonance. In this frequency window, 1001 points are measured with a bandwidth of 100 kHz,
which takes 6 ms to obtain the integrated power. This is repeated for 30 times to calculate
an average value. The background noise visible in the flat Coulomb blockade region around
zero bias of (APy) ~ 28.5 uW is attributed to amplifier noise. The contribution of thermal
noise from the QD is negligibly small because the stub tuner transmission is poor at the low
conductance inside the blockade.

It is derived in section 7.3.1 how to extract the current noise from the measured noise power.
Applying Eq. (7.22) with an amplifier gain of g = 97.9 dB (see section 7.3.2) and with the
differential conductance values G taken from a preceding reflection measurement (not plotted),
results in the current noise spectral density plotted in Fig. 7.10 (¢c). The resemblance of the
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curves in panels (a) and (b) is striking considering the seemingly conductance-dependent trans-
formation formula in Eq. (7.22). This weak conductance dependence can be easily understood
in the case of a perfectly matched and lossless stub tuner. For this circuit, the transmission
function integral is evaluated in Eq. (3.23) to be [zwltv|? df o< G* and hence the G dependence
in Eq. (7.22) cancels out.

7.4.3. Shot-Noise Results

After demonstrating how to deduce current noise originating from the QD with the example
above, let us now look at the full gate map. Fig. 7.11 (a) shows the calibrated current noise
spectral density St as a function of gate and bias voltage. For each bias scan, the corresponding
noise at zero bias (averaged with four neighbouring values) is used as background noise (A Fy).
This way, long-time drifts can be compensated. Because the applied bias voltages are large
compared to the thermal energy (eViias > kpT'), the data in this plot is shot noise.

Eq. (7.13) predicts a linear relation between the average current and the shot noise if the
Fano factor stays constant. Indeed, the full Schottky noise 2e|I| [see Eq. (7.12)] plotted in
Fig. 7.11 (b) looks similar to St at first sight. The DC current I is measured simultaneously
with the noise data. The typical quantity to compare shot noise and mean current is the Fano
factor. However, in the context of quantum dots, the Fano factor error bars are diverging
inside the Coulomb blockade because one divides by a tiny current. Hence, it is more useful
to plot the so-called excess Poissonian noise, as done in Fig. 7.11 (c). SFF = S5 — 2¢|I] is the
difference between the shot noise and the full Schottky noise. One can distinguish between
super-Poissonian noise, where S}EP is positive (red), and sub-Poissonian noise, where it is
negative (blue). The effects on shot noise by three distinct processes are visible and discussed
below.

Inside the Coulomb blockade (CB), namely at the corners of the two large diamonds, there
are some small areas where the noise is super-Poissonian. We relate this shot-noise enhance-
ment to inelastic cotunnelling events. The argument goes as follows: In the configuration
drawn in Fig. 7.12(a), the current is initially blocked. But a inelastic cotunnelling process
leaves the QD in a state, in which sequential tunnelling is possible as long as the ground state
is not occupied again, as drawn in Fig. 7.12 (b). In summary, each switching to a conducting
state by an inelastic tunnelling event is followed by a bunch of transferred electrons and thus
the current consists of pulses with an average charge larger than e. This situation is analogous
to what one observes on the street. A red traffic light interrupts the car flow with a slow rate
compared to their speed when the light is green. Since shot noise depends linearly on the
charge unit, it is enhanced in the inelastic cotunnelling regime [125, 126]. Super-Poissonian
noise in this QD regime has already been observed in references [117, 127-129].

Outside the CB, an oscillating shot noise is apparent in Fig. 7.11 (¢). More insight is gained
in Fig. 7.11 (d), where the Fano factor along the diagonal dotted line in Fig. 7.11 (¢) is plotted
together with the absolute value of the current. The shot-noise suppression is correlated with
steps in the Coulomb staircase. Fano factors F' =~ 1 are reached at the end of each plateau, as
indicated by vertical dashed lines. But after the onset of a new plateau, when the number of
electrons on the dot increases by one, the Fano factor is seen to be reduced.

In section 7.1.2, it is shown that a single tunnel junction yields F' = 1. Transport through a
QD happens via two tunnel junctions in series. The corresponding Fano factor depends on the
ratio between the two tunnelling rates. In the case of equal rates for entering via the source
and leaving to drain, the Fano factor is reduced to F' = 1/2. This can be understood with the
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Figure 7.11.: (a) Calibrated shot-noise current spectral density S; of a quantum dot as a
function of voltage on the right gate (Vrg) and of source-drain voltage (Vsp).
(b) Schottky noise 2¢|I| and (c) excess Poissonian noise SF¥ = S; — 2¢|I|, where
I is the measured averaged current. The Coulomb blockade diamond contours
(dashed lines) are copied from the conductance plot of Fig. 6.10 (a). (d) Fano
factors averaged over a range of 1.2 mV in Vgp (left scale) and absolute value
of current (right scale) along the dotted line in (¢) marked with a star. Fano
factor peaks correspond to the onset of current transitions from one to the next
plateau. (e) Fano factors along the horizontal line in panel (c), which is marked
with a square. (Reprinted with permission from [44]. © 2015 by The American
Physical Society.)

following argument. Tunnelling of an electron with charge —e into the dot invokes screening at
the source and drain side. Because of equal tunnelling rates, the screening charge on source is
+¢/2 and on drain —e/2 and therefore the charge flow experienced by the outer circuit due to
the tunnelling-in event is —e/2. The same is true when an electron tunnels out to drain. The
observed current consists of charge pulses of charge —e/2 and thus the Fano factor is F' = 0.5.
The situation changes if the tunnelling rates are very different. Then, tunnelling through the
weakly coupled junction is immediately followed by tunnelling through the strongly coupled
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Figure 7.12.: (a) Energy level diagram showing an inelastic cotunnelling event. The solid line
represents the ground state and the dashed line an excited state. (b) After the
process in (a), sequential tunnelling is allowed and leads to a transient current.
(c) Level diagram in the conducting regime with a ground and an excited state
inside the bias window. The tunnelling rates for the ground (excited) state are
large (small), as represented with thick (thin) arrows. The weakly coupled ex-
cited state is blocking transport from time to time, which leads to a shot-noise
enhancement.

junction. Thus, the junction with the low rate creates charge pulses of e, which cause a Fano
factor of one like for a single junction.

Transport through a QD system can be treated by the so-called orthodox theory. Starting
with Fermi’s golden rule, one can calculate the tunnelling rates. In the next step, the current
is obtained from a rate equation. Reference [130] explains that the observation of a Coulomb
staircase with flat plateaus like in Fig. 7.11(d) is a sign that the tunnelling resistances Ry
of the two junctions are quite different. As explained before, a large difference between the
tunnelling rates leads to F' = 1. This is what we observe at the ends of each plateau.

But in between these maxima, the Fano factor is suppressed despite the difference in the
tunnelling resistances. According to the orthodox theory, the tunnelling rates I' are not simply
proportional to the tunnelling resistances Ry, but depend on the energy, too. For a complete
description of the system with a QD and the attached bias voltage source, one has to consider
the Gibb’s free energy. It is the QD electrostatic energy minus the work done by the voltage
source. The tunnelling rate derived from Fermi’s golden rule is [130]

1 AG*
+ +\
IH(AGH) = Py —ce (7.26)

where +/— refers to tunnelling on and off the QD and AGT denote the corresponding gains
in free energy. At zero temperature, the rates reduce to

. 0 if AGE <0 - o
(A = LG i AGE >0 (7.27)
e fyy

One can see that a difference between R, and R, , as present in our device, can be compensated
by an asymmetry in the energy gain and the tunnelling rates can become equal despite of
asymmetric tunnelling resistances. Hence, in this case the whole device behaves as if it is
composed of two identical junctions in series with F' = 0.5 in the ideal case. This behaviour of
I" explains the periodic noise suppression seen in Fig. 7.11 (d) and also reported in references
[96, 131, 132]. The above model assumes transport through only one QD state. However, at
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finite temperature and/or for larger bias voltages, more than one state is involved, yielding
F > 0.5. The noise suppression therefore tends to decay away at large bias voltages and
approaches F' =1 for eV},s > Fc. This is exactly what we see in the data.

It is visible in Fig. 7.11 (d) and more pronouncedly in Fig. 7.11 (e) that the Fano factor peak
values can exceed one. This finding can only be explained with multi-level models [133-135].
The requirement for super-Poissonian noise is that there are two levels within the bias window
with very different tunnelling rates to the leads. Such a situation is sketched in Fig. 7.12 (c),
where the tunnelling rates to and from the ground state is much larger than the rates for the
excited state. Hence, most of the current goes via the ground state, but once in a while the
excited state gets populated and the current is stopped until the excited state is emptied again
since the charging energy prevents both states to be occupied at the same time. The result of
such a blocking state is bunched charge transport and consequently enhanced shot noise. This
is very similar to the process leading to shot-noise enhancement in the inelastic cotunnelling
regime as described before, which may explain why the regions of super-Poissonian noise inside
and outside the CB are connected [see Fig. 7.11 (c)].

Overall, the observed shot-noise features in the single QD regime agree well with previous
experimental studies. We conclude that the presented noise measurement scheme with stub
impedance matching and the applied calibration procedure are well suited for noise detection
of high-resistance devices.
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Summary and Outlook

The goal of this thesis was to develop a gigahertz-frequency conductance and noise measure-
ment scheme for high-resistance devices. Owing to the large impedance mismatch between the
device with typical resistances up to a megaohm and the standard characteristic impedance
Zy = 50 Q of the measurement line, an impedance-matching circuit is necessary. With such
a circuit, one achieves a high RF signal transmission from the 50 €2 side to the device and
at the same time in the reverse direction from the device towards the 50 €2 detection side.
The circuit we use here for impedance matching is a so-called stub tuner. Its simple planar
structure, consisting of coplanar transmission lines, makes it easy to fabricate and to model.
As discussed in section 3.1, its behaviour at gigahertz frequencies can be reliably predicted
with a standard circuit model.

Details of the developed fabrication procedure are presented in chapter 4. For minimised
losses in the transmission line we use niobium, which is superconducting at our measurement
temperatures. Another fabrication aspect to consider is that the impedance transformation
should happen as close to the device as possible to reduce signal loss and parasitic effects
between the device and the stub tuner. The mesoscopic device investigated in this thesis is
a quantum dot formed in a carbon nanotube. We developed a method to fabricate carbon
nanotube based devices and a stub tuner on the same chip. In particular, we found a way
to stamp carbon nanotubes from the growth substrate to the target substrate in a reliable
manner.

The stub tuners we use at the moment have no tunable parameter. The stub tuner formulas
in section 3.1 allow to plan the matched resistance and frequency beforehand. But as shown
with the resonator measurements in section 2.4.4, the transmission line loss scatters consider-
ably and unpredictably. A tunability could be introduced by attaching a variable impedance to
the open stub tuner end, as for example a varactor diode (variable capacitor) [29] or a SQUID,
whose inductance can be changed by varying the magnetic flux. With such a variable element,
one could tune to perfect impedance matching and adapt to different resistance regimes during
the experiment.

In the course of this thesis, we built up an RF measurement setup in a dilution refrigerator,
as described in chapter 5. Although there is room for setup improvements (on which we are
currently working), we could successfully conduct RF measurements on a quantum dot defined
in a carbon nanotube, which is connected to a stub tuner. On the basis of this sample, we
demonstrated the application of stub impedance matching for two kinds of RF measurements:
reflectometry and noise detection.

Chapter 6 deals with the RF reflection properties of the sample. We show that all relevant
stub tuner parameters can be extracted from the reflectance spectrum around the resonance
frequency when the quantum dot is in Coulomb blockade. Knowing the stub tuner param-
eters, the reflection amplitude at the resonance frequency can be converted to the quantum
dot’s differential conductance. Since the reflection spectrum depends on the complex device
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impedance, it is also possible to obtain information about capacitance and inductance changes
in the device [31].

While the stub tuner parameters are obtained from reflectance, the gain of the amplification
chain needs to be deduced in another way. We replaced the sample with a metal wire in the
hot-electron regime, where it generates shot noise with a well-established Fano factor. Section
7.3.2 demonstrates how to deduce the setup gain from the detected shot noise of such a wire.

The main results are the shot-noise measurements in the quantum dot regime, which are
presented in section 7.4. With the help of stub impedance matching, we obtained clean noise
data in a fast way. The results compare well with earlier studies. In order to quantify the
benefit of impedance matching for noise measurements, we introduced the figure of merit gsng,
which is the ratio of the SNR with and without impedance matching. With the stub tuner
of the presented sample, a figure of merit gsng ~ 80 is attainable for a resistance of 100 k€2,
despite a rather lossy circuit and being quite far from full matching. The upper bound for a
lossless stub tuner at matching would be as high as gsnr = 400 for this resistance.

Recently, we started to work on an alternative impedance-matching circuit based on a planar
inductive coil, as briefly mentioned in section 3.2. Its advantage is a much larger bandwidth
compared to a stub tuner. Whereas this provides more signal and hence allows for faster
measurements, there is no effect on the figure of merit because a larger bandwidth also means
picking up more background noise.

The presented measurements can be viewed as proof-of-principle experiments, demonstrating
the potential of stub impedance matching for noise detection of high-resistance devices. We
gained a profound knowledge of the setup and its calibration. It paves the way for noise
studies of unexplored high resistance systems. One example is the quantum dot with one
superconducting lead of section 6.4, which showed distinct subgap features. Shot-noise studies
in this regime could lead to more insight into the transport mechanisms.
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Derivations of )\/4-Resonator Formulas

This section contains the derivations of the formulas for \/4-resonators stated in section 2.4.2.
Step by step, the quality factors given in Egs. (2.40) and (2.41), the input impedance of a
resonator, the resonance frequency fy given in Eq. (2.44) and the transmission coefficient Sa;
given in Eq. (2.37) are derived. The basis for these derivations are the PhD theses of Barends
[136] and Mazin [19].

A.1. Quality Factors

The quality factor is defined as

energy stored in resonator E
w - - =w . (A.1)
power dissipated Pljiss

Q=

The energy stored in a CTL has a capacitive and an inductive part. The energy in a
capacitor with capacitance C' is Es=1/ 2CV2. The voltage in the resonator is of the waveform
V(z) = Wycos(Bz), as discussed in section 2.1.2 and illustrated in Fig. A.1(b). Vj is the
maximum voltage arising at the open end. Integrating over the CTL length results in the
capacitive energy stored

A4q 1 2 1
Ec = /0 50 <\/§Vg cos(ﬁz)) dz=-"- ay CVZ, (A.2)

with the conversion from the wavenumber 3 to the wavelength A given in Eq. (2.14). Note that
C' is the CTL capacitance per unit length and the root mean square value 1/ V2Vp takes into
account the oscillations in time. Likewise, the energy stored in an inductor with inductance
L is E; = 1/2EI2. Again, this energy is integrated over the CTL length. Using the low-
loss approximation of the characteristic impedance given in Eq. (2.17), the inductively stored

Ep = /[))\/4;L (VZ(§)>2 dz = /0/\/4 %C(V(z))2 dz (A.3)

— Fe.

Also here, L is the CTL inductance per unit length. The CPW capacitance can be reformulated
in the low-loss approximation (section 2.1.3) as follows:

vic B 2 1
VL/C ~wZy N wZy

Combining the results of Eqgs. (A.2), (A.3) and (A.4) leads to the total energy stored in the
resonator

energy reads

(A4)

Ve (A.5)

T
E=FEc+E;,=1/4-)/4-CV? ==
o+ Ef / /4-CV; A
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In the absence of any capacitive coupling of the resonator to the environment, the only loss
channel is the damping «, which gives rise to the internal quality factor @Q;. According to
Eq. (2.24), the power in a lossy CTL has the form P(z) = Pye 2%% and accordingly, the power

loss per unit length is

dpP
o 2aPye”*** = 2a/P. (A.6)

The power P(z) is related to the voltage via P(z) = V?(z)/Zy. The total dissipated power is
the integral of the above expression along the resonator length:

M V2(z) 200 (M4 /1 2
Pdiss—/o 2a Zo dZ—ZO/O (\/QVOCOS(BZ)> dz

A7
Y v (A7)

4 8z
The results of Egs. (A.5) and (A.7) allow to calculate the internal quality factor as defined in
Eq. (A.1) to be
B

Qint = % (AS)

A coupling with capacitance C. at the open end to a feedline, as illustrated in Fig. A.1 (a),
opens a second loss channel and gives rise to another quality factor, Q.. The leakage current
through the capacitor is I = Vy/Z, = Vj - iwC.. Using the root mean square current, the

dissipated power is

1 2

V2
and one finds with the help of Egs. (A.1) and (A.9) a coupling quality factor

1
O = Sz (A.10)

1
Pdiss = ‘ I ZO = 520 (wcc‘/())2 ’ (Ag)

According to the definition in Eq. (A.1), quality factors are added up like resistors in parallel.

The total, loaded quality factor is

1 1 1

A.2. Input Impedance

The configuration with a feedline and a capacitively coupled A/4-resonators is sketched in
Fig. A.1(a). Eq. (2.23) provides an expression for the input impedance of the resonator before
the capacitor:

Zin = Zotanh(vz). (A.12)

Because v is complex, we use the relation

1 — i - tanh(z) cot(y)

tanh - y) = . Al
anh(z +i-y) = e i cot(y) (A-13)
Thus, the input impedance can be written as
1—i-
2 = 7. i - tanh(az) cot(5z) (A14)

tanh(az) — i - cot(Bz)
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Figure A.1.: (a) Schematic of the feedline and the capacitively coupled \/4-resonator with
a shorted end. In an experiment, the feedline transmission from port 1 to 2,
Sa1, is detected. (b) Voltage and current distributions along the resonator. (c)
Equivalent circuit to (a) to determine Z-parameters.

Close to f;, the resonance frequency of the first mode, Zj, can be approximated. With
Eq. (2.14) and by introducing the relative frequency Af = f — f;, the argument of the cot-
term becomes

A r
Bz = 27rzi = 27rzﬂ. (A.15)
Up Up
The resonator length is known to be z = A\g/4 = v, /(4f:) [see Eq. (2.14)], and therefore
A
Bz = g (1 + f)
h (A.16)
cot(fBz) = cot (W + I Af)
22 1)
Finally, we use that cot(n/2 + ) = —tan(z) and expand tan(x) ~ z for z < 1 since we

are interested in frequencies where Af/f, < 1, and get an approximate expression for the

cot-term: A A
cot(fz) = — tan (;T : frf> —g . frf'
In terms of the internal quality factor Q; = 5/(2«) and with the wavenumber 3 as above in
Eq. (A.16), the approximation for the tanh-term is found to be

az:fgi:4gi <1+éf;f)

T Af T Af
tanh(az) = tanh { (1 + ﬂ R~ (1 + ) .
() 4Q; fr 4Q; fr
The expansion tanh(z) ~ x used above is valid when a < 1, meaning that 1/Q; < 1.
With the help of these two approximations, the resonator input impedance of Eq. (A.14)
reads

~
~

(A.17)

(A.18)

4Q; _ . 8QF Af

Zin = Zy - = T (A.19)
1+4Q2 (4)
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where the second order terms in the limit Af/f, < 1 and @; > 1 are neglected.
Finally, by adding the series capacitor impedance, the input impedance after the resonator

is
4Qi ;. 8Q2 Af . [2Qc 2 (AfF)?
L,y wl‘w‘frl‘\/ﬂ'{l+4Qi (f”
A o~ in = 40" P .
i-2nfC 1+ 4Q? (%)

Zin,c = (AQO)

A.3. Resonance Frequency

The bare resonator frequency in the absence of any coupling to the environment was defined
as fr. Now, we are going to discuss the influence of a capacitive coupling on the resonance
frequency observed from outside. The requirement that the imaginary part of the impedance
Zinc [Eq. (A.20)] vanishes at resonance results in a quadratic equation for the relative frequency
with the two solutions

Afor 1 1 1

f V2rQ.  \2mQ.  4Q7

When neglecting the second term with Q? in the denominator, the two possible solutions
become

(A.21)

Afo 2 Afi
~— or ~ 0. A.22
fr T‘-QC fr ( )
The real parts of Zj, . at those two frequencies are
47 i 1 47, i
Re [Zinc(Afo)] = 0@ . 802 < Re [Zinc(Af1)] = 0@ . (A.23)
s 1 + TQL T

The second requirement for a resonance is that the real part of the impedance has a minimum.
Thus, the solution Afy is the actually measured resonance frequency. In other words, the
coupling causes the observed resonance frequency to be reduced compared to the bare resonator

frequency f;:
fo=fe- (1 - ,/éﬂ) : (A.24)

A.4. Transmission Coefficient

In consideration of the resonance frequency shift caused by coupling discussed in the last
section, the relative frequency A f is redefined to Af = f— fo. Using this definition, we replace
the frequency ratio Af/f, = Af/fo— \/2/(mQ.) in the expression for the input impedance of
Eq. (A.20) and obtain

A .
2. 20i- 3 i |
To1+i2Q- 5 -0 200/

Zine = Zo - (A.25)

One way to connect voltages and currents at different ports are impedance parameters or
short Z-parameters. The relation of a driving current I; at port j to the voltage at port i is
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given by the parameter Z;;, given that all other ports are open. Formally,

J

(A.26)

I,=0 for k#j

Fig. A.1(c) shows the equivalent circuit for the resonator transmission measurements, which
is used to determine the Z-parameters. With Ohm’s law and since V; = V5 in any case, one
finds that
le = = Zin,c and Z12 = — = Zin,c- (A27)
6L ln—o 6L ir,—0

Due to the symmetry of the circuit, Zos = Z1; and Zs = Z12.

The transformation for the easy to calculate Z-parameters to the experimentally accessible
scattering parameter goes like [10]

2791 % 2

VT (2 + Zo)(Zos + Zo) — ZnaZar 2+ %ﬁ’c ( )

Combining this with Eq. (A.25), one finds the transmission coefficient minimum

i Qc
Sy (f = R~ A.29
B = )~ o (429
and the general transmission coefficient
Smin 44 2Q15L

Sor(Af) ~ 2L Jo (A.30)

1+i- 2015

Spurious modes in the setup, also if their resonance frequency is quite far away from the fre-
quency of the actual resonator, make the resonance lineshape asymmetric. This is called a Fano
resonance and is taken into account by introducing the phase factor €’ into the transmission
coefficient [137]:

min | 9gid . Af 4 i 90 Af
s(afy= 22T gy 112, (A31)
1+2¢ - 50 44209

For resonances with a bandwidth of a few MHz, it is a good assumption to approximate
the (slightly frequency dependent) background attenuation and gain with a straight line in the
frequency range of interest. Altogether, the amplitude of a resonator spectrum in dezibel is
fitted with the function

S+ 2¢1 - 5L i 2151
1+2¢9 - 5L +i. 2059

|So1(Af)|*[dB] = b+ s - Af 4+ 201ogy , (A.32)

where b is the baseline value and s its slope. In the end, there are five fit parameters used; two
for the resonator (SH™ and Q) and three for the setup (b, s and ¢).
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Derivations of Stub Tuner Formulas

The stub tuner as a key circuit of this thesis is introduced in section 3.1. In this appendix,
one finds derivations for the formulas, which appear in the main text. The first part of the
appendix concentrates on the reflection at the low-impedance side. It is explained how a
measured reflection spectrum is fitted and the expression for the bandwidth stated in Eq. (3.12)
is derived. The second part concentrates on the voltage transmission from the load to the 50 2
measurement side, which is the topic of section 3.1.7. First, the general transmission function
ty is derived and then, an approximate expression is calculated.

B.1. Reflection

B.1.1. General Expression

The stub tuner circuit is illustrated in Fig. B.1. According to the formula for a terminated
transmission line in Eq. (2.22), the load impedance is transformed by the CTL of length D; to

Z1, + Zj tanh(vDy)
Z§ + Zy, tanh(yDy)’

Zpr =2 - (B.1)
with the propagation constant v = a+:- 5 and the wavenumber 5 = 27 f /€ /c. Furthermore,
the open-ended CTL of length D5 induces an impedance at the T-junction of

Zpo = ZS COth(’yDQ). (B.Q)

Adding these two parallel impedances leads to the input impedance of the stub tuner seen
from the low-impedance side:
Zp1ZD2

Zin = €i® . ZD1ZD2
" Zp1 + Zp2

(B.3)
In the same way as for \/4-resonators (see section A.4), the phase factor ¢ accounts for
spurious setup modes, which cause an asymmetric resonance lineshape [137]. We usually
design the CTLs such that their characteristic impedances are similar to the characteristic
impedance of the measurement line, meaning that Z§ = Zj.

Now, the complex reflection coefficient can be readily calculated via Eq. (2.20),

F_Zin_ZO

T — B.4
Zin + ZO ( )

In the case of impedance matching, Zi, is equal to Zy and therefore the reflection coefficient
vanishes. Minimising I' to find the matching parameters can be done analytically for a lossless
stub tuner (see section 3.1.1), but has to be done numerically in case of a finite loss «. For
instance, one can use the NMinimize function of Mathematica.
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Figure B.1.: Schematic of the stub tuner (on a yellow background) with the line impedance Zj
and the load impedance Z1, attached. Coplanar transmission lines are represented
by the orange parts.

Similar to the \/4-resonator spectrum of section A.4, the reflection amplitude spectrum can
be fitted with the function

IL(F)P[dB] = b+s- (f — fo) +201log;, T, (B.5)

when measured in dezibel. The setup properties are taken into account by a linear background
reflection described by b+ s - (f — fo), with b being the background attenuation and s its
slope. The frequency reference point fy is in principle an arbitrary frequency. We normally
choose it to be the resonance frequency. The number of fit parameters sums up to seven, four
for the stub tuner contribution (loss «, load R and the two lengths Dy and Ds) and three
for the background contribution (b, s and ¢). Formulas for the two CTL parameters, the
dielectric constant €. and the characteristic impedance Z, are given in section (2.3.1) or can
be obtained from simulations.

If the stub tuner has two open ends, as it is the case in the stub tuner characterisation
experiments presented in chapter 3.1.5 or when the load is a quantum dot in the Coulomb
blockade regime (section 6.3.1), the impedance from the segment of length D; [Eq. (B.1)]
simplifies to

Zp1 = ZS COth(’yDl), (B6)

and one fit parameter, R, drops out. Note that fitting the amplitude of an open stub tuner is
not enough to find a unique solution. This is further discussed in section 3.1.4.

B.1.2. Lossless Stub Tuner with Large Load Resistance

Here, an approximate expression for the reflection coefficient I' is derived in the case of a lossless
stub tuner with a load resistance R > Zj. It captures well the situation in our experiments, for
which we use low-loss superconducting CTLs with @ <« 1 and measure high resistance devices
with resistances up to a megaohm.

The impedance of the terminated CTL segment given in Eq. (B.1) simplifies to

R+i- Zytan(8D:)

Zp1 = Zy -
DL 20" 70+ i - Rtanh(BD,)’

(B.7)
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under the assumptions that o = 0, Zj = Zy and that the device impedance Z1, = R is real.
Moreover, the impedance of the open end after the distance Do becomes

Zpo = —1- 24y COt(ﬁDg). (B.8)

Plugging the results of Egs. (B.7) and (B.8) into Eq. (B.3) and neglecting the asymmetry factor
leads to the stub tuner input impedance

P R cot(BD1) cot(BDg) + i - Zycot(BDs)
T Zycot(BDy) cot(BD2) +i - Reot(BD1) + i - Reot(8Dg) — Zy'

(B.9)
The arguments in the cot-terms can be rewritten in terms of the relative frequency Af =

f—foto
et . 2mfover . 2nAfed
gD, = IV, 2oV py | 2RAT Ve (B.10)
C C &

where D; with ¢ = 1,2 are the CTL lengths. By using fo = ¢/(Aoy/€ert) and writing D; =
Ao/4 + AD;, the argument reads
™ 7w AD; 2nAf.\/ér Ao . 2rAfAD;

D, =_— 4=
bD; 2+2 Ao/4 c 4 c

(B.11)

As visible in Fig. 3.3 (a), the two stub lengths D; approach \g/4 for large device resistances
and therefore AD; < 1 in the limit R > Z;. In addition, we are interested in frequencies close
to resonance, where Af is small, such that the last term in Eq. (B.11) can be neglected and

]

22
With this, the cot-terms can be expanded as follows:

43 A(gﬁi : )
s (53]
)

(B.12)

cot(D;) = cot {

_|_
Xo/4 - fo
by using the expansion tan(z) ~ x for small z.
An expression for the lengths AD; is found by applying the matching condition, which

requires that Zi, = Zy. Equating the real and imaginary parts of Zi, given in Eq. (B.9) results
in the two equations

Z
Real part: EO [cot(BoD1) cot(BoD2) — 1] = cot(BoD1) cot(BoD2)
R (B.14)
Imaginary part: 7 [cot(BoD1) + cot(ByD2)] = cot(BoDs2).
0
Here, By = 27/ is the wavenumber at the resonance frequency. By solving for cot(/5pD;) and
cot(BpD2) in the limit Z% >> 1, one sees that at matching

cot(B=D1) ~ — cot(ByD2) ~ %. (B.15)
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Comparing this with Eq. (B.13) at matching (Af = 0) gives

s ADZ ZQ
—-= I —. B.1
2 Xo/4 R (B-16)

Ao 2 7,
DZN4-(1:F7T R), (B.17)

which is in agreement with the solutions derived in the main text [Egs. (3.8) and (3.9)] when
using that for large z = \/R/Zp, arctan(z) can be expanded in first order as

cot(BoD;) ~

Or in other words

1 1
arctan(z) = g — arctan (a:) ~ e (B.18)
By solving Eq. (B.16) for AD; and plugging the result into Eq. (B.13), the cot-terms given in
Eq. (B.13) can be written as

ZO ™ Af
t(BD;) =~ £/ — — ———. B.19
cot(8Dy) ~ | — 5 (B.19)
In the following, we use the expression with the plus sign for D; and the minus sign for Do,
corresponding to the solution with Dy < Ds.
Plugging the approximation of Eq. (B.19) into the stub tuner input impedance of Eq. (B.9),
one ends up with
2 (A\2  xZoAF Zo i Zo 7
©° (3 - 5% - % - %R

fo R RVR
Lin &= 2o -
e Z (507 (80) - indl - % — (&)’
R \2 fo fo R R (BQO)
(E)Q (M)Q_@ iTZo Af .
Zs - 2 o R 2R T
~ . ,
BE(3) - %-wy

where in the second line the last terms in the numerator and denominator are dropped.
Eventually, it is possible to give an approximate expression for the reflection coefficient I'
around the resonance:

_ Zin — 2o
B Zin + ZO
o ®rE) 0 -%) 3% (-4
(3)? (%)2 (1+%)-2%-i55 (2+ %) (B.21)
~ (%)2 (%)24—1#%
(5 (5) —2% —im50

where again the limit Zy/R < 1 is applied in the last line.
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The resonance bandwidth is defined as the full width at half maximum (FWHM) of the
2
power spectrum |['|2. The substitution y = (ﬁﬂ) applied to Eq. (B.21) leads to

2 fo
r— y+i-2\/y
y—2% .2/
= Py .
Setting |T'|2 = % and solving for y gives
7 2
Yijp = —2+2(/1+ (RO> . (B.23)

According to the definition, y has to be positive. In addition, the square root can be expanded
asV14+u~1+ %u for small u, which results in

2
T Afip (Zo ) 2
=|=- ~|—=] . B.24
Y1/2 <2 T ) R (B.24)
In this framework, Af; /5 is the half width at half maximum and the FWHM is the double of
it. In summary, one obtains the reflection bandwidth (FWHM) for a lossless stub tuner

4 Z
Afpwam = for = - =2, (B.25)
T R

in the case of large R > Z,. Consequently, the load quality factor reads
Jfo

T
QL = m =1 (B.26)

N=

B.2. Transmission

This section refers to the discussion of the stub tuner transmission for the high-impedance
device side to the low-impedance measurement side found in section 3.1.7. In particular,
the derivation for the wave coefficients of the CTLs stated in Eq. (3.16) is shown and the
approximation of the transmission function leading to Eq. (3.19) is explained.

B.2.1. Voltage Coefficients

A schematic of the examined stub tuner circuit is shown in Fig. B.2. As a result of the
telegraph equation (see section 2.1.1), the voltages and current in the left CTL segment take
on the waveform from Egs. (2.8) and (2.12):

V(z) =Vire "+ Ve
W e VD
Zg )

(B.27)

I(w)l €7x.
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/7( 1) I2(D1) —> /2(D1+D2)

Figure B.2.: Schematic of the stub tuner on a yellow background with an attached load re-
sistance R and measurement line resistance Zjy. The two CTL segments are il-
lustrated in orange. Voltages and currents at different places are indicated in
blue.

The coefficients labelled with a plus (minus) correspond to right-moving (left-moving) waves,
respectively. Likewise, the voltages and currents in the right, open-ended CTL are

Va(z) = Vy e " + Vg e
Zo Zo

Ir(z)

The four voltage coefficients V1+, Vs, V2+ and V,, are fixed by four boundary conditions. First,
we require that the current at the open end vanishes:
I5(D1 + Dy) = 0. (B.29)
The voltage on the loaded end is set by Ohm’s law to
V1(0) = Vg — RI1(0). (B.30)
Furthermore, the voltage has to be continuous at the connection of the two arms:
Vi(D1) = Va(Dr). (B.31)
At last, Kirchhoff’s current law implies that at the junction between the two arms

Vl(Dl)'

Ii(Dy) = Iy(Dy) + Z

(B.32)

What remains is a lengthy calculation with the resulting voltage coefficients (when Z§ = Z)

vt Ve Zy - e*7P1.[1 42 coth(yD3)]

V" R+Zy R—Zy+ (R+ Zy)-e2P1-[1 +2- coth(yDy)]
e VrZo

V" Zy—R— (R+ Zy) - e2P1 - [14 2 coth(yDy)]

(B.33)

V+ VRZOe'y(2D1+D2)

2 7 (R + Zp)eDi[sinh(yDg) + 2 cosh(yD3)] + (R — Zp) sinh(yDs)

VrZoe P2

VQ_ _ R40€

(R+ Zy)e*¥P1[sinh(yD3) + 2 cosh(yDs)] + (R — Zp) sinh(yDs) "

113



These coefficients directly lead to the voltage transmission function stated in Eq. (3.16):

b (f) = V(D)  2Z e7P1 coth(y Do)
VAV T Y T R+ Zy Ty + e [1+ 2coth(yDs)]

where I't, = (R — Zp) /(R + Zp) is the reflection coefficient before the stub tuner.

(B.34)

B.2.2. Lossless Stub Tuner with Large Load Resistance

An approximation of the transmission function ¢y of Eq. (B.34) for a lossless stub tuner in the
limit R > Zy and Af < fy is achieved in the same way as before for the reflection coefficient
(see section B.1.2). Here, the relative frequency Af = f — fo, with fp being the resonance
frequency.

(a) 12 .

f,=3 GHz 10+
£4=06
R =R =100 kQ

|t 103
(o]
T

1 _2 1
9 3 3.05 2.95 3 3.05
f(GHz) f(GHz)

Figure B.3.: Large load resistance approximation of the transmission spectrum of a lossless
stub tuner for a load of R = 100 k2. The circuit is matched to 100 k2 at 3 GHz.
The blue (green) curve correspond to the solutions with the stub tuner length D,
longer (shorter) than Da, respectively. (a) Amplitude and (b) phase.

The propagation constant appearing in Eq. (B.34) is in general v = a+ ¢ - . For a lossless
stub tuner (o = 0), one can use that coth(iz) = —i - cot(z). According to Eq. (B.19), the
resulting cot-term can be approximated as

cot(BDs) ~ i@ - g : i(;f, (B.35)

As seen in Egs. (3.8) and (3.9), there are two kinds of solutions for the stub tuner lengths.
The plus (minus) signs correspond to the solution with D; < Dy (D > Ds), respectively.
Moreover, inserting AD; from Eq. (B.16) into Eq. (B.12) tell us that

LT [%0 T Af

This allows to expand the exponentials as follows:

e"PPL

2
;. . Af Zy 1 Af Zo (B.37)
Z2BDlz—l- 1 T——+ 724 = — = — 24/ — .
e —+1 7Tf0 1 R 5 ﬂ-fo R

114



By inserting Egs. (B.35) and (B.37) into Eq. (B.34) and neglecting the highest order terms,
the transmission function simplifies to

A
2Zy %fT{ZF %

R 4afe 4. 2n80

tv(Af) ~ (B.38)

Note that still, the upper (lower) signs are valid in the case Dy < Dy (D7 > Ds), respectively.
As illustrated in Fig. B.3 (a), the amplitude of the transmission spectrum is slightly asymmetric
and a sign change mirrors the amplitude with respect to fy. Fig. B.3 (b) shows that the phase
change gets reversed by a change of sign.

The amplitude squared value of the transmission function can immediately be derived from
Eq. (B.38) as being

Zo 1
ity (AP~ 1 - 55 (B.39)
4R n R Af
1+ (54 %)

without the highest order terms in the numerator.
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Fabrication Recipes

To complete the fabrication chapter 4, the interested reader finds here detailed, step-by-step
descriptions of the fabrication recipies developed and used during the PhD. As mentioned at
the end of section 4.2.2, two different fabrication orders are applied: either CN'Ts are stamped
and contacted first and the stub tuner is added afterwards, or the stub tuner is prepared first
and the last step is to stamp and contact CNTs.

CNT stamping

Substrate e Si with 170 nm thermal oxide on top
Patterning e E-beam lithography with PMMA /HSQ bilayer
pillars - Spin coat PMMA (thickness 1 pm)

- Bake at 180 °C for 10 min.
- Spin coat HSQ (6000 rpm, 60 s)

- Bake at 90 °C for 5 min.
- HSQ is a negative e-beam resist

- Acceleration voltage 20 kV, aperture 120 pm
- Area dose 200 C/cm?
e Developing
- 25 s in TMAH (25 % solution)
- Stop in water and then IPA, blow-dry with No

PMMA removal e Plasma etching in Oxford reactive ion etching machine (RIE)
- Parameters: Oy 16 sccm, 250 mTorr, 100 W, time 10 min.
Si04 etching e Wet-etching with buffered HF (5 %)

- Time 7 min., etch rate ~ 35 nm/min, (also removes HSQ)
Si etching e Plasma etching in Oxford RIE

- Parameters: SFg 13 sccm, Og 5 scem, 75 mTorr, 100 W

- Time 5 min., resulting pillar height ~ 4 ym

Wafer cleaving e Cleave wafer to have one pillar area per piece

e Sonicate thoroughly to remove any particles on the surface

Catalyst solution e Recipe from Jorg Furrer [40]
- 30 mg of Al;O2, 93 mg of Fe(NO3)3-9H20 and 27 mg of
MoO4Clsy, dissolved in 60 ml IPA
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- High-power sonication in cell disrupter, at least 1 h
sonication time

- Spin coat one drop of catalyst on the stamps with 4000 rpm
for 30 s and repeat this 5 times to get a high CNT density

CVD growth e Heat furnace to 950 °C under Ar flow (1500 scem) and
Hs flow (500 scem)

e Growth: replace Ar by CHy (1000 scem) for 10 min.

e Cooldown under Ar and Hy flow again until 7" < 320°C

CNT stamping e Mount target substrate in mask aligner (Siiss MicroTec)

e Glue stamp substrate on a glass plate with a drop of PMMA

e Align the two substrates with the optical microscope to be
on top of each other

e Press them together until "WEC"=O0k, then move the stage

5 additional turns up

Bottom Gates Covered with Silicon Nitride

Substrate e Undoped Si (p > 5000 Qcm) with 170 nm of thermal oxide
on top
Patterning gates e E-beam lithography with PMMA (thickness 300 nm)

- Acceleration voltage 20 kV
- Aperture 10 pm/120 pm for small/big markers
- Area dose 240 puC/cm?, line dose 1200 pC/cm?
e Developing
- 60 s in MIBK/IPA (1:3), stop in IPA, blow-dry with Ny

Evaporation e In Sharon e-beam evaporator
e 5 nm Ti and 30 nm Au
Lift-off e In aceton (can be heated up to 50 °C to speed up)

e Sonicate in aceton and IPA for cleaning

SisNy4 deposition e Plasma enhanced CVD (PECVD), done at PSI,

thickness 50 nm

SigNy etching e E-beam lithography with PMMA (thickness 500 nm)

- Acceleration voltage 20 kV

- Area dose 200 C/cm?, aperture 10 ym
e Developing

- 60 s in MIBK/IPA (1:3), stop in IPA, blow-dry with Ny
e Plasma etching in Oxford RIE
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- Parameters: CHFg3 25 sccm, Og 4 sccm, 50 mTorr, 50 W

- Time 2 min. 30 s, SizNy etch rate ~ 30 nm/min

Stub tuners and resonators

Covering e E-beam lithography with PMMA /HSQ bilayer
CNT area - Spin coat PMMA (thickness 600 nm)

- Bake at 180 °C for 10 min.

- Spin coat HSQ (6000 rpm, 60 s)

- Bake at 90 °C for 5 min.
- HSQ is a negative e-beam resist

- Acceleration voltage 20 kV, aperture 120 pm
- Area dose 200 pC/cm?
e Developing
- 25 s in TMAH (25 % solution)
- Stop in water and then IPA, blow-dry with Ny
e Remove PMMA in the RIE with an Oy plasma
- Parameters: Og 16 sccm, 250 mTorr, 100 W, 9 min.

Nb sputtering e AJA magnetron sputtering machine

- Parameters: Ar 40 sccm, 4 mTorr, 160 W

- Stage rotation on in case the sample is large
- Thickness 100 — 150 nm

Stub tuners and resonators are either patterned by e-beam or UV lithography

E-beam e Resist PMMA, thickness 600 nm
lithography - Acceleration voltage 20 kV, aperture 60 pym
- Area dose 130 uC/cm?
e Developing
- 60 s in MIBK/TPA (1:3), stop in IPA, blow-dry with Ny

UV lithography e Resist AZ 1512 HS
- Spin coating with 6000 rpm for 45 s
- Baking at 100 °C for 60 s
e UV exposure in mask aligner (Siiss MicroTec)
- Wavelength 365 nm (channel 1), time 1.2 s
- Power 260 W, intensity 32 mW /cm?
e Developing
- 17 s in MIF 726, stop in water for 30 s, blow-dry

Nb etching e Plasma etching in inductively coupled plasma (ICP) machine
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- Parameters: Ar 25 sccm, Cly 40 sccm, 1 Pa, ICP power
100 W, RF power 125 W
- Time 50 s, Nb etch rate ~ 4 nm/s

The contact line from the stub tuner to the device is either done before or after
Nb sputtering. If done before with Pd or Au, there is an ohmic contact right away.

If the stub tuner has to be contacted afterwards, a plasma etching is required to

remove some oxide on the Nb surface, as described below:

Contacts on Nb

e E-beam lithography with PMMA (thickness 500 nm)
e Oxide etching and metal deposition in the e-beam evaporator
(Sharon)
- Ar plasma etching for 30 s, recipe number 2
- Pd deposition: 50 (80) nm are enough to contact
100 (150) nm-heigh Nb

Contacting CNTs (and at the same time also the

bottom gates)

Patterning

e E-beam lithography with ZEP 520A, diluted with anisole
to achieve a thickness of 300 nm
- Spin coating: speed 4000 rpm, time 40 s
- Baking at 180 °C for 3 min.
e E-beam writing with 10 ym aperture
- For large trapezoidal undercut (important for lift-off of
thermally or e-beam evaporated materials, in our case
Pd, Ti, Au and Pb):
Acceleration voltage 10 kV, area dose 34 uC/cm?
- For vertical resist profile (important for sputtered materials,
in our case Ti and Nb):
Acceleration voltage 20 kV, area dose 68 ;C/cm?
e Developing
- 60 s in pentylacetate and 10 s in MIBK/IPA (9:1)
- Stop in IPA (for 20 s), blow-dry with No

In the following, there are explanations for the different metals and layered metal

systems we used to contact CNTs:

Palladium

e Thermal evaporation in the BesTec machine
- Chamber cooled to -180 °C, sample head cooled to -30 °C
- Source at 1510 °C
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- Evaporation rate ~ 0.1 A/s, thickness ~ 40 nm

Titanium/gold e E-beam evaporation in the Sharon machine
- First 10 nm of Ti, rate 0.5 — 1 A/s
- Then Au with a rate ~ 1 A/s, thickness 30 — 60 nm
Titanium/ e Sputtering in the AJA machine
niobium - Parameters for Ti: Ar 35 sccm, 5 mTorr, 20 W,
time 18 min. — 4.3 nm
- Parameters for Nb: Ar 40 sccm, 4 mTorr, 160 W,
— thickness ~ 60 nm
Palladium/lead/ e E-beam evaporation in the Balzers machine
indium - Pd: at a head temperature < —40°C, rate 0.3 A/s,
thickness 4.5 nm
- Pb: at a head temperature < —90°C, high rate 1.5 — 1.8 A/s,
thickness 110 nm
- In: at a head temperature < —90°C, rate 0.6 — 0.8 A/S,
thickness 20 nm
Lift-off e The same procedure applies for all materials apart from Pb,

for which everything has to be done at room temperature
and accordingly for a longer time, owing to the low melting
point of lead and indium.

- 15 min. in NMP at 70 °C
- Blow surface with a syringe to remove metal residues

- 30 min. in acetone at 50 °C (to remove NMP)
- Rinse with IPA and blow-dry with Ng
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List of Setup Components

As a supplementary to chapter 5, the following table lists all components of the cryogenic
measurement setup and the used instruments in a rather random order. An illustrative sketch
is given in Fig. 5.2, showing where the different components are placed.

Brand and part number

Specifications

Cryostat Oxford Triton 200 cryo- Base temperature 20 mK
free dilution refrigerator
Magnet Oxford 3D vector magnet | Maximum field strength in

- x-direction: 1 T
- y-direction: 1 T

- z-direction: 6 T

Directional coupler

Fairview microwave

Frequency range 1 — 4 GHz

MC 2104-20
Bias tee Mini-Circuits Original frequency range
ZFBT-6GW+ 0.1 — 6 GHz, capacitance
lowered to 22 pF
Circulator QuinStar CTD0304KC Frequency range

2.75 — 3.25 GHz

Low-pass filter on the
DC side of the bias tee

Mini-Circuits VLFX-80

Pass-band DC - 80 MHz

Low-temperature

amplifier

Low Noise Factory
LNF-LNC1_12A

Frequency range 1—
12 GHz, gain ~ 35 dB

First room-

temperature amplifier

Miteq
AMF-3F-01000400-08-10P

Frequency range 1—
4 GHz, gain ~ 35 dB

Second room-

temperature amplifier

Miteq NSP1000-NVG

Frequency range 0.1—
10 GHz, gain ~ 35 dB

Pi-filters in
break-out box

Tusonix 4201-001LF

Pass-band DC - 10 MHz

DC wires

Constantan loom

24 x 2 wires (twisted pairs)

Coaxial cable
down to MC plate

UT85

Centre and outer conductors
stainless steel, operating

frequency < 18 GHz
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Coaxial cable from UT85 Centre and outer conductors
MC plate to puck copper, operating
frequency < 18 GHz
Coaxial cable Huber+Suhner Operating frequency
inside puck EZ 47 TP M17 < 100 GHz
Sample holder PCB Designed with Design- Substrate: Rogers RO4003C
Spark PCB, ordered metals: Cu 40 — 43 pm,
from Probst Hightech Ni 3 — 6 pm, Au 50-100 nm
PCB mount SMP Rosenberger Material brass (gold plated),
connectors 19K101-270L5 male
PCB mount DC Omnetics A42046-001 25 pins, male
connectors (MNPO-25-DD-C-
(Nano-connector) ETH-M)

Measurement instruments

Vector network R&S ZNBS Frequency range

analyser 0.1 — 8.5 GHz

Signal and R&S FSW8 Frequency range
spectrum analyser 2 Hz — 8 GHz

Digital multimeter Agilent 34410A For DC measurements
1/V-converter SP 938 Feedback resistance 107 or

10® Q, home-made by the

electronics workshop

Voltage DAC SP 927 8 channel voltage source,
home-made by the

electronics workshop
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