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aus Österreich

Basel, 2016

Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel
edoc.unibas.ch

Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung - Weitergabe unter gleichen

Bedingungen 4.0 International Lizenz



Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät

auf Antrag von

Prof. Dr. Stefan Antusch, Prof. Dr. Borut Bajc

Basel, den 19.4.2016

Prof. Dr. Jörg Schibler
Dekan



Abstract

Grand Unified Theories (GUTs) offer an attractive framework for flavour models, since
they feature relations between quarks and leptons. Combining them with Supersymmetry
(SUSY) and flavour symmetries, we derive predictions for the flavour and SUSY flavour
structure from various GUT models and discuss how the double missing partner mechanism
(DMPM) solution to the doublet-triplet splitting problem can be combined with predictions
for GUT scale quark-lepton Yukawa coupling relations.

We construct two predictive SUSY SU(5) GUT models with an A4 flavour symme-
try, that feature realistic quark-lepton Yukawa coupling ratios and mixing angle relations.
These GUT scale predictions arise after GUT symmetry breaking from a novel combination
of group theoretical Clebsch-Gordan factors, and we carefully construct additional shap-
ing symmetries and renormalisable messenger sectors to protect the models’ predictions
from dangerous corrections. The major difference between both models are their respective
predictions of a normal and inverse neutrino mass ordering. We perform Markov Chain
Monte Carlo analyses, fit to experimental data, and discuss how the models can be tested
by present and future experiments.

To combine predictive GUT scale quark-lepton Yukawa coupling ratios with the DMPM
in SUSY SU(5), we introduce a second GUT breaking Higgs field in the adjoint represen-
tation. Two explicit flavour models with different predictions for the GUT scale Yukawa
sector are presented, including shaping symmetries and renormalisable messenger sectors,
and combined with the DMPM. We calculate the effective masses of the colour triplets
mediating proton decay and find that they can be made sufficiently heavy.

In SUSY theories, the one-loop SUSY threshold corrections are of particular importance
in investigating GUT scale quark-lepton mass relations and thus link a given GUT flavour
model to the sparticle spectrum. We calculate the one-loop SUSY threshold corrections of
the full MSSM Yukawa coupling matrices in the electroweak-unbroken phase and introduce
a new software tool SusyTC as a major extension to the Mathematica package REAP. Finally
we find predictions for the CMSSM parameters and sparticle masses from the GUT scale
Yukawa coupling ratios used in the flavour models of this thesis.
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CHAPTER 1

Introduction

The discovery of neutrino oscillations and thus of at least two non-zero neutrino mass
eigenstates rendered the Standard Model (SM) of Particle Physics incomplete and was the
first gaze on physics Beyond the Standard Model (BSM). Besides this apparent insufficiency
of the SM, there are several other motivations for BSM physics.

For example, the SM lacks an explanation for the hierarchies between particle masses,
which span a range of six orders of magnitude. Also the quark mixing angles differ by
up to three orders of magnitudes. Taking neutrinos into consideration, one finds one
small lepton mixing angle, while two lepton mixing angles are large and including the
lightest non-vanishing neutrino mass, the range of particle masses covers twelve orders of
magnitude, as illustrated in figure 1.1.

Figure 1.1: True to scale illustration of particle masses, where particles are oversimplified
depicted as spheres of equal density and their masses scale with the third power of their
radius. Of course, in fact elementary particles are point-like objects.
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In the SM the particle masses and mixing angles are free parameters and the seesaw
mechanisms explaining small neutrino masses also have to fix the lepton mixing angles
by hand. The number of flavour related parameters and their striking hierarchies within
and between different families constitutes the so called flavour problem of Particle Physics.
One attractive solution is the idea of flavour symmetries, which can unify particles of
different families. When a flavour symmetry is spontaneously broken, predictions for the
Yukawa matrices emerge from vacuum expectation values (vevs) of dynamical fields and it
is possible to explain the different flavour structures.

Another BSM concept towards a more fundamental theory of Elementary Particle
Physics are Grand Unified Theories (GUTs). They unify the SM gauge group into a single
simple gauge group at higher energies than those accessible to SM physics. And they unify
SM fermions within a family into joint representations of the GUT gauge group. Thus
they can make predictions for relations between e.g. quark and lepton masses of the same
generation, making GUTs an attractive framework to address the flavour problem.

Two challenges arise when the SM is embedded into GUTs. Firstly, the SM gauge
couplings do not unify and secondly too rapid proton decay mediated by heavy vector
bosons is predicted. Both are avoided with the introduction of Supersymmetry (SUSY).
With a relatively low mass scale of sparticles, the gauge couplings successfully unify and the
mass of the additional vector bosons is high enough to suppress proton decay sufficiently.
Additionally, low energy SUSY is a solution to the hierarchy problem by explaining a
naturally low Electroweak scale and the lightest sparticle is a candidate for dark matter.

The focus of this thesis are SUSY flavour GUT models, which are BSM theories that
combine the attractive ideas of SUSY, GUTs, and flavour symmetries. Particularly in-
teresting subjects in SUSY flavour GUT models are the interdependencies between the
various sectors of the models, as outlined in figure 1.2. Predictions obtained from the

GUTs SUSY
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Figure 1.2: SUSY flavour GUT models feature an interplay between three “different”
sectors of BSM physics.

(spontaneously broken) flavour symmetry are valid at the GUT scale. To test those pre-
dictions at lower energies the Renormalisation Group Equations (RGEs) have to be solved.
Since, when heavy degrees of freedom are integrated out, SUSY and GUT breaking effects
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play an important role in the precise solution of the RGEs, there is a variety of predictions
emerging from SUSY, GUTs, and flavour symmetries which influence each other.

The presentation of the author’s research is divided into three parts. In part III we
focus on the construction of predictive SUSY flavour GUT models with realistic quark-
lepton mass ratios and mixing angles relations, sketched as the left edge in the triangle
of figure 1.2. In chapter 6 we present four simple conditions for unified models to predict
the observed relation between the Cabibbo angle and the small 1-3 lepton mixing angle.
These conditions are then realised in a SUSY flavour GUT model in chapter 7, where we
carefully construct additional discrete symmetries and a renormalisable messenger sector
to protect the model from dangerous effective operators. A second SUSY flavour GUT
model, similar to the first but with an inverse neutrino mass ordering, is constructed in
chapter 8. Both models are fitted to experimental data and we perform Markov Chain
Monte Carlo analyses. Among others we predict the unmeasured neutrino CP phases and
discuss how the models can be tested by future experiments.

Part IV discusses the problem of doublet-triplet splitting and the related question of
proton decay in SUSY SU(5), as shown as the lower edge of figure 1.2. We introduce a
second GUT breaking Higgs field in the adjoint representation, which allows the adjoints
to carry charges under additional discrete symmetries. We present two example models
combining the double missing partner mechanism with viable GUT scale predictions for
the quark-lepton Yukawa coupling ratios. We calculate the effective masses of the colour
triplets mediating proton decay and find that in both models proton decay is sufficiently
suppressed.

The final part V is focused on the important effects of SUSY threshold corrections on
the investigation of flavour GUT models. The size of these corrections depends on the
details of the SUSY sector and the sparticle masses, which we illustrate on the right edge
of figure 1.2. We calculate the full one-loop SUSY threshold corrections to the MSSM
Yukawa coupling matrices and introduce a new software tool SusyTC as an extension to
the Mathematica package REAP. Finally we investigate the predictions of an example GUT
model with realistic quark-lepton Yukawa coupling ratios for the CMSSM soft-breaking
parameters and sparticle masses.

The appendices A and C contain brief reviews of group theory and Markov Chain
Monte Carlo techniques used in this thesis, respectively. Appendices B, E, F, and G
contain extensive formulae and equations used in chapter 10, as well as the documentation
for SusyTC. Appendix D contains additional information for the flavour models of this
thesis, such as details on additional symmetries and charges of the models’ fields and the
messenger sectors.

In the next part II the theoretical framework for the main parts of this thesis are reviewed
and our notations and conventions are introduced. Chapter 2 introduces the SM, chapter
3 reviews massive neutrinos, in chapter 4 we discuss GUTs, and in chapter 5 SUSY is
reviewed.
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CHAPTER 2

The Standard Model of Particle Physics

In the mid-20th century the effort to develop a thorough understanding of the various
phenomena of Elementary Particle Physics led to the construction of the Standard Model
(SM) of Particle Physics [6–9]. To its great successes belong the correct predictions of
the neutral current (the existence of the Z0 vector boson), the existence of the top quark,
and the existence of a fundamental scalar boson as a result of the Brout-Englert-Higgs
mechanism [10, 11], known as Higgs boson. Despite these major achievements, there are
many motivations suggesting the SM is incomplete and expected to be embedded into a
more fundamental theory.

This chapter is devoted to an introduction to the SM, setting the background formalism,
notation, and conventions necessary for the reminder of this thesis. Finally some of the
open questions in the SM are addressed, motivating physics Beyond the Standard Model
(BSM) and the main part of this thesis.

2.1 Gauge interactions and field content

The SM is a chiral, renormalisable gauge quantum field theory with the gauge group given
by GSM = SU(3)C × SU(2)L × U(1)Y , a direct product of the gauge group of Quantum
Chromodynamics (QCD) SU(3)C , where the C refers to colour, and of the Electroweak
(EW) theory SU(2)L × U(1)Y , with L for left and Y denoting hypercharge. Because
of the local invariance under GSM, massless spin one fields emerge, which are identified
with the force carriers of the SM. These gauge bosons are named gluons (Ga

µ) for QCD,
W a
µ for SU(2)L and Bµ for U(1)Y . Since U(1)Y is an Abelian group, Bµ does not carry

hypercharge, whereas Ga
µ and W a

µ transform in the adjoint representations of SU(3)C and
SU(2)L, respectively.1

The matter fields of the SM are fermions with spin 1
2
. They split into quarks, which

transform in the fundamental representation of SU(3)C , and leptons, which are colour
singlets. The left- and right-handed components of the SM fermions transform differently

1A brief review on group theory can be found in Appendix A.
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Gauge bosons

Gµ (8,1)0

Wµ (1,3)0

Bµ (1,1)0

Matter fields

Q1 =

(
uL
dL

)
Q2 =

(
cL
sL

)
Q3 =

(
tL
bL

)
(3,2) 1

6

uR cR tR (3,1) 2
3

dR sR bR (3,1)− 1
3

L1 =

(
νeL
eL

)
L2 =

(
νµL
µL

)
L3 =

(
ντL
τL

)
(1,2)− 1

2

eR µR τR (1,1)−1

Higgs field

φ (1,2) 1
2

Table 2.1: Field content of the SM with the corresponding GSM representations and
hypercharge QY listed as (SU(3)C , SU(2)L)QY

under the SM gauge group: The left-handed fermions transform in the fundamental rep-
resentation of SU(2)L, while the right-handed fermions are SU(2)L singlets. The matter
fields are thus an SU(2)L doublet Q containing the left-handed quark fields uL and dL,
an SU(2)L doublet L containing the left-handed electron and neutrino, eL and νL, re-
spectively, the right-handed quark fields uR and dR, and a right-handed electron field eR.2

These particles appear in three copies, also called families, in nature, which have exactly
identical couplings to the gauge bosons. The different quark and lepton species are denoted
flavours.

Next to gauge bosons and fermions, the SM also contains a fundamental, complex spin
0 field. This so called Higgs field is an SU(2)L doublet and plays a crucial role in the
Brout-Englert-Higgs mechanism, described in the next section. All fields of the SM are
listed in table 2.1 together with their quantum numbers under GSM. Using natural units
~ = c = 1 and a mostly minus convention for the Minkowksi metric

ηµν = diag(+1,−1,−1,−1) , (2.1)

the most general renormalisable Lagrange density with this field content is given by3:

LSM = −1

4
Ga
µνG

µνa − g2
3θQCD
64π2

εµνλρG
λρaGµνa − 1

4
WA
µνW

µνA − 1

4
BµνB

µν

2There are no right-handed neutrinos in the SM. We discuss the extension of the SM by right-handed
neutrino fields in the next chapter.

3Note that we use the two-component Weyl spinor representation for the fermion fields. An extensive
review including conversion formulae to four-component representations can be found in [12].
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+ iQ†i σ̄
µDµQi + iu†Riσ̄

µDµuRi + id†Riσ̄
µDµdRi

+ iL†i σ̄
µDµLi + ie†Riσ̄

µDµeRi

+ (Dµφ)†Dµφ− V (φ†φ)

− YuijQi · φu†Rj + YdijQi · φ̃ d†Rj + YeijLi · φ̃ e†Rj + h.c. , (2.2)

where implicitly sums over the SU(3)C , SU(2)L, and family indices a = 1 . . . 8, A = 1 . . . 3,
and i = 1 . . . 3, respectively, are understood. Since the matter fields come in three families
of equal quantum numbers, they can mix and the Yukawa couplings Yf of the fermions to
the Higgs field are in general complex 3× 3 matrices. The gauge field strengths are given
by

Ga
µν ≡ ∂µG

a
ν − ∂νGa

µ − g3f
a
bcG

b
µG

c
ν , (2.3)

WA
µν ≡ ∂µW

A
ν − ∂νWA

µ − g2εABCW
B
µ W

C
ν , (2.4)

Bµν ≡ ∂µBν − ∂νBµ , (2.5)

where g3 and g2 are the gauge coupling strengths and fabc and εABC the structure constants
of the gauge groups SU(3)C and SU(2)L, respectively, as discussed in appendix A. The
gauge covariant derivative of a field ψ is defined as

Dµψ ≡
(
∂µ − ig3G

a
µT

a − ig2W
A
µ τ

A − ig′BµQY

)
ψ , (2.6)

where g′ is the gauge coupling strength of U(1)Y , T a and τA are the generators of the
SU(3)C and SU(2)L representations of ψ, and QY denotes the hypercharge of ψ. V (φ†φ)
is the scalar potential of the Higgs field (2.13). Finally we used

σ̄µ ≡ (1,−~σ) , (2.7)

χ · ξ ≡ εABχAξB , (2.8)

φ̃ ≡ εφ∗ , (2.9)

with σi denoting the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (2.10)

and the totally antisymmetric tensors εAB of SU(2)L and εµνλρ with

ε12 = −ε21 = 1 and ε0123 = −ε0123 = 1 . (2.11)

2.2 The Brout-Englert-Higgs mechanism

Since W± and Z0 bosons are found to be massive vector bosons in nature, the SM needs
to contain a mechanism in order to explain gauge boson masses in the EW sector. The
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Stückelberg formalism [13] could in principle generate massive gauge bosons, the resulting
theory would be non-renormalisable, however. An elegant solution that keeps the theory
renormalisable is the incorporation of the Brout-Englert-Higgs (BEH) mechanism [10, 11]
into the SM, by which massive W± and Z0 emerge from the spontaneous symmetry break-
ing of SU(2)L × U(1)Y → U(1)em:

The scalar potential of the complex Higgs field

φ =

(
φ+

φ0

)
(2.12)

is given by
V (φ†φ) = µ2φ†φ+ λ(φ†φ)2 . (2.13)

The BEH mechanism assumes µ2 < 0 and thus the minimum of the Higgs potential does
not coincide with vanishing field value of φ. Rather, the Higgs field obtains a non-vanishing
vacuum expectation value (vev)

〈φ〉 =
1√
2

(
0
v

)
. (2.14)

This ground state is not invariant under SU(2)L × U(1)Y , but it respects an U(1)em sym-
metry, which is identified with the gauge group of electromagnetism. The electric charge
is given by

Qe = τ 3 +QY . (2.15)

Expanding φ around its vev one can perform a gauge transformation, such that three
degrees of freedom are absorbed by the gauge fields, which get mass terms in doing so,
while one real massive scalar, the Higgs boson h, remains in the particle spectrum. The
new gauge bosons are linear combination of the gauge bosons in the unbroken theory. They
are given by

W±
µ =

1√
2

(
W 1
µ ∓W 2

µ

)
, (2.16)(

Z0
µ

Aµ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
W 3
µ

Bµ

)
, (2.17)

where Aµ is the massless photon field and the weak mixing angle θW is defined by

sin2 θW =
g′2

g2
2 + g′2

= 0.23155(5) [14] . (2.18)

The masses of the gauge bosons are given in terms of gauge couplings and the vev as

MW± =
1

2
g2v and MZ0 =

1

2

√
g2

2 + g′2 v . (2.19)

Experimentally the masses of the weak gauge bosons are known to be [14]

MW± = (80.385± 0.015) GeV and MZ0 = (91.1876± 0.0021) GeV . (2.20)
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The value of v ≈ 246 GeV can be obtained from these measurements. Finally, the mass of
the Higgs boson was found to be [14]

mh = (125.7± 0.4) GeV . (2.21)

2.3 Fermion masses and the Cabibbo-Kobayashi-Maskawa-

Matrix

Besides the breaking of electroweak symmetry, the non-vanishing vev of the Higgs field
also leads to the appearance of fermion mass matrices

Muij =
v√
2
Yuij , Mdij =

v√
2
Ydij , and Meij =

v√
2
Yeij . (2.22)

The 3× 3 mass matrices Mf can be diagonalised by a singular value decomposition (SVD)(
U

(f)
L

)T
Mf

(
U

(f)
R

)∗
= diag

(
m

(f)
1 , m

(f)
2 , m

(f)
3

)
, (2.23)

where U
(f)
L and U

(f)
R are unitary 3 × 3 matrices4 and m

(f)
i are the three singular values

of Mf . In the SM six unitary matrices are introduced to rotate the quarks and charged
leptons from the flavour basis to the mass basis

uL → U
(u)
L uL , dL → U

(d)
L dL , eL → U

(e)
L eL ,

uR → U
(u)
R uR , dR → U

(d)
R dR , eR → U

(e)
R eR . (2.24)

Neutrinos are massless in the SM, therefore in the transformation to the mass basis the
neutrino fields are rotated in correspondence with the charged lepton field

νL → U
(e)
L νL . (2.25)

With the exception of the couplings to the charged gauge bosons W±
µ , all interaction

terms in the SM are flavour diagonal and are thus left invariant by the transformation of
(2.24). For the coupling to W±

µ , however, the transformation to the mass basis leads to
the emergence of the unitary Cabibbo-Kobayashi-Maskawa (CKM)-Matrix [15,16]

VCKM ≡
(
U

(u)
L

)†
U

(d)
L (2.26)

in the interaction Lagrange density of the charged current

Lcc =
g2√

2

(
u†LVCKMσ̄

µW+
µ dL + ν†σ̄µW+

µ eL

)
+ h.c. . (2.27)

4Note that the matrices U
(f)
L and U

(f)
R are not uniquely determined by (2.23), since the matrices(

U
(f)
L diag(eiγ1 , eiγ2 , eiγ3)

)T
and

(
U

(f)
R diag(eiγ1 , eiγ2 , eiγ3)

)∗
also diagonalise Mf .
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A 3× 3 unitary matrix has in general nine real parameters, whereas a 3× 3 orthogonal
matrix has three real parameters. The additional six real parameters in the unitary case
can therefore be identified as complex phases. One can thus parametrise a general 3 × 3
unitary matrix by [17]

V = U23U13U12P , (2.28)

with

U23 =

1 0 0
0 c23 s23e−iδ23

0 −s23eiδ23 c23

 , U13 =

 c13 0 s13e−iδ13

0 1 0
−s13eiδ13 0 c13

 ,

U12 =

 c12 s12e−iδ12 0
−s12eiδ12 c12 0

0 0 1

 , and P =

eiγ1 0 0
0 eiγ2 0
0 0 eiγ3

 , (2.29)

where sij and cij denote sin θij and cos θij, respectively. For the CKM matrix

VCKM = UCKM
23 UCKM

13 UCKM
12 PCKM (2.30)

the mixing angle θCKM
12 is given a special name and is referred to as Cabibbo angle θC .

Taking advantage of the freedom in the SVD to multiply the unitary matrices U
(u)
L and

U
(d)
L by diagonal phase matrices, complex phases of VCKM can be absorbed in the phases

of the quark fields. Although there are six quark fields at hand, because the full SM
Lagrangian is invariant under a global rotation of all quarks by a common phase, only five
complex phases of VCKM can be absorbed. With the new unitary matrices

U
(u)
L → U

(u)
L diag

(
1, eiδCKM

12 , ei(δCKM
12 +δCKM

23 )
)

and U
(d)
L → U

(d)
L

(
PCKM

)−1
diag

(
1, eiδCKM

12 , ei(δCKM
12 +δCKM

23 )
)

(2.31)

the CKM matrix is brought into the Particle Data Group (PDG) standard parametrisation
[14]

VCKM =

 c12c13 s12c13 s13e−iδ

−c23s12 − s23s13c12eiδ c23c12 − s23s13s12eiδ s23c13

s23s12 − c23s13c12eiδ −s23c12 − c23s13s12eiδ c23c13

 , (2.32)

where for the sake of readability the superscript CKM has been dropped on all parameters.
The CP violating phase δCKM is given in terms of [17]

δCKM = δCKM
13 − δCKM

12 − δCKM
23 . (2.33)

The experimental values reported by the PDG are given as [14]

θCKM
12 = 13.02◦ ± 0.036◦ , θCKM

13 = 0.204◦ ± 0.0099◦ ,

θCKM
23 = 2.37◦ ± 0.071◦ , δCKM = 71.7◦ ± 3.1◦ . (2.34)
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Finally, the masses of the fermions are reported. The masses of the electron and muon
are most precisely determined from atomic physics experiments, causing the uncertainty
of the precise value of the atomic mass unit u in MeV to be the dominant contribution to
the mass uncertainty of me and mµ [18]

me = (0.510998928± 0.000000011) MeV ,

mµ = (105.6583715± 0.0000035) MeV . (2.35)

The mass of the tau lepton is obtained from experiments measuring the production cross
section e−e+ → τ−τ+ [14]

mτ = (1776.82± 0.16) MeV . (2.36)

Free quarks are not observed in nature, rendering the quark mass determination a very
difficult endeavour. Due to the absence of a physical observable, quark masses have to be
reported in a mass independent renormalisation scheme, such as MS at a certain renor-
malisation scale. The masses of the light quarks u, d, and s are determined from lattice
QCD [19] and chiral perturbation theory [20,21]. The PDG reports the light quark masses

in MS at a renormalisation scale µ = 2 GeV [14]

mu = 2.3+0.7
−0.5 MeV , md = 4.8+0.5

−0.3 MeV , ms = (95± 5) MeV . (2.37)

Note that chiral perturbation theory determines quark mass ratios rather than absolute
quantities and needs additional input from e.g. lattice theory to obtain specific quark
masses. Therefore often the reported light quark mass ratios5 are used

ms

md

= 18.9± 0.8 [22] and
ms

1
2

(mu +md)
= 27.5± 1.0 [14]. (2.38)

The masses of the heavy quarks are obtained from measured qq̄ production cross sections
and in the case of bottom and charm, lattice simulations and heavy quark effective theory
[23] of the D and B mesons. For b and c the heavy quark masses are given as MS mass at
a renormalisation scale equal to their respective quark mass [14]

mc(mc) = (1.275± 0.025) GeV ,

mb(mb) = (4.18± 0.03) GeV . (2.39)

Because of its very heavy mass the top quark has the unique feature among all quarks to
decay before it can form tt̄ bound states, allowing to determine its pole mass [14]

mt = (173.21± 0.51± 0.71) GeV , (2.40)

in analogy with the determination of the τ pole mass.

5In pure QCD these mass ratios are independent from the renormalisation scale in the MS scheme and
are therefore reported at µ = 2 GeV. In the full SM they are scale dependent, however.
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Aρ
c

Aµ
a

Aν
b

Figure 2.1: Triangle diagram with chiral fermions in the loop and three external gauge
bosons, possibly leading to an anomaly. In general the gauge bosons need not to be of the
same gauge group.

2.4 Open questions in the Standard Model

We close this chapter with a brief discussion of various open problems and deficiencies of
the Standard Model. The following chapters will bring widely expected solutions to these
open problems into focus and introduce several Beyond the Standard Model extension of
Particle Physics. The last concern in the following list motivates the main parts of this
thesis.

Neutrino masses The SM predicts vanishing masses of neutrinos. This is in contra-
diction with the observation of neutrino oscillations and therefore the strongest indication
that BSM physics is needed to understand the phenomena of Particle Physics. Chapter 3
is devoted to massive neutrinos and neutrino mixing.

U(1)em Charge quantisation For the SU(3)C and SU(2)L subgroups of the SM gauge
group, the interaction between gauge bosons and fermions is defined purely by group theory
and the gauge coupling strengths g3 and g2. This guarantees universality, e.g. all SU(2)L
doublets couple the same way to the gauge bosons W a

µ . In contrast, there is no such mech-
anism guaranteeing U(1)Y hypercharge universality. Within the SM there is no theoretical
reason, but solely experimental observation, that QY is quantised and distributed to the
SM matter fields as listed in table 2.1. Chapter 4 discusses Grand Unified Theories (GUTs),
where the U(1)Y emerges from spontaneous breaking of a more fundamental gauge group.
The group theoretical universal coupling of the more fundamental gauge group is then
inherited by the SM U(1)Y , leading finally to U(1)em charge quantisation.

Anomaly cancellation Anomalies appear in chiral gauge theories, when a symmetry
of the Lagrangian is not conserved by higher order loop terms [24, 25]. Triangle diagrams
with three external gauge bosons as depicted in figure 2.1 can contribute to the anomaly of
a symmetry. In order for the gauge theory to stay anomaly free, the anomaly coefficients

Aabc ≡ Tr
(
T a{T b, T c}

)
(2.41)
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need to vanish [26], where T a, T b, and T c denote generators of the respective gauge group.
Looking closer at one example with one external U(1)Y gauge boson and two external
SU(2)L gauge bosons, (2.41) reduces to the trace over the hypercharges

AY bc =
δbc

2
Tr QY =

3δbc

2

(
3 ·
(

1

6
+

2

3
− 1

3

)
− 1

2
− 1

)
= 0 . (2.42)

As in (2.42) all other anomaly coefficients in the SM vanish. The crucial point is the can-
cellation of lepton and quark contributions. Similar to the open question of U(1)Y charge
quantisation, there is no theoretical reason for the leptons and quarks to carry precisely
the right hypercharges for the anomaly coefficients to vanish and thereby rendering the
SM anomaly free. In GUTs leptons and quarks are unified in joint representations of the
GUT gauge group, which in certain cases guarantees anomaly cancellation automatically.

Naturalness problem I - The hierarchy problem As the only scalar field in the SM,
the Higgs boson is subject to much larger radiative corrections than the SM fermion fields.
Whereas the radiative corrections to fermion masses are logarithmically divergent

δmf ∼ m0 log

(
Λ2

m2
0

)
, (2.43)

the corresponding radiative corrections to the Higgs boson mass due to a fermion loop is
quadratically divergent

δm2
h ∼ |yf |2Λ2 , (2.44)

where we used a momentum cutoff regularisation of the divergent loop corrections.
Since the Higgs mass is known to be around 126 GeV, an enormous amount of fine tuning

between the bare mass parameter and the counterterm has to appear in the renormalisation,
otherwise the Higgs mass would be expected to be at a much higher energy scale associated
with new physics, e.g. the Planck scale. Another way to view the unaturalness of small
mh is due to the fact that δm2

h is independent of m2
h itself. Setting mh = 0 does therefore

not restore a symmetry of the Lagrange density and the smallness of mh fails to satisfy
t’Hooft’s naturalness criterion [27]. Chapter 5 discusses Supersymmetry (SUSY), which
introduces a bosonic partner to each fermion. Including the bosonic partner in the radiative
corrections, the quadratic divergence of mh vanishes to all order in perturbation theory.
Additionally, some discrepancy between predictions of GUTs and phenomenology can be
resolved when supersymmetric GUTs are studied.

The flavour problem There are in total nineteen parameters in the Standard Model
Lagrange density (2.2) when using the freedom to absorb some phases of the CKM Matrix
into the quark fields as discussed in 2.3. The majority of those, thirteen parameters, belong
to the flavour sector of the SM, parametrising nine fermion masses, three mixing angles
and the CKM phase. Including extensions of the SM to incorporate massive neutrinos,
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as discussed in chapter 3, into the parameter counting, the number of flavour related
parameters is even increased. As was shown in figure 1.1, looking at the values of the
particles’ masses, one encounters huge hierarchies, within single families, but also when
comparing the masses of different families. The CKM mixing angles are small, but it will
be seen in the next chapter, that some of the neutrino mixing angles are very large. The SM
lacks an explanation of these patterns and hierarchies, and includes all flavour parameters
fixed simply as measured from experiments. Expecting a more elegant explanation from
a fundamental theory, one can build flavour models with discrete symmetries to describe
relations among the measured flavour observables. In part III of this thesis, two such
flavour models are constructed within the framework of supersymmetry and GUTs, and
their predictions are discussed in detail.

At the end of this chapter three open problems of the Standard Model are listed, that
lie outside the scope of this thesis. For the sake of completeness they are presented here
nevertheless.

Naturalness problem II - The strong CP problem Although being a total deriva-
tive, the CP violating θQCD term in the SM Lagrange density can not be dismissed due
to instanton effects [28]. When the quark mass matrices are diagonalised, due to a chiral
anomaly the value of θQCD is changed [29]

θ̄ = θQCD + Arg Det (MuMd) . (2.45)

Although one could expect θ̄ to be of order O(1), from measurements of the neutron electric
dipole moment it is known [14]

|θ̄| < 10−10 . (2.46)

The strong CP problem is the question for an explanation of small θ̄. One possible solution
is to extend the SM by a spontaneously broken U(1)PQ Peccei-Quinn symmetry [30] and
effectively replaces θ̄ by the pseudo-Nambu-Goldstone boson of U(1)PQ, the axion [31].
Another possible solution is spontaneous breaking of CP symmetry, such that θQCD = 0
in the QCD sector, whereas Arg Det (MuMd) = 0 is enforced by flavour models [32].

Dark Matter Observations of rotation curves of galaxies [33], anisotropies in the Cosmic
Microwave Background (CMB) [34, 35], and gravitational lensing of the bullet cluster [36]
signalise the existence of Dark Matter (DM). Due to gravitational lensing surveys it is
known that the majority of DM has to be composed out of non-baryonic matter [37], thus
a BSM explanation is required. Possible DM candidates are heavy sterile neutrinos, axions,
and the lightest supersymmetric particle in SUSY [38–40].

Naturalness problem III - The cosmological constant problem From the Particle
Physics point of view, it is always possible to add a constant term into the SM Lagrange
density, without altering any prediction of the theory. Such a term corresponds to the
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energy of the vacuum and it does become important in cosmology, where it is known as
cosmological constant ρcc or dark energy to explain the observed accelerating expansion of
the universe [41]. The value of the cosmological constant is [14]

ρcc ≈ (2.2 meV)4 . (2.47)

The SM is incapable of explaining any value of ρcc, but even when attempting an analysis
on dimensional grounds one expects contributions from quantum loop effects

ρ ∼ m4 , (2.48)

which could be cancelled by new physics at scales larger than at least TeV, leading to an
estimate of ρcc that is at least 60 orders of magnitude larger than observed. So far, no
satisfying solution to the cosmological constant problem has been proposed and it remains
an open question.



CHAPTER 3

Massive neutrinos

In the process of developing the Standard Model of Particle Physics, it was assumed that
neutrinos are massless particles. In fact, the SM only contains left-handed neutrino fields,
included in the SU(2)L doublets Li. With the observation of neutrino oscillations [42–46],
the presumption of massless neutrinos has been falsified and one is compelled to extend the
SM to account for very small neutrino masses. Excitingly, there are still open questions
and unmeasured observables in Neutrino Physics, such that no definite neutrino mass
generation mechanism exists.

This chapter introduces lepton mixing as general consequence of massive neutrinos and
discusses some of the suggested SM extensions for neutrino masses. Finally a first brief
introduction towards flavour model building is presented. The content of this chapter is
based on [47–49].

3.1 Neutrino masses and the seesaw mechanisms

Besides observations of neutrino oscillations there is no evidence for neutrino masses from
other types of experiments. Measurements of β-decay set only an upper bound for the
mass of the electron-type anti-neutrino [50]

mν̄e < 2.05 eV . (3.1)

Anisotropies in the CMB and large-scale clustering of galaxies constrain the energy density
of neutrinos Ων and lead to an upper bound for the sum of light neutrino masses [35]∑

ν

mν < 0.23 eV . (3.2)

These masses are substantially smaller than the masses of quarks and charged leptons, thus
the flavour problem described in 2.4 got more severe with the discovery of non-vanishing
neutrino masses.

There are two straightforward options for incorporating neutrino masses into the SM.
One is to simply extend the particle content of the SM by right-handed neutrino fields νRi ,
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which transform as total singlets under the gauge group of the SM. Then the Lagrange
density is extended by a new Yukawa coupling

Lν = iν†Riσ̄
µ∂µνRi −

(
YνijLi · φ ν†Rj + h.c.

)
, (3.3)

which generates a Dirac mass when the Higgs field φ obtains its vev (2.14), just as quark and
charged lepton masses emerge when the electroweak symmetry gets broken. The number
N of right-handed neutrinos is left undetermined and Yν can be any general complex 3×N
matrix. Since this option requires Yukawa coupling of O(10−12) to explain O(eV) neutrino
masses, the problem of naturalness remains unsolved.

Because the νRi are gauge singlets, additionally to (3.3) the Lagrange density can include
a Majorana mass term

L = Lν −
1

2
MνijνRiνRj + h.c. , (3.4)

when one dismisses the Lepton number conservation of the original SM.
The second straightforward suggestion to generate massive neutrinos results from the

abandonment of renormalisability of the SM. Then the SM is extended by the effective
dimension five Weinberg operator [51]

Lκ =
1

2
κij (Li · φ) (Lj · φ) + h.c. , (3.5)

which gives rise to a Majorana mass term

Lν =
v2

4
κijνLiνLj + h.c. (3.6)

after EW symmetry is broken.
Particle Physics knows the non-renormalisable four-fermion Fermi theory of beta-decay,

which emerges from the renormalisable SM as effective theory when the heavy W± boson
are integrated out. Repeating this successful idea for non-renormalisable neutrino operators
gives rise to the seesaw mechanisms: The Weinberg operator (3.5) is obtained as effective
operator by integrating out heavy degrees of freedom. With the resulting neutrino masses
being inverse proportional to the mass of the heavy fields, the seesaw mechanism are
attractive solutions to explain the smallness of neutrino masses without the necessity of
unnatural small couplings.

There are three different types of seesaw mechanisms, depending on what type of heavy
degrees of freedom are introduced in order to generate (3.5). In this thesis we will exclu-
sively make use of type-I seesaw [52], which is based on new heavy right-handed neutrino
fields νRi and the SM Lagrange density is extended as in (3.4). When the heavy right-
handed neutrinos are integrated out, the Weinberg operator emerges effectively and the
neutrino Majorana mass is given by

mν = −v
2

2
YνM

−1
ν Y T

ν , (3.7)
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when the SM Higgs field φ obtains its vev. Type-I seesaw is an attractive extension of
the SM, since the gauge-singlets νRi can naturally have large Majorana masses, leading to
an explanation of the smallness of neutrino masses. When the SM is embedded into an
SO(10) GUT, a right-handed neutrino νRi is automatically included in the spectrum, as
will be discussed in the next chapter.

Other seesaw mechanism are obtained from heavy scalar SU(2)L triplets (type-II [53])
or from fermion SU(2)L triplets (type-III [54]). Another mechanism for neutrino mass
generation is the double seesaw mechanism [55], where the right-handed neutrinos of the
seesaw type-I are originally massless and the heavy mass Mν is itself an effective mass
originating from another instance of the seesaw mechanism with sterile neutrinos νSi , which
do not couple to the SM doublets Li. Finally there is the possibility to explain small
neutrino masses as loop corrections to vanishing tree-level masses [56], but such models do
also need new particles in addition to the SM particles to run inside the loop and can be
made arbitrarily complex.

3.2 The Pontecorvo-Maki-Nakagawa-Sakata

Matrix

In the SM the neutrinos were assumed to be massless and rotated like the charged leptons
(2.25) when transforming from the flavour basis to the mass basis. Massive neutrinos,
however, require to diagonalise the neutrino mass matrix as well. If neutrinos have a Dirac
mass, the mass matrix can be diagonalised by a singular value decomposition as for the
quarks and charged leptons (2.23). For Majorana neutrinos, however, mν is a complex
symmetric matrix, and therefore has to be diagonalised by a Takagi decomposition (TD)

UT
(ν)mνU(ν) = diag (m1,m2,m3) , (3.8)

where U(ν) is an unitary 3× 3 matrix and mi are the three singular values of the complex
symmetric matrix mν . As for SVD, U(ν) is not uniquely defined by (3.8). In SVD the
unitary matrices are defined up to a diagonal phase matrix, which in TD is in general
reduced to a sign ambiguity

U(ν) → U(ν) diag
(
eiγ1 , eiγ2 , eiγ3

)
, (3.9)

with γi = 0, π. Only if the corresponding singular value mi is vanishing, γi can be arbitrary.
With (2.24) the rotations to the mass basis in the lepton sector are

eL → U
(e)
L eL , eR → U

(e)
R eR , and νL → U(ν)νL . (3.10)

The coupling of leptons to the neutral current is flavour diagonal as for quarks. In the
coupling to the charged current the transformations (3.10) lead to the emergence of the
unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS)-Matrix [42, 57]

VPMNS ≡
(
U

(e)
L

)†
U(ν) (3.11)
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in
Lcc =

g2√
2

(
u†LVCKMσ̄

µW+
µ dL + e†LVPMNSσ̄

µW−
µ νL

)
+ h.c. . (3.12)

As for the CKM-Matrix (2.3), at first the PMNS-Matrix can be parametrised in terms of
(2.29) with three real angles and six phases as

VPMNS = UPMNS
23 UPMNS

13 UPMNS
12 PPMNS . (3.13)

Three phases can be absorbed in the charged lepton fields using the freedom of U
(e)
L as

U
(e)
L → U

(e)
L diag

(
eiγPMNS

1 , ei(γPMNS
1 +δPMNS

12 ), ei(γPMNS
1 +δPMNS

12 +δPMNS
23 )

)
. (3.14)

This brings VPMNS into its standard parametrisation

VPMNS =

 c12c13 s12c13 s13e−iδ

−c23s12 − s23s13c12eiδ c23c12 − s23s13s12eiδ s23c13

s23s12 − c23s13c12eiδ −s23c12 − c23s13s12eiδ c23c13

Pα , (3.15)

where for readability the superscript PMNS has been dropped. Pα is a diagonal phase
matrix containing the two Majorana phases α1 and α2

Pα = diag

(
1, ei

αPMNS
1

2 , ei
αPMNS

2
2

)
. (3.16)

The three physical phases of VPMNS are given in terms of the parametrisation (3.13) as1

δPMNS = δPMNS
13 − δPMNS

12 − δPMNS
23 , (3.17a)

αPMNS
1

2
= γPMNS

2 − γPMNS
1 − δPMNS

12 , (3.17b)

αPMNS
2

2
= γPMNS

3 − γPMNS
1 − δPMNS

12 − δPMNS
23 . (3.17c)

In the case that neutrinos are Dirac particles, mν is diagonalised by a SVD and the PMNS-
Matrix is analogously to the CKM-Matrix obtained, i.e. the Majorana phases are unphys-
ical.

Neutrino oscillations arise due to the fact that neutrinos are created and observed via
charged current interactions as flavour eigenstates |να〉, which are superpositions of mass
eigenstates2 |νi〉

|να〉 = U∗αi|νi〉 . (3.18)

1In the literature one also finds the convention of Pα = diag
(

e−i
φ1
2 , e−i

φ2
2 , 1

)
, in which case the

Majorana phases are given as
φPMNS
1

2 = γPMNS
3 − γPMNS

1 − δPMNS
12 − δPMNS

23 and
φPMNS
2

2 = γPMNS
3 − γPMNS

2 −
δPMNS
23 , respectively, whereas the Dirac phase is unchanged from (3.17a).

2Note that in contrast to the field rotation in (3.10) the complex conjugate U∗αi appears in the trans-
formation of states, because in standard convention of quantum field theory a quantum field contains the
creation operator for an anti-particle state |ψ̄〉 = ψ|0〉.
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If one is interested in oscillations of the three active light neutrinos of the SM, U is identified
with VPMNS. More generally however, U can also describe oscillations into sterile neutrinos.

The different mass eigenstates in a neutrino beam evolve differently and the probability
of detecting a specific neutrino flavour eigenstate is thus time-dependent. Since neutrinos
are ultra relativistic particles, the time-dependence is exchanged for a dependence on the
distance L between the places of origin and detection. Due to weak current interactions of
νe with electrons in matter, oscillations of νe also depend on the electron density ne [58].

In vacuum the probability for a flavour eigenstate |να〉 to oscillate into |νβ〉 is given
by [43,59,60]

P (να → νβ) =
∑
i

|Uαi |2|Uβi|2 +
∑
i>j

U∗αiUβiUαjU
∗
βje
−i

∆m2
ijL

2E , (3.19)

which is independent of the Majorana phases. This probability furthermore does not
depend on the absolute neutrino masses, but rather depends on the differences of the
squared masses

∆m2
ij = m2

i −m2
j . (3.20)

Thus it is impossible to inquire an overall scale of neutrino masses from vacuum neutrino
oscillation experiments. If ∣∣∆m2

ijL
∣∣� 4πE , (3.21)

the oscillation due to ∆m2
ij are negligible, since the distance between neutrino source and

detection is much smaller than the oscillation length

Loscij ≡
4πE∣∣∆m2

ij

∣∣ . (3.22)

When the uncertainty of the size ∆L or energy ∆E for neutrino production or detection
are much larger than Loscij , the neutrino oscillations due to ∆m2

ij get averaged [61].
In the case of three oscillating neutrinos, conventionally one labels the neutrino mass

states such that

0 < ∆m2
21 , ∆m2

21 < |∆m2
32| , ∆m2

21 < |∆m2
31| . (3.23)

Then there are two options for the remaining neutrino mass m3, denoted as normal ordering
(NO) and inverse ordering (IO), respectively

m1 < m2 < m3 (NO) ,

m3 < m1 < m2 (IO) . (3.24)

Experiments have not yet succeeded to distinguish between these mass orderings. A global
fit of neutrino oscillation measurements finds [62]

∆m2
21 = 7.50+0.19

−0.17 · 10−5 eV2 ,

∆m2
31 (N0) = +2.457+0.047

−0.047 · 10−3 eV2 ,

∆m2
32 (I0) = −2.449+0.048

−0.047 · 10−3 eV2 . (3.25)
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Because of ∆m2
21 � |∆m2

31(32)| and distinct neutrino energies for specific oscillation exper-
iments, one can find separate regimes of experiments, where a single mass squared split-
ting dominates. The observed solar νe → νµ,τ oscillations are related to ∆m2

21, whereas
the larger of the two mass squared splittings ∆m2

31 and ∆m2
32, is related to atmospheric

νµ → ντ oscillations. Therefore one often refers to these mass splittings as

∆m2
sol = ∆m2

21 , ∆m2
atm =

{
∆m2

31 (NO)

∆m2
32 (IO)

. (3.26)

The experimental values of the lepton mixing angles are given by [62]

θPMNS
12 = 33.48◦ +0.78◦

−0.75◦ and θPMNS
13 = 8.50◦ +0.20◦

−0.21◦ . (3.27)

The global best-fit value of θPMNS
23 depends on whether a normal or an inverse mass ordering

is assumed as prior

θPMNS
23 =

{
42.3◦ +3.0◦

−1.6◦ (NO)

49.5◦ +1.5◦

−2.2◦ (IO)
. (3.28)

With small θPMNS
13 , solar and atmospheric neutrino oscillations can be understood to be

dominantly two-flavour oscillations, where θPMNS
12 is identified as solar mixing angle θsol and

atmospheric neutrino oscillations are related to the atmospheric mixing angle θatm ≡ θPMNS
23 .

Oscillation experiments measuring the survival rate of ν̄e from nuclear reactors are most
sensitive to corrections due to non-vanishing θPMNS

13 , which is therefore sometimes referred
to as reactor mixing angle.

While large solar and atmospheric mixing angles were established in the early 2000s [45],
until 2011, when a small but non-vanishing θPMNS

13 was discovered [46], it was speculated
that θPMNS

13 = 0. Two famous structures for VPMNS had been suggested: Bimaximal (BM)
mixing [63] features vanishing θPMNS

13 and maximal θPMNS
12 = θPMNS

23 = 45◦

VBM =


1√
2

1√
2

0

−1
2

1
2

1√
2

1
2
−1

2
1√
2

 . (3.29)

Like in the bimaximal case, tri-bimaximal (TBM) mixing [64] has θPMNS
13 = 0 and maximal

θPMNS
23 = 45◦, however the solar mixing angle is given by θPMNS

12 ' 35.3◦

VTBM =


√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6
− 1√

3
1√
2

 . (3.30)

Although this structures for VPMNS are ruled out by data due to the discovery of non-
vanishing θPMNS

13 , they are prominently used as candidates for the neutrino mixing matrix
U(ν) in neutrino mass model building, when the small non-vanishing θPMNS

13 results from
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(
U

(e)
L

)†
, as so-called charged lepton correction to the neutrino mixing angle θν13 = 0. As-

suming “small” charged lepton mixing angles and θν13, respectively, one can perform a small
angle expansion of (3.11) to find [65]

sPMNS
23 e−iδ

PMNS
23 ≈ sν23e

−iδν23 − θe
23c

ν
23e
−iδe

23 , (3.31a)

θPMNS
13 e−iδ

PMNS
13 ≈ θν13e

−iδν13 − θe
13c

ν
23e
−iδe

13 − θe
12e
−iδe

12(sν23e
−iδν23 − θe

23c
ν
23e
−iδe

23) , (3.31b)

sPMNS
12 e−iδ

PMNS
12 ≈ sν12e

−iδν12 + θe
13c

ν
12s

ν
23e

i(δν23−δe
13) − θe

12c
ν
23c

ν
12e
−iδe

12 , (3.31c)

in leading order of θν13. The higher order term proportional to θe
12θ

e
23 is shown in (3.31b),

since it demonstrates that (3.31b) can be rewritten as

θPMNS
13 e−iδ

PMNS
13 ≈ θν13e

−iδν13 − θe
13c

ν
23e
−iδe

13 − θe
12s

PMNS
23 e−i(δ

e
12+δPMNS

23 ) . (3.32)

An especially interesting case is when θν13 and θe
13 vanish, and one can derive from (3.32)

the interesting relation
θPMNS

13 ≈ θe
12s

PMNS
23 , (3.33)

highlighting that θPMNS
13 can result purely from charged lepton corrections. If one further-

more assumes θe
23 � θe

12, one obtains from (3.31), using (3.17a), the lepton mixing sum
rule [65–67]

sν12 ≈ sPMNS
12 − θPMNS

13 cPMNS
12 cot θPMNS

23 cos δPMNS , (3.34)

to leading order in θPMNS
13 . (3.33) and (3.34) will be in the center of the discussion in

chapter 6 and motivate much of the work in part III.
We now turn to a discussion of the phases in VPMNS. It was already mentioned that

the neutrino oscillation probability (3.19) does not depend on the Majorana phases. In
neutrino oscillations, CP violation can be parametrised by the Jarlskog invariant J defined
by [68]

Im
(
U∗αiUβiUαjU

∗
βj

)
≡ J

∑
k,γ

εαβγεijk , (3.35)

which is independent of the phase convention for U . Note that CP violation can only be
observed in flavour violating oscillation measurements να 6= νβ. For oscillations of three
light neutrinos U = VPMNS one obtains

J = c2
13s13c12s12c23s23 sin δ , (3.36)

where again the superscripts PMNS have been dropped for readability. It follows that
CP violation is only observable in vacuum neutrino oscillations if all lepton mixing angles
are non-vanishing. Therefore only the recent detection of non-vanishing θPMNS

13 opened the
possibility to discover CP violation in neutrino oscillation experiments. Today global fits
report hints towards a value of [62]

δPMNS =

{
306◦ +39◦

−70◦ (NO)

254◦ +63◦

−62◦ (IO)
. (3.37)
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For the studies and numerical fits in this thesis, the value of δPMNS has been kept an
open parameter, however. A future measurement of δPMNS can be expected from the long
baseline neutrino oscillation experiment DUNE [69], which will also be able to measure the
sign of ∆m2

31 and determine the neutrino mass ordering.
We conclude this section with a brief discussion of the Majorana phases αPMNS

1 and
αPMNS

2 . In comparison to a Dirac mass matrix, which can be diagonalised by a SVD, a
Majorana mass matrix has to be diagonalised by a TD, and therefore the Majorana phases
are physical and can not be absorbed by neutrino fields. Whether neutrino mass is of
Dirac or Majorana type, can be distinguished by neutrinoless double beta decay (2β0ν) [70]:
In such processes two nucleons simultaneously experience beta decay. If neutrinos have
a Majorana mass, instead of two antineutrinos and two charged leptons with continous
spectrum, the antineutrino emitted by one W boson can be absorbed as neutrino by the
second W , leading to a final state of 2β0ν with two monochromatic charged leptons. The
rate of this process is proportional to the effective Majorana mass

〈mββ〉 =

∣∣∣∣∣∑
i

U2
eimi

∣∣∣∣∣ = c2
12c

2
13m1 + s2

12c
2
13e

iα1m2 + s2
13e

i(α2−2δ)m3 , (3.38)

where the superscript PMNS was dropped for readability. Because the mixing angles and
mass squared splittings are known from oscillation experiments, a measurement of 〈mββ〉
could, additionally to answering the Majorana or Dirac mass question, bring insights into
CP violation due to Majorana phases and into the question of whether neutrino masses
follow normal mass ordering, inverse mass ordering, or are nearly degenerate.3 A careful
average of various 2β0ν experiments leads to a conservative upper bound [72]

〈mββ〉 < 0.46 eV . (3.39)

3.3 Neutrino mass models & flavour model building

We close this chapter with a discussion of neutrino mass models, whose aim is to explain
simple structures of VPMNS, such as tri-bimaximal mixing, from discrete symmetries. In
a basis where the charged lepton Yukawa coupling matrix is diagonal one can phrase the
neutrino mass matrix mν from (3.8) as [73]

mν = V ∗PMNS diag (m1,m2,m3)V †PMNS = m1Φ∗1Φ†1 +m2Φ∗2Φ†2 +m3Φ∗3Φ†3 , (3.40)

where Φi are the columns of VPMNS. For a simple mixing structure such as TBM, these
vectors are

Φ1 =
1√
6

−2
1
1

 , Φ2 =
1√
3

1
1
1

 , Φ3 =
1√
2

 0
1
−1

 . (3.41)

3Note that other BSM lepton number violating mechanism can lead to 2β0ν as well. It was shown
however, that regardless of the underlying mechanism of 2β0ν , neutrinos feature Majorana masses in all
cases, due to a “black-box” theorem [71].
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When the small neutrino masses result from a type-I seesaw with diagonal heavy right-
handed neutrino mass matrix Mν , the columns of the neutrino Yukawa matrix Yν are
proportional to the columns Φi

mν = −v
2

2
YνM

−1
ν Y T

ν = −v
2

2

(
ε21
M1

Φ1ΦT
1 +

ε22
M2

Φ2ΦT
2 +

ε23
M3

Φ3ΦT
3

)
, (3.42)

where εi parametrise small couplings. If the lightest neutrino is massless, the first column
Φ1 can be dropped and one is left with so-called Constrained Sequential Dominance (CSD)
[17,66], where the neutrino Yukawa and mass matrices are given by

Yν =

ε2 0
ε2 ε3
ε2 −ε3

 , Mν =

(
M2 0
0 M3

)
. (3.43)

The resulting neutrino masses and lepton mixing feature NO and TBM. An inverse neutrino
mass ordering and bimaximal mixing can be obtained with a Dirac pair of of two heavy
right-handed neutrinos, such that Mν is off-diagonal, and a neutrino Yukawa coupling
matrix given by [74]

Yν =

a 0
0 b
0 c

 , Mν =

(
0 M
M 0

)
. (3.44)

We will revisit these two configurations of the neutrino sector in chapters 7 and 8, when
we present two SUSY flavour GUT models in part III of this thesis.

The general idea of flavour models originates in the attempt to explain hierarchical
Yukawa couplings and mixing angles from a spontaneously broken Abelian flavour symme-
try U(1)FN [75]. Each generation of matter fields carries a different charge under U(1)FN,
thereby requiring varying numbers of insertions of the flavour symmetry breaking flavon
fields Φ, in order to form (non-renormalisable) neutral Yukawa operators. When the flavour
symmetry is spontaneously broken, the Yukawa couplings emerge from the flavon vevs

Y ∼
(〈Φ〉

Λ

)n
, (3.45)

where Λ is a high energy scale. Thus flavour models replace Yukawa couplings by vevs of
dynamical fields. In order to explain not only the hierarchy of Yukawa couplings, but also
special structures (like in (3.43)), non-Abelian flavour symmetries are necessary. Because
there are three generations, non-Abelian groups which feature a triplet representation are
prominent candidates for flavour symmetries. In CSD the flavons are also triplets and their
vevs are aligned such that

〈Φ2〉 ∼

1
1
1

 and 〈Φ3〉 ∼

 0
1
−1

 . (3.46)
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A complete flavour model will not only build the neutrino Yukawa matrix from flavons, but
the rows or columns of all Yukawa matrices will be obtained from vevs of flavons. To this
end a flavour model must also include a suitable potential which guarantees the desired
alignment of flavon vevs in flavour space.

There are several choices for symmetry groups G that can be used to successfully con-
struct flavour models. One example is the discrete group A4 (cf. [76–78] and appedix A). In
part III two predictive flavour GUT models are presented, using a supersymmetric SU(5)
GUT and A4 flavour symmetry.



CHAPTER 4

Grand Unified Theories

Ignoring the evidence of massive neutrinos for the moment, the Standard Model is remark-
ably successful in describing particle physics phenomena. Yet there are some deficiencies
such as the unexplained charge quantisation of U(1)em or the “miraculous” anomaly can-
cellation. Arguably, the fact that the SM features three gauge couplings and five distinct
representations of matter fields may be viewed as the SM being too elaborate. A very
attractive solution to these questions at hand is the unification of SM forces and represen-
tations, respectively. If the SM gauge groups are embedded into one single gauge group,
such a theory of unification is denoted Grand Unified Theory (GUT). Since GUTs also en-
able quark and lepton unification, they are an appealing BSM setting to tackle the flavour
problem.

In this chapter we review the theoretical framework of SU(5) GUTs [79] and proton
decay, necessary for the understanding of the main part of this thesis, based loosely on
[80–82]. The subject of supersymmetric GUTs will be discussed in the next chapter. In
the final section of this chapter we briefly discuss the appearance of group-theoretical
Clebsch-Gordan factors in predictions for GUT scale Yukawa coupling matrices [83].

4.1 The Georgi-Glashow SU(5) model

Any GUT gauge group must contain the SM gauge group as subgroup. Since SU(3)C ×
SU(2)L × U(1)Y has rank four, any GUT gauge group must be at least of rank four as
well. The simple group SU(5) is of rank four and remarkably allows to fit all SM fields
into SU(5) representations, without having to introduce new matter fields.

In order to discuss how the SM gauge group is embedded into SU(5), one first must
reassure that the SM gauge couplings do indeed unify at a higher energy scale. To this
end the U(1)Y gauge coupling g′ needs to be normalised to match the normalisation of the
non-Abelian SU(N) gauge groups. As discussed in appendix A, the SU(N) generators are
normalised as

Tr T aT b =
1

2
δab . (4.1)
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The fundamental representation of SU(5) decomposes into the SM gauge group represen-
tations as1

5 = (3,1)− 1
3

+ (1,2) 1
2
. (4.2)

One can therefore identify 5 with dR and the charge-conjugated lepton-doublet Lc. The
trace over the U(1)Y hypercharges within 5 is thus given by

Tr Q2
Y =

5

6
, (4.3)

from which one can determine the GUT normalisation of hypercharge to be

QY =

√
5

3
QY GUT and g′ =

√
3

5
g1 . (4.4)

One can now study the renormalisation group equations (RGEs) for the gauge couplings
g1, g2, and g3, which at the one-loop level are

µ
d

dµ
ga =

g3
a

16π2
ba , (4.5)

with b1 = 41
10

, b2 = −19
6

, and b3 = −7 for SM field content [86]. If the three gauge couplings
unite into one gauge coupling g5 at high energy, one could replace the SM gauge group
with the GUT gauge group. Starting from the experimental values for the gauge couplings
at MZ and evolving them to higher energy, one finds however that the gauge coupling
unification condition

g5 ≡ g1 = g2 = g3 (4.6)

is never sufficiently satisfied. As will be discussed in the next section, this problem is
solved when supersymmetry is introduced. For the moment we consider the energy scale
of approximately 1015 GeV, where the discrepancy of gauge coupling unification is the
smallest, as unification scale MGUT ∼ 1015 GeV, and continue with the field content of the
Georgi-Glashow SU(5) model [79].

The irreducible SU(5) representations 5̄, 10, and 24 decompose under the SM gauge
group as

5̄ = (3̄,1) 1
3

+ (1,2)− 1
2
,

10 = (3,2) 1
6

+ (3̄,1)− 2
3

+ (1,1)1 ,

24 = (8,1)0 + (3,2)− 5
6

+ (3̄,2) 5
6

+ (1,3)0 + (1,1)0 . (4.7)

1Throughout this thesis, all decompositions of SU(N) and SO(N) representations have been obtained
with [84] (see also [85]).
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Thus for each generation one can embed the three charge-conjugated down type quark
fields d†R and the lepton-doublet2 L into a joint field F transforming as 5̄

F =


d†RR
d†RB
d†RG
e
−ν

 , (4.8)

where R, B, and G denote the three colors of QCD. The remaining matter fields fit into
the antisymmetric 10 as charged-conjugated u†R and e†R, and quark doublet Q

T =
1√
2


0 −u†RG u†RB −uLR −dLR
u†RG 0 −u†RR −uLB −dLB
−u†RB u†RR 0 −uLG −dLG
uLR uLB uLG 0 −e†R
dLR dLB dLG e†R 0

 . (4.9)

Right-handed neutrinos can be added as singlet fields, such that neutrino masses can arise
via the see-saw type-I mechanism. It is now easy to understand the origin of U(1)em charge
quantisation: When SU(5) gets broken into the SM subgroup, the U(1)Y generator arises
from the diagonal SU(5) generator3

T0 =

√
3

5
diag

(
−1

3
,−1

3
,−1

3
,
1

2
,
1

2

)
, (4.10)

and the QY hypercharges of the SM matter fields emerge from the embedding (4.7) of the
SM representation into SU(5) representations. The electric charge operator is

Qe = T3 +

√
5

3
T0 = diag

(
−1

3
,−1

3
,−1

3
, 1, 0

)
, (4.11)

which explains the fractional electric charge of quarks from the fact that quarks come in
three colours and SU(5) generators are traceless. Overall the peculiar U(1)Y hypercharge
assignment of the SM fields in table 2.1 is strikingly explained when the SM is embedded
into SU(5).

Note that the Georgi-Glashow model is anomaly free, since the contributions from F
and T to the anomaly coefficients cancel.

The gauge bosons Gµ, Wµ, and Bµ are contained in the adjoint 24. Finally 24 also
contains twelve additional gauge fields in (3,2)− 5

6
and (3̄,2) 5

6
, which do not correspond to

any existing SM field. These new leptoquark gauge bosons are namedX and Y , respectively,

2Note that 5̄ contains the SU(2) conjugate εL, which explains the sign of ν in (4.8).
3The SU(3)C generators are embedded into the 3× 3 upper-left block and the SU(2)L generators into

the 2× 2 lower-right block of the SU(5) generators.
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and carry SU(2) and SU(3) indices. The Higgs boson φ is supplemented by a new coloured
scalar Higgs triplet T (5) and embedded into a fundamental H5

H5 =


T

(5)
R

T
(5)
B

T
(5)
G

φ+

φ0

 . (4.12)

To spontaneously break SU(5) down to the SM subgroup, one introduces a Higgs field
H24 transforming in the adjoint representation 24, which obtains a vev aligned along the
hypercharge direction

〈H24〉 = V diag

(
1, 1, 1,−3

2
,−3

2

)
. (4.13)

Equation (4.13) is obtained as global minimum of the most general renormalisable potential
for the adjoint4

V (H24) = −m
2
24

2
TrH2

24 +
λ24

4

(
TrH2

24

)2
+
λ′24

4
TrH4

24 , (4.14)

when the parameters satisfy m24, λ
′
24 > 0, and λ24 > − 7

30
λ′24. Because 〈H24〉 commutes

with the SU(5) generators of the SM subgroup, the SM gauge group remains unbroken,
while the X and Y gauge bosons acquire a heavy mass due to the BEH mechanism

M2
X = M2

Y =
25

8
g2

5V
2 . (4.15)

One identifies MX with the mass scale of GUT unification MGUT ≡ MX . Expanding H24

around its vev one finds that twelve degrees of freedom are would-be Goldstone bosons
and absorbed by the massive gauge fields X and Y . The remaining degrees of freedom are
transforming as one SU(3)C octet O(24), one SU(2)L triplet T (24), and one total singlet
S(24), with masses

m2
O(24) =

5

8
λ′24V

2 , m2
T (24) =

5

2
λ′24V

2 , m2
S(24) = m2

24 . (4.16)

The full scalar potential also includes the Higgs boson H5 and (4.14) is extended to

V (H24, H
†
5H5) = V (H24)− µ2

5(H†5H5) + λ5(H†5H5)2

+ λ′H†5H5TrH2
24 + λ′′H†5H

2
24H5 . (4.17)

4For simplicity we assume that H24 carries charge 1 under an additional Z2 symmetry, which however
is not a necessary condition for the potential V to obtain (4.13).
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With µ5,m24 > 0, λ′24 > 0 > λ′′, λ24 < − 7
30
λ′24, λ′ > − 3

10
λ′′, and λ5 >

(
λ′ + 3

10
λ′′
) µ2

5

m2
24

the

potential (4.17) is minimised by 〈H24〉 and the non-vanishing vev

〈H5〉 =
1√
2


0
0
0
0
v

 , (4.18)

which spontaneously breaks the Electroweak symmetry to U(1)em.5 The two vevs 〈H24〉
and 〈H5〉 thus spontaneously break SU(5)→ SU(3)C×U(1)em. The masses of the coloured
triplet T (5) and the SM Higgs boson h are given by

m2
T (5) = −5

4
λ′′V 2 and m2

h = λ5v
2 . (4.19)

In the next section it will be discussed that the coloured triplet T (5) mediates proton decay,
which leads to a lower bound of mT (5) & 1012 GeV. The Higgs mass on the other hand
is mh ∼ 125 GeV, leading to the so-called doublet-triplet splitting (DTS) problem. It is
related to the hierarchy problem and can be accounted for by a fine-tuning of the potential’s
parameters λ′ and λ′′, as can be seen for example from the solution

v2 =
µ2

5 −
(

30
4
λ′ + 9

4
λ′′
)
V 2

λ5

. (4.20)

In SUSY SU(5) the DTS problem is tightened due to new proton decay mediating operators
involving sparticles. We will return to the DTS problem in section 5.5 and chapter 9.

We close this section with a discussion of the Yukawa sector of the Georgi-Glashow
model. There are two SU(5) invariant Yukawa operators

LY = −Y5TijF i (H∗5 )j − Y10ε
ijklmTijTkl (H5)m + h.c. , (4.21)

where i, j, . . .m denote SU(5) indices and we have suppressed flavour indices for readability.
When SU(5) gets broken (4.21) decomposes into the SM Yukawa interactions

LY = −4Y10Q · φu†R +
1√
2
Y5Q · φ̃ d†R +

1√
2
Y T

5 L · φ̃ e†R + h.c. , (4.22)

and new Yukawa interactions between the coloured triplet T (5) and the matter fields

LY
T (5)

= − 1√
2
Y5

(
Q · L− u†Rd†R

)
T (5)∗ − 2Y10

(
2u†Re

†
R −Q ·Q

)
T (5) + h.c. . (4.23)

Comparison with (2.2) gives the following SU(5) GUT scale predictions for the Yukawa
matrices

Yd = Y T
e , Yu = Y T

u . (4.24)

5〈H5〉 also leads to negligibly small shifts of O (v/V ) in the heavy masses of (4.16).
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The GUT scale relation Yd = Y T
e is however refuted by the observed quark and lepton

masses, when an RG analysis to MGUT is performed. This problem can be solved by
adding a new Higgs field H45 transforming as 45 [87]. Under the SM gauge group 45
decomposes as

45 = (3,1)− 1
3

+ (1,2) 1
2

+ (3̄,1) 4
3

+ (3̄,2)− 7
6

+ (3,3)− 1
3

+ (6̄,1)− 1
3

+ (8,2) 1
2
, (4.25)

therefore the SM Higgs field φ can be embedded in H45. Writing SU(5) tensor indices
explicitly, H45 is given by (H45)ijk = − (H45)jik with vanishing trace (H45)iji = 0. When H45

obtains a vev, SU(3)C must not be broken and because of the traceless condition the vev
is given by

〈(H45)i5k 〉 = v
(
δik − 4δi4δk4

)
i, k = 1, . . . , 4 , (4.26)

such that the term giving mass to the charged leptons compensates for the number of
colours. Invoking new global symmetries, one can construct a Lagrange density such that
H45 couples exclusively to the second family

LY ⊃ −ys (T2)ij Fk2 (H∗45)ijk , (4.27)

whereas the remaining matter fields couple to H5.6 The resulting GUT scale Yukawa cou-
pling ratios are known as the Georgi-Jarlskog (GJ) relations [87]

yµ = 3ys , ye =
1

3
yd , (4.28)

where the second relation also requires vanishing 1-1 element of Y5. We will discuss later,
that the GJ relations are also challenged by the data today. In section 4.4 we will review
other predictions for GUT scale Yukawa coupling ratios, when higher-dimensional operators
involving the adjoint are constructed.

The crucial point is that within the framework of GUTs predictions for quark and lepton
mass ratios are constructed, setting the stage for flavour models.

4.2 Proton decay in SU(5)

The unification of quarks and leptons into joint representations inevitably enables baryon
and lepton number violating operators and thus predicts proton decay. Figure 4.1 shows
how exchange of the heavy gauge bosons X and Y leads to baryon number violating
operators, which can mediate proton decay, like for example p → e+ + π0, as shown
in figure 4.2. In the effective theory where the heavy gauge bosons are integrated out,
dimension 6 proton decay operators emerge proportional to the SU(5) gauge coupling g5

and MGUT [82]

L�B =
g2

5

2M2
GUT

(
u†Rσ̄Q · e†Rσ̄Q+ u†Rσ̄Q · d†Rσ̄L

)
. (4.29)

6Because of the additional shaping symmetries, in flavour GUT models several H5’s might be required.
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X
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u†
R

e†L

dR

Y

uL
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e†R
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uL
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ν†L

d†R

Figure 4.1: Baryon number violating operators mediating proton decay due to heavy
gauge boson exchange.

p

u

u

d

e+

d̄

π0

X

Figure 4.2: Feynman diagram for the proton decay p → e+π0 mediated by the heavy
gauge boson X.

The amplitude for proton decay depends on the RG evolution and the quark and lepton
mixing matrices. Based on dimensional analysis there is a model-independent estimate for
the proton decay rate

Γp ≈ α2
5

m5
p

M4
GUT

, (4.30)

where α5 ≡ g2
5

4π2 and mp ∼ 938 MeV is the proton mass. The most stringent bound on the
proton lifetime is τ (p→ e+ + π0) > 8 · 1033 years [14], which yields a lower bound for the
GUT scale of

MGUT & 1016 GeV , (4.31)

for α5 ≈ 1
25

. The too high proton decay rate predicted by the unification scale MGUT =
1015 GeV is another problem that can be elegantly solved in SUSY SU(5), where the
unification scale can easily be above 1016 GeV, as discussed in 5.5 and 9.3.

Besides the heavy X and Y bosons, also the colour triplet T (5) can mediate proton decay
via the Yukawa couplings to quarks and leptons shown in (4.23) and figure 4.3. Like for
the heavy gauge boson mediated proton decay, the decay rate is flavour model dependent.
Again an estimate based on dimensional grounds is [82]

Γp ≈ |yuyd|2
m5
p

m4
T (5)

, (4.32)

where yu and yd are the Yukawa couplings of the first generation quarks. The lower bound
for the mass of the coloured triplet is then given by

mT (5) > 5 · 1011 GeV , (4.33)
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T (5)

uL

dL

eL

uL

Figure 4.3: Example for a baryon violating operator mediating proton decay through a
heavy coloured triplet.

with yuyd ≈ 4 · 10−10. Thus we have identified the root of the doublet-triplet splitting
problem, in order to prevent too rapid proton decay the triplet in H5 has to be many
orders of magnitude heavier than the doublet, whose mass is at the electroweak scale.

4.3 Pati-Salam unification and SO(10)

The main part of this thesis is dedicated to SUSY flavour models in SU(5) grand unifica-
tion. We therefore only briefly discuss unification in Pati-Salam (PS) [88] and SO(10) [89]
gauge groups in this section.

The Pati-Salam gauge group is SU(4)C × SU(2)L × SU(2)R with the underlying idea
to identify leptons as fourth colour of SU(4)C . The SM matter content can be embedded
into two representations QL and QR transforming as (4,2,1) and (4̄,1,2), respectively.
Under the SM gauge group they decompose as

(4,2,1) = (3,2) 1
6

+ (1,2)− 1
2

(4̄,1,2) = (3̄,1) 1
3

+ (3,1)− 2
3

+ (1,1)1 + (1,1)0 . (4.34)

Therefore the SM SU(2)L doublets Q and L are embedded into QL and the charge-
conjugated fields u†R, d†R, and e†R are embedded into QR. The multiplet QR is completed
with a SM singlet field, which can be identified with the charge-conjugate of a heavy right-
handed neutrino ν†R. Thus massive neutrinos arise as prediction from PS unification. The
SM Higgs doublet is contained in H, transforming as

(1,2,2) = (1,2) 1
2

+ (1,2)− 1
2
. (4.35)

The most general renormalisable Yukawa interaction Lagrange density in PS is thus

LYPS = −YPSQLHQR . (4.36)

When the PS gauge group is broken to the SM, this gives rise to the (very bad) GUT scale
predictions

Yu = Yd = Ye = Yν . (4.37)
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These GUT scale relations can be improved. The GJ relations for example are obtained
with a new Higgs field transforming as

(15,2,2) = (1,2) 1
2

+ (1,2)− 1
2

+ (3,2) 7
6

+ (3,2) 1
6

+ (3̄,2)− 7
6

+ (3̄,2)− 1
6

+ (8,2) 1
2

+ (8,2)− 1
2
, (4.38)

since the SU(4)C adjoint 15 is traceless and the leptons compensate for the number of
three colours, when SU(4)C is broken to SU(3)C . Another method to obtain better GUT
scale Yukawa coupling ratios is to introduce non-renormalisable operators, as outlined in
the next section.

Pati-Salam is a partial unified theory and has three distinct gauge couplings7, opposite
to complete gauge coupling unification in a grand unified theory. It is possible, however,
to embed PS into a simple GUT gauge group SO(10) [89]. All SM matter fields of one
generation plus one right-handed neutrino fit into a single field Q16, transforming in the
16-dimensional spinor representation of SO(10)

16 = (4,2,1) + (4̄,1,2)

= (3,2) 1
6

+ (1,2)− 1
2

+ (3̄,1) 1
3

+ (3,1)− 2
3

+ (1,1)1 + (1,1)0 , (4.39)

where the first row shows the decomposition into the PS and the second row into the SM
gauge group. With all matter fields contained in one single GUT representation, SO(10)
has the benefit of being anomaly free without the requirement of any cancellation between
different fields. The SM Higgs field is contained in H10, transforming as

10 = (1,2,2) + (6,1,1)

= (1,2) 1
2

+ (1,2)− 1
2

+ (3,1)− 1
3

+ (3̄,1) 1
3
. (4.40)

In SO(10) the most general renormalisable Yukawa coupling interaction is then simply
given by

LYSO(10)
= −YSO(10)Q16H10Q16 , (4.41)

with symmetric YSO(10). This also yields the GUT scale relations (4.37) with the additional
prediction of symmetric Yukawa matrices. Again, also in SO(10) GUT model building one
can construct GJ relations by a Higgs transforming in

126 = (15,2,2) + (6,1,1) + (10,1,3) + (10,3,1) , (4.42)

which contains the (15,2,2) of PS for the GJ relations. Due to the high dimensionality of
126 we refrain from showing the SM decomposition.

PS is not the only subgroup of SO(10) which contains the SM gauge group. SO(10)
can also be broken into SU(5) × U(1)X , therefore Georgi-Glashow SU(5) as well as so-
called flipped SU(5) [90] can be embedded into SO(10). The breaking mechanisms of
SO(10) → SU(4)C × SU(2)L × SU(2)R → SU(3)C × SU(2)L × U(1) and SO(10) →

7Two if one requires left-right symmetry.
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SU(5) × U(1)X → SU(3)C × SU(2)L × U(1) are rather complicated and involve several
GUT-breaking Higgs fields. Since the flavour models in the main part of this thesis are
SU(5) GUTs, the details of SO(10) and subsequently PS breaking are of no relevance for
this thesis and therefore not discussed.

4.4 GUT scale Yukawa coupling ratios

The SU(5) and PS predictions of Ye = Y T
d and Ye = Yd = Yu, respectively, are highly

disfavoured by experimental results, when the RG evolution of the particle masses (or
rather their Yukawa couplings) to the GUT scale is studied.8 A convenient test whether
GUT predictions for the first two families are consistent with the experimental data is
provided by the - RG invariant and SUSY threshold correction invariant9 - double ratio [91]∣∣∣∣yµ ydys ye

∣∣∣∣ ≈ 10.7+1.8
−0.8 . (4.43)

Thus also the GJ relations (4.28) are in tension with experimental observations, since they
yield a double ratio of 9 and thus deviate from the constraint (4.43) by more than two
sigma.

The problem of poor GUT scale predictions can be solved when the Yukawa couplings are
effective higher-dimensional operators, containing a GUT breaking Higgs field. When the
GUT gauge group gets spontaneously broken to the SM, new GUT scale Yukawa coupling
ratios arise due to the appearance of group theoretical Clebsch-Gordan (CG) factors [83].

R

A

B

C

D

R

A

B

C

D

Figure 4.4: Feynman diagrams with heavy messenger fields R give rise to the effective
dimension 5 operators ABCD, thereby new GUT-scale predictions for the Yukawa coupling
ratios arise from group-theoretical CG factors.

Generally, in a higher-dimensional operator involving GUT non-singlet fields there are
several possibilities how the GUT group indices are contracted to form a gauge singlet,
yielding a non predictive, arbitrary linear combination of multiple CG factors. For example
in SU(5) GUTs the dimension five operator FT (H5)∗H24 yields a linear combination of
the GUT scale Yukawa couplings ratios 1 and −3. In order to restore predictivity in a

8SUSY threshold effects in RG analyses are discussed in section 5.4 and chapter 10.
9As long as the first two families of sfermions are almost degenerate in mass, as commonly assumed.
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specific flavour GUT model, one therefore must introduce heavy messenger fields in GUT
non-singlet representations, which UV complete the model at high energy and single out
a specific GUT index contraction. This guarantees that only an unique effective operator
with defined CG factor is constructed in the effective theory, when the heavy messenger
field is integrated out. Figure 4.4 shows the two Feynman diagrams yielding predictive
effective dimension five operators. In table 4.1 some examples are shown for the case of an
SU(5) GUT. If for example the effective operator FT (H5)∗H24 is obtained via a messenger

AB C D R (Ye)ji/(Yd)ij

F T H∗5 H24 5̄ 1

F T H∗5 H24 45 −3

H24F T H∗45 45 −1
2

H24F T H∗5 5 −3
2

H24 T F H∗5 10 6

Table 4.1: CG factors for the dimension five effective operators from figure 4.4. The upper
part corresponds to the left diagram, the lower one to the right one. See the main text for
details.

field ΦR transforming as 45

L ⊃ −λFT ΦR −mH∗5H24Φ∗R −m2
ΦR

ΦRΦ∗R , (4.44)

the unique CG factor −3 arises as prediction for the GUT scale Yukawa coupling ratios.
If one would use instead a messenger field transforming as 5̄, one would obtain the CG
factor 1.

In table 4.1 we have also listed the SU(5) CG factors −1
2
, −3

2
, and 6, since they are of

special importance in the main part of this thesis. The full list of possible CG factors ci
in SU(5) is given by [83]

ci ∈ {−
1

2
, 1,±3

2
,−3,

9

2
, 6, 9,−18} . (4.45)

In PS partial unification one also finds CG factors for the Yukawa coupling ratios
(Ye)ij/(Yd)ij, as well as (Yu)ij/(Yd)ij from higher-dimensional operators. An extensive list
of CG predictions from dimension 5 and dimension 6 operators in PS embedded in SO(10)
is found in [83] (see also [92]). We will be only interested in the relations between Ye and
Yd in PS, for which for example the CG factors

ci ∈ {
3

4
, 1, 2,−3, 9} (4.46)

are available.
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In a recent paper [93] further new CG factors were obtained, by replacing the masses
of the messengers fields with vevs from non-singlet fields. These new CG factors for Ye/Yd
are given by

ci ∈
{
{−2

3
, 1

6
} in SU(5) ,

{−1
3
, 0, 3

2
} in PS .

(4.47)

Utilising CG factors for quark and lepton Yukawa coupling ratios will be an essential
concept in the flavour GUT models of this thesis.



CHAPTER 5

Supersymmetry

The Georgi-Glashow SU(5) model beautifully unifies the SM matter fields into the joint
representation F and T , enabling the construction of predictions for quark - lepton Yukawa
coupling ratios. There are two problems however: Firstly the SM gauge couplings never
unite satisfactory, and secondly there is the prediction of too rapid proton decay due to
heavy gauge boson mediation. Remarkably, both problems can be solved at once with the
introduction of supersymmetry (SUSY).

In a nutshell, SUSY is a symmetry transforming fermions into bosons and vice versa.
The minimal supersymmetric Standard Model (MSSM) predicts the existence of a scalar
particle for each SM fermion and a Majorana fermion for each gauge boson of the SM.
When these additional supersymmetric partners (sparticles) of the SM particles have not
too heavy masses, the MSSM gauge couplings successfully unify at a GUT scale high
enough to sufficiently suppress proton decay. Additionally SUSY provides a solution to
the hierarchy problem and a candidate particle for dark matter.

In this chapter N = 1 supersymmetry and SUSY SU(5) are reviewed, following the
presentations of [81, 94–99].

5.1 The Wess-Zumino model

The simplest supersymmetric quantum field theory with minimal field content is given
by the Wess-Zumino (WZ) model [100]. A supersymmetric theory must contain the same
number of fermionic and bosonic degrees of freedom (d.o.f.). In four-dimensional spacetime
the smallest fermionic representation is a two-component Weyl spinor ψ. On-shell, ψ
satisfies the Dirac equation iσ̄µ∂µψ = mψ†, which eliminates two of ψ’s four real d.o.f. A
complex scalar field φ is thus enough to balance the number of fermionic and bosonic d.o.f.
on-shell. The superpartners ψ and φ form a chiral supermultiplet. Finally, to match the
fermionic d.o.f. also off-shell, an auxiliary complex scalar field F with two non-physical
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d.o.f. is additionally introduced. The Wess-Zumino Lagrange density of ψ, φ, and F is

LWZ = iψ†σ̄µ∂µψ + ∂µφ∂
µφ∗

− 1

2

(
mψψ +m∗ψ†ψ†

)
− 1

4

(
yφψψ + y∗φ∗ψ†ψ†

)
+ FF ∗ + F

(
mφ+

y

2
φ2

)
+ F ∗

(
m∗φ∗ +

y∗

2
φ∗2
)
. (5.1)

There is no kinetic term for the auxiliary field F , since it does not propagate a physical
d.o.f. It can thus be integrated out yielding the scalar potential

VWZ(φφ∗) = FF ∗ = m2φφ∗ +

(
my∗

2
φφ∗2 +

my

2
φ∗φ2

)
+
yy∗

4
(φφ∗)2 . (5.2)

LWZ is invariant under the supersymmetry transformation

δφ = εψ , δφ∗ = ε†ψ† ,

δψ = −iσµε†∂µφ+ εF , δψ† = iεσµ∂µφ
∗ + ε†F ∗ ,

δF = −iε†σ̄µ∂µψ , δF ∗ = i∂µψ
†σ̄µε , (5.3)

where ε is a two-component spinor, anti-commuting, and the infinitesimal supersymmetry
transformation parameter.1 The mass dimension of ε is −1

2
. Requiring invariance under

(5.3) is the reason why the couplings for all terms in LWZ and VWZ are given only by the
two parameters m and y.

Using a Wess-Zumino chiral multiplet, one can now present in a simplified manner how
SUSY yields a solution to the hierarchy problem. Taking m in (5.1) to be due to the Higgs
vev m→ λ√

2
(v + h) one finds the couplings

− λ

2
√

2

(
hψψ + hψ†ψ†

)
, −λ

2

2
h2φφ∗ , and − λ2vhφφ∗ , (5.4)

between the real scalar Higgs boson h and the WZ component fields ψ and φ. The Higgs
self-energy contribution from the fermion loops shown in figure 5.1 is quadratically diver-
gent

Π
(f)
hh (0) = (−1)λ2

∫
d4k

(2π)4

1

k2 −m2
+

2m2

(k2 −m2)2 , (5.5)

and independent of the Higgs mass mh. We know that if the SM is embedded into a
GUT, there are particles with m ∼ MGUT in the spectrum, which yields the hierarchy
problem2: There must be a fine-tuning in the renormalisation of the quadratic divergence

1We limit our discussion to the case of global SUSY, where ε is independent of xµ.
2The hierarchy problem is not specific to GUTs but appears whenever new (non-sypersymmetric)

physics at high scales is introduced.
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ψ†

ψ
h h

ψ†

ψ†

ψ†

ψ†

h h

ψ

ψ

ψ

ψ

Figure 5.1: The Feynman diagrams contributing to the Higgs self-energy via a fermion
loop. Note that for Weyl fermions the arrows on the propagators do not correspond to
charge or momentum (see e.g. [12]).

h h

φ∗

φ∗

φ

φ

h hφ∗ φ

Figure 5.2: The Feynman diagrams contributing to the Higgs self-energy via the scalar
superpartner φ.

of 1 in 1028 since mh ∼ O(100 GeV). In supersymmetry, however, the contribution to the
Higgs self-energy from the superpartner φ loops in figure 5.2 give

Π
(b)
hh(0) = λ2

∫
d4k

(2π)4

1

k2 −m2
+

2m2

(k2 −m2)2 , (5.6)

and thus precisely cancels the fermionic contributions. This is true to all orders in pertur-
bation theory.

There is no evidence for scalar particles with the same masses as the SM fermions,
therefore SUSY has to be broken. In order to keep the cancellation of the quadratic
divergence, only soft SUSY breaking terms are allowed. For example a small mass squared
difference δ between ψ and φ yields

Π
(b)
hh(0) ' λ2

∫
d4k

(2π)4

1

k2 −m2
+

2m2

(k2 −m2)2 +
2δ2

(k2 −m2)2 , (5.7)

such that only a logarithmic divergence ofO
(
δ2 log m2

µ2

)
remains. Supersymmetry breaking

will be discussed in 5.3.
We close this section by a discussion of gauge supermultiplets. The superpartner of a

gauge boson Aaµ is a two-component spin 1
2

gaugino λa. Like for the WZ supermultiplet,
one introduces a real auxiliary scalar field Da to manifest SUSY off-shell.3 All components

3We give the expressions in Wess-Zumino gauge [101].



42 5. Supersymmetry

of the gauge supermultiplet transform in the same representation of the gauge group. The
Lagrange density for the gauge supermultiplet is given by

Lgauge = −1

4
F a
µνF

µνa + iλa†σ̄muDµλ
a +

1

2
DaDa , (5.8)

with the gauge covariant derivative for the gaugino

Dµλ
a = ∂µλ

a + gfabcA
b
µλ

c . (5.9)

The SUSY transformations are given by

δAaµ = − 1√
2

(
ε†σ̄µλ

a + λa†σ̄µε
)
,

δλa =
i

2
√

2
σµσ̄νεF a

µν +
1√
2
εDa ,

δDa =
i√
2

(
−ε†σ̄µDµλ

a +Dµλ
a†σ̄µε

)
. (5.10)

Finally the coupling of the WZ supermultiplet to the gauge supermultiplet is given by the
additional terms

−
√

2g (φ∗T aψ)λa , −
√

2gλa†
(
ψ†T aφ

)
, g (φ∗T aφ)Da , (5.11)

where additionally in (5.3) the ordinary derivatives have to be replaced by gauge co-
variant ones and the transformations δF and δF ∗ get extra terms +

√
2g (T aφ) ε†λa† and

+
√

2gλaε (T aφ∗), respectively. The auxiliary field Da can be integrated out and the scalar
potential gets a D-term contribution in addition to the F-term (5.2)

V (φ, φ∗) = FF ∗ +
1

2
DaDa . (5.12)

Note that V (φ, φ∗) is strictly non-negative. In section 5.3 it will be shown that in SUSY
theories the vacuum energy is always zero.

5.2 Superspace and Superfields

A simple formalism for supersymmetric theories can be be achieved be introducing super-
space [102]. In addition to the spacetime coordinate xµ, superspace is spanned by two
anti-commuting two-component spinors θ and θ†. The mass dimension of θ and θ† is −1

2
.

Superfields are functions of xµ, θ, and θ† and unite the component fields of a supermulti-
plet. Because θ and θ† are Grassmann variables, an expansion of a general superfield in θ
and θ† terminates

S(xµ, θ, θ†) = φ+ θξ + θ†χ† + θθF

+ θ†θ†ρ+ θ†σ̄µθVµ + θ†θ†θη + θθθ†ζ† + θθθ†θ†δ , (5.13)



5.2 Superspace and Superfields 43

where φ, F , ρ, δ are complex scalar fields, Vµ is a complex vector boson, and ξ, χ†, η, and
ζ† are two-component Weyl fermions. Thus, the number of bosonic and fermionic d.o.f.
match.

In analogy with the gauge covariant derivative Dµ one introduces the chiral covariant

derivatives Dα and D†α̇ in superspace, which are SUSY covariant

Dα =
∂

∂θα
− i
(
σµθ†

)
α
∂µ , D†α̇ =

∂

∂θ†α̇
+ i (θσµ)α̇ ∂µ . (5.14)

One can now prescribe constraints on a general superfield S to reduce the total number of
32 degrees of freedom to the small number of d.o.f. in the WZ supermultiplet. Imposing

D†α̇Φ = 0 (5.15)

yields a left-chiral superfield

Φ(xµ, θ, θ†) = φ(x) +
√

2θψ(x) + θθF (x)

+ iθ†σ̄µθ∂µφ(x) +
1

4
θθθ†θ†∂µ∂

µφ(x)− i√
2
θθθ†σ̄µ∂µψ(x) , (5.16)

which contains the component fields of the WZ supermultiplet. It’s complex conjugate Φ∗

satisfying DαΦ∗ = 0 is named right-chiral. Chiral superfields have mass dimension one.
Starting from several left-chiral superfields Φi one can build a new left-chiral superfield
from a holomorphic4 function W(Φi).

Imposing
V = V ∗ (5.17)

yields a vector superfield

V (xµ, θ, θ†) = φ(x) + θξ(x) + θ†ξ†(x) + θθF (x) + θ†θ†F ∗(x)

+ θ†σ̄µθVµ(x) + θ†θ†θη(x) + θθθ†η†(x) + θθθ†θ†δ(x) , (5.18)

where φ, δ, and Aµ are now real fields. One can construct a vector superfield from chiral
fields by e.g. Φ + Φ∗ and Φ∗Φ.

Whenever V is the vector superfield to a gauge symmetry it transforms as

e2gV → e−2igΛ∗e2gV e2igΛ , (5.19)

where V ≡ V aT a, Λ ≡ ΛaT a, T a are the generators of the gauge group, and Λa is a chiral
superfield and the supergauge transformation parameter. Ordinary gauge transformation
are obtained as special case when Λ is restricted to its scalar component. The chiral
superfields transform under the supergauge symmetry as

Φ→ e−2igΛΦ , Φ∗ → e2igΛ∗Φ∗ . (5.20)

4Here holomorphic refers to the complex scalar component fields φi of Φi.
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For an Abelian gauge symmetry the supergauge transformation for V simplifies to

V → V + i (Λ− Λ∗) . (5.21)

One can now use this freedom to make a suitable supergauge transformation and bring
(5.18) into Wess-Zumino gauge

V (xµ, θ, θ†) = θ†σ̄µθAµ(x) + θ†θ†θλ(x) + θθθ†λ†(x) +
1

2
θθθ†θ†D(x) . (5.22)

In WZ gauge it is easily recognised that V is dimensionless, justifying the eV terms above.
It is very useful to note that due to the Grassmann characteristics of θ and θ† the expansion
series of eV terminates

e2gV = 1 + 2gV + 2g2V 2

= 1 + 2g

(
θσµθ†Aµ + θθθ†λ† + θ†θ†θλ+

1

2
θθθ†θ†D

)
+ g2θθθ†θ†AµA

µ . (5.23)

One can construct chiral spinorial field strength superfields

Wα = −1

4
D†D†e−2gVDαe

2gV , W †
α̇ = −1

4
DDe2gVD†α̇e

−2gV , (5.24)

which transform as

Wα → e−2igΛWαe
2igΛ , W †

α̇ → e2igΛ†W †
α̇e
−2igΛ† , (5.25)

under supergauge transformations.

In superspace formalism the Lagrange density is obtained from integrating a vector
superfield over the Grassmann coordinates θ and θ†

L = [V ]D ≡
∫
d2θ

∫
d2θ† V (xµ, θ, θ†) =

1

2
D + . . . , (5.26)

which is supersymmetric invariant since the D-term transforms into a total derivative
under SUSY transformations (5.10) and . . . represents a total derivative term which is of
no importance in L. Another SUSY invariant term is the F -term of a chiral superfield
gauge singlet, which also transforms into a total derivative under SUSY (5.3)

[Φ]F ≡
∫
d2θΦ(xµ, θ, θ†) = F . (5.27)

The Lagrange density can then be built from

L = [Φ]F + h.c. (5.28)
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A general supersymmetric Lagrange density can thus be built out of chiral and vector
superfields as

LSUSY =

[
K
(
Φ∗i e

2gV Φj

)
+ 2κV

]
D

+

([
1

4
fab (Φi)W

aW b +W (Φi)

]
F

+ h.c.

)
, (5.29)

where i, j denote generation indices, a, b are indices of the adjoint representation of the
gauge group, and we introduced the following quantities:

Kähler potential K of left-chiral, right-chiral, and vector superfields. K is real and
has mass dimension two. In the renormalisable case it is simply given by Φ∗i e

2gV Φi =
Φ∗Φ + 2gΦ∗V Φ + 2g2Φ∗V 2Φ and it’s D-term yields the kinetic energy terms of the matter
fields

LK = (Dµφi)
†Dµφi + iψ†i σ̄

µDµψi + FiF
∗
i

−
√

2g (φ∗T aψλa + h.c.) + g (φ∗T aφ)Da . (5.30)

In global SUSY the Kähler potential is invariant under the transformation

K → K + F (Φi) + F ∗(Φ∗i ) , (5.31)

with F a holomorphic function of Φi. All holomorphic and antiholomorphic functions can
therefore be removed from the Kähler potential.

Fayet-Iliopoulos (FI) term 2κ[V ]D [103] in the case of an Abelian gauge group, since
the D-term of a gauge singlet V is gauge invariant.

LFI = κD . (5.32)

The FI term does not exist for vector bosons of non-Abelian gauge groups.

gauge kinetic function fab, a dimensionless chiral superfield and holomorphic function
of chiral superfields. In renormalisable theories fab is simply given by δab + igaθa

8π2 δab, such
that the F -terms yield the usual gauge kinetic energy plus in the case of a non-Abelian
gauge symmetry a potentially topologically non-trivial θ term

Lgauge = −1

4
F a
µνF

µνa − g2
aθ

64π2
εµνλρF

λρaF µνa + iλaσµDµλ
a† +

1

2
DaDa . (5.33)
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superpotential W , a holomorphic function of left-chiral superfields. It has mass dimen-
sion three and for renormalisable Lagrange densities it is given by

W(Φi) = LiΦi +
1

2
MijΦiΦj +

1

6
YijkΦiΦjΦk , (5.34)

where the first term vanishes for non gauge singlet superfields Φi. The F -term [W (Φi)]F +
h.c. yields mass terms and Yukawa couplings

L =W iFi −
1

2
W ijψiψj + h.c.

=

(
Li +Mijφj +

1

2
Yijkφjφk

)
Fi −

1

2
(Mij + Yijkφk)ψiψj + h.c. , (5.35)

where the notation

Wi ≡
∂W
∂Φi

∣∣∣∣
θ=θ†=0

, Wij ≡
∂2W
∂Φi∂Φj

∣∣∣∣
θ=θ†=0

(5.36)

was introduced which indicates that we set θ = θ† = 0 after differentiation, such that
only the scalar components remain. Similarly we define W∗i and W∗ij for the conjugate
superpotential W∗ (Φ∗).

Like mentioned above, the auxiliary fields Fi and Da do not propagate a physical d.o.f.
and can be integrated out to yield the scalar potential

V (φ, φ∗) =WiW∗i +
1

2

∑
a

∣∣gaφ†T aφ+ κa
∣∣2 , (5.37)

where for non-Abelian gauge symmetries κa = 0.
For non-renormalisable SUSY theories it is convenient to introduce supergraphs [104]

(see e.g. [97,105] for a review). When heavy particles are integrated out from a renormalis-
able theory, a non-renormalisable Kähler potential and a non-renormalisable superpotential
emerge in the effective theory, as shown in figure 5.3. After the heavy superfields Φn are
integrated out, the terms

YijnYkln
Mnn

ΦiΦjΦkΦl and
YijnY

∗
kln

M2
nn

ΦiΦjΦ
∗
kΦ
∗
l (5.38)

appear in the superpotential and Kähler potential, respectively. Note that one can easily
obtain the effective Kähler potential by cutting a propagator in the supergraph of an
effective superpotential term in half, “flip” one side to the charge-conjugated expression
and stitch the resulting parts together. From the Kähler potential one can define the
Kähler metric5

Kj
i ≡

∂2

∂Φi∂Φ∗j

∣∣∣∣
θ=θ†=0

, (5.39)

5Here we use the convention that lower indices correspond to derivatives with respect to left-chiral
superfields and upper indices to derivatives with respect to their complex conjugated (right-chiral) super-

fields, e.g.
(
Kj
i

)∗
= Ki

j .
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Φn
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Φn
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k

Φ∗
l

Φn
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Figure 5.3: Supergraphs for non-renormalisable superpotential (a) and non-
renormalisable Kähler potential (b).

with the inverse (K−1)
i
j satisfying (K−1)

i
jK

k
j = δkj . Mathematically this means that the

chiral fields are defined on a Kähler manifold and one can calculate the connection

Γkij =
(
K−1

)k
n
Kn
ij , (5.40)

and Riemann curvature tensor

Rjl
ik = Kjl

ik −
(
K−1

)n
m
Km
ikK

jl
n , (5.41)

where

Kk
ij ≡

∂3

∂Φi∂Φj∂Φ∗k

∣∣∣∣
θ=θ†=0

, and Kkl
ij ≡

∂4

∂Φi∂Φj∂Φ∗k∂Φ∗l

∣∣∣∣
θ=θ†=0

. (5.42)

The on-shell Lagrange density for the matter component fields after integrating out the
auxiliary fields F and Da can than be expressed as

Lmatter = Kj
iDµφi (D

µφj)
∗ + iKj

i ψ
†
j σ̄

µDµψi

− 1

2

(
Wijψiψj − ΓkijWkψiψj + h.c.

)
+

1

4
Rjl
ikψiψkψ

†
jψ
†
l

−
(
K−1

)i
j
WiW∗j −

1

2

∑
a

∣∣∣gaφ†iT aKi + κa
∣∣∣2 , (5.43)

where the covariant derivative of the fermion fields includes the connection

Dµψ = ∂µψ − igV a
µ T

aψ + Γiij∂µφjψk , (5.44)

and we introduced

Ki ≡ ∂K

∂Φ∗i

∣∣∣∣
θ=θ†=0

. (5.45)

For non-trivial Kähler metric Kj
i 6= δji the kinetic terms in (5.43) have to be brought into

canonical form via canonical normalisation (CN) [106]. The CN procedure transforms the
superfields Φ→ P−1

Φ Φ such that Kj
i is diagonalised and rescaled [107,108]

P †ΦKPΦ = 1 , (5.46)
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where the most general form of PΦ is given by

PΦ = U †Φ

(√
Kdiag

)−1

Ũ , with UΦKU
†
Φ = Kdiag . (5.47)

The unitary matrix Ũ can be chosen arbitrarily and allows to set PΦ hermitean. Rescaling
the superfields in CN also affects masses and Yukawa couplings in the effective superpo-
tential. In flavour models Yukawa couplings emerge from non-renormalisable operators
when flavon fields obtain their vevs. Therefore, in SUSY flavour models, the effective su-
perpotential for the Yukawa couplings will always adjoin an effective Kähler potential as
described below (5.38). Explicit SUSY flavour models thus have to either guarantee that
the CN effects are negligible (Kj

i ≈ δji in the effective theory) or otherwise the sizeable CN
corrections need to be carefully included into the model’s predictions [107,108].

We close this section by briefly discussing R-symmetries. A global U(1)R symmetry is
defined by the transformation of the anti-commuting coordinates θ and θ†

θ → eiαRθ , and θ† → e−iαRθ† . (5.48)

The Lagrange density can be invariant under U(1)R when R-charges RΦ are assigned to
each superfield. A general superfield S(xµ, θ, θ†) transforms as

S(xµ, θ, θ†)→ eiαRΦS(xµ, e−iαθ, eiαθ†) . (5.49)

The components of a chiral superfield Φ transform with R-charges R(φ) = RΦ, R(ψ) =
RΦ − 1, and R(F ) = RΦ − 2. To build an U(1)R invariant Lagrange density the superpo-
tential must carry R-charge R(W) = 2, thus the form of the most general superpotential
(5.34) gets constrained. A vector superfield V always has R-charge zero, therefore the corre-
sponding (gauge-independent) R-charges of its component fields are R(Aµ) = 0, R(λ) = 1,
and R(D) = 0. A gaugino mass term −1

2
Mλaλa has R-charge two and therefore not only

breaks SUSY, but also U(1)R. Discrete Zn are also candidates for R-symmetries, with
R-parity Z2

R conventionally assigned to the superfields in such a way that SM particles
have R-parity +1 and sparticles have R-parity −1. If R-parity is an unbroken symmetry
of nature, the lightest supersymmetric paricle (LSP) is stable and therefore a promising
candidate for Dark Matter.

5.3 Supersymmetry breaking

As discussed at the beginning of this chapter, supersymmetry has to be a broken symmetry
of nature, since there is no evidence for the existence of the the charged leptons’ superpart-
ners. There are two ways SUSY can be broken: spontaneously via non-vanishing vevs and
explicitly. We start the discussion with spontaneous SUSY breaking and look at the SUSY
transformations of the component fields of a general vev. Because of Lorentz invariance,
only scalar fields can have non-vanishing vevs, fermion fields and field derivatives must
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vanish. From Eqs. (5.3) and (5.10) it follows

δ〈φi〉 = 0 , δ〈ψi〉 ∼ ε〈Fi〉 , δ〈Fi〉 = 0 ,

δ〈Aaµ〉 = 0 , δ〈λa〉 ∼ ε〈Da〉 , δ〈Da〉 = 0 . (5.50)

Therefore a vev is only SUSY invariant if and only if 〈Fi〉 = 0 and 〈Da〉 = 0. Consequently,
from (5.12), a supersymmetric vacuum has zero energy.6 In order to break SUSY sponta-
neously one needs to assure that either 〈Fi〉 6= 0 or 〈D〉 6= 0 via an F-term SUSY breaking
or D-term SUSY breaking mechanism, respectively.
F -term SUSY breaking requires that the global minimum of the scalar potential develops

a vev such that 〈Fi〉 = 0 can not be simultaneously satisfied for all Fi. Thus the superpoten-
tial for F -term SUSY breaking needs to contain a linear term of a gauge singletW ⊃ LiΦi

since otherwise F ∗i = −Wi has always a vanishing solution with 〈φi〉 = 0. The sim-
plest F -term breaking mechanism of interacting superfields is given by the O’Raifeartaigh
model [109]

WO’Raifeartaigh = mΦ2Φ3 + λΦ1

(
Φ2

3 − µ2
)
, (5.51)

with real m, λ, and µ. The F -terms are given by

F1 = −λ
(
φ∗3 − µ2

)
, F2 = −mφ∗3 , andF3 = −mφ∗2 − λφ∗1φ∗3 . (5.52)

Since F1 = 0 and F2 = 0 are impossibly simultaneously satisfied, one F -term has to obtain
a vev and SUSY is spontaneously broken.
D-term SUSY breaking emerges from a non-vanishing vev of a D-term component of a

vector superfield, which has to be a gauge singlet due to gauge invariance of the Lagrange
density. The simplest model for D-term SUSY breaking is due to Fayet-Iliopoulos [103]

VFI(φ, φ
∗) =

1

2

(
κ+ gq|φ|2

)2
. (5.53)

If κq > 0 no vev of φ can achieve vanishing scalar potential, the minimum of V is given by
1
2
κ2 at 〈φ〉 = 0, therefore the D-term is given by

D = −κ , (5.54)

and SUSY is spontaneously broken.
That SUSY is broken by non-vanishing vevs of the auxiliary F and D component fields

can also be noticed from the fact that 〈F 〉 and 〈D〉 induce mass terms for the scalar
particles and therefore introduce a mass splitting between scalar and fermion components.
A general sum rule for the masses of fermions and bosons can be derived from the mass
matrices of scalars

M2
S =

(W∗ikWkj +DaiDa
j +Dai

j D
a W∗ijkWk +DaiDaj

WijkW∗k +Da
iD

a
j WikW∗kj +Da

iD
aj +Daj

i D
a

)
(5.55)

6More technical this can be derived by the N = 1 SUSY algebra {Qα, Q†β̇} = 2σµ
αβ̇
Pµ, {Qα, Qβ} =

{Q†α̇, Q†β̇} = 0, where the generators of SUSY transformation Q and Q† are Weyl spinors and the Hamil-

tonian is given by H = P0 = 1
4 ({Q1, Q

†
1̇
}+ {Q2, Q

†
2̇
}).
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where we defined Da
i = ∂

∂Φi
Da
∣∣∣
θ=θ†=0

, the mass matrix of fermions

MF =

(
Wij −

√
2Da

i

−
√

2Da
j 0

)
, (5.56)

and the mass matrix of massive vector bosons emerging from some non-vanishing vev 〈φi〉
and the BEH-mechanism

M2ab
V =

(
Da
iD

bi +DaiDb
i

)
. (5.57)

The result is the so-called supertrace [110]

STr
(
M2
)

=
1∑

J=0

(−1)2J(2J + 1)M2
J = −2gaTr (T a〈Da〉) , (5.58)

which holds in spontaneously broken and unbroken SUSY, and the RHS vanishes for non-
anomalous U(1) such as the U(1)Y in the MSSM. Analogous to Goldstone’s theorem for
bosonic symmetries, the spontaneous breaking of global SUSY yields the Goldstino [103,
111], a massless Majorana fermion, which is proportional to the fermionic partners of the
auxiliary fields obtaining a vev7

ψG ∼ 〈Fi〉ψi +
1√
2
〈Da〉λa . (5.59)

Phenomenological constraints such as the supertrace (e.g. 2m2
e = m2

ẽ1
+m2

ẽ2
for vanishing

lepton flavour mixing) or the fact that an U(1)Y FI term would spontaneously break
SU(3)C or U(1)em necessitate SUSY breaking in a hidden sector, rather than superfields
of known SM particles. For this purpose it is useful to investigate soft explicit SUSY
breaking first. A SUSY breaking term in the Lagrange density is named soft if it is at
most logarithmically divergent and therefore does not reintroduce the hierarchy problem. A
necessary but not sufficient condition is that soft terms must not have mass dimension larger
than three [112]. To all orders in perturbation theory, a general soft-breaking Lagrange
density is given by [113]

Lsoft = −1

2
Maλ

aλa + h.c.−m2
ijφ
∗
iφj

−
(
hiφi +

1

2
bijφiφj +

1

6
aijkφiφjφk + h.c.

)
. (5.60)

It contains Majorana mass terms for the gauginos λa, trilinear, bilinear, and linear terms
for the scalar fields φi as well as a hermitean mass squared matrix m2

ij for φ∗iφj. Of course

7In general this can be shown from the supercurrent formalism, here it suffices to notice that
(〈Fi〉, 〈Da〉/

√
2)T is an eigenvector of MF with eigenvalue 0.
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Lsoft has to be gauge invariant, thus all terms have to be allowed by gauge symmetry and
the linear terms are only present for gauge singlets φi. Whether or not the terms in

Lsoft/hard = −1

2
cijkφ∗iφjφk −

1

2
mFijψiψj −Maλaψa + h.c. (5.61)

are soft depends on whether or not the theory contains a chiral superfield transforming as
gauge singlet. If such a gauge singlet φi exist, these terms can contract to linearly divergent
tadpole diagrams and thus spoil the solution to the hierarchy problem (see e.g. [98,114]).

The explicit soft-breaking Lagrange density introduces many new parameters and in
general the soft-breaking parameter space will be constrained by phenomenology, such as
the absence of large flavour mixing and CP-violating processes in nature. Such constraints
can be enforced when the soft-breaking parameters result from spontaneous SUSY breaking
in a hidden sector, which is only weakly coupled to the observable sector containing the SM
particles. Gravity, being the weakest force known and coupling universally to all particles,
is a promising candidate for mediating SUSY breaking between those sectors [115].

Allowing for gravity requires supergravity (SUGRA), the theory of local supersymmetry.
As a theory of gravity SUGRA contains the graviton, a massless spin two boson obtained
from linearising the Einstein-Hilbert action. The superpartner of the graviton is a massless
spin 3

2
fermion, the gravitino. As a generalisation of the BEH-mechanism, when SUGRA

is spontaneously broken the gravitino absorbs the goldstino and obtains a mass m3/2 due
to the super-Higgs mechanism [116]. The supertrace is then generalised to

STr
(
M2
)

=

3
2∑

J=0

(−1)2J(2J + 1)M2
J = 2(N − 1)m2

3/2 − 2gaTr (T a〈Da〉) , (5.62)

with N being the number of chiral superfields in the theory. The sparticle masses are thus
expected to be heavier than the SM particles and are therefore no longer in conflict with
phenomenology.

Instead of constructing the SUSY breaking hidden sector explicitly, one usually assumes
that the superpotential splits into an observable and a hidden part W = Wobs +Whid, a
minimal Kähler potential, and a minimal gauge kinetic function. Then, when SUSY is bro-
ken in the hidden sector, universal soft-breaking parameters m1/2, m0, A0, and B0 emerge

for the soft-breaking masses m2
0 |φi|2, trilinear couplings A0Yijkφiφjφk, and bilinear cou-

plings B0Mijφiφj of (5.60) [117], where Yijk and Mij are parameters in the superpotential
(5.34). The assumption of these universal boundary conditions at a high unification scale
(usually Mpl or MGUT) is known as mSUGRA or Constrained MSSM (CMSSM).

Other common SUSY breaking mechanism are Gauge Mediated SUSY Breaking [118],
where gauge non-singlet superfields act as messengers between hidden and observable sec-
tor and SUSY soft-breaking terms are generated from loops. Another scenario is Anomaly
Mediated SUSY Breaking [119], which assumes that the hidden sector is localised on a sep-
arate brane than the observable sector in an extra dimension. SUSY breaking is mediated
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by the superconformal anomaly and the soft-breaking terms are generated via loops8.
In conclusion, while the details of an explicit SUSY breaking mechanism are quite

involved and beyond the scope of this thesis, well motivated by mSUGRA we can impose
universal CMSSM boundary conditions for the soft-breaking Lagrange density (5.60) at
a high scale. In chapter 10 we will analyse SUSY threshold corrections from a CMSSM
SUSY scenario.

5.4 The Minimal Supersymmetric Standard Model

In this section we extend the successful Standard Model by SUSY and introduce the min-
imal supersymmetric Standard Model (MSSM) [120]. First one must assign superpartners
to each SM particle and define the MSSM superfield content. The SM fermions are em-
bedded into chiral superfields. The superpartners are named like the fermion components
but with an ‘s’ prepended. Since the superpotential of the MSSM has to be a holomorphic
function of left-chiral superfields, one resorts to the left-handed conjugates of the right-
handed SM fermions. Of concern is the SM Higgs field. As seen in (2.2) the conjugated
Higgs field φ̃ couples to down-type quarks and charged leptons, which would require a non-
holomorphic term in the superpotential. Also, the fermionic superpartner of the Higgs,
the Higgsino, spoils the anomaly freedom of the SM. Both issues can be solved at once
with the introduction of a second Higgs superfield of opposite U(1)Y hypercharge, such
that the anomaly coefficients cancel and Yukawa couplings of the down-type quarks and
charged leptons can originate from holomorphic terms. The vector bosons of the SM are
accompanied with gauginos and embedded into vector superfields. The gauginos are named
gluinos, Winos, Zino, and Bino. The supersymmetric version of table 2.1, the superfield
content of the MSSM, is thus as given in table 5.1.

As a renormalisable quantum field theory, the Kähler potential and the gauge kinetic
function of the MSSM are trivial. The most general superpotential allowed by the MSSM
gauge group would permit baryon and lepton number violating terms, which would induce
too rapid proton decay and are ruled out by observations. One therefore requires the
MSSM to be invariant under matter parity [121,122]

PM = (−1)3(B−L) , (5.63)

where B and L are the baryon and lepton numbers of a superfield, respectively.9 The
MSSM superpotential is thus given by

WMSSM = YeijHd · LiEc
j + YdijHd ·QiD

c
j − YuijHu ·QiU

c
j + µHu ·Hd , (5.64)

where we use the SUSY Les Houches Accord (SLHA) convention [123]. The first three
terms yield the SM Yukawa coupling terms, Higgsino-sfermion-fermion interactions, and

8Since the resulting sfermion masses are tachyonic, an universal shift by m0 needs to be introduced by
hand nevertheless.

9Matter parity is equivalent to R-parity, where each particle of spin j is assigned PR = (−1)3(B−L)+2j .
Thus all SM particles have even R-parity, all sparticles odd.
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Superfield SM field Superpartner Quantum Numbers

Vector superfields

G Gµ G̃ (8,1)0 +1

W Wµ W̃ (1,3)0 +1

B Bµ B̃ (1,1)0 +1

Matter superfields

Q QL =

(
uL
dL

)
Q̃ =

(
ũL
d̃L

)
(3,2) 1

6
−1

U c u†R ũ∗R (3̄,1)− 2
3

−1

Dc d†R d̃∗R (3̄,1) 1
3

−1

L LL =

(
νL
eL

)
L̃ =

(
ν̃L
ẽL

)
(1,2)− 1

2
−1

Ec e†R ẽ∗R (1,1)1 −1

Higgs superfields

Hu hu =

(
h+
u

h0
u

)
h̃u =

(
h̃+
u

h̃0
u

)
(1,2) 1

2
+1

Hd hd =

(
h0
d

h−d

)
h̃d =

(
h̃0
d

h̃−d

)
(1,2)− 1

2
+1

Table 5.1: Superfield content of the MSSM with their SM fields and superpartners. All
matter superfields come in three flavours, the superpartners to the SM fields are indicated
by a tilde. Besides the MSSM gauge group quantum numbers we list the matter parity PM .

(scalar)4 terms. The µ-term is important to the breaking of EW symmetry, as discussed be-
low. Together with the other terms of the superpotential it yields Higgs-sfermion-sfermion
interactions.

The soft-breaking Lagrange density of the MSSM is given by

−Lsoft =
1

2

(
M1B̃B̃ +M2W̃W̃ +M3G̃G̃

)
+ h.c.

+ Teijhd · L̃i ẽ∗Rj + Tdijhd · Q̃i d̃
∗
Rj
− Tuijhu · Q̃i ũ

∗
Rj

+ h.c.

+ Q̃†im
2
Q̃ij
Q̃j + L̃†im

2
L̃ij
L̃j + ũRim

2
ũij
ũ∗Rj + d̃Rim

2
d̃ij
d̃∗Rj + ẽRim

2
ẽij
ẽ∗Rj

+m2
hu|hu|2 +m2

hd
|hd|2 +

(
m2

3hu · hd + h.c.
)
. (5.65)

In addition to the 19 parameters of the SM, the MSSM adds the complex parameters µ,
m3, complex trilinear couplings Te, Td, and Tu, hermitean matrices m2

f̃
, complex gaugino

masses M1, M2, and M3, and real mass parameters m2
hu

and m2
hd

. The total number of
parameters in the MSSM is therefore 124.
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For vanishing µ and m2
3 the MSSM would be invariant under a global U(1)PQ. Treating

those parameters as spurions, the MSSM U(1)PQ charges are given as in table 5.2. Thus by

Superfield / Spurion Hu Hd Q U c Dc L Ec µ m2
3

U(1)PQ 1 1 −1
2
−1

2
−1

2
−1

2
−1

2
−2 −2

Table 5.2: Non vanishing U(1)PQ charges of the MSSM superfields and spurions µ and
m3.

a Peccei-Quinn transformation of the superfields one can choose to work in a basis where
the phase of m2

3 is zero [124] (see also [98,125]). Similarly, while the soft-breaking Lagrange
density is invariant under R-parity, it explicitly breaks a global U(1)R. By treating gaugino
masses, trilinear couplings, and m2

3 as spurions, one can set e.g. one of the gaugino phases
zero [124] (see e.g. [98]).

Let us have a look at the (s)particle spectrum of the MSSM, starting with the Higgs
bosons. Unlike in the SM, the quartic Higgs coupling of the MSSM Higgs potential is not a
free parameter, but determined by the gauge couplings through the D-terms. The MSSM
Higgs potential is

VH =
(
m2
hd

+ |µ|2
)
|hd|2 +

(
m2
hu + |µ|2

)
|hu|2 +

(
m2

3hu · hd + h.c.
)

+
1

8

(
g′2 + g2

2

) (
|hu|2 − |hd|2

)2
+
g2

2

2
|h∗uhd|2 . (5.66)

In order for EW symmetry to be spontaneously broken, the Higgs bosons hu and hd acquire
the vevs

〈hd〉 =
1√
2

(
v1

0

)
and 〈hu〉 =

1√
2

(
0
v2

)
, (5.67)

with v2
1 + v2

2 = v2 ≈ 246 GeV. The ratio between v2 and v1 is denoted

tan β ≡ v2

v1

. (5.68)

Requiring that the vevs (5.67) do minimise the Higgs potential allows to express |µ|2 and
m2

3 on tree-level in terms of

|µ|2 =
1

2

(
tan(2β)

(
m2
hu tan β −m2

hd
cot β

)
−M2

Z

)
,

m2
3 =

1

2

(
tan(2β)

(
m2
hu −m2

hd

)
−M2

Z sin(2β)
)
, (5.69)

whereas the phase of µ is left free. Another requirement for EW symmetry breaking is a
negative mass square for hu or hd, yielding

m4
3 >

(
m2
hu + |µ|2

) (
m2
hd

+ |µ|2
)
. (5.70)
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With mSUGRA boundary conditions m2
hu

= m2
hd

at a high scale, the RGEs typically yield
small or negative values of m2

hu
at the EW scale, such that (5.70) is satisfied in what is

known as radiative EW symmetry breaking. Expanding hu and hd around their vevs (see
e.g. [125])

hd =
1√
2

(
v1 + s1 + ip1

h−1

)
and hu =

1√
2

(
h+

2

v2 + ss + ip2

)
eiξ , (5.71)

where ξ is a relative phase between hd and hu, one obtains mass matrices

Msspp =

(
Mss Msp

M †
sp Mpp

)
and Mh+h− , (5.72)

with

Msp =

(
0 m2

3 sin ξ
m2

3 sin ξ 0

)
. (5.73)

Minimising the Higgs potential is equivalent to vanishing tadpole coefficients for s1, s2,
p1, and p2. In chapter 10 we resort to the one-loop tadpole equations in order to obtain
the one-loop analogue of (5.69). For the tree-level potential the tadpole coefficient of p1

requires a vanishing phase ξ. Therefore, in general on tree-level and in the CP-conserving
case10 where ξ = 0 to all orders in perturbation theory, Msspp is block diagonal and the
mass eigenstates have well-defined CP quantum numbers(

H
h

)
=

(
cosα sinα
− sinα cosα

)(
s1

s2

)
,(

A
G0

)
=

(
sin βn cos βn
− cos βn sin βn

)(
p1

p2

)
,(

H±

G±

)
=

(
sin βc cos βc
− cos βc sin βc

)(
h±1
h±2

)
, (5.74)

with h+
1 ≡ (h−1 )∗ and equivalently for h−2 . There are two CP even Higgs bosons h, H in the

real MSSM, where conventionally mh < mH . A is an CP odd Higgs boson and G0, G± are
the three Goldstone bosons that give massive Z and W± bosons. Note that on tree-level
the requirement of vanishing tadpole coefficients yields βn = βc = β. The tree-level Higgs
masses are given by

m2
A =

2m2
3

sin(2β)
,

m2
H± = m2

A +M2
W ,

m2
h,H =

1

2

(
m2
A +M2

Z ∓
√

(m2
A −M2

Z)
2

+ 4M2
Zm

2
A sin2(2β)

)
. (5.75)

10We will denote the CP-conserving MSSM as real MSSM and the CP-violating MSSM as complex.
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In the CP violating case, the three mass eigenstates h1, h2, and h3 are obtained from

h1

h2

h3

 = S


s1

s2

p1

p2

 , (5.76)

with S a 3×4 matrix satisfying S†S = 14 and mh1 < mh2 < mh3 (see e.g. [123]). The mass
of the lightest Higgs bosonmh (ormh1) is strongly affected by loop corrections [126]. Precise
calculations of these loop corrections are very elaborate, in chapter 10 a two-loop Higgs
mass calculation will be performed with the published software FeynHiggs [125,127–129].

Turning to the sparticles, the mass eigenstates of gauginos and Higgsinos are four neu-
tralinos χ0

i from B̃, W̃ 0, h̃0
u, and h̃0

d and two charginos χ±i from W̃±, h̃+
u , and h̃−d . Their

mixing matrices are given in appendix B. The superpartners of the SM fermions are six
up-type squarks, six down-type squarks, six charged sleptons, and three sneutrinos. In
general they mix to form mass eigenstates, with the 6×6 (3×3) mass and mixing matrices
given in appendix B as well.

We close this section with three remarks:

Supersymmetric seesaw In order to extend the MSSM by a type-I seesaw mechanism
one introduces a left-handed chiral superfield N c as gauge singlet and adds the superpo-
tential terms

Wseesaw = YνijHu · LiN c
j +

1

2
MnijN

c
iN

c
j . (5.77)

The soft-breaking Lagrange density is extended by

Lsoft ⊃ −ν̃∗Rim2
ν̃ij
ν̃Rj . (5.78)

Supersymmetric threshold corrections The SM is an effective theory of the MSSM.
When solving the MSSM RGEs, the MSSM is commonly matched to the SM at a renormal-
isation scale chosen to represent an average mass MSUSY of the sparticles. Conventionally
it is set to the geometric mean of the stop quark masses Q ≡ √m̃t1m̃t2 , where the loop-
corrected result for the light Higgs mass is numerically stable against small changes of the
renormalisation scale [130]. The SUSY scale has to be larger than MZ and typical values
are assumed to be around 1 TeV.

On tree-level, down-type quarks and charged leptons only couple to the Higgs field hd.
On one-loop level however, there are also couplings to hu. These loops yield tan β-enhanced
threshold corrections to Yukawa couplings when the MSSM is matched to the SM and the
sparticles are intergrated out [131, 132]. Thus, although loop-suppressed, they can have
significant magnitude for sizeable tan β and are of importance for the prediction of quark-
lepton mass ratios [133]. A full calculation of SUSY threshold corrections will be presented
in chapter 10.
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Charge and colour breaking vacua Besides the Higgs fields hu and hd, the MSSM
scalar potential also contains sfermion fields. In principle those fields can obtain non-
vanishing vevs as well, thereby breaking SU(3)C and U(1)em spontaneously. The existence
of such dangerous charge and colour breaking (CCB) minima in the scalar potential is
linked to the violation of bounds for the soft-breaking trilinear couplings [134,135], e.g.

|Tij|2 ≤
(
m2
Lii

+m2
Rjj

+m2
hf

+ |µ|2
)

(y2
i + y2

j ) i 6= j

3y2
i i = j

, (5.79)

where mL, mR, and mhf denote the soft-breaking mass parameters of the scalar fields
associated with the trilinear coupling T in the basis of diagonal Yukawa matrices.

Additionally, the scalar potential might feature directions in field space which are un-
bounded from below (UFB). For the tree-level scalar potential these yield constraints [134]

m2
hu +m2

hd
+ 2 |µ|2 > 2m2

3 ,

m2
hu + |µ|2 +m2

L̃i
>

m4
3

m2
hd

+ |µ|2 −m2
L̃i

,

m2
hu +m2

L̃i
> 0 . (5.80)

Note that the first equation is always satisfied when |µ| is calculated from the requirement
(5.69) of successful EW symmetry breaking. If any of the CCB or UFB constraints are
violated for a particular MSSM parameter point, the decay rate of our physical vacuum
into the deeper unphysical one can still be so small, that our vacuum’s lifetime exceeds the
age of the universe by orders of magnitude. This will be discussed further in chapter 10.
Finally we note that the tree-level scalar potential receives radiative corrections and UFB
directions will become bounded from below eventually, thereby turning into CCB vacua.

5.5 Supersymmetric SU(5) GUTs

As shown in figure 5.4, the field content of the MSSM yields an unification of the gauge
couplings at MGUT ≈ 2 · 1016 GeV, where the αi are defined analogous to the QED fine-

structure constant αi ≡ g2
i

4π
and the one-loop β function coefficients for the gauge couplings

in the MSSM are b1 = 33
5

, b2 = 1, and b3 = −3 [86, 136]. This motivates the embedding
of the MSSM gauge group into a GUT gauge group like SU(5). Note that the gauge
couplings do not unify entirely, rather at MGUT small differences11 do remain, but those
can be attributed to threshold effects from heavy GUT-scale particles, such as the SU(3)C
octet O(24), SU(2)L triplet T (24), SU(3)C triplets T (5), T̄ (5), and heavy gauge bosons X
and Y in an SU(5) GUT [137]. In the last line we have already assumed that the field
content of the Georgi-Glashow SU(5) from section 4.1 is accompanied with superpartners

11Conventionally MGUT is defined by the unification α1(MGUT) = α2(MGUT).
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Figure 5.4: One-loop RG evolution of the inverse gauge couplings α−1
i in the SM (left)

and MSSM (right), assuming a common SUSY scale MSUSY = 103 GeV. The dashed lines
indicate MSUSY = 103 GeV and MGUT ≈ 2 · 1016 GeV.

and embedded into superfields. Because MSUSY � MGUT we almost never have the need
to write SU(5) superfields in scalar and fermion components notation. Thus we use the
same notation for the superfields as introduced for the corresponding non-SUSY SU(5)
multiplet, e.g.

F ⊃ Dc, L and T ⊃ Q,U c, Ec . (5.81)

Because of the two Higgs fields in the MSSM, another SU(5) Higgs multiplet H̄5, trans-
forming as 5̄, is introduced

H5 ⊃ Hu, T
(5) and H̄5 ⊃ Hd, T̄

(5) . (5.82)

The embedding of the MSSM superfields into SU(5) multiplets, or equivalently the “su-
persymmetrisation” of the Georgi-Glashow SU(5) model, is denoted minimal SUSY SU(5)
[138]. The superpotential for this model is given by

W = M24TrH2
24 + λ24TrH3

24 + (µ5 + λH24)H5H̄5 + Y5T FH̄5 + ε5Y10T T H5 , (5.83)

where flavour and SU(5) indices have been suppressed. When SU(5) gets broken the colour
octet O(24), SU(2)L triplet T (24), and gauge singlet S(24) obtain masses

mO(24) = mT (24) =
15

4
λ24V and mS(24) =

3

4
λ24V . (5.84)

In addition to the MSSM superpotential, there are also terms coupling matter superfields
to the colour Higgs triplets

WT =
1√
2
Y5 (Q · L− U cDc) T̄ (5) + 2Y10 (2U cEc −Q ·Q)T (5) , (5.85)

which leads to dangerous dimension five baryon number violating operators [122,139–143]
(see also [82])

W�B =

√
2

MT

(Y5Q · L) (Y10Q ·Q) +
2
√

2

MT

(Y5U
cDc) (Y10U

cEc) . (5.86)
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These operators have to be “dressed” with gluinos, charginos, or neutralinos to become a
dimension six proton decay operator, as shown in figure 5.5 for an example. The resulting

Q
QQ̃

W̃

T̄5
Q

Q̃ L

dR Q

uR Lẽ∗R

d̃∗R
H̃u

H̃dT̃ †
5

˜̄T5

†

Figure 5.5: Examples for dressed LLLL and RRRR contributions to proton decay medi-
ated by the colour triplets T5 and T̄5. Note that flavour indices are suppressed.

dimension six operators are suppressed by 1
MSUSYMT

in contrast to the 1
M2
T

suppression of

non-supersymmetric dimension six proton decay. Thus the lower bound on the proton
lifetime yields a heavy lower limit for the triplet mass [82, 143],

MT & 1017 GeV . (5.87)

A SU(5) GUT model with a heavy Higgs triplet mass of this scale suffers from two prob-
lems:

Firstly, there is the problem of doublet-triplet splitting. When SU(5) is broken, the
µ-term for the Higgs doublets and the mass of the colour triplets are given by

W ⊃
(
µ5 −

3λ

2
V

)
Hu ·Hd + (µ5 + λV )T (5)T̄ (5) . (5.88)

Via fine-tuning of λ, a strong hierarchy between doublet and triplet masses can be achieved.
In predictive flavour models, however, employing CG factors via higher dimensional Yukawa
coupling operators involvingH24, as discussed in section 4.4, will forbid terms like λH24H5H̄5

due to discrete symmetries and a fine-tuning solution to DTS will be no longer feasible.
Besides fine-tuning, the DTS problem can be solved via the missing partner mechanism
(MPM) [144]. We review MPM in part IV of this thesis in chapter 9, where we present
our results for combining predictive SUSY SU(5) flavour models with DTS.

Secondly, the contribution of the colour Higgs triplets to the RGEs of the gauge couplings
spoil the successful unification unless MT . 1015 GeV [145]. Giving up the condition of
renormalisability for the superpotential

W ⊃M24TrH2
24 + λ24TrH3

24 +
a

Mpl

(
TrH2

24

)2
+

b

Mpl

TrH4
24 + (µ5 + λH24)H5H̄5 , (5.89)

the masses ofO(24) and T (24) split which shifts the upper bound forMT to higher values [146]

MT = M0
T

(
mT (24)

mO(24)

) 5
2

, (5.90)

where M0
T denotes the triplet mass in the renormalisable minimal SU(5). Building non-

renormalisable operators by coupling H24 to Yukawa operators in general allows to fit the
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observed quark-lepton mass ratios, at the cost of loosing predictability. In chapter 9 in the
main part of this thesis we will discuss how DTS, a sufficiently heavy triplet mass MT , and
gauge coupling unification can be achieved in predictive SUSY flavour GUT models.

Finally we note that the constraint MGUT & 1016 GeV from dimension six proton decay
(4.31) is satisfied in minimal SUSY SU(5).



PART III

SUSY Flavour GUT models



CHAPTER 6

θ13
PMNS≈ θC sin θ23

PMNS from GUTs

Grand Unified Theories offer a promising setting to predict quark - lepton mass ratios. As
was discussed in 4.4, when down-type quark Yukawa matrix and charged lepton Yukawa
matrix are generated from the same set of GUT operators, the resulting entries are linked
and differ only by group theoretical Clebsch-Gordan factors. This connection is not limited
to quark and lepton masses, however, but also links quark and lepton mixing angles. In this
chapter we present our results of [1] and discuss simple conditions such that the large value
of θPMNS

13 can be explained from θPMNS
13 ≈ θC sin θPMNS

23 in SU(5) GUTs and PS unification.

6.1 A numerical expression for θPMNS
13 in terms of θC

After neutrino oscillations were discovered and large θPMNS
12 and θPMNS

23 had been established,
it was widely assumed θPMNS

13 would be small or vanishing. In many GUT models small
non-vanishing θPMNS

13 ≈ 3◦ was predicted, when the Georgi-Jarlskog CG factor 3 (4.28) was
used to correct the minimal SU(5) prediction Ye = Y T

d in the first two families.

In 2011 a surprisingly large θPMNS
13 ≈ 8.8◦±1.0◦ was measured by T2K, DoubleCHOOZ,

DayaBay, and RENO [46,147]. Following the discovery, it was noted that by replacing the
Georgi-Jarlskog CG factor with the newly proposed alternatives of [83], large θPMNS

13 could
be obtained [148,149].

θPMNS
13 also complied with a very interesting numerical expression in terms of the Cabibbo

angle θC = 13.02◦ ± 0.04◦

θPMNS
13 ≈ θC√

2
≈ 9.2◦ . (6.1)

In the meantime the lepton mixing angles have been measured with higher precision [62]

θPMNS
12 = 33.48◦ +0.78◦

−0.75◦ , θPMNS
13 = 8.50◦ +0.20◦

−0.21◦ , and θPMNS
23 =

{
42.3◦ +3.0◦

−1.6◦ (NO)

49.5◦ +1.5◦

−2.2◦ (IO)
.

(6.2)
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With these updated values the lepton mixing angles still amount to a very interesting
numerical agreement of

θPMNS
13 ≈ θC sin θPMNS

23 = 8.84◦ +0.30◦

−0.44◦ , (6.3)

in the case of the NO best fit point. Equation (6.1) follows from (6.3) as a special case
when θPMNS

23 = 45◦.1 The appearance of θC in relation (6.3) motivates the viewpoint of an
underlying GUT symmetry connecting the quark and lepton sectors.

Note that even before θPMNS
13 was measured various different approaches featuring large

values of θPMNS
13 existed in the literature. The estimate θPMNS

13 = O(θC) for example can be
obtained from charged lepton corrections if one merely assumes the Wolfenstein parameter
λ ≈ θC as expansion parameter in the charged lepton mixing matrix in so-called Cabibbo
haze [152], or e.g. in [153]. However, in such scenarios θPMNS

13 is not predicted, since it
differs from λ by an unknown prefactor. In the context of Quark-Lepton Complementary
(QLC) θPMNS

12 +θC = 45◦ [154] the relation θPMNS
13 = θC√

2
appeared from assuming bimaximal

neutrino mixing and a lepton mixing matrix U
(e)
L exactly equal to VCKM [155]. The latter

assumption, however, is not expected to hold in realistic GUTs since the mass matrices
of quarks and charged leptons cannot be identical, especially regarding the masses of the
first two families. The GUT scale mass ratio mµ

ms
in particular is severely different from

one. As mentioned before, non-universal group-theoretical CG factors are required to bring
GUT predictions for quark-lepton mass ratios in accordance with observations. But with
different singular values of Yd and Ye, it can not be expected that the charged lepton mixing
matrix equals VCKM.

Yu Yd

YemνCondition 1

Condition 2

Conditions 3 & 4

VPMNS

VCKM

G
U

T
s

Figure 6.1: In our set-up, the relation θPMNS
13 ≈ θC sin θPMNS

23 is obtained by linking the
charged lepton and quark sectors via GUTs, demanding four constraints on the mixing
angles and GUT structure, as discussed in the main text.

In contrast, we will not require bimaximal mixing in the neutrino sector nor identical
U

(e)
L and VCKM. In the light of the new CG factors available in model building, our strategy

1In 2011, global fits reported large uncertainties for θPMNS
23 , e.g. θPMNS

23 = 46.1◦±3.4◦ [147] and θPMNS
23 =

40.4◦ with a one sigma confidence interval of [38.6◦, 45.0◦] [150]. Also in 2016 there is still potential for
higher precision, with e.g. a one sigma interval of [38.6◦, 53.7◦] reported by the NOνA collaboration for
θPMNS

23 [151].
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is to use GUT relations plus additional conditions/constraints on the structure of SU(5)
GUTs and Pati-Salam models, as illustrated in figure 6.1, to establish θe12 ≈ θC , which
then induces θPMNS

13 ≈ θC sin θPMNS
23 via a charged lepton correction to the neutrino mixing

matrix. In 6.5 we come back to a comparison between our results and the QLC relation.

In the following sections we discuss in detail four simple conditions to realise θPMNS
13 ≈

θC sin θPMNS
23 in GUTs. Note that, while these conditions can act as an instruction how to

build predictive flavour GUT models with θPMNS
13 ≈ θC sin θPMNS

23 , we do not claim that our
strategy is the only functioning set-up. For example, while our paper [1] was finalised, [156]
appeared, which also discusses strategies for obtaining θPMNS

13 ≈ θC sin θPMNS
23 , e.g. from a

shared flavon in the quark and neutrino sector of a flavour model.

6.2 Conditions for mixing angles

In the following, we will assume hierarchical Yu, Yd, and Ye, which implies that the left-
mixing angles θuij, θ

d
ij, and θeij are all comparatively small (i.e., not much larger than the

Cabibbo angle θC) as is typical for GUT flavour models in the flavour basis.

We first revisit the charged lepton corrections (3.31)

sPMNS
23 e−iδ

PMNS
23 ≈ sν23e

−iδν23 − θe
23c

ν
23e
−iδe

23 , (6.4a)

θPMNS
13 e−iδ

PMNS
13 ≈ θν13e

−iδν13 − θe
13c

ν
23e
−iδe

13 − θe
12e
−iδe

12(sν23e
−iδν23 − θe

23c
ν
23e
−iδe

23) , (6.4b)

sPMNS
12 e−iδ

PMNS
12 ≈ sν12e

−iδν12 + θe
13c

ν
12s

ν
23e

i(δν23−δe
13) − θe

12c
ν
23c

ν
12e
−iδe

12 , (6.4c)

in leading order of θν13 and (3.32)

θPMNS
13 e−iδ

PMNS
13 ≈ θν13e

−iδν13 − θe
13c

ν
23e
−iδe

13 − θe
12s

PMNS
23 e−i(δ

e
12+δPMNS

23 ) , (6.5)

in order to find simple conditions for obtaining a predictive GUT scenario with θPMNS
13 ≈

θC sin θPMNS
23 . Similarly, the CKM angles θCKM

ij can be expressed in terms of quark mixing

angles θuij and θdij by a small angle expansion of VCKM =
(
U

(u)
L

)†
U

(d)
L [157]

θCKM
23 e−iδ

CKM
23 ≈ θd23e

−iδd23 − θu23e
−iδu23 , (6.6a)

θCKM
13 e−iδ

CKM
13 ≈ θd13e

−iδd13 − θu13e
−iδu13 − θu12e

−iδu12(θd23e
−iδd23 − θu23e

−iδu23) , (6.6b)

θCKM
12 e−iδ

CKM
12 ≈ θd12e

−iδd12 − θu12e
−iδu12 . (6.6c)

The standard PDG Dirac CP phase δCKM in VCKM can be identified as [17]

δCKM = δCKM
13 − δCKM

23 − δCKM
12 . (6.7)

We are now ready to state first conditions towards scenarios featuring (6.3):
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Condition 1: Since we want to use the charged lepton correction proportional to θe
12

to establish the link to θC via GUTs we require, as assumed to derive (3.31) and (3.32),
hierarchical Yu, Yd, and Ye, and furthermore

θν13 ≈ 0 , θe13 ≈ 0 . (6.8)

Then the first two summands on the right side of (3.32) drop out and we obtain (3.33),
independently of any phases

θPMNS
13 ≈ θe

12s
PMNS
23 . (6.9)

Condition 2: Secondly, since we want to establish a link between θPMNS
13 and θC based

on GUT relations between Yd and Ye, we require that to a good approximation

θd12 ≈ θC . (6.10)

This may follow from (6.6c) as a consequence of θu12 � θd12, which is a typical feature of
models with hierarchical Yukawa matrices where the stronger hierarchy in the up-quark
sector implies the smaller mixing angles. An alternative possibility arises when one requires
θu13, θd13 ≈ 0. Such cases yield the quark mixing sum rule [157] from (6.6) and (6.7)

θd12 ≈
∣∣∣∣θCKM

12 − θCKM
13

θCKM
23

e−iδ
CKM

∣∣∣∣ ≈ 12.0◦ ± 0.3◦ . (6.11)

6.3 Conditions from relations between Yd and Ye

To arrive at θPMNS
13 ≈ θC sin θPMNS

23 , we want to employ GUT relations between the down-
type quark Yukawa matrix Yd and the charged lepton Yukawa matrix Ye. The GUT
relations emerge since the down-type quark Yukawa matrix and the charged lepton Yukawa
matrix are generated from joint GUT operators, as discussed in chapter 4. This leads to
the following condition:

Condition 3: To obtain predictive GUT relations, we require that all elements of the
Yukawa matrices Yd and Ye are each dominantly generated by one single joint GUT oper-
ator. This condition can be somewhat relaxed in specific cases, for instance it would be
sufficient to restrict this requirement to the distinct matrix elements which enter the rela-
tion between θC and θe12. Furthermore it is possible that two operators featuring the same
CG factor contribute at similar strength. In this case, the relation between the elements of
Yd and Ye is still given by only one single CG factor. We demand the stronger requirement
stated at the beginning at this point, to keep the discussion simple.
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Thus, the matrix elements are closely linked by group theoretical CG factors. For hier-
archic Yd and Ye and small mixing angles we can focus our discussion exclusively on the
1-2 submatrix of the first two families

Yd =

(
d b
a c

)
⇒


Ye =

(
cd d cb b

ca a cc c

)
(PS) ,

Ye =

(
cd d ca a

cb b cc c

)
(SU(5) GUTs)

. (6.12)

Here, ca, cb, cc, and cd are the CG factors relating the elements of Yd and Ye. As discussed
in chapter 4, in SU(5) GUTs Yd is related to Y T

e , whereas in Pati-Salam unified theories
Yd is related directly to Ye. Lists of available CG factors in SU(5) and PS were given in
(4.45) and (4.46), respectively.

The CG factors play an important role in flavour model building: A successful model
requires a consistent set of CG factors in (6.12), leading to viable mass relations for the
first two families. It has been noted in [148,149], that various combinations of phenomeno-
logically viable CG factors exist which can lead to a comparatively large θPMNS

13 . The
prediction θPMNS

13 ≈ θC sin θPMNS
23 only emerges from a subset of these combinations of CG

factors, as we now discuss in the context of Pati-Salam unified theories and SU(5) GUTs.
To obtain conditions on the CG factors, we first note that the 1-2 mixing angle of Yd is

given in leading order in a small mixing approximation by

θd12 ≈
∣∣∣∣bc
∣∣∣∣ , (6.13)

and the Yukawa couplings by

yd ≈
∣∣∣∣d− a b

c

∣∣∣∣ and ys ≈ |c| . (6.14)

6.3.1 θPMNS
13 ≈ θC sin θPMNS

23 in Pati-Salam Theories

In Pati-Salam unified theories, to leading order in a small angle approximation the Yukawa
couplings ye and yµ of the first two families are given by [148]

ye ≈
∣∣∣∣cdd− ca a cb b

cc c

∣∣∣∣ and yµ ≈ |ccc| , (6.15)

and the 1-2 mixing angle θe12 is given by

θe12 ≈
∣∣∣∣cb bcc c

∣∣∣∣ ≈ ∣∣∣∣cbcc
∣∣∣∣ θC , (6.16)

where (6.10) and (6.13) were used in the last step. Finally, using (6.9) we obtain

θPMNS
13 ≈ θe12 sin θPMNS

23 ≈
∣∣∣∣cbcc
∣∣∣∣ θC sin θPMNS

23 . (6.17)

From here we can read off the condition on the CG factors in Pati-Salam theories:
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Condition 4 (PS): In Pati-Salam unified models, and in general in unified models with
a direct GUT relation between Yd and Ye (and not as in SU(5) GUTs between Yd and Y T

e )
we require that the CG factors for the operators generating the 2-2 element and the 1-2
element of Ye are equal, i.e.

|cb| = |cc| . (6.18)

In Pati-Salam unified theories, this simple additional condition is indeed sufficient and
may readily be implemented in flavour models. The remaining parameters and CG factors
of such a model of course have to be constructed in such a way that the phenomenological
constraints on the down-type quark and charged lepton sectors are satisfied. In Pati-Salam
models it turns out that in the case of vanishing 1-1 element d = 0, there is no set of CG
factors available which simultaneously satisfies (6.18) and the double ratio (4.43)∣∣∣∣yµ ydys ye

∣∣∣∣ ≈ ∣∣∣∣ c2
c

ca cb

∣∣∣∣ ≈ 10.7+1.8
−0.8 . (6.19)

Therefore viable scenarios of Pati-Salam unification require non vanishing 1-1 elements in
Yd and Ye [148] (see also [158]). Let us remark that in principle the set cc = cb = 9 and
ca = 3

4
yields the double ratio 12, which is also within the one sigma confidence interval,

but the GUT scale relation yµ = 9ys requires SUSY threshold corrections of about 50%,
which exceeds typical results in realistic SUSY scenarios (see e.g. [133] and figure 10.3).

We will see next that in SU(5) GUTs zero 1-1 elements of Yd and Ye are consistent and
even favourable for obtaining the relation θPMNS

13 ≈ θC sin θPMNS
23 .

6.3.2 θPMNS
13 ≈ θC sin θPMNS

23 from SU(5) GUTs

In SU(5) GUTs the 1-2 mixing angle θe12 is given in leading order in a small angle approx-
imation by

θe12 ≈
∣∣∣∣ca acc c

∣∣∣∣ . (6.20)

Employing (6.13) and condition (6.10) shows that in order to obtain a link between θC and
θe12 we need to relate

θC ≈
∣∣∣∣bc
∣∣∣∣ and θe12 ≈

∣∣∣∣ca acc c
∣∣∣∣ (6.21)

This implies that towards establishing a simple link between θPMNS
13 and θC in SU(5) GUTs,

we have to impose at least one further constraint on the structure of the Yukawa matrices.
From (6.21) one can see that one possibility to restore a direct link between θC and θe12 is
to enforce

|a| ≈ |b| (6.22)

which immediately translates into

θe12 ≈
∣∣∣∣ca acc c

∣∣∣∣ ≈ ∣∣∣∣cacc
∣∣∣∣ θC , (6.23)
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and thus to a simple condition

|ca| = |cc| ⇒ θPMNS
13 ≈ θC sin θPMNS

23 (6.24)

on the CG factors in SU(5) GUTs. We discuss two ways to enforce |a| = |b| (or |a| ≈ |b|
to a good approximation) in the following and give two choices for the final condition:

Condition 4.1 (SU(5) GUTs): The first possibility is rather straightforward, namely
that the Yukawa matrices Yd and Ye are symmetric in the 1-2 submatrix considered above.
Although this is not a typical feature in SU(5) GUTs, symmetric matrices could be a
consequence of a flavour symmetry in specific models. This would imply that

|a| = |b| and |ca| = |cb| , (6.25)

such that the above condition is satisfied. We note that in order to obtain realistic mass
ratios, in the case of symmetric Yd and Ye, the 1-1 elements have to be non-vanishing and
the CG factor cd has to be chosen appropriately.

Condition 4.2 (SU(5) GUTs): The second possibility is less straightforward but leads
to almost exactly the same prediction. It arises when one imposes vanishing 1-1 elements
of Yd and Ye. Then the resulting structure of the Yukawa matrices is quite predictive, since
the five observables ye, yµ, yd, ys, and θd12 ≈ θC are determined by only three parameters
|a|, |b|, and |c| and the corresponding CG coefficients. In leading order in a small mixing
angle approximation, we obtain:

ys ≈ |c| , yµ ≈ |cc c| , yd ≈
∣∣∣∣a bc

∣∣∣∣ , ye ≈
∣∣∣∣ca a cb bcc c

∣∣∣∣ , θC ≈
∣∣∣∣bc
∣∣∣∣ . (6.26)

This situation has been considered in [148] and the relation

θe12 ≈
ye
yµ

∣∣∣∣cccb
∣∣∣∣ 1

θC
(6.27)

has been derived. There is an interesting phenomenological relation between the Cabibbo
angle and the quark mass ratio (2.38)

ms

md

= 18.9± 0.8 , (6.28)

commonly known as GST-relation

θC ≈
√

1

19
≈
√
yd
ys
. (6.29)

Historically it was first phrased in [159] as θ2
C ≈ m2

π

2m2
K

, where mπ and mK denote pion

and kaon masses, respectively, and in [160] in the context of quark masses. Necessary
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constraints for (6.29) to hold in viable flavour models are [161] approximately vanishing
1-1 element of Yd and |a| ≈ |b|, as can be seen from (6.26)

yd
ys
≈
∣∣∣∣a bc2

∣∣∣∣ ≈ ∣∣∣ab ∣∣∣ θ2
C . (6.30)

Thus, although less direct than in condition 4.1, |a| ≈ |b| is found via vanishing 1-1 element

of Yd and the GST relation. From (6.23) the connection to θC , i.e. θe12 ≈
∣∣∣ cacc ∣∣∣ θC , is obtained,

thus realising θPMNS
13 ≈ θC sin θPMNS

23 .
Note that cb has to be properly chosen in addition to |ca| = |cc|, to yield viable GUT

scale quark-lepton mass ratios for the first two families [148, 149]. In SU(5) GUTs with
zero 1-1 elements in Yd and Ye, only one combination of CG factors listed in (4.45) results in
θPMNS

13 ≈ θC sin θPMNS
23 , while being consistent with phenomenological constraints (including

ms
md
≈ 19), namely

cc = ca = 6 , cb = −1

2
. (6.31)

6.4 Corrections to θPMNS
13 ≈ θC sin θ

PMNS
23

As we have discussed above, the relation θPMNS
13 ≈ θC sin θPMNS

23 can emerge under four
simple conditions from GUTs, by charged lepton contributions to VPMNS and linking θe12

to θC . Let us now discuss how this relation is affected by certain, unavoidable corrections,
for example from RG running between the GUT scale where the prediction arises and low
energies where the neutrino oscillation experiments are performed. Other corrections arise
from the fact that we presented leading order results in a small mixing approximation.

Note that given a specific flavour model, the deviation from the exact relation can be
calculated, and future more precise measurements of the lepton mixing angles may allow
to discriminate between different models realising θPMNS

13 ≈ θC sin θPMNS
23 .

Possible corrections are:

Corrections due to small mixing approximation: In 6.3 we omitted higher order
terms in a small mixing angle expansion to keep our discussion as simple as possible. The
error introduced by this simplification depends on the structure of the Yukawa matrices
and on the CG factors and can easily be computed. Let us consider, for instance, the
example of a SU(5) GUT with zero 1-1 elements in Yd and Ye and CG factors as in (6.31),
i.e.

Yd =

(
0 b
a c

)
, Ye =

(
0 6 a
−1

2
b 6 c

)
. (6.32)

Instead of a small angle approximation, we numerically perform an exact diagonalisation
of the Yukawa matrices (6.32) and find θe12 = 13.8◦ from a fit to the experimental values
ye
yµ

and θC . The more precise GUT scale prediction is thus

SU(5) with d = 0, cc = ca = 6, cb = −1
2
, and θd

12 = θC : θPMNS
13 ≈ 9.3◦ . (6.33)
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Corrections from θd12 6= θC: In explicit flavour GUT models, condition 2 may not be
exactly fulfilled. Without a specific model, this is a source of theoretical uncertainty.
Within a specific model, however, such a deviation is calculable and results in a modified
prediction for θPMNS

13 , which may open up the possibility to distinguish explicit flavour
models with a future more precise measurement of the lepton mixing angles. As mentioned
above, the quark mixing sum rule (6.11) yields θd12 ≈ 12.0◦ ± 0.3◦ 6= θC in models where
θu13, θd13 ≈ 0.

Let us study this in more detail in a Pati-Salam model with CG factors 9 and −3,
where we assume embedding in a SO(10) GUT or a suitable flavour symmetry, such that
the Yukawa matrices are symmetric, i.e.

Yd =

(
d b
b c

)
, Ye =

(
9 d −3 b
−3 b −3 c

)
. (6.34)

As above, we perform an exact diagonalisation of the Yukawa matrices and fit to the
experimental value of ye

yµ
and θd12 = 12.0◦. We obtain the prediction

PS with θu13 ≈ θd13 ≈ 0, a = b, cd = 9, and cb = cc = −3: θPMNS
13 ≈ 8.2◦ . (6.35)

Corrections due the uncertainty of θPMNS
23 : There is still a large uncertainty for the

value of θPMNS
23 . The most immediate uncertainty is caused by the dependence of θPMNS

23

on the yet undetermined mass ordering of neutrinos. But even when a specific ordering is
assumed as prior, the relative uncertainty induced in the prediction for θPMNS

13 still amounts
to about 5% (3%) for normal (inverse) mass ordering. Note that [62] reports a 3σ range
for θPMNS

23 of [38.3◦, 53.3◦] in the general case where no specific mass ordering is assumed.
As mentioned above, the NOνA experiments finds an one sigma interval of [38.6◦, 53.7◦]
for θPMNS

23 [151]. An improved experimental accuracy for θPMNS
23 and a measurement of the

neutrino mass ordering are therefore necessary in order to predict θPMNS
13 more precisely.

Corrections due to RG evolution: Let us now discuss the impact of RG corrections.
The relation θPMNS

13 ≈ θC sin θPMNS
23 is defined at the GUT scale. Our strategy is to run the

measured values of θC and θPMNS
23 up to MGUT to determine θPMNS

13

∣∣
MGUT

, and then perform

the RG running of θPMNS
13 |MGUT

down to the electroweak scale MEW to obtain θPMNS
13

∣∣
MEW

,
the parameter measurable in experiments. For simplicity, we assume a strongly hierarchical
neutrino mass spectrum with m1 = 0 (NO) or m3 = 0 (IO) in the MSSM. The running of
θC is known to be tiny (see e.g. [91]) and will be neglected in the following.

Using the analytical results of [162], one can estimate

∆sPMNS
23 ≡ sPMNS

23

∣∣
MEW

− sPMNS
23

∣∣
MGUT

(6.36)



6.4 Corrections to θPMNS
13 ≈ θC sin θPMNS

23 71

in leading logarithmic approximation and in leading (zeroth) order in θPMNS
13 :

∆sPMNS
23 ≈


(ySM
τ )2(1 + tan2 β)

16π2
ln

(
MGUT

MEW

)
(cPMNS

23 )2sPMNS
23 (NO) ,

−(ySM
τ )2(1 + tan2 β)

16π2
ln

(
MGUT

MEW

)
(cPMNS

23 )2sPMNS
23 (IO)

. (6.37)

For the running of θPMNS
13 , we obtain for

∆θPMNS
13 ≡ θPMNS

13

∣∣
MEW

− θPMNS
13

∣∣
MGUT

(6.38)

in leading (first) order in θPMNS
13 :

∆θPMNS
13 ≈



(ySM
τ )2(1 + tan2 β)

16π2
ln

(
MGUT

MEW

)
(

2
m2

m3

cos(δPMNS + αPMNS
1 − αPMNS

2 )cPMNS
12 sPMNS

12 cPMNS
23 sPMNS

23 (NO)

+ (cPMNS
23 )2θPMNS

13

)
,

−(ySM
τ )2(1 + tan2 β)

16π2
ln

(
MGUT

MEW

)
(cPMNS

23 )2θPMNS
13 (IO) ,

(6.39)
where αPMNS

1 and αPMNS
2 denote the Majorana phases introduced in (3.16). θPMNS

13

∣∣
MEW

can

now be predicted in terms of the measured values of θC and θPMNS
23

∣∣
MEW

using the GUT

scale relation (6.3):

θPMNS
13

∣∣
MEW

= θC sPMNS
23

∣∣
MGUT

+ ∆θPMNS
13

= θC

(
sPMNS

23

∣∣
MEW

−∆sPMNS
23

)
+ ∆θPMNS

13 . (6.40)

Remarkably, in the case of an inverse mass ordering the terms ∆θPMNS
13 and θC ∆sPMNS

23

cancel each other at leading order, while for normal ordering only the term proportional
to the neutrino mass ratio m2

m3
remains. Plugging in the experimental values of the mixing

parameters and ySM
τ ≈ 0.01 we obtain the following estimate for the effects of RG running:

θPMNS
13

∣∣
MEW

≈


θC sPMNS

23

∣∣
MEW

+ 0.2◦ cos
(
δPMNS + αPMNS

1 − αPMNS
2

)(tan β

50

)2

(NO) ,

θC sPMNS
23

∣∣
MEW

(IO) .

(6.41)
In the IO case corrections coming from the next order terms are estimated to be about

O(0.05◦)
(

tanβ
50

)2
. It is thus in general a rather good approximation to evaluate (6.3) with
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the measured parameters at low energies, even more so for the case of an inverse mass
ordering, where the effects due to RG evolution are negligible small.

Note that the above treatment does not include running of neutrino Yukawa couplings
in type-I seesaw scenarios. Such effects contribute above the mass thresholds of heavy
right-handed neutrinos. They are more model dependent and can be estimated using the
analytical formulae of [163] or calculated numerically, e.g. using the Mathematica package
REAP [163]. For hierarchical neutrino Yukawa matrices dominated by a large 3-3 element
Yν33 one can obtain an estimate for the additional correction by simply replacing(

ySM
τ

)2
(1 + tan2 β) ln

MGUT

MEW

−→ Y 2
ν33

ln
MGUT

Mr3

(6.42)

in the above equations, where Mr3 is the mass of the corresponding righthanded neutrino.
Let us remark that when matching the MSSM to the SM at MSUSY, effects from SUSY

threshold corrections on θC and the lepton mixing angles are negligible to a very good
approximation. A numerical calculation can be performed with SusyTC [5], which will be
presented in chapter 10.

Corrections from canonical normalisation: Finally there can be corrections from
canonical normalisation of kinetic terms from a non-trivial Kähler metric, as it emerges
e.g. by integrating out heavy messenger fields in a flavour model, as discussed below (5.47).
Since the effective Kähler potential in such scenarios contains terms proportional to the
Yukawa couplings, it is typically dominated by third family effects. For example, in a
specific flavour GUT model the effective Kähler metric might be written in leading order
as e.g. [107,108]

K ≈ k0

(
1+

k3

k0

〈φ†3〉〈φ3〉
M2

3

)
, (6.43)

where k0 and k3 are order one coefficients and φ3 is a heavy messenger field of mass M3

yielding third family Yukawa couplings of y3 ≈ 〈φ3〉
M3

. Then, defining

ηCN ≡ k3

k0

〈φ†3〉〈φ3〉
M2

3

(6.44)

results in formulae analogous to the case of the RG corrections discussed above as estimate
for the CN corrections [107, 108]. This formulae are given by (6.37) and (6.39) upon the
replacement (

ySM
τ

)2
(1 + tan2 β) ln

MGUT

MEW

−→ 8π2ηCN . (6.45)

Thus, in scenarios with an inverse mass ordering the relation θPMNS
13 ≈ θC sin θPMNS

23 is also
quite insensitive to CN corrections.

Note that while (6.45) holds in general in theories with dominant third family contri-
butions to K, the specific form for ηCN (6.43) and (6.44), and whether or not ηCN is of
significant magnitude, are highly model dependent. Whereas in some models the effect



6.5 The underlying neutrino mixing pattern in the light of
θPMNS

13 ≈ θC sin θPMNS
23 73

of CN corrections can be of the same size as RG running corrections (in the NO case) or
larger, there are classes of models where CN effects are negligibly small (cf. [107]).

To summarise, in general the uncertainties for the relation θPMNS
13 ≈ θC sin θPMNS

23 can
amount up to about O(10%), which is larger than the current experimental uncertainty.
However, it is important to note that within an explicit flavour GUT model, these cor-
rections can be explicitly calculated, thereby decreasing the uncertainty drastically. With
a typical theoretical uncertainty for θPMNS

13 of roughly ±0.25◦ in a careful model analysis,
it is thus possible to discriminate between specific flavour GUT models. In the following
two chapters two predictive flavour GUT models featuring θPMNS

13 ≈ θC sin θPMNS
23 will be

constructed and analysed.

6.5 The underlying neutrino mixing pattern in the

light of θPMNS
13 ≈ θC sin θ

PMNS
23

Assuming hierarchic Yukawa matrices such that condition 1 (θν13, θe13 � θC) and θe23 � θC
are satisfied, the mixing angle θν12 is related to θPMNS

13 and θPMNS
12 by the lepton mixing sum

rule2 (3.34) [65–67]

sν12 ≈ sPMNS
12 − θPMNS

13 cPMNS
12 cot θPMNS

23 cos δPMNS , (6.46)

which in the light of θPMNS
13 ≈ θC sin θPMNS

23 becomes

sν12 ≈ sPMNS
12 − θC cPMNS

23 cPMNS
12 cos δPMNS . (6.47)

Thus, based on a specific model for neutrino mixing, the Dirac CP phase δPMNS can be
predicted.

For example, if bimaximal mixing is realised in the neutrino sector, i.e. θν12 = 45◦, the
lepton mixing sum rule becomes

θPMNS
12 − θC cPMNS

23 cos
(
δPMNS

)
≈ 45◦ . (6.48)

Note that this differs substantially from the QLC relation θC + θPMNS
12 = 45◦. With the

experimental data for the mixing angles, (6.48) predicts a Dirac CP phase δPMNS ≈ 180◦.
As a further example, let us consider tri-bimaximal neutrino mixing, i.e. sin(θν12) = 1√

3
,

such that the lepton mixing sum rule is given by

θPMNS
12 − θC cPMNS

23 cos
(
δPMNS

)
≈ arcsin

(
1√
3

)
. (6.49)

Then one predicts a Dirac CP phase of

δPMNS = 100.8◦ +4.6◦

−4.7◦ . (6.50)

2RG corrections to the lepton mixing sum rule have been discussed in [164].
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Note that such values for δPMNS at the EW scale can result from specific GUT scale
predictions for δPMNS ∈ {0◦,±90◦, 180◦} in explicit flavour GUT models with discrete
shaping symmetries like Z2 or Z4 in the context of spontaneous CP violation (see e.g. [165]
and the flavour GUT models in the following chapters).

Finally, let us emphasise again that we do not require tri-bimaximal or bimaximal
neutrino mixing to obtain the prediction θPMNS

13 ≈ θC sin θPMNS
23 from GUTs. The only

requirement on the neutrino sector is θν13 � θC in condition 1. The future long baseline
neutrino oscillation experiment DUNE [69] aims to measure δPMNS and the lepton mixing
sum rule can be understood to “reconstruct” the value of θν12 via a future measurement of
the Dirac CP phase, as shown in figure 6.2. Thus, using the lepton mixing sum rule (6.47),
a precise measurement of θPMNS

12 , θPMNS
13 , and δPMNS may hint at a specific neutrino mixing

pattern.

0o 45o 90o 135o 180o-45o-90o-135o-180o

25o

30o

35o

40o

45o

δPMNS

θ
12ν

Figure 6.2: One sigma hpd intervals from a Monte Carlo simulation of the lepton mixing
sum rule (6.47) in case of normal (blue) and inverse (red) neutrino mass ordering. A
measurement of δPMNS allows to determine θν12 (under the conditions θν13, θe13, θe23 � θC).
See appendix C for a definition of hpd intervals.



CHAPTER 7

A SUSY flavour GUT model with

θ13
PMNS≈ θC sin θ23

PMNS

In this chapter we propose a predictive supersymmetric SU(5) GUT model with an A4

flavour symmetry, supplemented by discrete shaping symmetries and an R-symmetry,
which realises the relation (6.3)

θPMNS
13 ≈ θC sin θPMNS

23 , (7.1)

based on [2]. The neutrino sector features tri-bimaximal mixing, and (6.3) emerges from
the charged lepton contribution to the lepton mixing matrix, which in turn is linked to
quark mixing via specific GUT relations, as discussed in the previous chapter. In addition
to θPMNS

13 , the model leads to promising quark lepton mass ratios in excellent agreement
with experimental results. Our model also features spontaneous CP violation, with all
quark and lepton CP phases determined from flavour symmetry breaking.

7.1 Outline of the model

Our model is constructed with the requirement to satisfy the four conditions of the previous
chapter. In this section we discuss how they are implemented in our model. The desired
structure of the Yukawa matrices will be achieved, as we discuss in the next section, via
spontaneously breaking the flavour symmetry A4 by vevs of flavon fields, which – due to
an appropriate potential for the flavons – point in specific directions of flavour space.

Condition 1: θe13, θν13 ≈ 0 will be satisfied by constructing a Yukawa matrix Ye with
vanishing 1-3 element and tri-bimaximal mixing in the neutrino sector.

Condition 2: θd12 ≈ θC is achieved by constructing Yd and Yu with vanishing 1-3 elements,
such that the quark mixing sum rule (6.11) is realised. Additionally, under the condition
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θu13, θd13 ≈ 0, the quark unitarity triangle angle

α ≡ arg

(
− VtdV

∗
tb

VudV ∗ub

)
= arg

(
−
(
s23s12 − c23s13c12e

iδ
)
c23c13

c12c13s13eiδ

)

≈ arg

(
1− θ23θ12

θ13

e−iδ
)
, (7.2)

where the subscript CKM was suppressed for higher readability, is given by a phase sum
rule [157]

α ≈ arg

(
θd12

θu12

ei(δ
d
12−δu12)

)
= δd12 − δu12 . (7.3)

Equations (6.6) and (6.7) were used to derive (7.3) from (7.2). Thus, a right-angled quark
unitarity triangle with α ≈ 90◦ can be achieved by constructing Yd with purely imagi-
nary 1-2 element and Yu with purely real 1-2 element, yielding δd12 = 90◦ and δu12 = 0◦,
respectively, when all other elements in the 1-2 submatrices are real. There are two more
expressions that can be obtained from (6.6) and (6.7) with θu13, θd13 ≈ 0 [157]

θu12 ≈
θCKM

13

θCKM
23

,
θCKM

13 θCKM
12

θCKM
23

e−iδ
CKM ≈ −θu12

(
θd12e

−i(δd12−δu12) − θu12

)
. (7.4)

From (6.11) and (7.4), the experimental value δCKM = 71.1◦ ± 3.1◦ yields

δd12 − δu12 = 86.1◦ ± 3.3◦ . (7.5)

Note that the experimental value of α is given by α = 85.4◦ +3.9◦

−3.8◦ . Thus our set-up implies
a realistic value for δCKM, by a single purely imaginary 2-2 entry in Yd.

Due to the SU(5) relation the 2-2 element of Ye is purely imaginary as well, and the
CP violation is carried from the quark to the lepton mixing sector, yielding a Dirac CP
phase δPMNS ≈ 90◦. Thus, from the discussion in 6.5 and the lepton mixing sum rule
(6.47), the neutrino sector must feature tri-bimaximal mixing. In our model we therefore
employ type-I seesaw and Constrained Sequential Dominance (3.43), as described in 3.3.
Our model will also include a charged lepton mixing θe23, which can generate a deviation
of θPMNS

23 from maximal mixing.
Note that the feature of purely imaginary Yukawa matrix elements can be achieved

by a suitable flavon alignment potential as well, such that CP symmetry is broken only
spontaneously due to CP-violating vevs of flavon fields.

Condition 3: All relevant elements of Ye and Yd will be generated by single GUT-
operators in order to construct predictive quark-lepton relations.

Condition 4: In the setting of an SU(5) GUT, we construct Yd and Ye with vanishing
1-1 elements. As mentioned in the previous chapter, we therefore must use GUT operators
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that yield the CG factors c12 = 6, c21 = −1
2
, and c22 = 6 (where cij is the CG factor of the

i-j element of Ye).
Note that, since the CG factors play a crucial role for the phenomenological viability of

the model, it is essential that we not only provide an effective model at the GUT scale, but
that we also specify the messenger sector, which when integrated out realises only single
GUT operators with predictive CG factors, as discussed in 4.4.

We pursue the following procedure to construct a model with the features described
above:

• In our model the rows respectively columns of the Yukawa matrices are generated as
vevs of flavon fields, which are triplets of the flavour symmetry group A4.

In order to obtain the desired structure of the Yukawa matrices, we first find a suitable
set of effective operators for the matter sector, appropriate vevs for the flavon fields and
a viable alignment potential generating these vevs.

• The next step is to identify the shaping symmetry of the thus specified superpotential.
As shaping symmetry we denote Zn and U(1) symmetries, required in addition to A4,
to forbid terms which would spoil the desired features. Note that, since one can al-
ways redefine several Zn symmetries by linear combinations into another set of Zns, the
resulting shaping symmetry is not unique.

• Now we turn to the UV completion of the effective superpotential and find a suitable
set of messenger fields, that, when integrated out, can generate all effective operators.
Usually, one has a sizeable freedom of choice in doing so, both from using different rep-
resentations for the messengers and from using different “topologies” for the supergraph
diagrams. An important constraint on the messenger sector is, however, that it must
guarantee the correct CG factors for the effective operators of Ye, see 4.4.

• Finally, with the flavon, matter, Higgs, and messenger field content at hand, and the
given shaping symmetry, one has to check whether the most general superpotential
contains any additional effective operators, which spoil the desired features of the Yukawa
matrices. If this is the case, one has to modify some choice made in one of the previous
steps, be it the flavon alignment, the structure of the effective superpotential or the set
of messenger fields. Ultimately, a consistent flavour model is developed, by successively
going through the previous steps and gradually improving the different sectors, until no
such dangerous operators are present.

7.2 The model

We now present our model in detail. The matter content of SUSY SU(5) is embedded
into one A4 triplet F , which thus contains all three families Dc

i and Li, and into three
A4-invariant singlets Ti, one for each family. Additionally, we introduce two right-handed
neutrinos N c

1 and N c
2 as invariant singlets under A4 and SU(5). The Higgs sector contains
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flavon ϕi: φ2 φ3 φab φN1 φN2 ξ12 ξ23 ξM χ

〈ϕi〉
Λ

: ε2

0
1
0

 ε3

0
0
1

 εab

 cab
−isab

0

 εN1

 0
1
−1

 εN2

1
1
1

 ε12 ε23 εM εχ

Table 7.1: The vevs of the flavon superfields. The εi are all assumed to be real numbers.
We abbreviated cab ≡ cos(θab) and sab ≡ sin(θab). The scale Λ is a placeholder for the
individual messenger mass suppression. See the next section for a detailed discussion of the
flavon alignment.

the H24, responsible for the spontaneous breaking of SU(5), and the superfields H5, H̄5,
H45, and H̄45 lead to electroweak symmetry breaking.1

The flavon fields are fiveA4 triplets called φi, threeA4 invariant singlets called ξi, and one
A4 non-invariant singlet in the 1′ representation called χ. They break the flavour symmetry
by their vevs as given in table 7.1. In the next section we discuss the superpotential
responsible for the spontaneous breaking of A4 which yields the desired flavon vevs in
flavour space. A brief review of A4 group theory is presented in appendix A.

The scale Λ is a placeholder for the messenger mass suppression specific to the operator
which generates the entry, row, or column of the Yukawa matrices (7.10) and (7.12), where
the εi appears. A full list of all operators, including the messenger fields, which generate
the effective superpotential, is given in appendix D. There we also present the supergraphs
yielding the effective operators, such that the suppression of the effective operators by their
particular messenger masses and couplings can be read off.

The effective superpotential in the matter sector is given by

Weff =WYν +WMR
+WYd +WYu , (7.6)

with

WYν = H5F (N c
1φN1 +N c

2φN2) , (7.7a)

WMR
= ξ2

M

(
(N c

1)2φ2
N1

+ (N c
2)2φ2

N2

)
, (7.7b)

WYd = [T1H̄45]45 [FH24]45 φ2 + [T2H24]10 [FH̄5]10 φab

+ [T3H̄5]5 [FH24]5̄ φ3 + [T3H24]10 [FH̄5]10 χφ2 , (7.7c)

WYu = H5

(
T 2

3 + T 2
2 φ

2
ab + T 2

1 (φ2
2)2 + T2T3ξ23 + T1T2ξ

5
12

)
, (7.7d)

where [XY ]R denotes the contraction of the fields X and Y to an SU(5) tensor in the
representation R, indicating which representation the messenger field, which was integrated
out to obtain the effective operator, had. In our model, the CG factors 6, −1

2
, and −3

2

1We note that while we will explicitly construct the GUT matter sector and the flavour symmetry
breaking sector, the details of the (GUT) Higgs sector are beyond the scope of this flavour model. We will
come back to this question in chapter 9.
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arise from contractions mediated by messengers transforming as 10, 45, and 5 under
SU(5), coupling to H̄5 and H̄45, respectively, as can be seen in table 4.1. Since we need
these specific contractions for our model to work, it is essential that we also construct the
messenger sector. The full set of messenger fields, together with their charges, is shown in
appendix D.

Note that for the sake of brevity, we do not explicitly write down the appropriate
suppression by powers of the relevant mass scales Λ (which are different for each operator)
in (7.7), and we also suppress the couplings in front of each term.

In order to parametrise the resulting Yukawa matrices, we define the quantities

ε̃i ≡
〈H24〉

Λ
εi and ε̂χ ≡

〈H24〉〈φ2〉
Λ2

εχ, (7.8)

where again Λ is a placeholder for the individual messenger mass.
After GUT and flavour symmetry breaking, the superpotential for the Yukawa matrices

and right-handed neutrino mass matrix (5.64) and (5.77) is given by

W = YeijHd · LiEc
j + YdijHd ·QiD

c
j − YuijHu ·QiU

c
j + YνijHu · LiN c

j +
1

2
MnijN

c
iN

c
j , (7.9)

with the Yukawa matrices of the quarks and charged leptons given by

Yd =

 0 ε̃2 0
ε̃abcab −iε̃absab 0

0 ωε̂χ ε̃3

 , Ye =

 0 6ε̃abcab 0
−1

2
ε̃2 −i6ε̃absab 6ωε̂χ

0 0 −3
2
ε̃3

 , Yu =

 ε42 ε512 0
ε512 ε2ab ε23

0 ε23 yt

 ,

(7.10)
up to subleading corrections from higher-dimensional operators or canonical normalisation.
With the messenger sector of the model specified in appendix D both corrections can be
neglected. The rows and columns of the down-type quark and charged lepton Yukawa
matrices, respectively, are built from flavon vevs. The phase

ω ≡ e
2πi
3 (7.11)

comes from the fact that the flavon field χ transforms as one-dimensional 1′ representation
of A4. The hierarchy in Yu is generated by the different powers of flavon vevs in each entry.

The neutrino Yukawa matrix respectively the mass matrix of the heavy neutrinos are
given by (3.43)

Yν =

 0 εN2

εN1 εN2

−εN1 εN2

 , MR =

(
MR1 0

0 MR2

)
. (7.12)

The mass matrix of the light neutrinos is obtained from the type-I seesaw formula (3.7)

mν = −v
2
u

2

A A A
A A+B A−B
A A−B A+B

 , with A ≡ ε2N2

MR2

, B ≡ ε2N1

MR1

, (7.13)

which implies tri-bimaximal mixing in the neutrino sector. Note that, since mν depends
only on the two parameters A and B, we are free to fix two of the four parameters which
enter Yν and MR, as discussed below in (7.27).
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7.3 Flavon alignment

Here we present the mechanism responsible for the vacuum alignment of the A4-triplet
flavons φi, the A4-invariant flavons ξi, and the flavon χ in the 1′ representation of A4. For
a brief review of A4 group theory, see appendix A.

The scalar potential for the flavon fields is obtained from the F -term contributions of
the driving fields Si, Di, Ai, and Oi, which have U(1)R charge 2. Under the A4 flavour
symmetry they transform as singlets, with the exception of A, D′, and D′′, which transform
as 3, 1′, and 1′′, respectively. In the supersymmetric vacuum the F -terms are required to
vanish, which forces the scalar components of the flavon fields to obtain the desired vevs.
All flavons and driving fields are listed in the lower part of table D.1 in the appendix,
together with their charges under the imposed symmetries. Note that the S-fields are
all singlets with respect to all symmetries (apart from U(1)R symmetry) and hence are
interchangeable.

After the messenger fields are integrated out, the effective superpotential responsible for
the vacuum alignment of the flavon field vevs, as listed in table 7.1, is given by

Wflavon =W⊥ +WN1N2 +Wab +Wχ +WM +W12 , (7.14)

with2

W⊥ = S2

(
(φ2

2)3 −M2
2

)
+ S3

(
φ2

3 −M2
3

)
+ A2(φ2 ? φ2) + A3(φ3 ? φ3) +O2;3(φ2φ3) , (7.15a)

WN1N2 = SN1

(
(φN1 ? φN1)2φ2

N1
−M2

N1

)
+DN1(φN1 ? φN1)φN1 +ON1;N2(φN1φN2)

+ SN2

(
(φ2

N2
)3 −M2

N2

)
+D′N2

(φ2
N2

)1′′ +D′′N2
(φ2

N2
)1′ , (7.15b)

Wab = Sab
(
(φab ? φab)

2ξ2
23 −M2

ab

)
+Dα

ab

(
φ2
ab + λab ξ

2
23

)
+Dβ

ab(φab ? φab)φab

+Dγ
ab

(
(φ2

ab)1′(φ
2
ab)1′′ + kab (φab ? φab)

2
)
, (7.15c)

Wχ = Sχ
(
χ6 −M2

χ

)
, (7.15d)

WM = SM
(
ξ6
M −M2

M

)
, (7.15e)

W12 = S12

(
ξ6

12 −M2
12

)
, (7.15f)

where “?” denotes the symmetric product of two A4 triplets (see appendix A) and the
brackets (. . . )1′ and (. . . )1′′ indicate that the fields are contracted to the 1′ and 1′′ repre-
sentation of A4, respectively.

The constants M2 are real due to invariance under CP symmetry.3 Then the terms of
the type

S(ϕn −M2) (7.16)

2As we did for the matter superpotential, we omit the appropriate suppressions by powers of the
messenger masses.

3Note that we checked the CP invariance of our superpotentials using the generalised CP transformation
applicable to models with the discrete flavour group A4 [166]. See appendix A for a brief review.
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restrict the phases of the flavon vevs to specific discrete values. In particular, among the
discrete vacua for the phases there are the possibilities of 0◦ and 180◦ for n even and
M2 > 0, which we assume everywhere in (7.15). Thus it is possible to obtain the desired
purely imaginary 2-2 elements in Ye and Yd and CP is broken spontaneously by the vev of
φab. The real vevs of χ, ξM , and ξ12 are then obtained, up to a discrete choice, as in table
7.1. Let us discuss the alignment of the remaining flavon fields in detail.

W⊥: Denoting the components of the triplets φ2 and φ3 with x1, x2, x3, and y1, y2, y3,
respectively, the terms containing the triplet driving fields, e.g.

A2 (φ2 ? φ2) = A2

x2x3

x3x1

x1x2

 , (7.17)

force two of each 〈φi〉’s components to vanish. The term containing the A4 singlet

O2;3 (φ2φ3) = O2;3(x1y1 + x2y2 + z3y3) (7.18)

forces 〈φ2〉 and 〈φ3〉 to be orthogonal. The phase and magnitude of the vevs is then fixed
by the S terms as discussed above

S2

((
x2

1 + x2
2 + x2

3

)3 −M2
2

)
, S3

((
y2

1 + y2
2 + y2

3

)
−M2

3

)
, (7.19)

such that W⊥ has a supersymmetric minimum at the points 〈φ2〉 and 〈φ3〉 specified in
table 7.1.

WN1N2: The vev 〈φN2〉 is fixed by the second line of WN1N2 . The two terms

D′N2
(φ2

N2
)1′′ +D′′N2

(φ2
N2

)1′ = D′N2

(
x2

1 + ωx2
2 + ω2x2

3

)
+D′′N2

(
x2

1 + ω2x2
2 + ωx2

3

)
(7.20)

force x2
1 = x2

2 = x2
3, and the SN2 term again fixes phase and magnitude such that 〈φN2〉 ∝

(1, 1, 1)T . The vev 〈φN1〉 is constrained by

DN1(φN1 ? φN1)φN1 = 3 DN1y1y2y3 , (7.21)

which requires the vanishing of one component, and the orthogonality condition between
〈φN1〉 and 〈φN2〉, which results from setting the F -term of ON1;N2 to zero. Then, with phase
and magnitude set by the F -term of SN1 , one obtains 〈φN1〉 ∝ (0, 1,−1)T as in table 7.1.

Wab: Here, the S-term determines the magnitude and the overall phase of the product
〈φab〉〈ξ23〉. The individual magnitudes and the relative phase between 〈φab〉 and 〈ξ23〉 are
determined by

Dα
ab

(
φ2
ab + λab ξ

2
23

)
. (7.22)

One of the components of 〈φab〉 is required to vanish by the term with the driving field
Dβ
ab, analogously to (7.21). With the overall phase and norm of 〈φab〉 fixed, the relative
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magnitude tan θab ≡
∣∣a
b

∣∣ and phase ϕ of the two non-vanishing components a and b are
constrained by

Dγ
ab

(
(φ2

ab)1′(φ
2
ab)1′′ + kab (φab ? φab)

2
)

= Dγ
ab

(
a4 + b4 + (kab − 1)a2b2

)
. (7.23)

Setting the F -term of Dγ
ab to zero, one obtains

a2

b2
+
b2

a2
= (1− kab) . (7.24)

Depending on the value of kab there are three distinct solutions for a and b

−1 ≤ kab ≤ 3 : tan θab = 1 kab = 1− 2 cos(2ϕ)
kab < −1 : ϕ ∈ {0, π} kab = −1− 4 cot2(2θab)
kab > 3 : ϕ = ±π

2
kab = 3 + 4 cot2(2θab)

(7.25)

Thus, with an appropriate choice of kab, the potential has a minimum at the points 〈φab〉
and 〈ξ23〉 given in table 7.1.

7.4 Phenomenology

In this section we perform a fit of the model’s GUT scale parameters to experimental data
given at the low energy scale of the MS top mass mt(mt). Towards this end, the RG
running from MGUT to mt(mt) has to be performed, including SUSY threshold effects at
MSUSY where the MSSM is matched to the SM. Here we discuss the numerical procedure
of our analysis and present the results.

7.4.1 Numerical procedure

The fit is performed in the following way: Using the one-loop MSSM RGEs of the Math-
ematica package REAP [163], we run the parameters in the MSSM from MGUT to a con-
jectured SUSY scale MSUSY = 1 TeV. REAP automatically integrates out the heavy, right-
handed neutrinos at their respective mass scales and calculates the effective mass matrix
of the light neutrinos from the see-saw formula (3.7).

In our analysis we include the tan β-enhanced SUSY threshold corrections at MSUSY in
the basis where Yu is diagonal, with the approximate matching relations given by [132]

Y SM
d = (1+ diag(ηQ12 , ηQ12 , ηQ3)) Y MSSM

d cos β , (7.26a)

Y SM
u = Y MSSM

u sin β , (7.26b)

Y SM
e = Y MSSM

e cos β , (7.26c)

where the ηi are proportional to tan β and can be calculated from the sparticle spectrum,
see chapter 10. Since we do not specify a certain SUSY scenario, in our analysis they are
treated as free parameters. The SUSY threshold corrections for the first two families are



7.4 Phenomenology 83

assumed to be equal due to approximately equal down and strange squark masses, which
is typical in scenarios with CMSSM soft-breaking. We do not explicitly include SUSY
threshold corrections for the charged leptons, since, because GUTs only predict ratios of
quark and charged lepton masses, to a good approximation they can be absorbed in the
quark corrections ηQ12 and ηQ3 . We set tan β = 40 to allow for substantial threshold effects,
as required for the CG factors 6 and −3

2
appearing in our model (cf. [83]).

Then the Yukawa matrices are evolved from MSUSY to mt(mt), using the one-loop SM
RGEs in REAP. Finally all observables are calculated and compared to the experimental
values.

There are 14 free parameters in our model which we fit: ε̃2, ε̃3, ε̃ab, θab, ε̂χ, ηQ12 , and ηQ3

for the down-quark and charged-lepton sector and yt, εab, ε2, ε12, and ε23 for the up-quark
sector. In the neutrino sector we choose to fix the masses of the right-handed neutrinos

Yν =

 0 εN2

εN1 εN2

−εN1 εN2

 , MR = 2 · 1010 GeV ·
(

1 0
0 10

)
, (7.27)

so that the mass matrix of the light neutrinos depends on the parameters εN1 , εN2 . The
choice of the right-handed neutrino masses does not significantly affect the fit as long as
we are in the regime where the neutrino Yukawa couplings are � 1.

We fit these 14 parameters to 18 measured observables: 9 fermion masses, 3 quark
and 3 lepton mixing angles, the quark mixing phase, and the two neutrino mass-squared
differences. We report the results from our analysis in [2], where we used the quark
and charged lepton masses given in [167] at mt(mt), the winter 2013 results of the UTfit
collaboration for the quark mixing sector [168], and the 2013 1.1 lepton mixing data of the
NuFIT collaboration [169] for the fit. At the end of the chapter we add a discussion in
the light of newly available data. Note that, although the masses of the charged leptons
are given in [167] to high precision, in our analysis we set their uncertainty to one percent,
which is roughly the accuracy of the one-loop calculation used here.

Having four more observables than parameters implies that our model is capable of
predicting four out of these observables. Therefore, including the yet unknown Dirac CP
phase δPMNS and the single physical Majorana phase ϕPMNS

2 of the PMNS matrix in case
of a massless lightest neutrino and normal mass hierarchy, our model makes 6 predictions.

7.4.2 Results

Following the procedure described above, we find a best fit for the parameters with a
χ2 = 8.1. Having 14 parameters and 18 fitted observables this translates to a reduced χ2

of χ2/d.o.f. = 2.0. We present the results for the parameters in table 7.2.4

We perform a Markov Chain Monte Carlo (MCMC) analysis, using a Metropolis al-
gorithm, to determine Bayesian highest posterior density (hpd) intervals as (one sigma

4Note that there is a sign ambiguity for the parameters ε2 and εab, which enter the Yukawa matrix of
the up-type quarks at quartic and quadratic order. In our analysis we fix these parameters to be positive.
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unless stated otherwise) uncertainty for our results. See appendix C for a brief review of
MCMC and Bayesian hpd intervals. Since in a realistic supersymmetry breaking scenario
the SUSY threshold corrections for large tan β typically do not exceed about 50% (see
e.g. [133]), we implement a prior in the MCMC analysis to restrict the SUSY threshold
parameters ηQ12 and ηQ3 to values between −0.5 and 0.5.

Parameter Best fit value Uncertainty

ε̃2 in 10−4 6.83 +0.10
−0.07

ε̃3 in 10−1 2.16 ±0.04

ε̃ab in 10−3 −3.09 +0.03
−0.04

θab 1.319 +0.005
−0.003

ε̂χ in 10−2 −1.27 +0.21
−0.26

ηQ12 in 10−1 3.31 +1.45
−3.50

ηQ3 in 10−1 1.93 +0.49
−0.38

ε2 in 10−2

{
5.27

6.07

{
+0.34
−0.36
+0.17
−0.26

εab in 10−2 4.46 +0.75
−0.19

ε12 in 10−1 −1.65 ±0.05

ε23 in 10−2 1.78 +0.73
−0.22

yt in 10−1 5.29 +0.29
−0.25

εN1 in 10−3 2.91 ±0.05

εN2 in 10−3 3.12 ±0.06

Table 7.2: Best fit results of the parameters with χ2/d.o.f. = 2.0. We give one sigma
highest posterior density intervals as uncertainty. The two modes for ε2 can be understood

as the two solutions of the (leading order) equation yu ≈
∣∣∣∣Yu11 −

Y 2
u12
Yu22

∣∣∣∣, where Yu11 = ε42.

The corresponding best fit values of the observables at mt(mt) = (162.9± 2.8) GeV are
shown in table 7.3. Since we used the “sin2” of the lepton mixing angles as experimental
input for the fit, we also present the values of the lepton mixing parameters in degree in
table 7.4, for convenience. Correlations among the lepton mixing angles and the Dirac CP
phase of the MCMC analysis results are plotted in figure 7.1.

We now discuss how the results shown in table 7.3 and figure 7.1 can be understood
from analytic formulae and the Yukawa matrices presented in 7.2.

Let us start with the prediction for the ratio of ms and md. From our fit, we obtain

ms

md

= 18.95+0.33
−0.24 , (7.28)
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Figure 7.1: Correlations among the lepton mixing angles and the Dirac CP phase. The
black star marks the best fit value, the yellow and grey regions give the one and three
sigma hpd regions obtained from the MCMC analysis, respectively. The dashed grey lines
indicate the one sigma intervals for the measured observables.
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Observable Value at mt(mt) Best fit result Uncertainty

mu in MeV 1.22 +0.48
−0.40 1.22 +0.49

−0.40

mc in GeV 0.59 ±0.08 0.59 ±0.08

mt in GeV 162.9 ±2.8 162.89 +2.62
−2.36

md in MeV 2.76 +1.19
−1.14 2.73 +0.30

−0.70

ms in MeV 52 ±15 51.66 +5.60
−13.68

mb in GeV 2.75 ±0.09 2.75 ±0.09

me in MeV 0.485 ±1% 0.483 ±0.005

mµ in MeV 102.46 ±1% 102.83 +1.01
−0.98

mτ in MeV 1742 ±1% 1741.75 +17.38
−17.10

sin θC 0.2254 ±0.0007 0.2255 ±0.0007

sin θCKM
23 0.0421 ±0.0006 0.0422 ±0.0006

sin θCKM
13 0.0036 ±0.0001 0.0036 ±0.0001

δCKM in ◦ 69.2 ±3.1 65.65 +1.78
−0.53

sin2 θPMNS
12 0.306 ±0.012 0.317 ±0.006

sin2 θPMNS
23 0.437 +0.061

−0.031 0.387 +0.017
−0.023

sin2 θPMNS
13 0.0231 +0.0023

−0.0022 0.0269 +0.0011
−0.0015

δPMNS in ◦ - 268.79 +1.32
−1.72

ϕPMNS
2 in ◦ - 297.34 +8.66

−10.01

∆m2
12 in 10−5 eV2 7.45 +0.19

−0.16 7.45 +0.18
−0.17

∆m2
31 in 10−3 eV2 2.421 +0.022

−0.023 2.421 +0.022
−0.023

Table 7.3: Experimental values, best fit results, and uncertainties of the observables at
mt(mt). We give one sigma highest posterior density intervals as uncertainty. Note that
although the masses of the charged leptons are known far more precise than listed here, we
set an 1% uncertainty for the experimental values, which is roughly the accuracy of the one
loop calculation used here.

which is in excellent agreement with (2.38)

ms

md

= 18.9± 0.8 , (7.29)

obtained from experiments [22]. This can be understood from our choice of CG factors,
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Observable Value at mt(mt) Best fit result Uncertainty

θPMNS
12 in ◦ 33.57 +0.77

−0.75 34.29 +0.35
−0.39

θPMNS
23 in ◦ 41.4 +3.5

−1.8 38.49 +1.11
−1.26

θPMNS
13 in ◦ 8.75 +0.42

−0.44 9.43 +0.20
−0.25

Table 7.4: Experimental values [169] and best fit results for the lepton mixing angles at
mt(mt), given here in degree for convenience.

since in leading order in a small angle approximation they relate the ratio of electron and
muon masses to the ratio of down and strange quark masses

ms

md

≈
∣∣∣∣c12c21

c2
22

∣∣∣∣ mµ

me

, (7.30)

as can be seen from (6.19) and (6.26). Although this is just a leading-order estimate, it
illustrates well that in order to obtain a viable ratio ms

md
, a suitable set of CG factors is

mandatory. In our model, the CG factors c12 = c22 = 6 and c21 = −1
2

are in a remarkably
good agreement with the experimental data, whereas the often used CG factors c12 = c21 =
1 and c22 = 3, leading to the GJ relations, would result in ms

md
= 25.27, when considering

the 1-2 blocks of Ye and Yd with zero 1-1 elements and fitting to the experimental values
of θC , me, and mµ. Additionally, these CG factors would also not satisfy condition 4 of
chapter 6 (c12 = c22) and therefore predict a too small θPMNS

13 .
The correlations between the lepton mixing parameters, presented in figure 7.1, can also

be understood from the lepton mixing sum rule (3.34)

θPMNS
12 ≈ θν12 + θPMNS

13 cot θPMNS
23 cos δPMNS , (7.31)

and the relation5

θPMNS
13 ≈ θC sin θPMNS

23 . (7.32)

The latter relation directly explains the correlation between θPMNS
13 and θPMNS

23 in figure 7.1a.
The correlation between θPMNS

23 and θPMNS
12 follows from the lepton mixing sum rule: Larger

values of θPMNS
23 have smaller values of cot θPMNS

23 . For more than 90% of the MCMC results
cos δPMNS is negative. Therefore the values of θPMNS

12 rise with increasing values of θPMNS
23

as can be seen in figure 7.1c. The correlation between θPMNS
12 and θPMNS

13 is opposite to
what one would naively expect from the lepton mixing sum rule. However one also needs
to consider the relation θPMNS

13 ≈ θC sin θPMNS
23 , which, when plugged into the lepton mixing

sum rule leads to

θPMNS
12 ≈ θν12 − θC

√
1− (θPMNS

13 )
2

θ2
C

∣∣cos δPMNS
∣∣ , (7.33)

5More precisely, our model features a slightly larger θe12 & θC , see (6.27) and [148]. This explains the
tendency towards larger values of θPMNS

13 .
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PMNS≈ θC sin θ23

PMNS

where the negative sign of cos δPMNS is written explicitly. This explains the rising of θPMNS
12

with increasing θPMNS
13 seen in figure 7.1b. The correlation in figure 7.1d is again obvious

from the lepton mixing sum rule. Naively one would not expect correlations between
δPMNS and the lepton mixing angles θPMNS

13 and θPMNS
23 , respectively. The correlations seen

in figures 7.1e and 7.1f however follow indirectly from the other correlations discussed
above.

7.4.3 Discussion of the results

We close this chapter with a discussion of the various predictions of our model and how
the model potentially can be falsified with future experiments.

• Our best fit values θPMNS
13 = 9.44◦+0.20◦

−0.25◦ and θPMNS
23 = 38.49◦+1.11◦

−1.26◦ lie within their re-
spective 2σ intervals reported in [169]. The correlation between θPMNS

13 and θPMNS
23 in

figure 7.1a shows that our model favours slightly smaller values of θPMNS
23 and slightly

larger values of θPMNS
13 than in [169], whereas the most recent global fit results [62],

given in (6.2), have a tendency in the opposite direction. Note however, that the uncer-
tainty of the individual measurements is still comparatively large, such as for instance
θPMNS

13 = 8.29◦+0.85◦

−0.72◦ reported by the RENO collaboration [170] and the one sigma in-
terval of [38.6◦, 53.7◦] reported by the NOνA collaboration for θPMNS

23 [151]. The latest
result from DayaBay on the other hand is θPMNS

13 = 8.42◦+0.26◦

−0.25◦ [171]. Therefore, a more
precise determination of θPMNS

13 and θPMNS
23 is needed to test our model in the future.

• For the yet unmeasured Dirac CP phase of the PMNS matrix we predict

δPMNS = 268.79◦+1.32◦

−1.72◦ , (7.34)

which is in agreement with the results from recent global fits (3.37) δPMNS = 306◦+39◦

−70◦ .

• From the prediction of δPMNS follows that the cos δPMNS term in the lepton mixing sum
rule leads to a negative correction to the TBM prediction of 35.3◦ for the solar mixing
angle. We find θPMNS

12 = 34.29◦+0.35◦

−0.40◦ , which is within the one sigma interval of [169] and
just 0.03◦ outside of the one sigma interval reported in the recent global fit [62]. Like
for θPMNS

13 , figure 7.1c suggests slightly smaller values for θPMNS
23 than currently reported.

• In the quark sector, our model predicts a CKM phase of δCKM = 65.65◦+1.78◦

−0.53◦ , which
is a slight discrepancy to the experimental value of 69.2◦ ± 3.1◦. With future, more
precise measurements of δCKM our model thus could be falsified. As already discussed
in (7.28), the model predicts ms

md
= 18.95+0.33

−0.24, which is currently in excellent agreement
with experiments, but will be tested further in the future.

• Finally, we discuss our prediction for the Majorana phase

ϕPMNS
2 = 297.34◦+8.66◦

−10.01◦ , (7.35)
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which is extremely difficult to be tested, due to the normal ordering of neutrino masses.
The effective Majorana mass parameter (3.38), which is determined in neutrino-less
double beta decay experiments, is given by

〈mββ〉 =

∣∣∣∣(V PMNS
e2

)2
√

∆m2
21 +

(
V PMNS
e3

)2
√

∆m2
31

∣∣∣∣ =
(
2.31+0.12

−0.09

)
· 10−3 eV , (7.36)

which is far below the sensitivity of current experiments. Of course, a discovery of
neutrino-less double beta decay or of an inverse neutrino mass ordering would falsify our
model. Note however, that if a non-vanishing mass for the lightest neutrino ν1 would
be discovered, our model could simply be rearranged – with an appropriate adjustment
of shaping symmetries and messenger sector – by adding a third heavy right-handed
neutrino and corresponding flavon field.

To conclude this chapter, we have successfully constructed a first SUSY flavour GUT
model featuring θPMNS

13 ≈ θC sin θPMNS
23 . Let us remark at this point, we do not consider our

model as the final model, rather it should be viewed as class of models, yielding realistic
quark-lepton mass ratios and mixing angles relations. For example, the set of shaping
symmetries and messenger fields can be understood as proof of principle, instead of being
an one-of-a-kind realisation of our model’s features.

A complete SUSY flavour GUT model will have to include a successful SUSY breaking
mechanism, a viable GUT Higgs sector, and a discussion on proton decay, among others.
Some of this questions will be approached in chapters 9 and 10, where we discuss a so-
lution to the doublet-triplet splitting problem in the context of flavour GUT models and
present detailed calculations of the SUSY threshold corrections, which have been simply
approximated as model parameters in this chapter.



CHAPTER 8

A SUSY flavour GUT model with inverse
neutrino mass ordering

It is interesting to note that the vast majority of SUSY GUT models in the literature (see
e.g. [172]) feature a normal neutrino mass ordering, whereas only few such models predict
an inverted neutrino mass ordering. In this chapter we present our work [3] and construct
a predictive and relatively simple SUSY SU(5) × A4 flavour GUT model, in which an
inverse neutrino mass hierarchy is realised without fine-tuning of parameters. We follow
the general procedure outlined in chapter 7 and both models share some of their properties,
in particular the relation

θPMNS
13 ≈ θC sin θPMNS

23 , (8.1)

by following the conditions of chapter 6. Other shared features are the novel CG factors
−1

2
, 6, and −3

2
to obtain viable quark-lepton mass ratios, and spontaneous CP-symmetry

breaking by CP-violating vevs of flavon fields leading to α ≈ 90◦ in the quark unitarity
triangle.

Besides these shared features, there are also important differences, mainly due to the
different neutrino sector. These differences not only change the predictions in the lepton
sector, but also in the quark sector, and will allow to discriminate between the two models
using the results of present and future experiments.

8.1 Constructing an inverted neutrino hierarchy

If the neutrino mass ordering would be measured to be inverse, it would imply that at
least two of the neutrino masses, namely m1 and m2, are almost degenerate, i.e. with mass
splittings much smaller than the mass eigenvalues. Often, in order to realise such a small
neutrino mass splitting, an effective “special” lepton number symmetry like Le − Lµ − Lτ
[173] or more generally some U(1) flavour symmetry is appealed to, yielding a mass matrix
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for the light neutrinos of the form

mν ∼

0 ? ?
? 0 0
? 0 0

 . (8.2)

Such symmetries have been used to construct GUT models (e.g. [174, 175]), but realising
an inverse mass ordering often turns out to be more involved than realising a normal one.

As discussed in 3.3, a promising approach for explaining an inverse mass ordering is to
consider a (mostly) off-diagonal mass matrix MR for two of the right-handed neutrinos,
e.g.

MR = M̂R

(
ε 1
1 0

)
, (8.3)

so that the two right-handed neutrinos form a (quasi-)Dirac pair with (almost) degenerate
Majorana masses. The small entry ε in the 1-1 position of MR lifts the degeneracy of the
right-handed neutrino masses and is in turn also responsible for the small mass splitting
between the light neutrino masses m1 and m2, as seen below. With a neutrino Yukawa
coupling matrix given by (3.44)

Yν =

a 0
0 b
0 c

 , (8.4)

the seesaw formula (3.7) yields the light neutrino mass matrix

mν =

 0 B C
B 0 0
C 0 0

+ α

0 0 0
0 B C
0 C C2/B

 , (8.5)

with

B ≡ −b a v
2
u

2M̂R

, C ≡ −c a v
2
u

2M̂R

, and α ≡ −ε b
a
. (8.6)

The first part leads to two light neutrinos ν1, ν2 with exactly degenerate masses [173], while
the second part can be considered as a small perturbation which induces the solar mass
splitting ∆m2

12. Here we consider only two right-handed neutrinos, thus the mass of the
lightest neutrino is zero, m3 = 0, and our model features a strong inverse neutrino mass
hierarchy, although strictly speaking the hierarchy is only between m3 and m1 ≈ m2.

Implementation in flavour models: In order to construct a flavour model which re-
alises an inverse neutrino mass hierarchy, we thus need to have the columns of the neutrino
Yukawa matrix (8.4) be generated by vevs of flavon fields, which are triplets under a non-
Abelian discrete flavour symmetry group like A4. Additionally, the right-handed neutrinos
need to be charged under the model’s shaping symmetry such that the desired mass matrix
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(8.5) is obtained. In 8.3 we present an alignment superpotential which enforces flavon fields
to obtain vevs pointing in the specific directionsa0

0

 and

0
b
c

 (8.7)

in flavour space.

Mixing angles and the Dirac CP phase: One can calculate the non-vanishing neu-
trino masses mi and the mixing angles θνij in leading order in α

−∆m2
32 = m2

2 ≈ B2 + C2 , (8.8a)

∆m2
21 = m2

2 −m2
1 ≈ 2α

(B2 + C2)3/2

|B| , (8.8b)

tan θν12 ≈
∣∣∣∣∣1− α

2

√
B2 + C2

|B|

∣∣∣∣∣ ≈
∣∣∣∣1 +

1

4

∆m2
sol

∆m2
atm

∣∣∣∣ , (8.8c)

tan θν23 =

∣∣∣∣CB
∣∣∣∣ , (8.8d)

θν13 = 0 , (8.8e)

where all parameters were assumed to be real. The small mass splitting between ν1 and
ν2 thus directly results from the correction α, whose smallness can be naturally explained
as being due to a higher-dimensional operator, such that no unnatural cancellation of a
priori unrelated parameters is necessary.

Looking at the neutrino mixing angles, we find that θν23 is a free parameter. On the other
hand, the deviation from tan θν12 = 1 is smaller than 10−2, which amounts to a negligibly
small deviation from maximal θν12 = 45◦, and the 1-3 mixing in the neutrino sector is
fixed to zero. Thus, it is in accordance with condition 1 of chapter 6 and it opens up
the possibility to explain θPMNS

13 ≈ θC sin θPMNS
23 via charged lepton corrections and suitable

CG factors in GUTs. As discussed in 6.5, via the lepton mixing sum rule (6.47) maximal
θν12 and the observed value of θPMNS

12 require a Dirac CP phase of δPMNS = 180◦. Note
that all necessary assumptions of chapter 6 like θe13 ≈ θe23 ≈ 0, and a Dirac CP phase of
δPMNS = 180◦ will be built-in features of our model, as we discuss in the following section.

8.2 The model

As in the previous chapter, we embed the three families of the MSSM matter superfields
Dc
i and Li into one A4 triplet F , transforming as 5 of SU(5), and the remaining matter

superfields into three A4-invariant singlets Ti, one for each family, which transform as 10
under SU(5). We introduce two right-handed neutrinos N c

1 and N c
2 as singlets under SU(5)
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and A4. Spontaneous breaking of electroweak symmetry is due to the usual Higgs fields H5

and H̄5, and newly introduced Higgs fields H45 and H̄45. The Higgs field H̄45, transforming
as 45 under SU(5), is necessary to obtain the CG factor −1

2
. Finally there is the GUT

breaking Higgs field H24, transforming as 24 under SU(5), in the model1.
We now discuss the desired Yukawa matrices of our model, which emerge after SU(5)

gets spontaneously broken. The rows respectively columns of the Yukawa matrices are
formed by specific vevs of flavon fields, which we present in table 8.1. There are five
flavon superfields φi transforming as triplet under A4 and three A4-invariant singlets ξi.
The symbol Λ is again to be understood as placeholder for suppression by messenger

flavon ϕi: φ1 φ2 φ3 φab φbc ξ12 ξ23 ξM

〈ϕi〉
Λ

: ε1

1
0
0

 ε2

 0
−i
0

 ε3

0
0
1

 εab

cabsab
0

 εbc

 0
cbc
sbc

 ε12 ε23 εM

Table 8.1: The vevs of the flavon fields. The εi are all assumed to be real numbers. The
flavon alignment yielding this specific directions in flavour space is discussed in the next
section. We abbreviated cab ≡ cos(θab) and sab ≡ sin(θab) and analogously for θbc.

mass scales, keeping in mind that in fact each effective operator is in general suppressed
by different messenger masses, as can be seen from the supergraphs in appedix D. As
discussed in the next section, the parameters εi are all real.

The effective superpotential for the matter sector is given by

W =WYν +WMR
+WYd +WYu , (8.9)

with

WYν = (H5F) (N c
1φ1 +N c

2φbc) , (8.10a)

WMR
= ξ4

M

(
N c

1N
c
2 + φ2

bc (N c
1)2) , (8.10b)

WYd =
[
T1H̄45

]
45

[FH24]45 φ2 + [T2H24]10

[
FH̄5

]
10
φab +

[
T3H̄5

]
5

[FH24]5̄ φ3 , (8.10c)

WYu = H5

(
T 2

3 + T 2
2 φ

2
ab + T 2

1

(
φ2

2

)2
+ T2T3ξ23 + T1T2ξ

5
12

)
, (8.10d)

where again we omitted real order one coefficients and messenger mass scales Λ for the
sake of brevity. After GUT- and flavour symmetry breaking the desired neutrino Yukawa
matrix and right-handed neutrino mass matrix, which, as discussed above, lead to a strong
inverse neutrino mass hierarchy in a natural way, are obtained from WYν and WMR

. The

parameters M̂R and ε in (8.5) are then given in terms of εbc and εM . Finally, the Yukawa

1Again we note, that we restrict our discussion to the matter and flavon sector, whereas the details
of the (GUT) Higgs superpotential are beyond the scope of this flavour model. This question will be
discussed in chapter 9.



94 8. A SUSY flavour GUT model with inverse neutrino mass ordering

matrices of the quarks and charged leptons are given by

Yd =

 0 −iε̃2 0
ε̃abcab ε̃absab 0

0 0 ε̃3

 , Ye =

 0 6ε̃abcab 0
i1

2
ε̃2 6ε̃absab 0

0 0 −3
2
ε̃3

 , Yu =

 ε42 ε512 0
ε512 ε2ab ε23

0 ε23 yt

 ,

(8.11)
where we defined

ε̃i ≡
〈H24〉

Λ
εi (8.12)

for convenience. Note that Yd and Yu fulfil the necessary conditions θu13, θ
d
13 ≈ 0 for the

quark mixing and phase sum rule, respectively, such that θd12 ≈ θC and a right-angled quark
unitarity triangle is obtained.

As discussed in 7.1, in order to construct a viable and predictive flavour GUT model,
it is necessary to identify a shaping symmetry and a set of messenger fields, that, when
integrated out, gives rise to the effective superpotential (8.10). Specifically, no effective
operators must exist which spoil the features of our Yukawa matrices, e.g. by generating
unwanted CG factors or relevant corrections to the desired structure of the Yukawa ma-
trices (8.4), (8.11), and of the right-handed neutrino mass matrix (8.5). In appendix D
we therefore present the model’s shaping symmetry and messenger fields, and explicitly
construct the renormalisable superpotential which yields (8.10) after the messenger fields
are integrated out. With this messenger sector at hand, sub-leading corrections from e.g.
higher-dimensional operators or from canonical normalisation can be neglected.

8.3 Flavon alignment

In this section we present the flavon alignment superpotential, which enforces the flavon
vevs into the specific directions in flavour space shown in table 8.1. We introduce the
driving fields Si, Di, Oi, and O′i, which are all singlets under SU(5) and – with the exception
of O′i, which transform as 1′ under A4 – invariant singlets 1 under A4. In appendix D, all
flavon and driving superfields are listed in the lower part of table D.3, together with their
charges under the imposed symmetries. The effective flavon alignment superpotential is
given by

Wflavon =Wφi +Wab +Wbc +WM +W12 , (8.13)

where

Wφi = S2

((
φ2

2

)3
+M2

2

)
+
∑
i∈{1,3}

Si
(
φ2
i −M2

i

)
+

3∑
i,j=1
j>i

(
O′i;j(φiφj)1′′ +Oi;j(φiφj)

)
,

(8.14a)

Wab = Sab
(
(φab ? φab)

2 ξ2
23 −M2

ab

)
+Dα

ab

(
φ2
ab + λabξ

2
23

)
+Dβ

ab (φab ? φab)φab +Dγ
ab

((
φ2
ab

)
1′

(
φ2
ab

)
1′′

+ kab (φab ? φab)
2) , (8.14b)
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Wbc = Sbc
(
(φbc ? φbc)

2 φ2
bc −M2

bc

)
+Dβ

bc (φbc ? φbc)φbc

+Dγ
bc

((
φ2
bc

)
1′

(
φ2
bc

)
1′′

+ kbc (φbc ? φbc)
2) , (8.14c)

WM = SM
(
ξ6
M −M2

M

)
, (8.14d)

W12 = S12

(
ξ6

12 −M2
12

)
. (8.14e)

Since CP symmetry is assumed to be broken only spontaneously, the constants ki and Mi

are real. In addition we assume M2
i > 0 everywhere. The terms W12 and WM lead to vevs

with discrete phases as discussed in 7.3, of which we select the real phases. The alignment
superpotentialWab is the same as in chapter 7, i.e. the term containing Sab determines the
magnitude and a discrete global phase of the product of φab and ξ23, whereas the individual
magnitudes are fixed by the F -term of Dα

ab. The term with the driving superfield Dβ
ab sets

one of the components of 〈φab〉 to zero and the relative magnitude or the relative phase
is finally enforced as in (7.25) by the value of kab. Similarly, replacing a, b → b, c and
kab → kbc, respectively, the vev of the flavon superfield φbc, which appears in the neutrino
Yukawa matrix (8.4), is obtained. Let us now discuss the remaining flavon vevs in detail.

Wφi: Let us denote the components of φi with x1, x2, and x3, and the components of φj
with y1, y2, and y3. The F -term equations corresponding to Oi;j and O′i;j then take the
form

x1y1 + x2y2 + x3y3 = 0 , (8.15a)

and

x1y1 + ωx2y2 + ω2x3y3 = 0 , (8.15b)

respectively, where for each pair Oi;j and O′i;j there is one such system of equations. There
are two classes of solutions to the system (8.15), namely

x1y1 = x2y2 = x3y3 = 0 , (8.16a)

and

x1y1 = γ , x2y2 = ω γ , x3y3 = ω2 γ , (8.16b)

where γ is a complex constant γ 6= 0. There is no consistent solution for φ1, φ2, and φ3 that
satisfies (8.16a) for one pair Oi;j and O′i;j and (8.16b) for another pair. The only solutions
to all three equation pairs are thus either all of type (8.16a) or all of type (8.16b). They
are given by

φ1 ∝

1
0
0

 , φ2 ∝

0
1
0

 , φ3 ∝

0
0
1

 , (8.17a)
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or permutations thereof, and

φi ∝

 1√
ω
ω

 , for i = 1, 2, 3 . (8.17b)

Which solution is realised depends on the terms containing the driving superfields Si. Since
for solution (8.17b) the invariant φ2

i vanishes for all φi, in our superpotential (8.14a) only
solution (8.17a) is generated. Again, their phases take on discrete values and we select an
imaginary vev for φ2 and real vevs for φ1 and φ3, as shown in table 8.1.

8.4 Phenomenology

We now turn to a discussion of the model’s phenomenology. There are 14 free parameters:
ε̃2, ε̃3, ε̃ab, θab, ηQ12 , and ηQ3 parametrise the Yukawa matrices Yd and Ye. The parameters
yt, εab, ε2, ε12, and ε23 enter Yu, where, since εab and ε2 do only appear at quadratic and
quartic order, respectively, we restrict them to positive values. As shown in (8.5), the
effective mass matrix of the light neutrinos depends only on three parameters after the
heavy right-handed neutrinos are integrated out. It is thus possible to fix two out of the
five parameters in the neutrino sector: While we use ε1, εbc, and θbc to fit the GUT scale
Yukawa neutrino matrix Yν , we set the parameters of MR to M̂R = 2 · 1010 GeV and
ε = 10−2. Again, for neutrino Yukawa couplings much smaller than one, which implies
that Yν is irrelevant in the RGEs, our choice of MR does not affect the fit. The neutrino
sector is therefore given by

Yν =

ε1 0
0 εbc cos θbc
0 εbc sin θbc

 , MR = 2 · 1010 GeV ·
(

10−2 1
1 0

)
. (8.18)

We follow the same numerical procedure as described in 7.4.1 and again set tan β = 40
due to the need of tan β-enhanced SUSY threshold corrections in order for the models’s
CG factors to be viable. Once again the SUSY threshold corrections at MSUSY = 1 TeV
are included by the approximate matching relations (7.26) as model parameters assuming
degenerate first and second family sfermion masses.

Analogous to our model in chapter 7, we here report our results from [3], where we used
2013 data [167–169] for the experimental values at the low energy scale mt(mt). We will
discuss our results in the light of newly available data at the end of the chapter.

Note that with a strong inverse neutrino mass hierarchy and massless ν3, the single
physical Majorana phase predicted by our model is given by

φPMNS = φPMNS
2 − φPMNS

1 . (8.19)

With the prediction of the Dirac CP phase δPMNS and from fitting 14 parameters to 18
measured observables, it follows that our model makes six predictions.
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8.4.1 Results

We find a best fit point with a total χ2 = 4.6. The reduced χ2 is thus χ2/d.o.f. = 1.1.
Compared to χ2/d.o.f. = 2.0 in the fit of the normal hierarchy model of chapter 7, we
thus obtain an even better agreement with the measured observables. In table 8.2 we
present the best fit values of our parameters, together with uncertainties obtained as one
sigma hpd intervals from a MCMC analysis using a Metropolis algorithm. Note that again
we enforce a prior on the SUSY threshold correction parameters to restrict their absolute
values |ηi| < 0.5, justified by the typical size of SUSY threshold corrections in common
SUSY breaking scenarios.

Parameter Best fit value Uncertainty

ε̃2 in 10−4 6.71 +0.08
−0.07

ε̃3 in 10−1 2.23 ±0.03

ε̃ab in 10−3 3.03 ±0.03

θab 1.314 +0.004
−0.003

ηQ12 in 10−1 3.36 +1.35
−2.50

ηQ3 in 10−1 1.64 +0.44
−0.37

ε2 in 10−2

{
5.22

6.04

{
+0.34
−0.37
+0.18
−0.23

εab in 10−2 4.45 +0.53
−0.18

ε12 in 10−1 −1.64 +0.05
−0.04

ε23 in 10−2 1.76 +0.49
−0.16

yt in 10−1 5.30 +0.35
−0.27

ε1 in 10−3 3.21 +0.11
−0.09

εbc in 10−3 −5.12 +0.11
−0.15

θbc 0.71 ±0.02

Table 8.2: Best fit results of the model’s parameters with χ2/d.o.f. = 1.1. The uncertain-
ties are given as one sigma hpd intervals. Again, the two modes for ε2 can be understood

as the two solutions of the (leading order) equation yu ≈
∣∣∣∣Yu11 −

Y 2
u12
Yu22

∣∣∣∣, where Yu11 = ε42.

In tables 8.3 and 8.4 the best fit values of the observables at mt(mt) are shown.
Correlations among the lepton mixing angles in the MCMC analysis are shown in fig-
ure 8.1. Like in 7.4.2, they can be understood in terms of the lepton mixing sum rule
θPMNS

12 ≈ θν12 + θPMNS
13 cot θPMNS

23 cos δPMNS and θPMNS
13 ≈ θC sin θPMNS

23 . The noticeable differ-
ence in the shape of figures 7.1c and 8.1c is due to the different values of δPMNS. Whereas
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cos δPMNS almost vanishes in 7.4.2, leading to θPMNS
12 given almost exclusively in terms of

θν12, the value of δPMNS = 180◦ in the inverse hierarchy model maximises the contribution
of θPMNS

23 to θPMNS
12 , leading to a large deviation of θPMNS

12 from θν23 = 45◦ and explaining the
larger hpd regions in figure 8.1c.
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Figure 8.1: Correlations among the lepton mixing angles. The black star marks the best
fit value. The blue and golden regions give the one sigma and three sigma hpd regions
obtained from the MCMC analysis, respectively. The dashed grey lines indicate the one
sigma intervals for the measured observables.

As for the normal hierarchy model in chapter 7, we obtain an excellent prediction for

ms

md

= 18.55+0.26
−0.24 , (8.20)

due to the specific CG factors in our model.
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Observable Value at mt(mt) Best fit result Uncertainty

mu in MeV 1.22 +0.48
−0.40 1.22 +0.50

−0.39

mc in GeV 0.59 ±0.08 0.59 +0.07
−0.09

mt in GeV 162.9 ±2.8 162.91 +3.35
−2.44

md in MeV 2.76 +1.19
−1.14 2.73 +0.25

−0.54

ms in MeV 52 ±15 50.70 +4.86
−9.72

mb in GeV 2.75 ±0.09 2.75 ±0.09

me in MeV 0.485 ±1% 0.483 ±0.005

mµ in MeV 102.46 ±1% 102.87 +1.04
−0.91

mτ in MeV 1742 ±1% 1741.99 +16.84
−17.70

sin θC 0.2254 ±0.0007 0.2255 ±0.0007

sin θCKM
23 0.0421 ±0.0006 0.0421 ±0.0006

sin θCKM
13 0.0036 ±0.0001 0.0036 ±0.0001

δCKM in ◦ 69.2 ±3.1 69.27 +0.91
−0.69

sin2 θPMNS
12 0.306 ±0.012 0.303 ±0.005

sin2 θPMNS
23 0.437 +0.061

−0.031 0.397 +0.023
−0.022

sin2 θPMNS
13 0.0231 +0.0023

−0.0022 0.0267 +0.0016
−0.0015

δPMNS in ◦ - 180 -

ϕPMNS in ◦ - 180 -

∆m2
12 in 10−5 eV2 7.45 +0.19

−0.16 7.45 +0.18
−0.17

∆m2
32 in 10−3 eV2 −2.410 +0.062

−0.063 −2.410 +0.062
−0.064

Table 8.3: Experimental values, best fit results, and uncertainties of the observables at
mt(mt). We give one sigma highest posterior density intervals as uncertainty. δPMNS and
ϕPMNS are exactly 180◦, since Yν is real and the phase of Ye21 can be absorbed by the right-
handed electron field. Note that although the masses of the charged leptons are known far
more precise than listed here, we set an 1% uncertainty for the experimental values, which
is roughly the accuracy of the one loop calculation used here.

The sign of the larger neutrino mass splitting ∆m2
3i will be in the focus of the next

round of neutrino oscillation experiments and will allow to distinguish between inverse and
normal neutrino mass ordering. Furthermore, neutrino-less double beta decay experiments
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Observable Value at mt(mt) Best fit result Uncertainty

θPMNS
12 in ◦ 33.57 +0.77

−0.75 33.38 +0.30
−0.28

θPMNS
23 in ◦ 41.4 +3.5

−1.8 39.06 +1.33
−1.32

θPMNS
13 in ◦ 8.75 +0.42

−0.44 9.41 +0.28
−0.27

Table 8.4: Experimental values [169] and best fit results for the lepton mixing angles at
mt(mt), given here in degree for convenience.

will soon be able to test predictions from inverse neutrino mass ordering models. Our
model predicts an effective Majorana mass parameter (3.38) of

〈mββ〉 =

∣∣∣∣(V PMNS
e1

)2
√
−∆m2

32 −∆m2
21 +

(
V PMNS
e2

)2
√
−∆m2

32

∣∣∣∣
=
(
1.83+0.05

−0.06

)
· 10−2 eV . (8.21)

This is in reach of future experiments, such as nEXO (see e.g. [176]) and AMoRE [177].

8.4.2 Discussion

In the following we turn to a detailed discussion of the fit results of our model, including
comments regarding the more recent data for lepton mixing angles [62].

• Our model predicts the PMNS phases of

δPMNS = 180◦ and ϕPMNS = 180◦ . (8.22)

Since Yν is real and the phase of the 2-1 element of Ye can be absorbed by the right-handed
electron field Ec

1, the PMNS phases are fixed at the GUT scale and do not evolve under
the RGEs. Our model’s best fit value for the Dirac CP phases is marginally outside the
one sigma interval of the recently reported hints towards δPMNS = 254◦ +63◦

−62◦ from global
fits assuming a inverse neutrino mass ordering (3.37). A future precise measurement of
δPMNS could decide whether our model agrees with the data or not.

• As for the normal hierarchy model in chapter 7, our inverse mass hierarchy model also
features a best fit value θPMNS

13 = 9.41◦+0.28◦

−0.27◦ slightly larger than the reported experimental
value in [169], and a best fit value θPMNS

23 = 39.06◦+1.33◦

−1.32◦ slightly smaller than reported
in [169]. Both best fit points are within their respective two sigma intervals, however.

In the light of the recent global fit [62], the most drastic difference lies in the reported
value for θPMNS

23 , which, when an inverse neutrino mass ordering is assumed as prior,
lies in the second octant θPMNS

23 = 49.5◦ +1.5◦

−2.2◦ , whereas the 2013 data [169] reported
a best fit point in the first octant for both, normal and inverse mass orderings. If
future measurements of θPMNS

23 would confirm a value larger than 45◦, it effectively would
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refute the relation θPMNS
13 ≈ θC sin θPMNS

23 , especially since in the case of an inverse mass
hierarchy this relation is highly insensitive to corrections from RG running or canonical
normalisation, as discussed in 6.4. Large corrections would be necessary however, to
cure the bad contribution of sin θPMNS

23 > 1√
2
.

Let us remark at this point, that precise measurements of θPMNS
23 are still work in progress,

e.g. by the NOνA collaboration, which reports an one sigma interval of [38.6◦, 53.7◦]
[151]. The subject whether θPMNS

23 lies in the first or second octant therefore remains an
important open question and in the future global fits might report θPMNS

23 < 45◦ again.

Future improvements on the determination of θPMNS
23 and θPMNS

13 thus have the capability
to falsify our model, or to strengthen the relation θPMNS

13 ≈ θC sin θPMNS
23 with higher

precision.

• Finally, our model finds a best fit point θPMNS
12 = 33.38◦+0.30◦

−0.28◦ , which lies within the one
sigma range of the experimental values as reported in the 2013 [169] and 2015 data [62].

8.4.3 Phenomenological differences to the model of chapter 7

Let us close this chapter by discussing the differences between the SUSY flavour GUT
models of [2] presented in chapter 7 and the model of [3] discussed in this chapter. There
are five major differences between these models, summarised in table 8.5.

NH IH

∆m2
3i 2.421+0.022

−0.023 · 10−3 eV2 −2.410+0.062
−0.064 · 10−3 eV2

〈mββ〉 2.31+0.12
−0.09 · 10−3 eV 1.83+0.05

−0.06 · 10−2 eV

δPMNS 268.79◦+1.32◦

−1.72◦ 180◦

θPMNS
12 34.29◦+0.35◦

−0.39◦ 33.38◦+0.30◦

−0.28◦

δCKM 65.65◦+1.78◦

−0.53◦ 69.27◦+0.91◦

−0.69◦

Table 8.5: Major differences in the best fit results between the two SUSY flavour GUT
models of [2] (NH) and [3] (IH).

The sign of the larger neutrino mass splitting ∆m2
32 (IH) respectively ∆m2

31 (NH) is
the defining characteristic of normal vs inverse hierarchy models. Its measurement is in
the focus of upcoming long baseline neutrino experiments, e.g. at DUNE [69]. Similarly,
the different magnitudes of the effective Majorana mass 〈mββ〉 for neutrinoless double beta
decay are a typical distinction between normal and inverse neutrino mass ordering.

The observed large value of θPMNS
13 opens up the possibility of measuring the Dirac CP

phase δPMNS in long-baseline neutrino oscillation experiments. Therefore our two SUSY
flavour GUT models models can also clearly be distinguished via their respective predic-
tions of δPMNS, whose measurement is also a scientific goal of the DUNE experiment [69].
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The lepton mixing angles in both models share the same characteristic correlations and
the differences between the best fit values turn out to be less than one degree. Since future
more precise measurements of θPMNS

13 and θPMNS
23 will support or disprove our models in

equal measure, they are not expected to distinguish our two models. A future 50 − 70
km baseline reactor experiment though could measure θPMNS

12 with high precision [178],
allowing to discriminate between the respective predictions of θPMNS

12 in the normal and
inverse mass ordering models. Note however that the fit results for θPMNS

12 depend on the
experimental ranges for θPMNS

13 and θPMNS
23 via the lepton mixing sum rule.

Finally let us note the remarkable fact that our models, although mainly distinct by their
neutrino sector, can furthermore be distinguished in the quark sector by their predictions
for the CKM phase.



PART IV

Doublet-Triplet splitting in SUSY
Flavour GUT models



CHAPTER 9

Towards predictive SUSY flavour SU(5)
models with doublet-triplet splitting

Grand Unified Theories offer an attractive framework for flavour models, since they link
the quark and lepton sectors of the MSSM. As discussed in chapters 4 and 5, they however
also feature potentially wrong predictions for proton decay. In the previous chapters we
presented two predictive SUSY flavour SU(5) GUT models, which successfully explain
the observed hierarchies of fermion masses and mixing angles. But in addition to correct
predictions for the flavour observables, a complete SUSY flavour GUT model also has to
include a viable mechanism for GUT symmetry breaking, including sufficient suppression
of proton decay without unacceptably large fine-tuning.

In this chapter we present our results of [4] and introduce a novel version of the double
missing partner mechanism (DMPM) solution to the doublet-triplet splitting problem,
which can be combined with predictive models for the GUT scale quark-lepton Yukawa
coupling ratios. Two explicit flavour models with different GUT scale predictions are
presented, including shaping symmetries and renormalisable messenger sectors.

9.1 The missing partner and double missing partner

mechanisms

Since we are considering SUSY SU(5) GUTs, the GUT scale of about 1016 GeV is large
enough to sufficiently suppress proton decay from dimension six GUT operators, as dis-
cussed in 5.5. There we also discussed the doublet-triplet splitting problem arising from
requiring sufficiently heavy Higgs colour triplets T (5) and T̄ (5), which mediate dimension
five proton decay, whereas the MSSM Higgs doublets have to remain light.

In SU(5) GUTs, one proposed solution to the DTS problem is the missing partner
mechanism (MPM) [144] or its improved version, the double missing partner mechanism
(DMPM) [179], which we will review briefly below.1 These solutions have been applied in

1In theories of extra dimensions, another solution exists, see e.g. [180].
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GUT models, but they either predict the unrealistic quark-lepton Yukawa relation Ye = Y T
d

(e.g. [181]), the experimentally disfavoured combination of the Georgi-Jarlskog relations
(4.28) (as e.g. in [182]), or they rely on linear combinations of GUT Yukawa operators
(e.g. [183]), which again implies the loss of predictivity.

On the other hand, there exists a large number of GUT models which focus on the
flavour sector, but do not include the (GUT) Higgs potential. It is therefore an interesting
question to ask how the DTS problem can be resolved in predictive SUSY flavour GUT
models, given the present rather precise experimental data on the fermion masses and
mixing angles.

As successfully constructed in our two SUYS flavour GUT models of the previous chap-
ters, we employ new Clebsch-Gordan factors emerging from higher-dimensional operators
containing a GUT breaking Higgs field in the adjoint representation, to arrive at experi-
mentally favoured GUT scale Yukawa coupling ratios. In this chapter we present how this
approach can be combined with a novel DMPM version for solving the DTS problem.

Let us now review the missing partner mechanisms. Note that throughout this section,
for illustrative purposes, we consider that the bounds on proton decay rates require the
effective mass of the colour triplets (5.87) to be of at least Mdim=5

T ≈ 1017 GeV [82, 143],
while the effective mass suppressing dimension six proton decay mediated by the colour
triplets (4.33) is required to be Mdim=6

T & 1012 GeV [82].

9.1.1 The missing partner mechanism

The basic idea of the MPM is the introduction of two new superfields Z50 and Z̄50 in 50
and 50 representations of SU(5). The decomposition of 50 under the SM gauge group is
given by

50 = (1,1)−2 + (3,1)− 1
3

+ (3̄,2)− 7
6

+ (6,1) 4
3

+ (6̄,3)− 1
3

+ (8,2) 1
2
, (9.1)

which does not contain an SU(2)L doublet, but it includes an SU(3)C triplet. Thus, using
the 50s as messenger fields to generate an effective mass term for H5 and H̄5 keeps the
electroweak doublets massless, while the colour triplets acquire masses of the order of the
GUT scale.

Note that 50 is not in the SU(5) tensor product

24× 5 = 5 + 45 + 70 . (9.2)

Thus, instead of 24, the MPM contains a GUT breaking Higgs field H75 transforming as
75 of SU(5) [184,185], since

75× 5 = 45 + 50 + 280 . (9.3)

The superpotential for the MPM is given by2

WMPM = H̄5H75Z50 + Z̄50H75H5 +M50Z50Z̄50 . (9.4)

2For readability we omit SU(5) indices and most order one coefficients in the superpotentials, except
where they are relevant to the discussion.
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Note that, because of
75 ⊂ 24× 24 , (9.5)

H75 can be replaced by the effective combination
H2

24

Λ
in non-renormalisable theories, where

Λ denotes a general mass suppression [181], see also 9.2.2.
With the triplet mass contribution from 〈H75〉 denoted by V , the mass matrices of the

Higgs fields H5, H̄5 and Z50, Z̄50 are given by

mD = 0 , mT =

(
0 V
V M50

)
, (9.6)

for the doublet and triplet components D and T of H5 and Z50, respectively. The dangerous
terms for dimension five proton decay are obtained from the Yukawa couplings (5.83)

WYuk = TiFjH̄5 + TiTjH5 . (9.7)

To calculate the effective dimension five proton decay operators, all Higgs triplets from
all 5, 50, and their respective conjugate representations have to be integrated out, but
only the triplets in H5 and H̄5 couple to matter. We denote the triplet mass eigenvalues
with M̃1 and M̃2, and the corresponding mass eigenstates as T̃1 and T̃2, respectively. The
triplets that couple to matter are given by the combinations

T (5) =
∑
i

U∗1iT̃i , T̄ (5) =
∑
i

V1i
¯̃Ti , (9.8)

where U and V are unitary matrices defined by mT = Umdiag
T V †. Integrating out the

triplet mass eigenstates T̃i leads to the effective dimension five operator for proton decay,
which is proportional to the inverse of the effective triplet mass

(Mdim=5
T )−1 ≡ U∗1i

(
mdiag
T

)−1

ij
V1j = U∗1i

(
mdiag
T

)−1

ij
V T
j1 = (m−1

T )11 . (9.9)

The Kähler potential for the MPM triplet superfields is given by

KT = T (5)T (5)∗ + T̄ (5)T̄ (5)∗ + T (50)T (50)∗ + T̄ (50)T̄ (50)∗ . (9.10)

When the heavy colour triplet mass eigenstates are also integrated out in KT , effective
dimension six Kähler operators emerge from inserting their equations of motion. Then
the Lagrange density obtained from the D-term of the effective Kähler potential contains
baryon number violating four fermion operators, proportional to(

Mdim=6
T

)−2 ≡ V1i

(
mdiag
T

)−1

ij
U †jkUkm

(
mdiag
T

)−1

ml
V †l1 =

(
m−1
T m†−1

T

)
11

(9.11)

from T (r)T (r)∗ and to(
Mdim=6

T̄

)−2 ≡
(
m†−1
T m−1

T

)
11

(9.12)
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from T̄ (r)T̄ (r)∗. With the mass matrix mT given in (9.6), the effective triplet mass is thus3

Mdim=5
T =

(
m−1
T

)−1

11
= − V 2

M50

, (9.13)

while the suppression of dimension six proton decay is given by(
Mdim=6

T

)2
=
(
Mdim=6

T̄

)2
=
(
m−1
T m†−1

T

)−1

11
=

|V |4

|M50|2 + |V |2
. (9.14)

Note that with a GUT scale value of V ≈ 1016 GeV and M50 below the Planck scale,
the dimension six proton decay is suppressed sufficiently with values of Mdim=6

T between
1013 and 1016 GeV.

The splitting between doublet and triplet masses is achieved since the doublets obtain
no mass term. Using Mdim=5

T & 1017 GeV one obtains an upper bound for M50 . 1015 GeV.
Having the large representations 50 and 50 enter the RGEs at such a low energy scale,
however, leads to the breakdown of perturbativity just above the GUT scale. Thus, the
MPM solves the DTS problem – but trades it for SU(5) becoming non-perturbative much
below the Planck scale Mpl.

9.1.2 The double missing partner mechanism

This trade-off can be avoided in the DMPM, where the number of Higgs fields in 5, 5̄,
50, and 50 representations gets doubled [179]. The fields H5 and H̄5 couple to the matter
fields Fi and Ti, whereas H ′5 and H̄ ′5 do not. The superpotential for the DMPM is given
by

WDMPM = H̄5H75Z50 + Z̄50H75H
′
5 + H̄ ′5H75Z

′
50 + Z̄ ′50H75H5

+M50Z50Z̄50 +M ′
50Z

′
50Z̄

′
50 + µ′H ′5H̄

′
5 . (9.15)

The mass matrices of the doublet and triplet components of the Higgs fields H5, H ′5, Z50,
Z ′50 and their corresponding conjugated fields after H75 gets a vev V are given by

mD =

(
0 0
0 µ′

)
, mT =


0 0 0 V
0 µ′ V 0
V 0 M50 0
0 V 0 M ′

50

 . (9.16)

While the Higgs doublets coupling to matter remain massless, the second pair of Higgs
doublets contained in H ′5 and H̄ ′5 has mass µ′. The improvement of the DMPM compared
to the MPM can be seen from the effective triplet mass

Mdim=5
T =

(
m−1
T

)−1

11
= − V 4

µ′M50M ′
50

. (9.17)

3In the text when we quote numbers for Mdim=5
T , Mdim=6

T , and Mdim=6
T̄

we will always refer to their
absolute values.
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The same effective triplet mass of Mdim=5
T ≈ 1017 GeV can now be obtained while keeping

high masses M50 ≈ M ′
50 ≈ 1018 GeV, provided the heavier doublet pair has a (relatively)

small mass µ′ ≈ 1011 GeV. With the large representations of SU(5) having large masses,
the perturbativity of the model can be preserved up to (almost) the Planck scale.

Dimension six proton decay is suppressed by

(
Mdim=6

T

)2
=
(
m−1
T m†−1

T

)−1

11
=

|V |8

|V |6 + |M50|2
(
|V |4 + |M ′

50µ
′|2 + |V µ′|2

) ≈ (1014 GeV)2 ,

(9.18)(
Mdim=6

T̄

)2
=
(
m†−1
T m−1

T

)−1

11
=

|V |8

|V |6 + |M ′
50|2

(
|V |4 + |M50µ′|2 + |V µ′|2

) ≈ (1014 GeV)2 ,

(9.19)

in agreement with the bounds on proton decay.

9.2 Combining predictive flavour GUT models and

DMPM

We saw that the DMPM can solve the DTS problem while preserving perturbativity. In
order to construct SUSY flavour GUT models with viable GUT scale predictions for the
quark - lepton Yukawa coupling ratios, we want to combine the DMPM with the novel CG
factors of 4.4, which require the GUT breaking Higgs field to be in the adjoint represen-
tation of SU(5), 24. Thus we will want to replace the Higgs field H75 with the effective

combination
H2

24

Λ
[181].

On the other hand, we must require renormalisability, since otherwise the predictability
for unique SU(5) index contractions yielding specific CG factors would be lost. Analogously
to the previous chapters, we now introduce a shaping symmetry and heavy messenger fields,
to construct a renormalisable DMPM with an adjoint and forbid dangerous Planck scale
suppressed operators.

9.2.1 Planck scale suppressed operators

In the last chapters we carefully constructed the messenger sectors of the SUSY flavour
GUT models and thoroughly checked that that the shaping symmetries forbid dangerous
Planck scale suppressed effective operators.

The superpotentials (9.4) and (9.15) include mass terms for the 50 messengers. Thus,
there are no symmetries to forbid non-renormalisable Planck scale suppressed operators
such as

1

Mpl

H5H
2
75H̄5 (9.20)



9.2 Combining predictive flavour GUT models and DMPM 109

for the MPM, and
1

Mpl

H5H
2
75H̄

′
5 and

1

Mpl

H ′5H
2
75H̄5 (9.21)

for the DMPM. These Planck scale suppressed effective operators do not involve the 50
messengers and therefore spoil the solution to the DTS problem by generating dangerously
large contributions to the masses of the doublets contained in the 5s.

Thus, in order to forbid these effective operators, a shaping symmetry has to be em-
ployed. The MPM and DMPM can then be restored by adding a singlet field S, which
obtains a non vanishing vev 〈S〉 6= 0 that yields mass terms to the 50s by couplings of the
form

SZ50Z̄50 and SZ ′50Z̄
′
50 , (9.22)

as shown in the diagram in figure 9.1. A non-trivial charge of S under a shaping symmetry

H̄5

H75

H5

H75

Z50 Z̄50

〈S〉

Figure 9.1: MPM supergraph where the mass term for the 50 messengers is given by the
vev 〈S〉. Note that S is generating the mass term and is not acting as an external field.

then forbids the dangerous Planck suppressed effective operators (9.20) and (9.21).
This strategy of generating masses for messenger fields through an additional singlet field

will be generalised in 9.2.2 and 9.4, to avoid similarly Planck scale suppressed operators
spoiling the DMPM solution or the predictions for the Yukawa coupling ratios.

9.2.2 The double missing partner mechanism with an adjoint

In order to replace H75 by an adjoint GUT breaking Higgs field H24, while keeping the

model renormalisable, the effective combination
H2

24

Λ
is generated by integrating out heavy

messenger fields in the 45 and 45 representations of SU(5) [183].
In the MPM, we have to introduce a set of messenger fields X45, X̄45, Y45, and Ȳ45.

For the DMPM, we also need to add a second set X ′45, X̄ ′45, Y ′45, and Ȳ ′45. In figure 9.2
we show the supergraphs generating the non-diagonal entries of the triplet mass matrix
in the DMPM with an adjoint H24. In analogy with the discussion in 9.2.1, we forbid
direct mass terms for the messenger pairs Z50Z̄50 and Z ′50Z̄

′
50 in order to avoid dangerous

Planck scale suppressed operators that would generate universal mass contributions for
both, Higgs doublets and triplets. Similarly, the messenger pairs X45X̄45, Y45Ȳ45, and their
corresponding primed versions also obtain masses from the vev of a singlet field S, which
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H̄5

H24

X45 X̄45

〈S〉 〈S〉 〈S〉
H ′

5

H24

H24H24

Z50 Z̄50 Y45 Ȳ45

H̄ ′
5

H24

X ′
45 X̄ ′

45

〈S〉 〈S〉 〈S〉
H5

H24

H24H24

Z ′
50 Z̄ ′

50 Y ′
45 Ȳ ′

45

Figure 9.2: Supergraphs generating the non-diagonal entries of the triplet mass matrix.

is charged under the shaping symmetry, since otherwise the symmetry would allow direct
mass terms

SX45Ȳ45 and SX ′45Ȳ
′

45 (9.23)

or non-renormalisable operators

1

Mpl

S2X45Ȳ45 and
1

Mpl

S2X ′45Ȳ
′

45 , (9.24)

which could replace the important 50 messengers in the supergraphs 9.2 and generate
universal mass terms for doublets and triplets. We will specify the shaping symmetries of
two example models in 9.4.

It is an interesting questions to ask whether some of these heavy 45s could be the same,
such that the number of fields in the spectrum would be reduced while the structure of
figure 9.2 would be preserved. But if either X45 ≡ Y45 or X ′45 ≡ Y ′45, it can be seen that the
Z50Z̄50 mass insertions could be removed, such that the splitting of doublets and triplets
would be spoiled and large non-diagonal entries in mD would be generated. Also, if either
X45 ≡ X ′45, Y45 ≡ Y ′45, or Z50 ≡ Z ′50, supergraphs with H5 and H̄5 as external fields
would be allowed, thereby reducing the DMPM to the MPM and reintroducing the issue of
perturbativity. Finally, an identification of X45 ≡ Y ′45 would allow diagrams bypassing the
50 messengers, generating unwanted mass term for both doublet and triplet components
of H5 and H̄5, and thus yielding a too large µ-term.

With this messenger superfield content, we carefully checked that no dangerous Planck
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suppressed operators spoil the DMPM. The renormalisable superpotential is given by

WDMPM24 = H̄5H24X45 + X̄45H24Z50 + Z̄50H24Y45 + Ȳ45H24H
′
5

+ H̄ ′5H24X
′
45 + X̄ ′45H24Z

′
50 + Z̄ ′50H24Y

′
45 + Ȳ ′45H24H5

+ SX45X̄45 + SY45Ȳ45 + SZ50Z̄50 + SX ′45X̄
′
45 + SY ′45Ȳ

′
45 + SZ ′50Z̄

′
50

+ µ′H ′5H̄
′
5 . (9.25)

After H24 and S obtain their vevs and integrating out the 45 messenger fields, the mass
matrices for the Higgs doublets and triplets are given by

mD =

(
0 0
0 µ′

)
, mT =


0 0 0 − V 2

〈S〉
0 µ′ − V 2

〈S〉 0

− V 2

〈S〉 0 〈S〉 0

0 − V 2

〈S〉 0 〈S〉

 , (9.26)

where 〈H24〉 is given by (4.13)

〈H24〉 = V diag

(
1, 1, 1,−3

2
,−3

2

)
. (9.27)

Note the similarity between the mass matrices of (9.16) and (9.26). Integrating out the
heavy 50 fields in a next step, the mass matrices become

mD =

(
0 0
0 µ′

)
, mT =

(
0 − V 4

〈S〉3

− V 4

〈S〉3 µ′

)
. (9.28)

Thus, the doublets in the pair H5H̄5 remain massless, while the doublet pair in H ′5H̄
′
5 is

heavy. Using only H5 and H̄5 for the Yukawa couplings of the MSSM matter superfields
as in (9.7), the effective triplet component mass relevant for dimension 5 proton decay is
given by

Mdim=5
T =

(
m−1
T

)−1

11
= − V 8

〈S〉6µ′ . (9.29)

The effective masses suppressing dimension six proton decay mediated by colour triplets
are given by (

Mdim=6
T

)2
=
(
Mdim=6

T̄

)2 ≈ |V |
8

|〈S〉|6
, (9.30)

where we used the fact that |〈S〉| � |V | and |〈S〉3µ′| � |V |4. With 〈S〉 ≈ 1018 GeV it
follows from requiring Mdim=6

T & 1012 GeV in (9.30) that the GUT scale is higher than
V & 1016 GeV. Then in order to obtain an effective triplet mass Mdim=5

T ≈ 1017 GeV for
dimension five proton decay, one finds from (9.29) that µ′ ≈ 107 GeV is needed.

Therefore, with a high enough GUT scale, the effective triplet masses can be large
enough to sufficiently suppress proton decay, while the large SU(5) representations used in
the DMPM can be heavy enough to keep the theory perturbative up to the Planck scale.
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Let us note two remarks: When H24 is uncharged under additional symmetries, having
µ′ several orders of magnitude smaller than V requires µ′ to be generated from vevs of
fields charged under the shaping symmetry, to forbid the term

H24H
′
5H̄
′
5 , (9.31)

which would give rise to a much too small effective triplet mass.
Finally note that the effective triplet mass entering dimension five proton decay can be

conveniently expressed in terms of the mass eigenstates M̃1 and M̃2 of the triplet compo-
nents and µ′ of the doublets

Mdim=5
T = −M̃1M̃2

µ′
. (9.32)

The effective triplet mass of dimension six proton decay is then excellently approximated
by

Mdim=6
T̄ = Mdim=6

T ≈
√
Mdim=5

T µ′ . (9.33)

9.2.3 Introducing a second adjoint

The DMPM with an adjoint GUT breaking Higgs instead of a 75 already solves the DTS
problem while providing the necessary building block for the desirable CG factors for
flavour model building, if the GUT scale is high enough. Yet, it still suffers from two
problems:

Gauge coupling unification As mentioned in 5.5, demanding gauge coupling unifica-
tion in the minimal renormalisable SU(5) requires the mass of the colour triplets to be
about 1015 GeV, which violates the bounds on proton decay. Non-renormalisable operators
in the GUT breaking superpotential can split the 24 component masses, allowing a higher
effective triplet mass [146], at the price of giving up the predictive quark-lepton Yukawa
coupling ratios.

Shaping symmetry charge of the adjoint The renormalisable superpotential (5.83)
requires H24 to be uncharged under shaping symmetries in order for it to obtain a vev.
However, such a shaping symmetry charge is vital in the type of flavour models considered
here, to avoid unwanted admixtures of additional CG factors involving less insertions of
H24. See for example the SUSY flavour GUT models in the previous chapters and tables
D.1 and D.3.

Both problems can be solved at once by introducing a second adjoint superfield:

• An additional heavy 24 can be used to UV complete a non-renormalisable superpotential,
thereby realising a renormalisable theory which shifts the upper bound for the effective
triplet mass to higher values (5.90), by splitting the masses of the 24 components.
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• It turns out that the introduction of an additional 24 is not just an UV-completion of
the non-renormalisable superpotential of [146]. When both adjoints have approximately
the same mass and therefore the second 24 is not integrated out, the additional colour
octet and electroweak triplet in the spectrum lead to more freedom for the GUT scale
and effective triplet masses.

• Finally, with a second 24, the adjoint fields can acquire non-vanishing vevs even when
charged under shaping symmetries.

There are four possibilities for renormalisable superpotentials of two adjoints with non-
vanishing vevs and masses. Classified based on their symmetry, they are:

(a) W = M24 Tr H2
24 +M ′

24Tr H ′224 + κ′Tr H24H
′2
24 + λTr H3

24,
Z2 symmetry where H24 is uncharged and H ′24 charged.

(b) W = M̃24 Tr H24H
′
24 + λTr H3

24 + λ′Tr H ′324,
Z3 symmetry, where H24 has charge 2 and H ′24 charge 1.

(c) W = M̃24 Tr H24H
′
24 + λTr H3

24 + κ′Tr H24H
′2
24,

ZR4 symmetry where H24 has a charge of 2 (with R(θ) = 1) and H ′24 is uncharged.

(d) The trivial case with both fields only charged under SU(5) and all (non-linear) terms
allowed. We will not consider this case any further.

Let us remark that since the superpotentials (a), (b), and (d) do not feature an R-
symmetry and superpotential (c) spontaneously breaks the R-symmetry simultaneously
with the GUT gauge group, all four superpotentials are not in conflict with the No-Go
theorem that the MSSM with an additional unbroken R-symmetry can not be obtained
from the spontaneous breaking of a four-dimensional SUSY GUT [186].

9.2.4 The case of more Higgs fields coupling to matter

Consider the SUSY flavour GUT models of the previous chapters, where an additional
Higgs field H̄45 transforming as 45 under SU(5) was introduced in order to construct the
CG factor −1

2
. In 9.1 we have so far only considered the case where a single pair of Higgs

fields H5, H̄5 couples to the matter superfields. Let us now discuss the case where more
than one Higgs triplet is coupling to matter.

With additional Higgs fields (9.7) generalises to

W = κijaTiTjHa + λijbTiFjH̄b +mHabHaH̄b , (9.34)

where a and b denote different Higgs fields, κ and λ are Yukawa couplings, and mH is the
Higgs mass matrix. When the heavy triplets are integrated out, the proton decay channels

κijaλklb(
Mdim=5

T

)
ba

(Qi ·Qj) (Qk · Ll) and
κijaλklb(
Mdim=5

T

)
ba

U c
iE

c
jU

c
kD

c
l (9.35)
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are suppressed by the effective triplet mass

(Mdim=5
T )−1

ba ≡ U∗ai

(
mdiag
T

)−1

ij
Vbj = U∗ai

(
mdiag
T

)−1

ij
V T
jb = (m−1

T )ba , (9.36)

with mT being the mass matrix of the coloured triplets in Ha, H̄b. Similarly, the Kähler
potential in general reads

KT = TaT
∗
a + T̄aT̄

∗
a . (9.37)

When the heavy Higgs triplets are integrated out, baryon number violating operators
emerge in the Kähler potential

|κija|2(
Mdim=6

T̄

)2

aa

(Qi ·Qj)U
c∗
i E

c∗
j and

|λija|2(
Mdim=6

T

)2

aa

(Qi · Lj)U c∗
i D

c∗
j , (9.38)

where no sum over i, j, and a is implied. The dimension six effective triplet masses are
then in general given by(

Mdim=6
T

)−2

aa
≡ Vai

(
mdiag
T

)−1

ij
U †jbUbm

(
mdiag
T

)−1

ml
V †la =

(
m−1
T m†−1

T

)
aa

(9.39)

and (
Mdim=6

T̄

)−2

aa
≡
(
m†−1
T m−1

T

)
aa
. (9.40)

Thus, in models featuring several Higgs fields coupling to specific matter fields, as e.g. to
construct predictions for quark-lepton Yukawa coupling ratios from certain CG factors, the
individual effective triplet masses for each proton decay channel can be easily calculated.

9.3 Grand unification and the effective triplet mass

In addition to the MSSM superfields, the DMPM introduces one extra pair of SU(2)L
doublets, D(5) and D̄(5), and two additional pairs of SU(3)C triplets, T

(5)
i and T̄

(5)
i , i = 1, 2.

Since we introduce a second adjoint, there are furthermore two SU(3)C octets O
(24)
i , two

SU(2)L triplet T
(24)
i , and two singlets S

(24)
i of the SM gauge group, when SU(5) gets

broken. Finally there is one leptoquark superfield pair L(24) in the spectrum, whereas the
other pair yields massive X and Y vector bosons via the BEH mechanism.

All this new superfields enter the RGEs for the gauge couplings at their respective mass
scales and therefore their impact on gauge coupling unification has to be studied. Such an
analysis has been performed by the author’s collaborator Vinzenz Maurer. Thus, in this
thesis only some results – which are important to the author’s work presented afterwards
– are briefly reviewed in this section. Details can be found in our paper [4] and Vinzenz
Maurer’s PhD thesis [158].

We assume that the heaviest incomplete SU(5) multiplets to enter the RGEs are the X
and Y vector bosons, such that the GUT scale corresponds to their heavy mass MGUT =
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MX = MY . This is a common situation in SU(5) GUTs and it allows to make the effective
triplet mass heavy, although cases of other heaviest SU(5) components are possible.

With the definition of the geometric mean

M2
T (5) ≡M

T
(5)
1
M

T
(5)
2

(9.41)

of the masses of the colour triplets and analogously

M2
T (24) ≡M

T
(24)
1

M
T

(24)
2

, (9.42)

M2
O(24) ≡M

O
(24)
1
M

O
(24)
2

(9.43)

for the masses of the components of H24 and H ′24, one can solve the RGEs for gauge
coupling unification and express the results for the effective triplet mass (9.32)

Mdim=5
T =

M2
T (5)

MD(5)

, (9.44)

the GUT scale SU(5) gauge coupling αu, and MGUT at the one-loop level by

πα−1
u = − 43π

24α1

+
15π

8α2

+
11π

12α3

− 197

20
logMZ +

3

5
logMDT (9.45)

− 3

4
logML(24) +

15

4
logMT (24) +

11

4
logMO(24) +

7

2
logMSUSY ,

logMdim=5
T = − 5π

6α1

+
5π

2α2

− 5π

3α3

+
1

6
logMZ (9.46)

+ 5 logMT (24) − 5 logMO(24) +
5

6
logMSUSY ,

logMGUT =
5π

12α1

− π

4α2

− π

6α3

+
11

6
logMZ (9.47)

+
1

2
logML(24) − 1

2
logMT (24) − 1

2
logMO(24) − 1

3
logMSUSY ,

where “logm” should be understood as

logm ≡ log
( m

GeV

)
(9.48)

and we have introduced the mass

M3
DT ≡M2

D(5)MT (5) . (9.49)

Then one finds numerically

Mdim=5
T = 2.5+0.6

−0.8 · 1017 GeV

(
MSUSY

1 TeV

) 5
6
(
MT (24)

MO(24)

)5

, (9.50)

MGUT = 1.37+0.05
−0.05 · 1016 GeV

(
MSUSY

1 TeV

)− 1
3
(

ML(24)

1016 GeV

) 1
2
(
MT (24)MO(24)

(1016 GeV)2

)− 1
2

, (9.51)
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where the resulting uncertainty is dominated by the experimental error on αs. The change
of the relative uncertainty for the different superpotentials (a)-(c) is negligible and hence
in the remainder of this section the error is not explicitly shown anymore.

In analogy to tan β of the MSSM, we introduce tan βV = V1

V2
for the two GUT breaking

superfields H24 and H ′24 with

〈H24〉 = V1 eiφ1 diag(1, 1, 1,−3/2,−3/2) ,

〈H ′24〉 = V2 eiφ2 diag(1, 1, 1,−3/2,−3/2) , (9.52)

where V1, V2 > 0.
Then one finds for the geometric means of the masses of the colour triplets, octets, and

the mass of the remaining leptoquark superfield in H24 and H ′24

M2
T (24) =

35

4
M2 , M2

O(24) =
15

4
M2 , and M2

L(24) =
1

sin2(2βV )
M2 , (9.53)

for superpotential (b) and

M2
T (24) =

5

4
M2 , M2

O(24) =
5

4
M2 , and M2

L(24) =
1

4 sin2(2βV )
M2 , (9.54)

for superpotential (c), where M ≡
∣∣∣M̃24

∣∣∣, i.e. in both cases all mass eigenvalues turn out

to be phase independent. The effective triplet mass is then obtained from (9.50)

Mdim=5, 1-loop
T = 2.5 · 1017 GeV

(
MSUSY

1 TeV

) 5
6

×
{(

7
3

) 5
2 ≈ 8.3 (b)

1 (c)
, (9.55)

and the GUT scale from (9.51)

M1-loop
GUT =

1.37 · 1016 GeV√
| sin 2βV |

(
MSUSY

1 TeV

)− 1
3
(

M

1015 GeV

)− 1
2

×
{√

8√
21
≈ 1.32 (b)

2 (c)
. (9.56)

Thus, assuming the same parameters, the effective triplet mass in superpotential (b) is ten
times higher than in (c).

The effective triplet mass Mdim=5
T receives significant two-loop contributions (cf. e.g.

[145]). See our paper [4] and [158] for a numerical two-loop analysis. Its results are given
by

Mdim=5, 2-loop
T =

(
MSUSY

1 TeV

)0.74

·
{

5.2 · 1016 GeV
(

M
1015 GeV

)−0.15
(b)

6.8 · 1015 GeV
(

M
1015 GeV

)−0.18
(c)

, (9.57)

and

M2-loop
GUT = |sin 2βV |−0.48

(
MSUSY

1 TeV

)−0.4

·
{

2.89 · 1016 GeV
(

M
1015 GeV

)−0.61
(b)

4.78 · 1016 GeV
(

M
1015 GeV

)−0.63
(c)

, (9.58)
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where MD(5) = 1000 TeV has been fixed and the dependence on other parameters is very
small. Thus, a heavy effective triplet mass Mdim=5

T & 1017 GeV requires MSUSY & 2.3 TeV
and 35 TeV for superpotential (b) and (c), respectively.

Note that gauge coupling unification depends only weakly on MD(5) . The effective triplet
mass for dimension six proton decay can be approximated by (9.33) from the square root
of the product of MD(5) and Mdim=5, 1-loop

T or Mdim=5, 2-loop
T respectively.

Finally we turn to superpotential (a), which is more complicated since it contains two
mass parameters M24 and M ′

24. Thus we introduce a second angle βM and mean mass
M > 0 such that M24 = Meiα1 sin βM and M ′

24 = Meiα2 cos βM . Then the geometric
mean masses of the SU(3)C octet, SU(2)L triplet, and of the additional heavy leptoquark
superfields are

M2
T (24) = 5M2 cos βM

√
(2 cos βM − 3 sin βM tan2 βV )2 + . . . sin2 φ̄ , (9.59a)

M2
O(24) = 5M2 cos βM

√
(3 cos βM − 2 sin βM tan2 βV )2 + . . . sin2 φ̄ , (9.59b)

M2
L(24) =

1

4
M2 cos2 βM

sin4 βV
, (9.59c)

where not only the geometric mean masses, but also the mass eigenvalues themselves, only
depend on the phase combination

φ̄ ≡ (α1 − α2)/2 + φ1 − φ2 , (9.60)

and are invariant under φ̄→ φ̄+π. Due to (9.50), the effective triplet mass is heaviest when

the ratio
M
T (24)

M
O(24)

is not bounded from above, and hence when φ̄ is 0, π, or 2π. In figure 9.3

the resulting plots for Mdim=5
T and MGUT are shown with MSUSY = 1 TeV, M = 1015 GeV,

MD(5) = 1000 TeV, and φ̄ = 0, including a comparison between one- and two-loop results.
Mdim=6

T and Mdim=6
T̄

are again approximately given by
√
Mdim=5

T MD(5) .

9.4 SUSY Flavour GUT models with DMPM

After the interlude of the last section, we return to the author’s contribution to [4] and
present two example models, combining the DMPM (featuring two adjoint superfields)
and predicitive GUT scale quark-lepton Yukawa coupling ratios due to CG factors. Both
models are UV complete and we give the shaping symmetries and messenger superfields,
which guarantee that only the desired effective GUT operators are generated when the
heavy degrees of freedom are integrated out.

Note that we construct only the Yukawa matrices of the quarks and charged leptons
explicitly. Adding one of the ubiquitous mechanisms to generate neutrino masses and
lepton mixing angles would be straightforward. Since they are however not directly relevant
for the discussion of proton decay, doublet-triplet splitting, and the CG factors between
Yd and Ye, we do not consider neutrinos in this chapter.
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Figure 9.3: The effective colour triplet mass Mdim=5
T (left) and GUT scale MGUT (right)

in GeV at one-loop (upper) and two-loop (lower) order as resulting from superpotential (a)
for MSUSY = 1 TeV, M = 1015 GeV, MD(5) = 1000 TeV, and φ̄ = 0. Note the different
colour coding between left and right. For illustration, the white strips denote areas with
light MT (24) or MO(24) (< 1013 GeV). Such relatively low values for these components can
arise either from cancellation between terms, or from a generic suppression due to small
parameters, cf. (9.59). For more details see [4, 158].
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We also remark, that our two models are not yet predictive for the quark mixing param-
eters, but the experimentally observed values can be fitted by both of the models. They
thus should be viewed as proof of existence, showing that a successful solution to DTS
and experimentally viable predictions for GUT scale Yukawa coupling ratios can indeed be
combined. The strategies discussed here, however, provide the tools for the construction
of more ambitious SUSY flavour GUT models, which should include the observed neutrino
masses and finally also predict the quark and lepton mixing angles and CP phases.

Thus there are two types of predictions our example models make: As discussed in 4.4,
in general one can directly constrain GUT models from their GUT scale double ratio (4.43)∣∣∣∣yµys ydye

∣∣∣∣ , (9.61)

which as mentioned previously is not affected by RG evolution or SUSY threshold cor-
rections. As for the SUSY flavour GUT models of the previous chapters, we will again
use the CG factors yτ

yb
= −3

2
, yµ
ys

= 6, and ye
yd

= −1
2

in agreement with (4.43), whereas
the ubiquitous GJ relations are challenged with more than two sigma deviation from the
experimental value.

Secondly, the predictions for the Yukawa coupling ratios at the GUT scale imply – via
SUSY threshold corrections – constraints on the SUSY breaking parameters, which may be
tested at future collider searches if SUSY is discovered. See e.g. [187] for a discussion and
an explicit example of such constraints. We will discuss this link between GUT predictions
and SUSY spectrum in general in chapter 10.

Our two examples will feature different Yukawa matrix structures. In the first model
we construct diagonal down-type quark and charged lepton Yukawa matrices Yd and Ye,
with all quark mixing originating from the up-type quark Yukawa matrix Yu. Then, in the
second model we realise the attractive feature of θC originating from Yd.

9.4.1 A model with diagonal Yd and Ye Yukawa matrices

We now turn to our first model featuring diagonal down-type quark and charged lepton
Yukawa matrices Yd and Ye in the flavour basis. An approach to flavour (GUT) model
building with diagonal Ye (and Yd) has been discussed in [188]. In this case all the mixing
in the quark sector has to come exclusively from the up-type quark Yukawa matrix Yu.
Explicitly, our model has the following structure for the Yukawa matrices

Yd =

yd 0 0
0 ys 0
0 0 yb

 , Ye =

−1
2
yd 0 0

0 6ys 0
0 0 −3

2
yb

 , Yu =

y11 y12 y13

y12 y22 y23

y13 y23 y33

 . (9.62)

We introduce flavon superfields θ1, θ2, θ3, and θ4 that obtain a vev and generate the
hierarchical structure of the Yukawa matrices. After the flavons and the GUT breaking
H24 and H ′24 obtain their vevs, the Yukawa matrices (9.62) originate from the effective
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superpotentials

Wu =
1

Λ4
H5T1T1θ

2
1θ

2
2 +

1

Λ3
H5T1T2θ

2
1θ2 +

1

Λ2
H5T1T3θ1θ2 +

1

Λ2
H5T2T2θ

2
1

+
1

Λ
H5T2T3θ1 +H5T3T3 , (9.63)

Wd =
1

〈S ′〉(H
′
24F3)5̄(H̄5T3)5 +

θ3

〈S ′〉2 [H ′24T2]10

[
H̄5F2

]
10

+
θ4

〈S ′〉2〈S〉 [H ′24F1]45

[
T1H24H̄5

]
45
, (9.64)

where like for the SUSY flavour GUT models in the previous chapters, we do not show order
one coefficients, and denote the different messenger masses generating Wu by a generic Λ.
However, keep in mind that this is just for the sake of simplicity and different entries in
the Yukawa matrix should be understood as independent parameters. The ratios of flavon
vevs and messenger masses is small of about 10−2−10−1. A list of all superfields, including
their charges under the shaping symmetry, is presented in tables D.5 and D.6 in appendix
D.

In order to construct the desired CG factors and to guarantee the unique contraction of
SU(5) indices as shown in (9.64), the effective superpotential has to be UV completed by
messenger fields Zi, Z̄i, and the adjoint H ′24 must be charged under shaping symmetries.
We therefore implement superpotential (a) for the adjoint superfields. Since in this case
the second adjoint H24 is left uncharged, direct mass terms for the messenger fields MiZiZ̄i
would always be accompanied by terms of the form

〈H24〉ZiZ̄i , (9.65)

which would inevitably spoil the desired CG factors between Yd and Y T
e [93]. To avoid this

problem and still generate the desired operators, the masses of the messenger fields that give
rise toWd originate from vevs of the SU(5) singlet superfields S and S ′, which are charged
under the shaping symmetry (but with different charges than H ′24). The full messenger
sector, which yields the effective superpotentials Wd and Wu when it is integrated out,
can be read off from the supergraphs presented in figures D.13 and D.14 in appendix D.
We would like to make two remarks: First, note that the vev of S also gives masses to
the heavy messengers of the DMPM (see 9.2.2). Secondly the CG factor −1

2
for the 1-1

element of Ye emerges from the heavy messenger X̄45 of the DMPM, as shown in figure 9.4.
Therefore there is no requirement to introduce another Higgs field H̄45 transforming as 45,
as we had to in the SUSY flavour GUT models of the previous chapters. Let us discuss
the effective triplet masses for the proton decay channels involving the triplet of X̄45. The
full mass matrix for all triplets of the DMPM before any messengers are integrated out is
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H ′
24

H24

H̄5

Z̄45,1Z45,1

F1

Z45,2 Z̄45,2

θ4

X45X̄45

T1

〈S〉〈S′〉 〈S′〉

Figure 9.4: Supergraph leading to ye = −1
2yd when the heavy messenger fields are inte-

grated out.

given by

mT =



H̄5 H̄′5 X̄45 Ȳ45 Z̄50 X̄′45 Ȳ ′45 Z̄′50

H5 0 0 0 0 0 0 V1 0
H′5 0 µ′ 0 V1 0 0 0 0
X45 V1 0 〈S〉 0 0 0 0 0
Y45 0 0 0 〈S〉 V1 0 0 0
Z50 0 0 V1 0 〈S〉 0 0 0
X′45 0 V1 0 0 0 〈S〉 0 0
Y ′45 0 0 0 0 0 0 〈S〉 V1

Z′50 0 0 0 0 0 V1 0 〈S〉


, (9.66)

where V1 is defined in (9.52) and we have annotated the rows and columns for a better
overview. The proton decay mediated by the triplet pair in H5 and X̄45 is then suppressed
by the effective triplet mass (9.36)(

Mdim=5
T

)
31

=
(
m−1
T

)−1

31
= − V 7

1

〈S〉5µ′ , (9.67)

which is about two orders of magnitude larger than the effective triplet mass associated
with proton decay mediated by the triplets in H5 and H̄5 (9.29)(

Mdim=5
T

)
11

= − V 8
1

〈S〉6µ′ . (9.68)

Also the dimension six proton decay mediated by the triplets in X̄45 (9.40)

(
Mdim=6

T̄

)2

33
≈ |V1|6

|〈S〉|4
, (9.69)

is approximately four orders of magnitude larger than (9.30)

(
Mdim=6

T̄

)2

11
≈ |V1|8

|〈S〉|6
. (9.70)

It is thus sufficient to limit our discussion to the effective triplet masses of proton decay
mediated by the triplets in H5 and H̄5.



122 9. Towards predictive SUSY flavour SU(5) models with DT splitting

Finally note that the additional colour triplets of all DMPM messengers, H ′5, and H̄ ′5
can couple to the matter superfields only via effective operators, which can contribute to
proton decay but are suppressed compared to the leading operators by one or more powers

of H24

Mpl
and

H′24

Mpl
. Their contribution can thus safely be neglected.

Let us now comment on the phenomenology of Yd and Yu. The hierarchical structure of
Yd is enforced due to the use of higher order effective operators in Wd. The eigenvalues of
Yu and the mixing angles are given in leading order in a small angle approximations as

yu ≈ y11 −
y2

12

y22

, yc ≈ y22 , yt ≈ y33 , θC ≈
y12

y22

, θ23 ≈
y23

y33

, θ13 ≈
y13

y33

. (9.71)

Phenomenology requires that all parameters yij of Yu are independent, which needs to be
carefully considered in the construction of the messenger sector. When we present the
messenger sector in appendix D we also discuss that a similar choice of messenger fields,
which generates the same structure (9.62) for the Yukawa matrices and thus would seem
as an equally viable choice, in fact predicts invalid dependencies between the quark mixing
angles.

We argued in 9.2.2 that for the case of an uncharged H24, as it appears in the selected
superpotential (a) for our model, the mass term for the additional Higgs fields H ′5H̄

′
5 must

come from the vev of some singlet field. In our model an effective µ′ term is generated
from a higher-dimensional operator and with an even higher suppression, there is also a
µ-term for the Higgs fields coupling to matter

Weff
5 = µH5H̄5 + µ′H ′5H̄

′
5 , (9.72)

where

µ′ ≡ 〈θ3〉4
M3

pl

and µ ≡ 〈θ3〉〈θ4〉4
M4

pl

. (9.73)

Alternatively, we checked that an UV-complete generation of these µ and µ′ operators
via messenger fields would be possible. However, the necessary messenger fields are not
included in the model since it turns out that the desired masses are already generated by
Planck scale suppressed effective operators.

Integrating out the heavy 45 and 50 messengers and after SU(5) gets spontaneously
broken, the effective triplet mass for dimension five proton decay is given by (9.29)

Mdim=5
T = µ− V 8

1

〈S〉6µ′ ≈ −
V 8

1 M
3
Pl

〈S〉6〈θ3〉4
, (9.74)

and the effective triplet masses suppressing dimension six proton decay by (9.30)

Mdim=6
T = Mdim=6

T̄ ≈ V 4
1

〈S〉3 . (9.75)

Let us give an explicit example for the scales involved in the model: Because of pertur-
bativity the mass of the 50 messengers has to be almost at the Planck scale. We therefore
assume

〈S〉 ∼ 10−1Mpl . (9.76)
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Using the known values of the Yukawa couplings, we can estimate the values of the rele-
vant masses of our model. At the GUT scale with tan β = 30 the Yukawa couplings are
approximately given by [91]

yd ≈ 1.6 · 10−4 , ys ≈ 3 · 10−3 , and yb ≈ 0.18 , (9.77)

which in our example model are (up to order one couplings) given by the operators

yd ∼
〈H24〉〈H ′24〉〈θ4〉
〈S ′〉2〈S〉 , ys ∼

〈H ′24〉〈θ3〉
〈S ′〉2 , and yb ∼

〈H ′24〉
〈S ′〉 . (9.78)

Then we find from (9.52), (9.74) – (9.78) for the effective triplet masses, the µ-term, and
the mass of the additional heavy Higgs doublet the following values

Mdim=5
T ≈ 1.4 · 1019 GeV , µ ≈ 225 GeV ,

Mdim=6
T ≈ 1.4 · 1012 GeV , µ′ ≈ 130 TeV , (9.79)

where we assumed a SUSY scale MSUSY = 1 TeV,
M ′24

M24
= 1, and V2

V1
= 1.2.4 With these

parameters, the GUT scale is given by

MGUT ≈ 6.4 · 1016 GeV . (9.80)

Although these numbers are only estimates, which neglect order one couplings, they
illustrate the model’s key features: the DTS problem is solved by the DMPM with large
effective triplet masses suppressing the proton decay rate and the fermion mass ratios are
realistic. The small µ-term emerges from a Planck scale suppressed operator. We remark
that the DMPM does not suffer from any dangerous Planck scale suppressed operators,
due to the charge assignment of the singlet field S.

9.4.2 A model with θC from Yd

Motivated by our SUSY flavour GUT models [2, 3] presented in the previous chapters to
explain θPMNS

13 ≈ θC sin θPMNS
23 via charged lepton corrections [1] and a right-angled quark

unitarity triangle [157], we present a second example model, which realises the attractive
feature of θC emerging dominantly from the down-type quark mixing θC ≈ θd12. The
Yukawa matrices are given by the following structure

Yd =

 0 yd12 0
yd21 ys 0
0 0 yb

 , Ye =

 0 6yd21 0
−1

2
yd12 6ys 0
0 0 −3

2
yb

 , Yu =

y11 y12 0
y12 y22 y23

0 y23 y33

 . (9.81)

Our strategy requires to couple F1 and F2 to T2, but both fields need to be distinguished
from each other by shaping symmetry since F2 needs to couple to T1 while F1 must not

4Vevs V1 and V2 with cotβV = 1.2 and V1 = 3.4 · 1016 GeV are obtained in superpotential (a) with the
real parameters λ ∼ 0.19, κ′ ∼ 0.04, and M ′24 = M24 ∼ 7 · 1014 GeV, see [4, 158].
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couple to T1. This suggests to employ at least a Z3 shaping symmetry and we therefore
use superpotential (b) from section 9.2.3, where H24 and H ′24 are charged.

The effective superpotentials that yield the desired Yukawa matrices after integrating
out heavy messenger fields and breaking of the GUT gauge group are

Wu =
1

Λ2
H5T1T1θ

2
5 +

1

Λ2
H5T1T2θ

2
2 +

1

Λ2
H5T2T2θ

2
1 +

1

Λ
H5T2T3θ1 +H5T3T3 , (9.82)

Wd =
1

〈S ′〉(H
′
24F3)5̄(H̄5T3)5 +

θ3

〈S ′〉2 (H24T2)10(H̄5F1)10 +
θ4

〈S ′〉2 (H ′24T2)10(H̄5F2)10

+
1

〈S〉2 (H24F2)45(T1H24H̄5)45 , (9.83)

where again we use a common placeholder Λ to denote a generic messenger mass and the
messenger fields responsible for Wd obtain their masses from vevs of singlet fields. Note
that in comparison to Yu of the previous example model (9.62), the vanishing Yu13 element
requires to introduce an additional flavon field θ5.

The supergraphs that generate these effective operators are shown in figures D.15 and
D.16 in appendix D. A complete list of all superfields including their charges and rep-
resentations is given in tables D.7 and D.8. Note that again we do not introduce a new
Higgs field H̄45 that couples to matter superfields, but the CG factor −1

2
emerges from the

DMPM messenger X̄45, see figure 9.5. Analogously to the discussion below figure 9.4, it is

H24

H24

H̄5

Z̄45,1Z45,1

F2

X45X̄45

T1

〈S〉〈S〉

Figure 9.5: Supergraph yielding the CG factor −1
2 when the heavy messenger fields are

integrated out.

sufficient to limit our discussion to the effective triplet masses of proton decay mediated by
the triplet pair in H5 and H̄5, since the effective triplet mass of the X̄45 decay channel is
orders of magnitude higher. Other effective operators coupling matter superfields to other

triplets of the DMPM are again sufficiently suppressed by powers of M̃24

Mpl
.

In a small angle approximation the mixing angles and Yukawa couplings are given by

yd ≈
yd12yd21

ys
, θC ≈ θd12 ≈

yd12

ys
,

yu ≈ y11 −
y2

12

y22

, yc ≈ y22 , yt ≈ y33 , θ23 ≈
y23

y33

, θ13 ≈
y12

y22

θ23 , (9.84)

and in leading order the strange and bottom quark Yukawa couplings are given by the
parameters ys and yb of Yd in (9.81). Thus the Yukawa matrices can fit the experimental
values without tension.
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Let us now discuss the DMPM details of the model. As in 9.4.1, the mass terms of
the Higgs fields H5H̄5 and H ′5H̄

′
5 are generated from Planck suppressed effective operators

(9.72) with

µ ≡ 〈θ3〉4
M3

pl

and µ′ ≡ 〈θ4〉4
M3

pl

. (9.85)

Although µ and µ′ appear at the same order, a modest hierarchy 〈θ3〉 < 〈θ4〉 sufficiently
splits their masses. We will see below that indeed such a slight hierarchy is realised in our
model.

The effective triplet masses (9.29) and (9.30) are given by

Mdim=5
T = µ− V 8

1

〈S〉6µ′ ≈ −
V 8

1 M
3
Pl

〈S〉6〈θ4〉4
, (9.86)

Mdim=6
T = Mdim=6

T̄ ≈ V 4
1

〈S〉3 . (9.87)

As for the first example model we can estimate the values of the relevant masses in an
explicit example from the known Yukawa couplings [91]. In a small angle approximation
the down-type Yukawa couplings are given by

yd ∼
〈H24〉2
〈S〉2

〈H24〉〈θ3〉
〈S ′〉2

1

ys
≈ 1.6 · 10−4 with ys ∼

〈H ′24〉〈θ4〉
〈S ′〉2 ≈ 3 · 10−3 (9.88)

and

yb ∼
〈H ′24〉
〈S ′〉 ≈ 0.18 , (9.89)

where the numerical values are valid for tan β = 30 and again order one coefficients have
been neglected. Again, because of perturbativity we assume 〈S〉 = 10−1 Mpl. Then the
numerical values of the effective triplet masses, µ, and µ′ can be estimated

Mdim=5
T ≈ 1.4 · 1018 GeV , Mdim=6

T ≈ 1012 GeV , µ ≈ 7 TeV , µ′ ≈ 800 TeV , (9.90)

where we assumed tan βV = 1
2
.5 Note the solutions for 〈θ3〉 and 〈θ4〉, which are

〈θ3〉 ≈ 2 · 1015 GeV and 〈θ4〉 ≈ 6 · 1015 GeV , (9.91)

whose slight splitting explains the huge hierarchy between µ and µ′, as mentioned above.
We also find

MSUSY ≈ 26 TeV and MGUT ≈ 3.4 · 1017 GeV . (9.92)

Also in our second model we thus successfully suppress proton decay via large effective
triplet masses, where the DTS is achieved via the DMPM with two adjoints. The Yukawa
sector of the model features viable fermion masses and mixing angles. A small µ-term for
the Higgs doublets emerges from Planck suppressed effective operators.

5In superpotential (b) this tanβV can be obtained with V1 = 3.2 · 1016 GeV from real parameters
λ ∼ 10−4, λ′ ∼ 1.3 · 10−5, and M ∼ 2.4 · 1012 GeV, see [4, 158].
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9.5 Proton Decay

We now turn to a discussion of proton decay and start by discussing the dimension five
operators (5.85)

WT = (YqlQ · L− YudU cDc) T̄ (5) + (YueU
cEc − YqqQ ·Q)T (5) , (9.93)

which are usually considered to be the greatest danger for the validity of any SUSY GUT
model. To suppress proton decay sufficiently, the colour triplets have to be very heavy or
their couplings to the matter fields should be very strongly suppressed.

Minimal SU(5) models lead to wrong predictions for the quark-lepton mass ratios. In
many models it is thus assumed that non-renormalisable operators resolve this problem,
at least for the first two generations, as for example [146,189]. In such settings the model
loses predictability and usually it is impossible to calculate the strength of the coupling
between matter fields and Higgs triplets.6

In our method viable GUT scale quark-lepton mass ratios are predicted by new CG
factors due to specific effective operators, which are uniquely obtained by integrating out
a distinct set of messenger fields charged under a shaping symmetry. With the same
technique also the GUT scale Yukawa couplings to Higgs triplets are predicted from group-
theoretical CG factors. These CG factors for the triplet Yukawa couplings have been
calculated by the author’s collaborateur Vinzenz Maurer from dimension five and dimension
six operators containing one or two adjoints [4, 158]. The CG factors used in our models
are listed in figure 9.6.

Then the Yukawa matrices of our first model 9.4.1 are given by

Yd = diag (yd, ys, yb) , Ye = diag

(
−1

2
yd, 6ys,−

3

2
yb

)
, (9.94)

Yql = diag

(
yd, ys,−

3

2
yb

)
, Yud = diag

(
2

3
yd,−4ys, yb

)
, (9.95)

Yqq =
1

2
Yu , Yue = Yu , (9.96)

where the structure of Yu can be read off from (9.62). For the second model 9.4.2 we find

Yd =

 0 yd,12 0
yd,21 ys 0

0 0 yb

 , Y T
e =

 0 −1
2
yd,12 0

6yd,21 6ys 0
0 0 −3

2
yb

 , (9.97)

Yql =

 0 yd,12 0
yd,21 ys 0

0 0 −3
2
yb

 , Yud =

 0 2
3
yd,12 0

−4yd,21 −4ys 0
0 0 yb

 , (9.98)

Yqq =
1

2
Yu , Yue = Yu , (9.99)

6GUT textures for proton decay, without fully constructed models, have been considered, for example,
in [190].
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B

C

D

R̄ R

A

B

C
D

E

R̄2R2R1R̄1

Dimension five operators

AB C D R (Yd)ij : (Ye)ji : (Yql)ij : (Yud)ij

H24 Ti Fj H̄5 10 1 : 6 : 1 : −4
H24Fj Ti H̄5 5̄ 1 : −3

2
: −3

2
: 1

Dimension six operators

AB C DE R1R2 (Yd)ij : (Ye)ji : (Yql)ij : (Yud)ij

H24 H̄5 Ti H24Fj 45 45 1 : −1
2

: 1 : 2
3

Figure 9.6: Supergraphs generating Yukawa couplings upon integrating out messengers
fields in representation Ri, R̄i, used in our models. See [4, 158] for an exhaustive list and
discussion.

where the structure of Yu can be read off from eq. (9.81).
When the heavy Higgs triplets are integrated out the baryon number violating effective

operators (5.86) emerge

W�B =
YqqijYqlkl
Mdim=5

T

(Qi ·Qj) (Qk · Ll) +
YudijYuekl
Mdim=5

T

U c
iD

c
jU

c
kE

c
l , (9.100)

which are denoted LLLL and RRRR operators, respectively. Note that due to the total
anti-symmetry of the SU(3)C indices the dimension five operators need to be non-diagonal
in flavour space [139]. In order to predict the proton decay rate, the RGE evolution to the
SUSY scale has to be calculated, where these operators need to be “dressed” by MSSM
sparticles to dimension six operators, as shown e.g. in figure 5.5. These sparticles are then
integrated out to form dimension six operators, which finally are evolved to the energy
scale of the proton, see e.g. [82] and references therein. Such an extensive study, which
i.e. would ultimately require to explicitly construct predictions for sparticle masses and
mixings, goes beyond the scope of this thesis.

Let us now turn to a qualitative discussion of dimension five proton decay in the consid-
ered class of models. Firstly, note that due to the predicted flavour structure of our models
and especially for the model 9.4.1 which features diagonal Yql and Yud in flavour space,
one can expect that decay channels which require a flavour transition in these matrices
are suppressed. Thus, combining the DMPM with our setup of CG factors, messenger
fields, and shaping symmetries is more predictive than conventional GUT models, since it
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allows to determine the specific flavour structure of all Yukawa matrices relevant for proton
decay. Note that due to the shaping symmetry, both of our models guarantee the absence
of Yukawa matrix entries from other DMPM messengers’ triplet components, which would
lead to a lower Mdim=5

T . This is, of course, model dependent and has to be checked for any
specific model.

Also, by introducing a second adjoint into the DMPM, we have seen that the effective
triplet mass Mdim=5

T can become conveniently heavy, while keeping the GUT breaking
superpotential renormalisable and thus maintaining predictability for CG factors. With
a SUSY scale of one TeV superpotential (b) yields an effective triplet mass of roughly
5 · 1016 GeV, which raises higher with increasing MSUSY. And as can be seen in figure 9.3,
for superpotential (a) there is a broad region of parameter space where the effective triplet
mass can be easily above 1018 GeV.

Finally, let us comment on the SUSY dressing of the LLLL and RRRR operators.
Because gluino and neutralino dressings are flavour diagonal7, the dominant diagrams are
due to chargino exchange [140, 142], where wino and Higgsino dressings are related to
the LLLL and RRRR operators, respectively, as illustrated for the example diagrams in
figure 5.5. Then, the Wilson coefficient for the effective dimension six operator due to
wino exchange contains the gauge coupling g2, whereas the Wilson coefficient for Higgsino
exchange contains additional Yukawa couplings. Thus, the contribution of the RRRR
operator is enhanced by tan2 β (for large values of tan β) [191], thereby posing a challenge
for many GUT models relying on tan β ≈ 50. Compared to such models, our setup with
yτ
yb

= −3
2

requires only moderate tan β ≈ 30 and thus the RRRR operator is relatively
suppressed by a factor of roughly three.

Therefore, in total we expect the proton decay rate to be sufficiently small, but possibly
in the reach of the next generation of proton decay experiments, due to the very large
effective triplet mass in the DMPM and predictive Yukawa coupling matrix structures.

Let us now turn to a discussion of dimension six proton decay operators, which appear
also in non-SUSY GUTs. First, we discuss the dimension six proton decay mediated by
colour triplets, which originates from the Kähler potential (9.37)

KT = TaT
∗
a + T̄aT̄

∗
a . (9.101)

When the colour triplets are integrated out of the superpotential (9.93), they also have to
be integrated out of the Kähler potential, yielding dimension six baryon number violating
Kähler operators

K�B = − YqqijY
∗
uemn(

Mdim=6
T̄

)2 QiQjU
c∗
mE

c∗
n −

YqlijY
∗
udmn(

Mdim=6
T

)2 QiLjU
c∗
mD

c∗
n + h.c. . (9.102)

Again, these operators have to be evolved from the GUT scale to the energy scale of the
proton mass. Proton decay is suppressed by high enough effective triplet masses Mdim=6

T

7Note that for degenerate squark masses of the first two generations, as is typical in many SUSY
scenarios, the diagrams with gluino dressing approximately cancel each other due to a Fierz identity [139].
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and Mdim=6
T̄

. Since in terms of superfield components the dimension six operators are
effective four fermion operators, there is no need for a sparticle dressing. Therefore, the
resulting proton decay rates are independent of the details of the SUSY spectrum.

We close this chapter by commenting on dimension six proton decay due to heavy X
and Y gauge boson exchange, which due to the higher unification scale in SUSY GUTs are
considered to be less dangerous [145]. The gauge sector of our SU(5) model is exactly the
same as in minimal SU(5), therefore the proton life time can be estimated by (4.30)

Γp ≈ α2
u

m5
p

M4
GUT

, (9.103)

neglecting effects due to RGE evolution and order one coefficients due to nuclear matrix
elements. Since the GUT scale can be easily above 1016 GeV and

√
αu ≈ 1

5
, the proton

decay rate from dimension six operators is sufficiently small, but possibly in the reach of
the next generation of proton decay experiments.
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PART V

Supersymmetric threshold
corrections



CHAPTER 10

Predicting the Sparticle Spectrum from
GUTs via SUSY threshold corrections with

SusyTC

In the final chapter of this thesis, we close the last edge of the triangle in figure 1.2 and
discuss supersymmetric one-loop threshold corrections. In part III of this thesis we dis-
cussed how GUTs can feature predictions for quark-lepton Yukawa coupling ratios and for
relations between quark and lepton mixing angles. Whether a flavour GUT model can
successfully explain the observations in the flavour sector, depends on the RGE evolution
of the Yukawa matrices from the GUT scale to lower energies. In supersymmetric theories,
when the MSSM is matched to the SM, tan β-enhanced supersymmetric threshold correc-
tions [131, 132] are essential in the investigation of quark-lepton relations and thus link a
given GUT flavour model to the sparticle spectrum.

Two predictive flavour GUT models were presented in chapters 7 and 8. Here we present
our software tool SusyTC, which was introduced as extension to the Mathematica package
REAP [163] in [5], where we calculated the one-loop SUSY threshold corrections for the
full down-type quark, up-type quark, and charged lepton Yukawa coupling matrices in the
electroweak unbroken phase.

10.1 The REAP extension SusyTC

In our SUSY flavour GUT models in part III, we constructed the GUT scale predictions
ye = −1

2
yd, yµ = 6ys, and yτ = −3

2
yb.

1 Other promising quark-lepton mass ratios at the
GUT scale have been discussed in [83, 92, 93], e.g. yµ = 9

2
ys, see the discussion in 4.4.

Moreover, many GUT models feature b − τ or b − τ − t unification (for early work see
e.g. [138,141,192]), or the Georgi-Jarlskog relations (4.28) [87] as predictions.

1Although Yd and Ye are non-diagonal in (7.10) and (8.11), these GUT scale relations are approxi-
mately satisfied after the Yukawa matrices are diagonalised. This can also be seen from a small angle
approximation (6.26).
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As mentioned in 5.4 and above, in supersymmetric GUT models the SUSY threshold
corrections can have an important influence on the Yukawa coupling ratios. When the
MSSM is matched to the SM, integrating out the sparticles at loop-level leads to the
emergence of effective operators, which can contribute sizeably to the Yukawa couplings,
depending on the values of the sparticle masses, tan β, and the soft-breaking trilinear
couplings. Thereby, via the SUSY threshold corrections, a given set of GUT predictions
for the ratios yτ

yb
, yµ
ys

, and ye
yd

imposes important constraints on the SUSY spectrum.

With the discovery of the Higgs boson at the LHC [193] and the possible discovery of
sparticles in the near future, the question whether a set of SUSY soft-breaking parameters
can be in agreement with both, specific SUSY threshold corrections as required for realising
the flavour structure of a GUT model, and constraints from the Higgs boson mass and
results on the sparticle spectrum, gains importance. To accurately study this question, we
introduced the new software tool SusyTC as a major extension to REAP [163].

REAP, which is designed to run Yukawa matrices and neutrino parameters in (SUSY)
seesaw scenarios with a proper treatment of the right-handed neutrino thresholds, is a
convenient tool for top-down analyses of flavour (GUT) models, with the advantage of an
user-friendly Wolfram Mathematica front-end. However, the SUSY soft-breaking sector is
not included. In the analysis of our SUSY flavour GUT models in part III, we therefore
had to incorporate the effect of SUSY threshold corrections as mere model parameters at
an user-defined “SUSY” scale in a simplified treatment assuming, e.g., degenerate first and
second generation sparticle masses, without specialising any details on the SUSY sector.
Although this procedure is quite SUSY model-independent, it only allows to study the
constraints on the SUSY sector indirectly (i.e. via the introduced additional parameters
and with simplifying assumptions), and it is unclear whether an explicit SUSY scenario
with these assumptions and requirements can be realised. Let us remark here that the
latest version of REAP has implemented such a treatment of SUSY threshold corrections as
additional model parameters.

In this chapter however, we want to make full use of the SUSY threshold corrections
to gain information on the SUSY flavour structure from GUTs. We have thus extended
and generalised various formulae in the literature which are needed for a precision analysis
of SUSY flavour GUT models and implemented them in our software tool SusyTC. It
includes the full (i.e. CP violating) MSSM sector, a computation of the sparticle masses,
and a careful calculation of the one-loop SUSY threshold corrections for the full Yukawa
coupling matrices in the electroweak-unbroken phase. The matching of the MSSM to the
SM, including DR to MS conversion, is then automatically performed at the SUSY scale.
For a further processing of its results by external software, e.g. for performing a two-loop
Higgs mass calculation, SusyTC also calculates the one-loop corrected DR value of µ, the
one-loop corrected pole mass of the charged (or the CP-odd) Higgs boson and provides
output in SLHA conventions as Les Houches file [123,194].

We have developed SusyTC specifically to perform top-down analyses of SUSY flavour
GUT models. This is a major difference to other well-known SUSY spectrum generators
(e.g. [195–198], see e.g. [199] for a comparison), which run experimental constraints from
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low energies to high energies, apply GUT scale boundary conditions, run back to low
energies and repeat this procedure iteratively. SusyTC instead starts directly from GUT
scale input, which can be defined as general (complex) Yukawa, trilinear, and soft-breaking
mass matrices, as well as non-universal gaugino masses and m2

hu
and m2

hd
. The RGEs for

these parameters are solved to obtain their values at low energies, thereby enabling an
investigation whether the GUT scale Yukawa matrix structures of a given SUSY flavour
GUT model are in agreement with experimental data.

10.2 SUSY threshold corrections & numerical

procedure

We now present the numerical procedure and the formulae for the SUSY threshold correc-
tions. Note that in this chapter we follow the notation of REAP [163] (see also [105]) and use
an RL convention for the Yukawa matrices. These differ from the SLHA conventions [123]
used in the previous chapters. They can easily be translated by

REAP & SusyTC Yu Yd Ye Tu Td Te m2
ũ m2

d̃
m2
ẽ

SLHA Y T
u Y T

d Y T
e T Tu T Td T Te (m2

ũ)
T (m2

d̃
)T (m2

ẽ)
T

Thus the MSSM superpotential extended by a type-I seesaw mechanism is given by

WMSSM = YeijE
c
iHd · Lj + YνijN

c
iHu · Lj

+ YdijD
c
iHd ·Qj − YuijU c

iHu ·Qj +
1

2
MnijN

c
iN

c
j + µHu ·Hd , (10.1)

and the soft-breaking Lagrange density by

−Lsoft =
1

2
Maλ

aλa + c.c.

+ Teij ẽ
∗
Ri
hd · L̃j + Tνij ν̃

∗
Ri
hu · L̃j + Tdij d̃

∗
Ri
hd · Q̃j − Tuij ũ∗Rihu · Q̃j + c.c.

+ Q̃†im
2
Q̃ij
Q̃j + L̃†im

2
L̃ij
L̃j + ũ∗Rim

2
ũij
ũRj + d̃∗Rim

2
d̃ij
d̃Rj + ẽ∗Rim

2
ẽij
ẽRj + ν̃∗Rim

2
ν̃ij
ν̃Rj

+m2
hu|hu|2 +m2

hd
|hd|2 + (m2

3hu · hd + c.c.) . (10.2)

Since REAP includes the RGEs in the type-I seesaw extension of the MSSM (with the DR
two-loop β-functions for the MSSM Yukawa matrices and the neutrino mass operator given
in [105]), we have calculated the DR two-loop β-functions of the gaugino mass parameters
Ma, the trilinear couplings Tf , the sfermion squared mass matrices m2

f̃
, and of the soft-

breaking Higgs mass parameters m2
hu

and m2
hd

in the presence of Yν , Mn, and m2
ν̃ , using

the general formulae of [136]. We list these β-functions in appendix E.
SusyTC calculates the SUSY scale

Q =
√
mt̃1mt̃2 , (10.3)
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where the stop masses are defined by the up-type squark mass eigenstates ũi with the
largest mixing to t̃1 and t̃2.2 The Yukawa matrices and soft-breaking parameters are then
evolved from the GUT scale to the SUSY scale and REAP automatically integrates out the
right-handed neutrinos at their respective mass scales in doing so. Note that we assume
the mass of the right-handed neutrinos to be much larger than the SUSY scale Q. REAP

also features the possibility to add one-loop right-handed neutrino thresholds for the SM
parameters, following [200].

At the SUSY scale Q, SusyTC then calculates the tree-level sparticle masses, mixings and
the SUSY threshold corrections. These can be subdivided into two classes: Firstly there are
tan β-enhanced threshold corrections, which arise for Yd and Ye since at the one-loop level
down-type quarks and charged leptons couple to hu via exchange of sparticles, as shown
in figure 10.1. These are the most relevant contributions to the corrections of the quark-
lepton Yukawa coupling ratios. The corresponding threshold effects to Yu, arising from
effective couplings to hd, are tan β-suppressed. The second class of threshold corrections
emerges from the supersymmetric loops shown in figure 10.2. While some of them are
strongly suppressed, others are proportional to the soft SUSY-breaking trilinear couplings
and can become important in some cases. A third class of threshold corrections, due to
wave-function renormalisation of the external fields, will be implemented into a future
version of SusyTC. Given the precision of our numerical analysis in 10.4, their additional
contribution can be neglected at present.

Considering heavy sparticles and large Q & TeV, SusyTC calculates the SUSY threshold
corrections in the electroweak unbroken phase. There are in total twelve types of loop
diagrams, which are shown in figures 10.1 and 10.2 for Yd. In the basis of diagonal squark
masses the SUSY threshold corrections for Yd are (in terms of DR quantities) given by

Ỹ SM
dij

= Ỹ MSSM
dij

cos β

(
1 +

1

16π2
tan β

(
ηGij + ηWij + ηBij + ηTij

)
+

1

16π2

(
εWij + εBij + εTij

))
+ T̃MSSM

dij
cos β

1

16π2

(
ζGij + ζBij

)
, (10.4)

where

ηGij = −8

3
g2

3
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(
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M2
3

,
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)
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,
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(
1

9
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H2

(
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M2
1

,
m2
Q̃j
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1
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+

1

3

M∗
1

µ
H2

(
m2
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µ2
,
M2

1

µ2

)
+

1

6

M∗
1

µ
H2

(
M2

1

µ2
,
m2
Q̃j

µ2

))
,

2SusyTC can also be set to use the convention Q =
√
mũ1mũ6 or an user-defined fixed value for the

SUSY scale, as described in appendix G.
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ηTij = − 1

µỸdij

∑
n,m

ỸdimT̃
†
umnỸunjH2

(
m2
ũn

µ2
,
m2
Q̃m

µ2

)
, (10.5)

correspond to the tan β-enhanced loops of Figure 10.1, and

εWij = 12g2
2C00

(
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Q2
,
M2
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µ2
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Q̃j

µ2

)
,
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+
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Ỹdij

∑
n,m
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H2

(
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1

,
m2
Q̃j

M2
1

)
, (10.6)

correspond to the loops in Figure 10.2, respectively, where the contributions ζGij and ζBij can
become important in cases of small tan β and large trilinear couplings. The loop functions
H2 and C00 are defined as

H2(x, y) ≡ x log(x)

(1− x)(x− y)
+

y log(y)

(1− y)(y − x)
, (10.7)

C00(q, x, y) ≡1

4

(
3

2
− log(q) +

x2 log(x)

(1− x)(x− y)
+

y2 log(y)

(1− y)(y − x)

)
. (10.8)

Ỹ , T̃ are the Yukawa and trilinear coupling matrices rotated into the basis where the
squark mass matrices are diagonal, using the transformations

m2
Q̃

= W̃Q̃m
2 diag

Q̃
W̃ †
Q̃
,

m2
ũ = W̃ũm

2 diag
ũ W̃ †

ũ ,

Yu = W̃ũỸuW̃
†
Q̃
,

Tu = W̃ũT̃uW̃
†
Q̃
, (10.9)

and analogously for down-type (s)quarks and charged (s)leptons.
The SUSY threshold corrections to Ye are given by

Ỹ SM
eij

= Ỹ MSSM
eij

cos β

(
1 +

1

16π2
tan β

(
τWij + τBij

)
+

1

16π2

(
δWij + δBij

))
+ T̃MSSM

eij
cos β

1

16π2
ξBij , (10.10)
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Figure 10.1: tanβ - enhanced SUSY threshold corrections to Yd.

with the tan β-enhanced contributions
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(10.11)

and

δWij = 12g2
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,
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Figure 10.2: None tanβ - enhanced SUSY threshold corrections to Yd.
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The diagrams for the Ye SUSY threshold corrections are analogous to the ones in figures
10.1 and 10.2, with the exception that the loop diagrams shown in the top rows do not
exist.

Turning to Yu, the types of diagrams which were tan β-enhanced for Yd and Ye are
now tan β-suppressed. However, there also exist SUSY threshold corrections which are
independent of tan β and enhanced by large trilinear couplings. These SUSY threshold
corrections to Yu could have important effects. For example the SUSY threshold corrections
to the top Yukawa coupling yt can be of significance in analyses of the Higgs mass and
vacuum stability. The expression for the Yu SUSY threshold corrections can be readily
obtained from the SUSY threshold corrections to Yd (10.4)–(10.6) by the replacement

d→ u ,

cos β → sin β , (10.13)
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with the exception of the bino-loops, whose contribution become
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due to the different U(1)Y hypercharges of the (s)particles in the loop. The loop diagrams
are identical to the ones of Figure 10.1 and 10.2, with u exchanged by d.

After the SUSY threshold corrections are calculated in the DR scheme, REAP converts
the Yukawa and gauge couplings to the MS scheme following [194].

Finally SusyTC calculates the values of |µ| and m3 from m2
hu

, m2
hd

, tan β, and MZ by
requiring the existence of spontaneously broken EW vacuum, analogously to the discussion
in 5.4. This is equivalent to vanishing tadpole coefficients, and we employ the one-loop
tadpole equations of hu and hd to obtain the one-loop corrected DR expressions of (5.69)

µ = eiφµ
√

1

2

(
tan(2β)

(
m̄2
hu

tan β − m̄2
hd

cot β
)
−M2

Z −Re (ΠT
ZZ (M2

Z))
)
, (10.15)

with m̄2
hu
≡ m2

hu
− tu and m̄2

hd
≡ m2

hd
− td. In the real (CP conserving) MSSM the

phase φµ is restricted to 0 and π. The expressions for the one-loop tadpoles tu, td, and
the transverse Z-boson self energy ΠT

ZZ are based on [201], but extended to include inter-
generational mixing, and presented in appendix F. Because µ enters the one-loop formulae
for the threshold corrections, treating tu, td, and ΠT

ZZ as functions of tree-level parameters
is sufficiently accurate. The one-loop expression of the SUSY soft-breaking mass m3 is
calculated as

m3 =

√
1

2

(
tan(2β)

(
m̄2
hu
− m̄2

hd

)
− (M2

Z +Re (ΠT
ZZ (M2

Z))) sin(2β)
)
. (10.16)

If desired, SusyTC allows to outsource a two-loop Higgs mass calculation to external
software, e.g. FeynHiggs [127–129], by calculating the one-loop corrected pole mass mH+

(mA) as input for the complex (real) MSSM

m2
H+ =

1

cos(2β)

(
m̄2
hu − m̄2

hd
−M2

Z −Re
(
ΠT
ZZ

(
M2

Z

))
+ M̂2

W

−Re (ΠH+H− (mH+)) + td sin2 β + tu cos2 β

)
, (10.17)

m2
A =

1

cos(2β)

(
m̄2
hu − m̄2

hd
−M2

Z −Re
(
ΠT
ZZ

(
M2

Z

))
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Re (ΠAA (mA)) + td sin2 β + tu cos2 β

)
, (10.18)

where M̂W is the DR W-boson mass given as

M̂2
W (Q) = M2

W +Re
(
ΠT
WW

(
M2

W

))
= g2

v̂(Q)

2
, (10.19)

with MZ and MW pole masses and the DR vacuum expectation value v̂(Q) given by

v̂2(Q) = 4
M2

Z +Re
(
ΠT
ZZ (M2

Z)
)

3
5
g2

1(Q) + g2
2(Q)

. (10.20)

As in the previous formulae, the self energies ΠH+H− and ΠAA are based on [201], but
are extended to include inter-generational mixing and understood as functions of tree-level
parameters. They are given in appendix F.

10.3 A brief introduction to SusyTC

In this section we provide a “Getting Started” calculation for SusyTC. A full documentation
of all features is included in appendix G. Since SusyTC is an extension to REAP, an up-to-
date version of REAP-MPT [163] (available at http://reapmpt.hepforge.org) needs to be
installed on your system. SusyTC consists out of the REAP model file RGEMSSMsoftbroken.m,
which is based on the model file RGEMSSM.m of REAP 1.11.2 and additionally contains,
among other things, the RGEs of the MSSM soft-breaking parameters and the matching
to the SM, and the file SusyTC.m, which includes the formulae for the sparticle spec-
trum and SUSY threshold correction calculations. Both files can be downloaded from
http://particlesandcosmology.unibas.ch/pages/SusyTC.htm and have to be copied
into the local REAP directory.

To begin a calculation with SusyTC, one first needs to import RGEMSSMsoftbroken.m:

Needs["REAP‘RGEMSSMsoftbroken‘"];

The model MSSMsoftbroken is then defined by RGEAdd, including additional options such
as RGEtanβ:

RGEAdd["MSSMsoftbroken",RGEtanβ → 30];

In MSSMsoftbroken all REAP options of the model MSSM are available. The options addition-
ally available in SusyTC are given in appendix G. The input is given by RGESetInitial.
Let us illustrate some features of SusyTC: To test for example the GUT scale prediction
for the Yukawa coupling ratio yµ

ys
= 6, considering a given example parameter point in the

Constrained MSSM, one can type:
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RGESetInitial[2·10∧16,
RGEYd → DiagonalMatrix[{1.2·10∧-3, 2.2·10∧-3, 0.16}],
RGEYe → DiagonalMatrix[{1.2·10∧-3, 6·2.2·10∧-3, 0.16}],
RGEM12 → 2000, RGEA0 → 1000, RGEm0 → 2500];

Of course, any general matrices can be used as input for the Yukawa, trilinear, and soft-
breaking matrices, as given by the specific SUSY flavour GUT model under consideration.
Also, non-universal gaugino masses, m2

hu
, and m2

hd
can be specified. The RGEs are then

solved from the GUT scale to the Z-boson mass scale by

RGESolve[91,2·10∧16];

The ratio of the µ and strange quark Yukawa couplings at the Z-boson mass scale can now
be obtained with RGEGetSolution, CKMParameters, and MNSParameters:

Yu = RGEGetSolution[91, RGEYu];
Yd = RGEGetSolution[91, RGEYd];
Ye = RGEGetSolution[91, RGEYe];
Mν = RGEGetSolution[91, RGEMν];
MNSParameters[Mν,Ye][[3, 2]]/CKMParameters[Yu, Yd][[3, 2]]

Repeating this calculation with all SU(5) CG factors listed in table 2 of [83] and (4.45),
one obtains the results shown in figure 10.3.

As described in appendix G, SusyTC can also read and write Les Houches files [123,194]
as input and output.

10.4 The Sparticle Spectrum predicted from CG fac-

tors

In this section we apply SusyTC to investigate the constraints on the sparticle spectrum
which arise from a set of GUT scale predictions for the quark-lepton Yukawa coupling
ratios when assuming Constrained MSSM boundary conditions for the GUT scale SUSY
soft-breaking parameters.

10.4.1 General discussion

Before performing the numerical analysis for a specific example, let us first outline the
connection between the SUSY spectrum and GUT scale Yukawa coupling predictions in a
mostly model-independent discussion, with the only assumption of universal SUSY soft-
breaking parameters. This assumption might be relaxed in realistic models, however it can
be highly motivated in certain SUSY flavour GUT models. The unification of MSSM super-
fields into joint GUT or flavour symmetry representations for example predicts universal
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Figure 10.3: Example results for
yµ
ys

at the electroweak scale, considering the SU(5) CG

factors from (4.45), i.e. the GUT scale predictions
yµ
ys

= CG, for a given example Con-
strained MSSM parameter point with tanβ = 30, m1/2 = 2000 GeV, A0 = 1000 GeV, and
m0 = 2500 GeV. The area between the dashed gray lines corresponds to the experimental
one sigma range [91].

soft-breaking mass matrices for all superfields in the respective multiplets.3 The absence
of deviation from SM predictions for flavour physics observables is a phenomenological
hint towards approximately flavour-universal soft-breaking parameters. Finally let us re-
mark that specific SUSY breaking mechanisms can indeed predict universal soft-breaking
parameters.

Then, the origin for predictions and constraints on the SUSY spectrum arises from
the fact that to our knowledge there exists no viable combination of GUT scale quark-
lepton Yukawa coupling ratios which fit the experimental data without the need for a
certain amount of SUSY threshold corrections. In order to obtain the required size of
these corrections, the ratios of trilinear couplings, gaugino masses, µ, and sfermion masses
are constrained by the loop functions of 10.2.4 In particular the SUSY spectrum has to lie
close to a common SUSY scale, in contrast to e.g. Split SUSY scenarios [202], where these
loop functions would get too suppressed. For CMSSM boundary conditions one obtains
constraints for the ratios between m0, m1/2, and A0. Furthermore, since tan β-enhanced
SUSY threshold corrections are most relevant, tan β must not be too small. So far, only

3For example, in SU(5) only two soft-breaking mass matrices, one for F and one for T remain, and
in SO(10), where all MSSM superfields are embedded into one 16, there is only one soft-breaking mass
matrix.

4Note that this argument is also valid when only one of the first two generation quark-lepton ratios is
predicted together with the third family, since the SUSY threshold corrections in CMSSM-like scenarios
are approximately equal for the first two generations.
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constraints for relative relations between SUSY parameters were discussed. The overall
scale is finally constrained by the measured Higgs mass, which is sensitive to the sparticle
spectrum due to significant loop corrections.

10.4.2 Numerical analysis with SusyTC

Let us now perform a numerical analysis using our new software SusyTC. We consider GUT
scale Yukawa coupling ratios ye

yd
= −1

2
, yµ
ys

= 6, and yτ
yb

= −3
2
, which have been used in the

construction of the SUSY flavour SU(5) models of [2–4] presented in the previous chapters
of this thesis, and also e.g. in [203]. A subset of these relation, yµ = 6ys, and yτ = −3

2
yb,

has been used in [204]. Note that these relations can either emerge as direct result of CG
factors in SU(5) GUTs or as approximate relation after diagonalisation of the GUT scale
Yukawa matrices Yd and Ye. Specifically, our GUT scale Yukawa matrices are given by

Yd =

yd 0 0
0 ys 0
0 0 yb

 , Ye =

−1
2
yd 0 0

0 6ys 0
0 0 −3

2
yb

 ,

Yu =

yu 0 0
0 yc 0
0 0 yt

UCKM(θ12, θ13, θ23, δ) . (10.21)

As discussed above, we assume CMSSM boundary conditions and restrict our analysis
to the parameters m0, m1/2, and A0. The parameter µ is determined from requiring the
breaking of Electroweak symmetry as in (10.15) and we set sgn(µ) = +1. This choice of
real µ is not in conflict with the framework of the complex MSSM, since in specific models
of the GUT Higgs potential, as for example the ones discussed in chapter 9, µ can be
realised as an effective parameter of the superpotential with a fixed phase, including the
case that µ is real. The last CMSSM parameter tan β is not explicitly included in our
analysis, however we have scanned over different values of tan β and found that the best
fit can be obtained for values of tan β ≈ 30. For our main analysis we have therefore set
tan β = 30.

REAP requires a neutrino sector, we have thus added a CSD like (3.43) neutrino Yukawa
matrix Yν and right-handed neutrino mass matrix. The entries of Yν have been set to
very small values below O(10−3), such that their effects on the RG evolution can be safely
neglected, and the masses of the right-handed neutrinos to values about 1014 GeV, many
orders of magnitude higher than the expected SUSY scale. Such a neutrino sector is similar
to the ones studied in the models of part III and also [203].

Using one-loop RGEs, REAP 1.11.2, and SusyTC we determine the SUSY soft-breaking
parameters and µ at the calculated SUSY scale, as well as the pole mass mH+ . Parameter
points which lead to tachyonic sfermion masses at any rernormalisation scale or which do
not allow for Electroweak symmetry breaking are discarded. We then pass our results to
FeynHiggs 2.11.2 [127–129] in order to calculate the two-loop corrected Higgs pole masses
in the complex MSSM. Finally the MSSM is matched to the SM and we compare our results
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at the electroweak scale with the measured Higgs boson mass of mH = 125.7±0.4 GeV [14]
and the quark and charged lepton Yukawa couplings and quark mixing parameters taken
from [91]. Note that we set the uncertainty of the charged lepton Yukawa couplings to one
percent to account for the estimated theoretical uncertainty, which in our analysis exceeds
the experimental one. Similarly, we estimate a theoretical uncertainty of the Higgs mass
calculation of ±3 GeV, as is commonly assumed.5

10.4.3 Results

Of our thirteen parameters, it turned out that by adjusting the seven parameters of Yu,
we could always fit the up-type quark Yukawa couplings, the CKM mixing angles, and the
CP phase to agree with at least 10−3 relative precision with experimental data.

Thus, the remaining six parameters yd, ys, yb, m0, m1/2, and A0 are used to fit the mass
of the SM-like Higgs boson and the Yukawa couplings of down-type quarks and charged
leptons. We found a benchmark point with a χ2 = 3.9:

GUT scale input parameters

yd ys yb
1.30 · 10−4 2.29 · 10−3 0.162

m0 A0 m1/2

1607.09 −4373.61 786.95

low energy results

ye yµ yτ
2.79 · 10−6 5.92 · 10−4 1.00 · 10−2

yd ys yb mh0

1.60 · 10−5 2.82 · 10−4 1.64 · 10−2 125.0 GeV

Let us discuss our results in detail. First note that by looking at the low energy scale
Yukawa coupling ratios

ye
yd

= 0.17 ,
yµ
ys

= 2.10 , and
yτ
yb

= 0.61 , (10.22)

the importance of SUSY threshold corrections in evaluating the GUT scale predictions for
Yukawa coupling ratios becomes evident. Note that the ratios yield an double ratio (4.43)∣∣∣∣yµys ydye

∣∣∣∣ = 12.4 , (10.23)

5Recently, indications that the theoretical uncertainty in the “large stop mixing” region of parameter
space, which will turn out to be most relevant to our analysis, may be larger, have been discussed [205],
however there is no full agreement on this aspect. The improvement of the Higgs mass computation is an
active field of research and future studies will benefit from more precise calculations.
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within the reported one sigma range. The effect of SUSY threshold corrections can also
clearly be seen in figure 10.4 as offset at the SUSY scale. Note that the SUSY threshold

ye
yd

yμ
ys

yτ
yb

102 104 106 108 1010 1012 1014 1016

1

0.5

2

6

RG scale (GeV)

Figure 10.4: RG evolution of the Yukawa coupling ratios of the first, second, and third
family from the GUT scale to the electroweak scale. The GUT scale parameters correspond
to our benchmark point. The effects of the threshold corrections are clearly visible at the
SUSY scale Q = 940 GeV. The light grey areas indicate the experimental Yukawa coupling
ratios at MZ , taken from [91].

correction necessary to correct the third generation GUT scale prediction yτ = −3
2

is the
smallest. In fact one can express the ratio of the Yukawa coupling ratios above and below
the SUSY scale in terms of the parametrisation (7.26), which was employed in chapters 7
and 8 to approximate the effect of SUSY threshold corrections without specific knowledge
of the SUSY parameters. We find

1+ diag (ηQ12 , ηQ12 , ηQ3) ≈ diag (1.27, 1.27, 1.17) , (10.24)

i.e. our assumption of equal SUSY threshold corrections for the first and second generations
was justified. This of course is not a surprise, since we assume CMSSM GUT scale boundary
conditions and therefore, as we will see in a moment, the squarks of the first and second
generations are approximately degenerate in mass. Such a mass degeneracy was stated in
7.4 as condition for (7.26) to be valid.

Because SusyTC calculates the SUSY threshold corrections for the full Yukawa matrices,
additionally to the quark-lepton mass ratios, as shown in figure 10.5 one can also determine
a considerable effect of the SUSY threshold corrections on the CKM angles, which in general
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Figure 10.5: RG evolution of the CKM mixing angles θCKM
13 and θCKM

23 from the GUT
scale to electroweak scale. The GUT scale parameters correspond to our benchmark point.
The effects of the threshold corrections are clearly visible at the SUSY scale Q = 940 GeV.
The light grey areas indicate the experimental values at MZ .

are important in the light of the very precise experimental values of the CKM parameters.

Let us now turn to a discussion of the SUSY spectrum. Our benchmark point yields a
SUSY scale of Q = 940 GeV. We find that the lightest SUSY particle (LSP) is a bino-like
neutralino with a mass of about 346 GeV. The next-to-lightest SUSY particle (NLSP)
is a stop of about 577 GeV. Note that this values where obtained as direct results of
fitting our GUT scale model to the observed Higgs boson mass and fermion masses and
mixing parameters. In particular, no bounds or cuts on the sparticle masses were applied
as well as no restrictions from the neutralino relic density.6 By requiring spontaneous
electroweak symmetry breaking SusyTC calculates µ = 2013 GeV. We show the resulting
SUSY spectrum in figure 10.6. The two lightest up-type squark mass eigenstates ũ1 and ũ2

are stop-like, whereas the sups and scharms yield the mass eigenstates ũ3 – ũ6 with almost
degenerate mass eigenvalues. Similarly, the masses of the first and second generations of
down-type squarks and charged sleptons are approximately degenerate.

An important concern in SUSY models with large trilinear couplings is vacuum stabil-

6To use the neutralino relic density as constraint, further assumptions on the cosmological evolution
would be required. For example, the neutralino relic density may be diluted if additional entropy gets
produced at late times (cf. e.g. [206]).
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Figure 10.6: SUSY spectrum with SU(5) GUT scale boundary conditions ye
yd

= −1
2 ,

yµ
ys

= 6, and yτ
yb

= −3
2 , corresponding to our benchmark point from section 5.

ity. Using the constraints from [134] we find that our benchmark point’s scalar potential
possesses charge and colour breaking (CCB) vacua, as well as one “unbounded from below”
(UFB) field direction in parameter space. This however not necessarily poses a threat to
our model, since the lifetime of the vacuum can still be orders of magnitude larger than
the age of the universe. The decay probability of a false vacuum can be estimated per unit
time and unit volume as [207]

Γ

V
≈ e−SE , (10.25)

where SE is the Euclidean action of the bounce solution, which describes an O(4)-symmetric
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field configuration which, starting at the false vacuum for Euclidean time τ → −∞,
“bounces” off the true vacuum at τ = 0, and returns into the false vacuum at τ → ∞.
Requiring that the probability of a vacuum decay to happen in our past lightcone is suffi-
ciently small translates into a lower bound

SE > 400 . (10.26)

SE can be approximated by considering a straight path ~φ = φ~v connecting false and true
vacuum in field space [208].7 We thus study a single scalar field φ with potential U(φ),
which has a false vacuum at φ = φf . The bounce solution is then obtained from minimising

SE = 2π2

∫ ∞
0

dr r3
(z

2
∂iφ∂

iφ+ U(φ)
)
, (10.27)

with the boundary conditions φ(τ → ∞) ≡ φf , φ
′(0) ≡ 0, and z = 1 if φ is canonically

normalised. The equation of motion is

φ′′(r) +
3

r
φ′(r) = U ′(φ) , (10.28)

which corresponds to a classical field φ moving in a potential −U(φ) and subject to some
friction force [207]. Following the program of [209], SE can be determined by rephrasing
the directions of “improved CCB” constraints in field space of [134] into the general form

U(φ) = M2
2φ

2 −M3φ
3 + λφ4 . (10.29)

Then SE can be approximated by [210]

SE =
z2M2

2

M2
3

ŜE(κ) , (10.30)

κ ≡ λ
M2

2

M2
3

. (10.31)

Note that ŜE depends only on a single parameter and can be approximated by the expres-
sion [210]

ŜE(κ) ≈

−0.7 + 2π2

12(1−4κ)3 + 16.5
(1−4κ)2 + 28

1−4κ
κ ≥ 0

45.4
(

1 +
(

3·45.4
2π2

)1.1 |κ|1.1
)− 1

1.1
κ ≤ 0

. (10.32)

Tunneling is possible for any value κ < 1
4

and values of κ < 0 correspond to “unbounded
from below” directions. The “improved CCB” directions involve one trilinear term Tf and
are in generally D-flat. Only for the case of the top squarks the scalar potential can suffer

7Note that this method yields an upper bound for SE . A complete minimisation of SE over all non-
trivial paths is very elaborate and beyond the scope of this thesis. Since our smallest value of SE ≈ 1090
satisfies (10.26) by far, the simplified method can be used to estimate a generally small enough decay
probability.
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from CCB vacua with non-vanishing D-terms. For all trilinear couplings Tuij , Tdij , and Teij
we numerically minimised (10.30) for the corresponding “improved CCB” field direction
and checked that SE > 400 is satisfied.

Another strong constraint on the MSSM parameter space comes from the UFB-3 direc-
tion [134]

UUFB-3 =

m
2
hu
|hu|2 + |µ|

ydj

(
m̂2
Q̃jj

+ m̂2
d̃jj

)
|hu|+ 1

8
(g′2 + g2

2)
(
|hu|2 + |µ|

ydj
|hu|
)2

|hu| < Hc(
m2
hu

+ m̂2
L̃ii

)
|hu|2 + |µ|

ydj

(
m̂2
Q̃jj

+ m̂2
d̃jj

+ m̂2
L̃ii

)
|hu| −

2m̂L̃ii
g′2+g2

2
|hu| > Hc

,

(10.33)
where

Hc ≡
√

µ2

4y2
dj

+
2m̂L̃ii

g′2 + g2
2

− |µ|
2ydj

, (10.34)

and m̂2 are the soft-breaking matrices in the Super-CKM/Super-PMNS basis, as defined
in appendix B. A second potentially dangerous UFB-3 direction is given by (10.33) with
the replacement Qj, dj → Lj, ej. Both directions depend only on |hu|, thus we use (10.28)
to calculate SE. We find that the lifetime of the electroweak vacuum is many orders of
magnitude larger than the age of the universe, which shows that our model’s benchmark
point is phenomenologically viable.

We now discuss confidence intervals for our model’s sparticle masses and parameters,
which we obtain as in part III as Bayesian hpd intervals from a Markov Chain Monte Carlo
analysis, using a Metropolis algorithm. Looking at fit results for several fixed values of
|A0|, we find that in order to avoid potentially dangerous vacuum decay rates, the MCMC
analysis must include a prior for |A0|. A detailed, individual computation of each parameter
point’s vacuum lifetime, although more desirable than a prior, would consume too much
computation time. In our analysis we restrict |A0| < 7.5 TeV, although we remark that
our predicted confidence intervals could be somewhat enlarged by a more sophisticated
inclusion of the lifetime constraints. In figure 10.7 on page 151 we show our results for the
one sigma hpd intervals of the sparticle masses. We find that for all parameter points the
LSP and NLSP are a bino-like neutralino and a stop, respectively. As a result of the fit and
without applying any constraints, the masses of all sparticles are above current bounds from
LHC or dark matter searches. The lower band of our predicted sparticle spectrum is within
reach of a future LHC high-luminosity upgrade, and the full range is possibly testable at
future O(100 TeV) proton-proton colliders like the FCC-hh or the SppC (see e.g. [211]).
For the SUSY scale we find an hpd interval of Qhpd = [841, 3092] GeV. Correlation between
LSP, NLSP, and gluino masses are shown in figure 10.8 as two-dimensional hpd regions.
Finally we show the one sigma hpd intervals for the CMSSM soft-breaking parameters in
figure 10.9. The correlations between the CMSSM parameters and the resulting mass of
the SM-like Higgs boson is shown in figure 10.10.
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10.4.4 Remarks

We close this chapter with some remarks and comments on our analysis.

Other GUT scale predictions For our analysis we investigated the GUT scale Yukawa
coupling ratios that have been constructed in the various models of this thesis, i.e. yτ

yb
= −3

2
,

yµ
ys

= 6, and ye
yd

= −1
2
. Certainly, other GUT scale relations like Georgi-Jarlskog or the

other CG factors of (4.45) can be constructed, too. We have published SusyTC to provide
the SUSY GUT model building community with an useful tool for model analyses and it
will be interesting to compare predictions and constrains on the SUSY spectra from other
promising GUT scale Yukawa predictions in the future. Also note that some GUT models
do not predict any quark-lepton Yukawa coupling ratios, hence they lack a link to the
SUSY threshold corrections and do not yield constraints on the SUSY spectrum.

Universal soft-breaking terms As discussed in 10.4.1, universal SUSY soft-breaking
parameters are well motivated in SUSY flavour GUT models. However, it will be interest-
ing to study constraints on the non-universality of the soft-breaking parameters in future
analyses. In this context the results obtained with SusyTC can be obtained as SLHA out-
put files and the obtained SUSY spectrum can conveniently be forwarded to software tools
specialised on flavour observables.

Gauge coupling unification A discussion on gauge coupling unification depends strongly
on the GUT Higgs potential and was therefore omitted in this chapter (see e.g. 9.3). Note
however that GUT threshold effects can be implemented into REAP and one can study the
effects on gauge coupling unification within a complete GUT model. For our analysis, we
have simply fixed the GUT scale at the common 2 · 1016 GeV, which is of similar size as
e.g. the GUT scale of the model in 9.4.1. Let us however point at the interesting possi-
bility, that the GUT scale is shifted to much higher values. In this case, the RGEs for
the Yukawa couplings have to be solved for a larger range and thus the predictions for
the SUSY spectrum will change. Eventually, a higher GUT scale can possibly even favour
other quark-lepton Yukawa coupling ratios than a model with lower GUT scale.
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Figure 10.8: Two-dimensional one sigma (dark) and two sigma (bright) hpd regions for
the masses of the LSP, NLSP, and gluino. The black star marks the benchmark point.
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Figure 10.10: Two-dimensional one sigma (dark) and two sigma (bright) hpd regions for
the CMSSM soft-breaking parameters and the SM-like Higgs mass. The black star marks
the benchmark point. The dashed lines correspond to the region 125.7± 3 GeV.



PART VI

Summary



CHAPTER 11

Summary and Conclusions

In this thesis we derived and discussed multiple predictions, in particular for the flavour
and SUSY flavour structure, arising from a certain class of supersymmetric Grand Uni-
fied Theories. Combining SUSY, GUTs, and discrete flavour symmetries into predictive
SUSY flavour GUT models, we investigated the interplay between these three beyond the
Standard Model concepts.

When a flavour symmetry gets spontaneously broken, the observed hierarchies and
structures in the flavour sector of a model are explained via flavon fields, which obtain
vevs pointing into specific directions in flavour space. Relations between quark and lepton
observables can be explained by GUTs, which can feature predictions for ratios between
quark and lepton Yukawa couplings. In SUSY flavour GUT models, these predictions are
affected by SUSY threshold corrections, thereby linking a particular flavour GUT model to
the SUSY spectrum. Finally, SUSY GUTs can predict too rapid proton decay, establishing
constraints on the GUT breaking Higgs sector and the model’s symmetries.

We motivated SUSY flavour GUT models, outlined the problems discussed in this thesis,
and introduced the necessary theoretical framework in parts I and II.

In part III we focused on the construction of SUSY flavour GUT models. In particular, we
discussed in chapter 6 four simple conditions to construct the interesting phenomenological
relation θPMNS

13 ≈ θC sin θPMNS
23 in SU(5) GUTs and Pati-Salam models. The basic principle

is the generation of the down-type quark and charged lepton Yukawa matrix elements from
the same joint GUT operators, which implies that the resulting matrix elements are equal
up to group theoretical Clebsch-Gordan factors. This can impose θC ≈ θe12 and thus the
Cabibbo angle emerges in the charged lepton corrections to θPMNS

13 . In detail, the four
conditions are

Condition 1: The mixing angles θν13 and θe13 should be vanishing.

Condition 2: The Cabibbo angle should be given by θC ≈ θd12, as for example in models
with θu12 � θd12.
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Condition 3: The GUT scale ratios between the relevant elements of Ye and Yd have to
be predicted, e.g. from CG factors when the entries of Yd and Ye are generated from
single joint GUT operators.

Condition 4: The ratio of the two CG factors in θC ≈
∣∣∣ c1c2 ∣∣∣ θe12 must be one, i.e. c1 and c2

have to be equal. In SU(5) GUTs an approximate equality between the 1-2 and 2-1
elements of Yd has to be required in addition, e.g. by a symmetry in the 1-2 submatrix
or via the GST relation and a vanishing 1-1 element.

In a model-independent way, we estimated the possible corrections due to e.g. RG
evolution, next-to-leading order terms in the small angle expansion, and the experimental
uncertainty of θPMNS

23 and found it to be less than about O(10%). Within an explicit
flavour GUT model, the uncertainty can decrease to about ±0.25◦, since the estimate can
be replaced by explicit calculations. Specific flavour GUT models can thus possibly be
differentiated in careful analyses.

Furthermore, we discussed the connection between different neutrino mixing patterns
and the Dirac CP phase via the lepton mixing sum rule. With θν13 � θC being the
only restriction on the neutrino sector, a future measurement of δPMNS may be viewed as
“reconstructing” the value of θν12, provided that a hierarchic charged lepton Yukawa matrix
θe13, θ

e
23 � θC is given.

In chapter 7 we then proposed a first SUSY flavour GUT model, based on SU(5) and
an A4 flavour symmetry, where θPMNS

13 ≈ θC sin θPMNS
23 is realised, following the conditions

discussed in chapter 6. In order to construct a predictive GUT model, in addition to
the matter and flavon superpotential, we carefully built the full renormalisable messenger
sector, which guarantees that only specific GUT contractions emerge in the effective super-
potentials when the heavy messenger superfields are integrated out. In this way condition
3 is ensured: the GUT scale Yukawa matrix elements are generated from single joint opera-
tors, yielding predictive quark-lepton relations via group-theoretical CG factors. We made
use of a novel set of CG-factors, namely c12 = c22 = 6 and c21 = −1

2
, which are in excellent

agreement with the current experimental data for ms
md

and satisfy condition 4. Our model
is invariant under generalised CP symmetry, which is broken spontaneously by the vevs of
flavon fields. In the neutrino sector we constructed tri-bimaximal mixing, which predicts
close-to-maximal CP violation δPMNS ≈ 270◦ via the lepton mixing sum rule. In the quark
sector our model features a right-angled unitarity triangle.

We performed a detailed fit of the model’s 14 parameters to 18 measured observables,
taking into account the RG evolution from the GUT scale to lower energies and approximate
formulae for SUSY threshold corrections, and found a good best-fit point with a χ2/d.o.f.
of 2.0. Bayesian one sigma highest posterior density intervals were obtained from a Markov
Chain Monte Carlo analysis. Including the unmeasured neutrino CP phases, our model
makes six predictions. We discussed our results in the light of newly available data and
outlined how future more precise measurements of the lepton mixing parameters, δCKM,
ms
md

, and of neutrino-less double beta decay can be used to test our predictions.
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Part III is completed with chapter 8, where a strong inverse neutrino mass hierarchy was
constructed in a second SUSY flavour GUT model with SU(5) and A4. The strong inverse
hierarchy was constructed without fine-tuning, based on an off-diagonal mass matrix of
the right-handed neutrinos and a novel vacuum alignment for the flavons constituting the
neutrino Yukawa matrix, which features θν23 as free parameter and therefore can explain
θPMNS

23 6= 45◦ without the need for charged lepton corrections. Due to the specific phases
of the flavon vevs, our model predicts δPMNS = ϕPMNS = 180◦.

Constructing the model similar to the one in chapter 7, we again realised the specific
relation θPMNS

13 ≈ θC sin θPMNS
23 from charged lepton mixing corrections, linked to quark

mixing by GUT relations. Comparing to chapter 7, we found an even better best-fit
with χ2/d.o.f. = 1.1 in an analogous phenomenological analysis. We discussed the model’s
predictions and found a new non-compliance with the most recent global fit value of θPMNS

23 ,
which lies in the second octant for inverse neutrino mass ordering, as opposed to the 2013
data. However, we also pointed out that precise measurements of θPMNS

23 are still work in
progress and future experiments will be able to settle this question.

We finally pointed out the differences between the predictions of both models of chapters
7 and 8 and discussed how they can be discriminated with the data of running and future
experiments. For the inverse hierarchy model we found the effective mass parameter of
neutrino-less double beta decay to be in reach of the nEXO and AMoRE experiments.
A future 50 − 70 km baseline reactor measurement of θPMNS

12 with high precision would
allow to distinguish both models. Interestingly, although both models differ mainly in the
neutrino sector from each other, they feature different predictions of δCKM and could be
distinguished by a precise measurement of the quark mixing CP phase.

Both models of chapters 7 and 8 can be viewed as proof of principle, demonstrating
the successful construction of predictive flavour GUT models with θPMNS

13 ≈ θC sin θPMNS
23

and realistic quark-lepton mass ratios. In particular, the sets of shaping symmetries and
messenger superfields presented in appendix D are not expected to be one-of-a-kind im-
plementations of our models’ features. We thus understand our constructed realisations
as classes of models, defined by the strategy of predictive GUT scale Yukawa coupling
matrices, built via shaping symmetries, UV-completion due to messenger superfields, and
specific group-theoretical CG factors.

In part IV of this thesis, we discussed how the double missing partner mechanism solution
to the doublet-triplet splitting problem in SUSY SU(5) GUTs can be combined with the
strategy to construct predictive flavour models via specific CG factors for the GUT scale
quark-lepton Yukawa coupling ratios.

We have argued that towards this goal a second SU(5) breaking Higgs superfield in the
adjoint representation is very useful:

• An additional 24 can be used to split the triplet and octet components of 24 in a renor-
malisable superpotential, thereby shifting the upper bound (obtained from the require-
ment of gauge coupling unification) of the effective triplet mass mediating dimension
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five proton decay to higher values, i.e. above the lower bound from non-observation of
proton decay.

• The introduction of a second adjoint is not only an UV-completion, but generally leads
to more freedom for the GUT scale and the effective triplet mass.

• A second adjoint field allows the 24s to be charged under shaping symmetries, which is
necessary for predictive GUT flavour models.

Then the GUT scale and effective triplet masses can be easily made high enough to avoid
problems with proton decay.

We discussed the shaping symmetry and messenger sector of the DMPM with an ad-
joint, which guarantee the absence of dangerous Planck scale suppressed operators and
generalised the notion of effective triplet masses to the case of more than one pair of Higgs
fields H, H̄ coupling to matter.

Two explicit flavour models with different predictions for the GUT scale Yukawa matri-
ces were constructed, including shaping symmetry and messenger sector, and we presented
a discussion on the careful choice of messenger superfields with respect to phenomenology.
We found that both models feature effective triplet masses above current bounds from pro-
ton decay. We included all possible effective Planck scale suppressed operators consistent
with our symmetries and found the welcomed emergence of small µ-terms for the light
Higgs doublets, while no dangerous operator existed that could have spoiled our results.
Both models stay perturbative until close to the Planck scale.

Finally we discussed proton decay and outlined that flavour GUT models also determine
the Yukawa matrix structures for the Higgs triplet couplings, and thus enable a more
predictive analysis of different proton decay channels than conventional GUT models.

In the final part V, we studied SUSY threshold corrections and discussed their impor-
tance for the investigation of GUT scale quark-lepton Yukawa coupling ratios, thereby
linking a given flavour GUT model to the SUSY parameters. Thus, via SUSY threshold
corrections, GUT models can predict properties of the sparticle spectrum from the pattern
of quark-lepton mass ratios at the GUT scale.

We extended and generalised various formulae in the literature needed for a precision
analysis of SUSY flavour GUT models, e.g. we calculated the two-loop RGEs of the MSSM
soft-breaking parameters in the seesaw type-I extension and generalised the one-loop cal-
culation of µ and of the pole masses mA and mH+ to include inter-generational mixing in
the self energies. We then carefully calculated the one-loop SUSY threshold corrections for
the full down-type quark, up-type quark, and charged lepton Yukawa coupling matrices in
the electroweak unbroken phase.

We implemented these formulae into a new software tool SusyTC, a major extension to
the Mathematica package REAP. SusyTC also calculates the DR sparticle spectrum and the
SUSY scale Q, and can provide output in SLHA “Les Houches” files which are the necessary
input for external software, e.g. for performing a two-loop Higgs mass calculation.
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With SusyTC we introduced a convenient tool for top-down analyses of SUSY flavour
GUT models, accepting general matrices as input for the GUT scale trilinear and soft-
breaking mass matrices, analogously to the input of general GUT scale Yukawa matrices
in REAP, and non-universal gaugino masses. Together with REAP, the RG evolution to low
energies is performed, including an automatic calculation of the SUSY scale, automatic
matching of the MSSM to the SM, and DR to MS conversion.

We applied SusyTC to study the predictions of the GUT scale Yukawa coupling rela-
tions ye

yd
= −1

2
, yµ
ys

= 6, and yτ
yb

= −3
2
, which were used in the construction of the SUSY

flavour GUT models in parts III and IV for the Constrained MSSM parameters and the
sparticle masses. We found a benchmark point with χ2 = 3.9 where the LSP is a bino-like
neutralino with a mass of about 346 GeV and the NLSP a stop with a mass of 577 GeV.
We performed a Markov Chain Monte Carlo analysis to obtain Bayesian highest posterior
density intervals for the sparticle masses. Remarkably, without having applied any con-
straints from LHC SUSY searches or dark matter searches, we found that the considered
GUT scenario predicts a sparticle spectrum above past LHC sensitivities, but partly within
reach of a future LHC high-luminosity upgrade. O(100) TeV proton-proton colliders like
the FCC-hh or the SppC will be able to test our findings in the future.

In summary, we demonstrated the successful construction of SUSY flavour GUT mod-
els with realistic quark-lepton mass ratios and mixing angle relations by presenting and
analysing two explicit models with normal and inverse neutrino mass ordering, respec-
tively. In order to predict the flavour structure, we emphasised the importance of a careful
construction of additional shaping symmetries and messenger sectors. We then presented
a strategy to combine such predictive SUSY flavour GUT models with the double miss-
ing partner mechanism solution to the doublet-triplet splitting problem by introducing a
second GUT breaking Higgs field in the adjoint representation, constructed two example
models, and found their proton decay rate sufficiently suppressed due to heavy effective
triplet masses. Finally we investigated SUSY threshold corrections and found predictions
for the sparticle spectrum arising from given flavour GUT models, by introducing a new
software tool SusyTC, which enables convenient top-down analyses of SUSY flavour GUT
models. In conclusion, we performed a detailed investigation of predictions for the flavour
and SUSY flavour structure arising from different aspects in certain SUSY flavour GUT
models and provided an useful software tool for analyses of future models.
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APPENDIX A

Brief review on group theory

In this appendix a brief review on group theory is presented, where we restrict the discussion
to the topics relevant in this thesis. In Particle Physics two types of symmetry groups are
important: Lie groups and small discrete groups. Of special relevance in this thesis are the
Lie groups SU(N) and the discrete symmetry group A4, which will be discussed in this
appendix based on [80, 212] for SU(N) and [49, 213, 214] for A4. We also briefly review
generalised CP transformations in A4 flavour models, based on [166].

A.1 The special unitary group SU(N)

The special unitary group SU(N) is the group of unitary N×N matrices U with detU = 1.

A N × N unitary matrix has 2N + 2N(N−1)
2

= N2 degrees of freedom. If follows from
including the additional constraint detU = 1 that SU(N) has dimension N2−1. Therefore
every element of the group connected to 1N can be written as

U(θ) = eiθaT
a

= 1+ iθaT
a +O(θ2) , (A.1)

where T a are N2−1 hermitian, traceless1 N×N matrices, called the generators of SU(N).
The generators are normalised as

Tr T aT b =
1

2
δab . (A.2)

They furnish the Lie algebra su(N) and satisfy the commutator relation

[T a, T b] = ifabcT
c , (A.3)

where fabc are called structure constants of su(N). It can be shown that they are totally
anti-symmetric.

A representation R of a group is a set of matrices M associated with group elements such
that the group multiplication is satisfied. More generally, one can find a set of matrices

1Using det eA = eTr A.
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T aR specific to the representation R, which satisfy the same commutation rule Eq. (A.3) as
the generators of su(N) and span a basis of the matrices of R. Representations of SU(N)
are named after the rank of the representation matrices.

If a representation R has a basis where all T aR can be brought into block-diagonal form,
R is called reducible. A reducible representation can be decomposed into the direct sum
of irreducible representation. For every irreducible representation r the matrices T ar are
normalised as

Tr T ar T
b
r = l(r)δab , (A.4)

where the constants l(r) are named Dynkin index. Another important constant of SU(N)
irreducible representations are the quadratic Casimir invariants C2 defined by∑

a

(T ar T
a
r )ij = C2δij . (A.5)

The simplest irreducible representation is the singlet representation 1 where M(g) = 1

for all elements g and T aR = 0. In order for the Lagrange density to be invariant under an
SU(N) symmetry, it has to transform under the singlet representation.

The structure constants themselves span a representation of real (N2 − 1) × (N2 − 1)
matrices, known as adjoint representation with

(
T aN2−1

)
ij

= −ifaij.
Of course, the matrices U also form a representation themselves. This irreducible rep-

resentation is called the fundamental representation N and its representation matrices are
spanned by T aN = T a. A field transforming under the fundamental representation of SU(N)
is an N -dimensional vector

ψi → Ui
jψj . (A.6)

For every representation R exists a conjugate representation R̄, whose representation
matrices are given by the complex conjugates M∗. The conjugate representation to the
fundamental representation is called anti-fundamental. Its representation matrices are
spanned by T a

N̄
= −T a. With the convention ψi ≡ ψ∗i for the position of the indices, a field

transforming in the anti-fundamental representation is an N -dimensional row vector

ψi → ψjU
j
i . (A.7)

Fields transforming under higher dimensional representations are defined as tensors,
whose transformation properties are given by the direct product of the transformations of
the corresponding vectors

ψi1i2...inj1j2...jm
→ U i1

i′1
U i2

i′2
. . . U in

i′nUj1
j′1Uj2

j′2 . . . Ujn
j′nψ

i′1i
′
2...i
′
n

j′1j
′
2...j

′
m
. (A.8)

There are two invariant tensors, which can be used to raise and lower indices: The Kro-
necker delta δi

j and the totally anti-symmetric Levi-Civita tensor2 εi1i2...iN . Products of
SU(N) tensors are then obtained by the various possibilities to contract SU(N) indices.

2Note that in SU(2) εij can be used to flip the anti-fundamental 2̄ into the fundamental 2.
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A.2 The discrete group A4

The symmetry group A4 is the group of even permutations of four elements, i.e. the sym-
metry group of a solid tetrahedron, and thus has order 4!

2
= 12. The twelve elements of A4

are

• The identity ( ).

• Three double transpositions, which are the interchanges of two unrelated pairs (i1, i2)◦
(i3, i4), and have order two.

• Eight 3-cycles (i1, i2, i3) = (i1, i3) ◦ (i1, i2) of order three.

Therefore, the generators of A4 are one double transposition S and one 3-cycle T , see table
A.1.

Generator Cycle order n

S (1, 2) ◦ (3, 4) 2
T (1, 2, 3) = (1, 3) ◦ (1, 2) 3

Table A.1: The generators of A4.

A4 has four conjugacy classes NiC
ni , where Ni is the number of elements in the conju-

gacy class, ni denotes the order of the elements in the conjugacy class, and gi is one element
of the conjugacy class. Besides the trivial 1C1(1), they are 3C2(S) = {S, TST 2, T 2ST},
4C3(T ) = {T, STS, ST, TS}, and 4C3(T 2) = {T 2, ST 2S, ST 2, T 2S}. Since the number
of conjugacy classes equals the number of irreducible representations, there are four irre-
ducible representations in A4. Furthermore, it follows from the group theory theorem that
the order of a finite group equals the sum of the squares of the dimensions of its irreducible
representations, that A4 has three singlets 1, 1′, and 1′′, and one triplet 3. Then the
character table of A4 is given by table A.2. From the character table one can find the
multiplication rules

r× s =
∑
t

d(r, s, t)t , (A.9)

1C1(1) 3C2(S) 4C3(T ) 4C3(T 2)

χi(1) 1 1 1 1
χi(1

′) 1 1 w w2

χi(1
′′) 1 1 w2 w

χi(3) 3 -1 0 0

Table A.2: Character table of A4, where ω ≡ e
2πi
3 . The character table is unique up to

an exchange of 1′ and 1′′.
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with

d(r, s, t) =
1

12

∑
i

ni χi(r)χi(s)χ∗i (t). (A.10)

One obtains for A4

1′ × 1′ = 1′′ ,

1′′ × 1′′ = 1′ ,

1′ × 1′′ = 1 ,

1′ × 3 = 3 ,

1′′ × 3 = 3 ,

3× 3 = 1 + 1′ + 1′′ + 3s + 3a , (A.11)

where 3s and 3a denote a symmetric and antisymmetric product, respectively.
In this thesis we use the A4 basis of Ma and Rajasekaran [76], with the generating

elements S and T as shown in table A.3. In this basis, the 1 in 3 × 3 is given by the

S T

1 1 1
1′ 1 w
1′′ 1 w2

3

1 0 0
0 −1 0
0 0 −1

 0 1 0
0 0 1
1 0 0


Table A.3: The generating elements of S and T for the irreducible representations of A4

in the Ma-Rajasekaran basis.

SO(3)-type inner product

3× 3 = 1 :

α1

α2

α3

×
β1

β2

β3

 = α1β1 + α2β2 + α3β3 . (A.12)

The other singlets in 3× 3 are given by

3× 3 = 1′ :

α1

α2

α3

×
β1

β2

β3

 = α1β1 + ω2α2β2 + ωα3β3 , (A.13)

3× 3 = 1′′ :

α1

α2

α3

×
β1

β2

β3

 = α1β1 + ωα2β2 + ω2α3β3 , (A.14)
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where ω ≡ e
2πi
3 . For the two triplets in 3×3 we denote the symmetric product by “?” and

the antisymmetric by “×”

3 ? 3 = 3s :

α1

α2

α3

 ?

β1

β2

β3

 =
1

2

α2β3 + α3β2

α3β1 + α1β3

α1β2 + α2β1

 , (A.15)

3× 3 = 3a :

α1

α2

α3

×
β1

β2

β3

 =
1

2

α2β3 − α3β2

α3β1 − α1β3

α1β2 − α2β1

 . (A.16)

The remaining products are given by

1′ × 3 = 3 : α×

β1

β2

β3

 = α

 β1

ωβ2

ω2β2

 , (A.17)

1′′ × 3 = 3 : α×

β1

β2

β3

 = α

 β1

ω2β2

ωβ2

 , (A.18)

1′ × 1′′ = 1 : αβ , (A.19)

1′ × 1′ = 1′′ : αβ , (A.20)

1′′ × 1′′ = 1′ : αβ . (A.21)

A.3 Generalised CP transformations

The so called canonical CP violation acts on a scalar field φ as

CP : φ→ eiϕφ∗ . (A.22)

If the field transforms as a (not necessarily irreducible) representation ρ of a flavour sym-
metry group G

φ→ ρ(g)φ g ∈ G , (A.23)

a generalised CP transformation [215] is defined by [166]

CP ′ : φ→ Uφ∗ , (A.24)

where U is an unitary matrix acting on flavour space, which has to satisfy a consistency
equation

U−1ρ(g′)U = ρ(g)∗ , (A.25)

since flavour group and generalised CP transformations have to commute.3 Thus, gener-
alised CP is an automorphism of the flavour group. If CP ′ is an additional symmetry, U

3Note that the trivial solution U = 1 exists for fields transforming in real representations of G.



A.3 Generalised CP transformations 167

must not be constructed from the generators of G, hence CP ′ is an outer automorphism.
Their action on the character table correspond to an exchange of rows and columns.

For the flavour symmetry group A4, the only possibility for a generalised CP transfor-
mation is the outer automorphism

u : T → T 2 , (A.26)

since automorphism map elements to elements of the same order. We can check that u
also exchanges the irreducible representations 1′ and 1′′

ρ1′(u(T )) = ρ1′(T
2) = Uρ1′(T )∗U−1 = ρ1′(T )∗ = ρ1′′(T ) , (A.27)

since for one-dimensional representations the unitary matrix U can be represented as phase.
We can choose U to be real and therefore for the irreducible representations 1, 1′, and 1′′

we find

φ1
CP ′−−→ φ∗1 , φ1′

CP ′−−→ φ∗1′ , and φ1′′
CP ′−−→ φ∗1′′ . (A.28)

For the triplet representation one can solve for U

ρ3(u(T )) = ρ3(T 2) =

0 0 1
1 0 0
0 1 0

 = Uρ3(T )∗U−1 = U

0 1 0
0 0 1
1 0 0

U−1 (A.29)

and generalised CP is given by

φ3
CP ′−−→

1 0 0
0 0 1
0 1 0

φ∗3 . (A.30)

Let us briefly illustrate why generalised CP is important by considering a real field
χ transforming as 3 under A4 and a singlet ζ transforming as 1′′. The canonical CP
transformations would be

CP : χ→ χ , ζ → ζ∗ . (A.31)

Let us investigate the A4 product

(χχ)1′ ζ =
(
χ2

1 + ω2χ2
2 + ωχ2

3

)
ζ . (A.32)

Under canonical CP this transforms into

(χχ)1′ ζ
CP ′−−→ (χχ)1′ ζ

∗ , (A.33)

and the transformed product is no longer invariant under A4, since ζ∗ transforms as 1′

and 1′× 1′ = 1′′. Thus canonical CP is not a viable CP transformation, because there are
fields transforming in complex representations in the product.
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On the other hand, under generalised CP we have

CP ′ :

χ1

χ2

χ3

→
χ1

χ3

χ2

 , ζ → ζ∗ . (A.34)

Then (A.32) transforms into

(χχ)1′ ζ
CP ′−−→

(
χ2

1 + ω2χ2
3 + ωχ2

2

)
ζ∗ , (A.35)

which, since (χ2
1 + ω2χ2

3 + ωχ2
2) transforms as 1′′, is invariant under A4.

Therefore, in theories with discrete flavour symmetries and fields in complex repre-
sentations, the absence of a canonical CP transformation does in general not necessarily
correspond to CP violation, but rather the physical CP symmetry can correspond to a gen-
eralised CP transformation of the flavour group. A categorisation of discrete groups into
explicitly CP violating groups and groups with generalised CP can be found four example
in [216].



APPENDIX B

Sparticle Mass and Mixing Matrices

Here we show our conventions for the sparticle mass and mixing matrices. We employ
SLHA 2 conventions [123] in the Super-CKM (SCKM) and Super-PMNS (SPMNS) basis.
These bases are obtained from rotating the sfermion fields correspondingly to their fermion
partners, when those are rotated into the mass basis (2.23)

yf ≡ Y diag
f =

(
U

(f)
L

)T
Yf

(
U

(f)
R

)∗
. (B.1)

Then the soft-breaking matrices in the Super-CKM/Super-PMNS basis are obtained from
our flavour basis (5.65) by

T̂f ≡
(
U

(f)
R

)†
T Tf

(
U

(f)
L

)
,

m̂2
Q̃
≡
(
U

(d)
L

)†
m2
Q̃

(
U

(d)
L

)
,

m̂2
L̃
≡
(
U

(e)
L

)†
m2
L̃

(
U

(d)
L

)
,

m̂2
ũ ≡

(
U

(u)
R

)† (
m2
ũ

)T (
U

(u)
R

)
,

m̂2
d̃
≡
(
U

(d)
R

)† (
m2
d̃

)T (
U

(d)
R

)
,

m̂2
ẽ ≡

(
U

(e)
R

)† (
m2
ẽ

)T (
U

(e)
R

)
. (B.2)

The sparticle mass matrices are then defined by

L = −Φ†fM
2
f̃
Φf , (B.3)
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with Φf =
(
f̃L1 , f̃L2 , f̃L3 , f̃R1 , f̃R2 , f̃R3

)T
and the sparticle mass matrices by

M2
ũ =

(
VCKMm̂

2
Q̃
V †CKM + v2

2
y2
u sin2 β +Du,L

v√
2
T̂ †u sin β − µ v√

2
yu cos β

v√
2
T̂u sin β − µ∗ v√

2
yu cos β m̂2

ũ + v2

2
y2
u sin2 β +Du,R

)
,

M2
d̃

=

(
m̂2
Q̃

+ v2

2
y2
d cos2 β +Dd,L

v√
2
T̂ †d cos β − µ v√

2
yd sin β

v√
2
T̂d cos β − µ∗ v√

2
yd sin β m̂2

d̃
+ v2

2
y2
d cos2 β +Dd,R

)
,

M2
ẽ =

(
m̂2
L̃

+ v2

2
y2
e cos2 β +De,L

v√
2
T̂ †e cos β − µ v√

2
ye sin β

v√
2
T̂e cos β − µ∗ v√

2
ye sin β m̂2

ẽ + v2

2
y2
e cos2 β +De,R

)
,

M2
ν̃ =V †PMNSm̂

2
L̃
VPMNS +Dν,L . (B.4)

The D-terms are

Df,L = M̂2
Z(I3 −Qe sin2 θW ) cos(2β) 13 ,

Df,R = M̂2
ZQe cos(2β) sin2 θW 13 , (B.5)

where I3 denotes the SU(2)L isospin and Qe the electric charge of the flavour f , and θW
denotes the weak mixing angle. Note that our convention for µ differs by a sign from the
convention in [201].

We define the sfermion mixing matrices by1

M̂2
f̃

= Wf̃M̂
2 diag

f̃
W †
f̃
. (B.6)

The neutralino mixing matrix is defined by

Mψ0 = NTMdiag
ψ0 N , (B.7)

with

Mψ0 =


M1 0 −MZ cos β sin θW MZ sin β sin θW
0 M2 MZ cos β cos θW −MZ sin β cos θW

−MZ cos β sin θW MZ cos β cos θW 0 −µ
MZ sin β sin θW −MZ sin β cos θW −µ 0

 .

(B.8)
The chargino mixing matrix is defined by

Mψ+ = UTMdiag
ψ+ V , (B.9)

with

Mψ+ =

(
M2

√
2MW sin β√

2MW cos β µ

)
. (B.10)

1The SLHA 2 convention sfermion mixing matrices Rf̃ can be obtained via Rf̃ = W †
f̃

.



APPENDIX C

Markov Chain Monte Carlo techniques

In this appendix we briefly review Markov Chain Monte Carlo methods, based on [14,217].
The Monte Carlo technique uses large numbers of (pseudo) random numbers to calculate

approximations for integrals, e.g. the expectation value of a complicated probability density
distribution (pdf). A Markov Chain (MC) is a sequence of random variables1 Xt, where
the prediction for the next random variable Xt+1 depends only on the current variable Xt,
and not on any earlier states. Under the conditions that the MC is

irreducible : The MC does not posses independent cycles. In other words, every state
can be reached from every other state (not necessarily in one step, though).

aperiodic : The lengths of all possible cycles starting at any state and returning to it
have greatest common divisor one.

positive recurrent : Any state of the MC is revisited in finite time.

it has a stationary distribution π, where the probability of being in a particular state is
independent of the initial condition. For a large number of time steps the MC approaches
π as limit.

A Markov Chain Monte Carlo method samples a complicated (posterior) pdf p(θ) by
generating a Markov Chain whose stationary distribution is given by p. A simple MCMC
method is the Metropolis algorithm [218].

1. Start with any initial point θ0 with p(θ0) > 0.

2. With the current value θ0, draw a new candidate point θ′ from a proposal density
function q(θ′|θ0). q can be any symmetric pdf, i.e. q(θ1|θ2) = q(θ2|θ1). We will use
an uncorrelated multivariate normal distribution with mean θ0.

3. Form the acceptance probability α = min
(

1, p(θ
′)

p(θ0)

)
.

1We restrict the discussion here to one-dimensional random variables. A generalisation to more dimen-
sions is straightforward.
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4. Generate a random number u uniformly distributed in [0, 1].

5. If u ≤ α, accept the new value and set θ0 = θ′. Otherwise, θ′ is rejected and the old
point θ0 stays.

6. Repeat from step 2.

When fitting a model to data points with mean ȳi and standard deviation σi, the pos-
terior pdf we are interested in is the likelihood function

L(θ) = e−
χ2(θ)

2 (C.1)

with

χ2(θ) =
∑
i

(yi(θ)− ȳi)2

σ2
i

. (C.2)

Starting from θ0, the Metropolis algorithm will draw new candidates θ′. While all param-
eter points with higher likelihood are accepted, a few parameters with worse χ2 are also
accepted and allow the chain to browse a wider region of parameters space and e.g. escape
local minima. Eventually the MC convergences to its equilibrium, which constitutes the
desired result. The first time steps until equilibrium is reached are denoted as “burn-in
phase” and removed from the analysis. The efficiency of the Metropolis algorithm can
be tuned by the step width ∆ of the proposal density function, which in our case are the
standard deviations of the multivariate normal distribution. For too small ∆, the stay
count for each step is very small and parameter space is explored very badly. For too large
∆, the stay counts are high and the MCMC has to be run longer to build up statistics.
Optimal performance is achieved with an acceptance rate racc of about 40%, decreasing
towards 20% for large numbers of parameters. This is illustrated for three choices of ∆
in figure C.1. The optimal choice for the proposal pdf is similar to the target pdf and its
step-width is close to the the targets pdf standard deviation.

Whether the Metropolis algorithm has converged can be inspected by looking at the
trace plots. A numerical criteria for convergence we use in this thesis is the potential scale
reduction factor (psrf) R̂ suggested by Gelman and Rubin [219]

1. Instead of a single, very long MCMC, calculate m chains of length n.

2. Calculate the within-chain variance W ≡ 1
m

∑m
j=1 s

2
j , where sj is the variance of the

i = 1 . . . n values θij in the jth chain: s2
j = 1

n−1

∑n
i=1

(
θij − θ̄j

)2
and θ̄j is the mean of

all θij.

3. Calculate the between-chain variance B ≡ n
m−1

∑m
j=1

(
θ̄j − ¯̄θ

)2

, where ¯̄θ is the mean

of the j = 1 . . .m values of θ̄j.

4. Calculate R̂ =
√

n−1
n

+ 1
n
B
W

.
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Figure C.1: Trace plots for Metropolis MCMC analyses. For too small ∆ with small stay
counts and racc = 1 (left). With too high ∆ and bad mixing with racc = 0.1% (right). And
with optimal ∆ and good mixing with racc = 40% (center). The burn-in-phase makes up
about 400 steps.

The psrf thus compares within-chain and between-chain variance. For R̂ > 1.1 the MCMC
should be run longer to improve convergence. The MCMC is assumed to have converged
for R̂ ≈ 1. For higher-dimensional θ the psrf have to be calculated for each parameter
individually.

Let us now briefly discuss Bayesian confidence intervals. We obtain a posterior pdf from
the MCMC analysis and are interested in the marginalised posterior probability density
for particular parameters.2 The confidence interval is then given by the region where the
posterior pdf is highest. A z sigma highest posterior density (hpd) interval is the interval
[θL,θH ], such that∫ θH

θL

p(θ)dθ = erf

(
z√
2

)
and p(θ ∈ hpd) > p(θ 6∈ hpd) . (C.3)

As shown in figure C.2 the definition of the hpd “confidence interval” agrees with the
Frequentist’s confidence interval (CI) if the posterior pdf is a normal distribution. For
non-symmetric posterior pdfs or pdfs with several peaks, the hpd intervals allow for a
generalisation of the common CIs.

In order to investigate correlations between parameters, (C.3) can be generalised for two

2Here we use the word parameter to describe the fit parameters as well as variables of the fit results.
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Figure C.2: One sigma hpd intervals for a normal distribution (left) and for an example
posterior pdf with two peaks.

or more parameters. An example for a two-dimensional hpd region is shown in figure C.3.

★★

Figure C.3: Example for a two-dimensional hpd region for one sigma (gold) and three
sigma (grey). The one sigma hpd intervals for the individual parameters are shown as
dashed lines. The star marks the mean value of the MCMC analysis.



APPENDIX D

Appendices to the flavour GUT models

In this appendix we give detailed lists of the messenger fields, shaping symmetries, and
supergraphs, which yield the effective superpotentials of the flavour models of parts III
and IV.

D.1 Appendix to chapter 7

The quantum numbers of the matter, Higgs, flavon, and driving superfields under SU(5),
A4, and the shaping symmetry, are presented in table D.1. In table D.2 the quantum
numbers of the messenger fields Φi are explicitly shown. For each field Φi there is a
corresponding field Φ̄i with “opposite” quantum numbers, i.e. quantum numbers such that
a mass term ΛiΦiΦ̄i is allowed in the superpotential. Since the quantum numbers of Φ̄i

can be trivially reconstructed from the corresponding Φi, we do not show them explicitly
for the sake of brevity.

As discussed in 7.1, in order not to generate undesired effective operators, the messenger
sector has to be selected carefully and the choice of the messenger fields is not unique. In
the following figures D.1–D.6 we present the supergraphs that give rise to the effective
superpotential operators of 7.2 and 7.3, when the heavy messenger fields are integrated
out. Each supergraph topology in figures D.1–D.5 corresponds to several operators, which
are shown in the table below each graph. In each of the supergraphs, the external fields,
which can be either matter, Higgs, flavon, or driving superfields, are labelled by ϕi, whereas
the messenger fields are labelled by γi and γ̄i, respectively. Note that many of the messenger
fields occur in more than one operator.

Finally let us comment on the consistency of the different orders of magnitude for the
numerical values of the ε-parameters defined in (7.10) and (7.12) and given in table 7.2.
They arise as effective couplings after the heavy messenger fields are intergrated out and
the vevs of the flavon and GUT Higgs superfields are inserted in the corresponding non-
renormalisable operators. As can be checked from figures D.1–D.6, the different orders
of magnitude of the parameters, which are needed to fit the data, can originate from an
appropriate choice for the masses of the individual messenger fields, which appear in the
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SU(5) A4 Z(a)
2 Z(b)

2 Z(a)
6 Z(b)

6 Z(c)
6 Z(d)

6 Z(e)
6 U(1)a U(1)b U(1)R

Matter superfields

F 5 3 . . . 4 4 . . . 2 1
T1 10 . . . . . . . . . 1 1
T2 10 . . . 1 . 4 . . . 1 1
T3 10 . 1 . . . 2 . . . 1 1
N c

1 . . . . . 2 2 1 . . . 1
N c

2 . . . . . 2 2 1 1 . . 1

Higgs superfields

H5 5 . . . . . 2 . . . -2 .
H̄5 5 . . 1 . 2 . . . -1 . .
H45 45 . . . . 4 5 . . 1 . 2
H̄45 45 . . . . 2 1 . . -1 . .
H24 24 . . . . . . . . 1 -3 .

Flavon superfields

φ2 . 3 . . . . 1 . . . . .
φ3 . 3 1 1 . . . . . . . .
φab . 3 . 1 5 . 4 . . . . .
φN1 . 3 . . . . 4 5 . . . .
φN2 . 3 . . . . 4 5 5 . . .
χ . 1′ 1 1 . . 5 . . . . .
ξ12 . . . . 1 . . . . . . .
ξ23 . . 1 . 5 . 4 . . . . .
ξM . . . . . 1 . . . . . .

Driving superfields

S . . . . . . . . . . . 2
Dα
ab . . . . 2 . 4 . . . . 2

Dβ
ab . . . 1 3 . . . . . . 2

Dγ
ab . . . . 4 . 2 . . . . 2

DN1 . . . . . . . 3 . . . 2
D′N2

. 1′ . . . . 4 2 2 . . 2

D′′N2
. 1′′ . . . . 4 2 2 . . 2

A2 . 3 . . . . 4 . . . . 2
A3 . 3 . . . . . . . . . 2
O2;3 . . 1 1 . . 5 . . . . 2
ON1;N2 . . . . . . 4 2 1 . . 2

Table D.1: The matter, Higgs, flavon, and driving superfields of the model in chapter 7.
A dot means that the field is an invariant singlet under the respective symmetry. Note that
the U(1) symmetries will get explicitly broken to Zn symmetries by the Higgs sector.
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SU(5) A4 Z(a)
2 Z(b)

2 Z(a)
6 Z(b)

6 Z(c)
6 Z(d)

6 Z(e)
6 U(1)a U(1)b U(1)R

Φ1 5 . . . . 4 2 5 . . 2 1
Φ2 5 . . . . 4 2 5 5 . 2 1
Φ3 5 . 1 . 1 . . . . . 2 2
Φ4 . 3 . . 2 . 4 . . . . 2
Φ5 . 3 . . . . 4 2 . . . 2
Φ6 45 . . . . 4 5 . . 1 -1 1
Φ7 5 . . . . 2 1 . . . -2 1
Φ8 5 3 . . 1 4 2 . . 1 . 2
Φ9 10 . . . 5 . 2 . . -1 2 1
Φ10 5 . 1 1 . 4 4 . . 1 -1 1
Φ11 5 . 1 1 . 2 2 . . . -2 1
Φ12 10 3 . 1 . . 4 . . . -1 1
Φ13 . 1′ . . 2 . 4 . . . . 2
Φ14 . 1′′ . . 2 . 4 . . . . 2
Φ15 . . . . 4 . . . . . . 2
Φ16 . . . . 3 . . . . . . .
Φ17 . . . . . 4 . . . . . 2
Φ18 . . . . . 3 . . . . . .
Φ19 . 1′ . . . . 2 . . . . 2
Φ20 . . 1 1 . . 3 . . . . .
Φ21 . 3 1 . 3 . . . . . . .
Φ22 . . . . . 4 4 2 2 . . 2
Φ23 . . . . . . 4 2 2 . . 2
Φ24 . . . . . 4 4 2 . . . 2
Φ25 . . . . . . 4 2 . . . 2
Φ26 . . . . . . 4 . . . . 2
Φ27 . . . . . . 2 . . . . 2
Φ28 10 . . . . . 4 . . . 1 .
Φ29 . . . . . . 2 4 4 . . 2
Φ30 . 3 . . . . 2 4 . . . 2
Φ31 . . . . 5 . . . . . . .
Φ32 5 3 . 1 . 4 5 . . 1 . 2
Φ33 10 1′′ . 1 . . 5 . . -1 2 1
Φ34 10 1′′ . 1 . . 5 . . . -1 1

Table D.2: The messenger fields of the SUSY flavour GUT model in chapter 7. To each
Φi there exists an Φ̄i with “opposite” quantum numbers. A dot means that the field is an
invariant singlet under the respective symmetry. Note that the U(1) symmetries will get
explicitly broken to Zn symmetries by the Higgs sector.

corresponding effective operators. For example, consider the parameters ε̃2, ε̃3, and ε̂χ. Up
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×
ϕ1

ϕ2

γ1 γ̄1

ϕ3

ϕ4

operator ϕ1 ϕ2 ϕ3 ϕ4 γ1

#1 N c
1 H5 φN1 F Φ1

#2 N c
2 H5 φN2 F Φ2

#3 ξ23 H5 T2 T3 Φ3

#4 φab φab φab Dβ
ab Φ4

#5 φN1 φN1 φN1 DN1 Φ5

Figure D.1: List of order 4 operators in the effective superpotential.

× ×
ϕ1

ϕ2

γ1 γ̄1

ϕ3

γ̄2 γ2

ϕ4

ϕ5

operator ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 γ1 γ2

#6 T1 H̄45 H24 φ2 F Φ6 Φ7

#7 φab H̄5 F T2 H24 Φ8 Φ9

#8 T3 H̄5 H24 φ3 F Φ10 Φ11

#9 φab T2 H5 φab T2 Φ12 Φ12

#10 φab φab Dγ
ab φab φab Φ13 Φ14

#11 φab φab Dγ
ab φab φab Φ4 Φ4

Figure D.2: List of order 5 operators in the effective superpotential.

to messenger couplings which may be assumed to be O(1), they are given by

ε̃2 =
〈H24〉〈φ2〉

Λ6Λ7

, ε̃3 =
〈H24〉〈φ3〉

Λ10Λ11

, ε̂χ =
〈H24〉〈φ2〉〈χ〉

Λ32Λ33Λ34

. (D.1)

These messenger mass scales are specific to these parameters and therefore the hierarchy

|ε̃2| � |ε̂χ| � |ε̃3| (D.2)
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× × × ×
ϕ1

ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

ϕ7γ1 γ̄1 γ̄2 γ2 γ3 γ̄3 γ̄4 γ4

operator ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 γ1 γ2 γ3 γ4

#12 ξ12 ξ12 ξ12 S ξ12 ξ12 ξ12 Φ15 Φ16 Φ16 Φ15

#13 ξM ξM ξM S ξM ξM ξM Φ17 Φ18 Φ18 Φ17

#14 χ χ χ S χ χ χ Φ19 Φ20 Φ20 Φ19

#15 φab φab ξ23 S ξ23 φab φab Φ4 Φ21 Φ21 Φ4

Figure D.3: List of order 7 operators in the effective superpotential from supergraphs
with linear topology.

× ×

×
ϕ1

ϕ2

ϕ3 ϕ4

ϕ5

ϕ6γ1 γ̄1 γ2 γ̄2

γ3

γ̄3

operator ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 γ1 γ2 γ3

#16 ξM ξM φN2 φN2 N c
2 N c

2 Φ17 Φ22 Φ23

#17 ξM ξM φN1 φN1 N c
1 N c

1 Φ17 Φ24 Φ25

Figure D.4: List of order 6 operators in the effective superpotential from supergraphs
with non-linear topology.

can arise from a hierarchy of

Λ10Λ11 �
Λ32Λ33Λ34

〈χ〉 � Λ6Λ7 . (D.3)

Similar arguments hold for the other parameters in chapter 7.
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× × ×

×
ϕ1

ϕ2

ϕ3 ϕ4

ϕ5 ϕ6

ϕ7γ1 γ̄1 γ2 γ̄2 γ̄3 γ3

γ4

γ̄4

operator ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 γ1 γ2 γ3 γ4

#18 φ2 φ2 φ2 φ2 T1 T1 H5 Φ26 Φ27 Φ28 Φ26

#19 φN2 φN2 φN2 φN2 S φN2 φN2 Φ23 Φ29 Φ23 Φ23

#20 φN1 φN1 φN1 φN1 S φN1 φN1 Φ25 Φ30 Φ5 Φ5

#21 S ξ12 ξ12 ξ12 ξ12 ξ12 ξ12 Φ31 Φ16 Φ15 Φ15

#22 φ2 φ2 φ2 φ2 S φ2 φ2 Φ26 Φ27 Φ26 Φ26

Figure D.5: List of order 7 operators in the effective superpotential from supergraphs
with non-linear topology.

× × ×
φ2

H̄5 F H24 T3

χΦ32 Φ̄32 Φ̄33 Φ33 Φ̄34 Φ34

× ×

×

× ×
ξ12

ξ12 ξ12

ξ12 ξ12

T2 T1

H5

Φ15 Φ̄15 Φ̄16 Φ16 Φ̄31 Φ31 Φ̄28 Φ28

Φ15

Φ̄15

Figure D.6: Additional effective operators of order 6: [T3H24]10 [FH̄5]10 χφ2 (top) and
of order 8: T1T2ξ

5
12H5 (bottom).

D.2 Appendix to chapter 8

First we show the quantum numbers of the matter, Higgs, flavon, and driving superfields of
our second SUSY flavour GUT model under SU(5), A4, and the shaping symmetry in table
D.3. In table D.4, half of the messenger superfields and their charges under the model’s
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symmetry are listed. Again, to each messenger superfield Φi a “partner” Φ̄i exists, such
that they form a mass term ΛiΦiΦ̄i in the renormalisable superpotential. The charges of
Φ̄i are not given in the table, since they can be trivially determined from the charges of
the corresponding field Φi.

Let us stress again the importance of the messenger sector to obtain a predictive SUSY
flavour GUT model. Without a renormalisable superpotential that UV completes the ef-
fective superpotentials in chapter 8, the model’s symmetries could e.g. allow for effective
operators which yield undesired large Yukawa matrix elements where a vanishing entry is
desired. In addition, due to many possibilities to contract SU(5) indices, linear combi-
nations of effective terms with different CG factors would appear and the model would
lose its ability to predict viable GUT scale quark-lepton mass ratios. We have therefore
carefully constructed the renormalisable messenger superpotential, which gives rise to the
superpotentials of chapter 8 when the heavy messenger superfields are integrated out. It
is presented in the form of supergraphs shown in the figures D.7–D.12. As in the appendix
to chapter 7, for each supergraph topology we list all operators in tables below each graph,
denoting external fields as ϕi and messenger fields as γi and γ̄i.

×
ϕ1

ϕ2

γ1 γ̄1

ϕ3

ϕ4

operator ϕ1 ϕ2 ϕ3 ϕ4 γ1

#1 N c
1 H5 φ1 F Φ1

#2 N c
2 H5 φbc F Φ2

#3 ξ23 H5 T2 T3 Φ3

#4 φab φab φab Dβ
ab Φ4

#5 φbc φbc φbc Dβ
bc Φ5

Figure D.7: List of order 4 operators in the effective superpotential.
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× ×
ϕ1

ϕ2

γ1 γ̄1

ϕ3

γ̄2 γ2

ϕ4

ϕ5

operator ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 γ1 γ2

#6 T1 H̄45 H24 φ2 F Φ6 Φ7

#7 T2 H24 F φab H̄5 Φ8 Φ9

#8 T3 H̄5 H24 φ3 F Φ10 Φ11

#9 T2 φab H5 φab T2 Φ12 Φ12

#10 φab φab Dγ
ab φab φab Φ4 Φ4

#11 φab φab Dγ
ab φab φab Φ13 Φ14

#12 φbc φbc Dγ
bc φbc φbc Φ5 Φ5

#13 φbc φbc Dγ
bc φbc φbc Φ15 Φ15

Figure D.8: List of order 5 operators in the effective superpotential and corresponding
messenger fields.

× × ×
ξM

ξM N c
2 N c

1 ξM

ξMΦ18 Φ̄18 Φ26 Φ̄26 Φ̄18 Φ18

Figure D.9: The only effective operator of order 6 (#14): N1N2ξ
4
M .
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SU(5) A4 Z(a)
2 Z(b)

2 Z(a)
6 Z(b)

6 Z(c)
6 Z(d)

6 U(1)a U(1)b U(1)R

Matter superfields

F 5 3 . . 2 . . 1 2 . 1
T1 10 . 1 . . . 1 . 1 . 1
T2 10 . . . . 1 . . 1 . 1
T3 10 . . 1 . . . . 1 . 1
N c

1 . . . . 4 . . 2 . . 1
N c

2 . . . . 4 . . 4 . . 1

Higgs superfields

H5 5 . . . . . . . -2 . .
H̄5 5 . . . . . . . . -1 .
H45 45 . 1 . . . 2 . . 1 2
H̄45 45 . 1 . . . 4 . . -1 .
H24 24 . . . 4 . . 5 -3 1 .

Flavon superfields

φ1 . 3 . . . . . 3 . . .
φ2 . 3 . . . . 1 . . . .
φ3 . 3 . 1 . . . . . . .
φab . 3 . . . 5 . . . . .
φbc . 3 . . . . . 1 . . .
ξ12 . . 1 . . 1 1 . . . .
ξ23 . . . 1 . 5 . . . . .
ξM . . . . 1 . . . . . .

Driving superfields

S . . . . . . . . . . 2
Dα
ab . . . . . 2 . . . . 2

Dβ
ab . . . . . 3 . . . . 2

Dγ
ab . . . . . 4 . . . . 2

Dβ
bc . . . . . . . 3 . . 2

Dγ
bc . . . . . . . 2 . . 2

O1;2, O′1;2 . 1, 1′ . . . . 5 3 . . 2
O1;3, O′1;3 . 1, 1′ . 1 . . . 3 . . 2
O2;3, O′2;3 . 1, 1′ . 1 . . 5 . . . 2

Table D.3: The matter, Higgs, flavon, and driving superfields of the SUSY flavour GUT
model in chapter 8. A dot indicates that the field is an invariant singlet under the cor-
responding symmetry. Note that the U(1) symmetries will get explicitly broken to Zn
symmetries by the Higgs sector.
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SU(5) A4 Z
(a)
2 Z

(b)
2 Z

(a)
6 Z

(b)
6 Z

(c)
6 Z

(d)
6 U(1)a U(1)b U(1)R

Φ1 5 . . . 2 . . 4 2 . 1
Φ2 5 . . . 2 . . 2 2 . 1
Φ3 5 . . 1 . 1 . . 2 . 2
Φ4 . 3 . . . 2 . . . . 2
Φ5 . 3 . . . . . 4 . . 2
Φ6 45 . . . . . 1 . -1 1 1
Φ7 5 . . . 4 . 5 5 -2 . 1
Φ8 10 . . . 2 5 . 1 2 -1 1
Φ9 5 3 . . . 1 . . . 1 2
Φ10 5 . . 1 . . . . -1 1 1
Φ11 5 . . 1 4 . . 5 -2 . 1
Φ12 10 3 . . . . . . -1 . 1
Φ13 . 1′ . . . 2 . . . . 2
Φ14 . 1′′ . . . 2 . . . . 2
Φ15 . . . . . . . 4 . . 2
Φ16 . . . . . 4 4 . . . 2
Φ17 . . 1 . . 3 3 . . . .
Φ18 . . . . 4 . . . . . 2
Φ19 . . . . 3 . . . . . .
Φ20 . 3 . 1 . 3 . . . . .
Φ21 . . . . . . 4 . . . 2
Φ22 . . . . . . 2 . . . 2
Φ23 10 . 1 . . . 5 . 1 . 1
Φ24 . 3 . . . . . 2 . . 2
Φ25 . . 1 . . 5 5 . . . .
Φ26 . . . . . . . 2 . . 1

Table D.4: The messenger superfields used to generate the effective operators of the model
in chapter 8. To each Φi there exists an Φ̄i with “opposite” quantum numbers. A dot means
that the field is an invariant singlet under the respective symmetry. Note that the U(1)
symmetries will get explicitly broken to Zn symmetries by the Higgs sector.
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× × × ×
ϕ1

ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

ϕ7γ1 γ̄1 γ̄2 γ2 γ3 γ̄3 γ̄4 γ4

operator ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 γ1 γ2 γ3 γ4

#15 ξ12 ξ12 ξ12 S ξ12 ξ12 ξ12 Φ16 Φ17 Φ17 Φ16

#16 ξM ξM ξM S ξM ξM ξM Φ18 Φ19 Φ19 Φ18

#17 φab φab ξ23 S ξ23 φab φab Φ4 Φ20 Φ20 Φ4

Figure D.10: List of order 7 operators in the effective superpotential from supergraphs
with linear topology.

× × ×

×
ϕ1

ϕ2

ϕ3 ϕ4

ϕ5 ϕ6

ϕ7γ1 γ̄1 γ2 γ̄2 γ̄3 γ3

γ4

γ̄4

operator ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 γ1 γ2 γ3 γ4

#18 φ2 φ2 φ2 φ2 T1 T1 H5 Φ21 Φ22 Φ23 Φ21

#19 φbc φbc φbc φbc S φbc φbc Φ15 Φ24 Φ5 Φ5

#20 S ξ12 ξ12 ξ12 ξ12 ξ12 ξ12 Φ25 Φ17 Φ16 Φ16

#21 φ2 φ2 φ2 φ2 S φ2 φ2 Φ21 Φ22 Φ21 Φ21

Figure D.11: List of order 7 operators in the effective superpotential from supergraphs
with non-linear topology.
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× ×

×

× ×
ϕ1

ϕ2 ϕ3

ϕ4 ϕ5

ϕ6 ϕ7

ϕ8

γ1 γ̄1 γ̄2 γ2 γ̄3 γ3 γ̄4 γ4

γ5

γ̄5

operator ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 γ1 γ2 γ3 γ4 γ5

#22 ξ12 ξ12 ξ12 ξ12 ξ12 T2 T1 H5 Φ16 Φ17 Φ25 Φ23 Φ16

#23 ξM ξM N c
1 φbc φbc N c

1 ξM ξM Φ18 Φ26 Φ̄26 Φ18 Φ15

Figure D.12: List of order 8 operators in the effective superpotential from supergraphs
with non-linear topology.
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D.3 Appendix to the first model of chapter 9

In figures D.13 and D.14 we show the supergraphs yielding the effective superpotentials
Wd and Wu when the heavy messengers are integrated out.

H ′
24

T3

H̄5

Z̄5,1Z5,1

F3

〈S′〉

H ′
24H̄5

F2

Z̄10,1Z10,1

T2

Z10,2 Z̄10,2

θ3

〈S′〉〈S′〉

H ′
24

H24

H̄5

Z̄45,1Z45,1

F1

Z45,2 Z̄45,2

θ4

X45X̄45

T1

〈S〉〈S′〉 〈S′〉

Figure D.13: Supergraphs leading to the effective superpotentialWd of our model in 9.4.1
when the heavy messenger fields get integrated out.

All superfields of the model 9.4.1 are presented in the tables D.5 and D.6, including
their charges under the discrete shaping symmetry. As shown in figures D.13 and D.14 the
messenger pairs Z5,1Z̄5,1, Z10,1Z̄10,1, Z10,2Z̄10,2, Z45,1Z̄45,1, and Z45,2Z̄45,2 get their masses
through the vevs of S and S ′. The other messengers in the lower part of table D.6 have
direct mass terms, so we do not show the charges of their corresponding conjugated partners
Z̄i, which can be trivially obtained from the charges of Zi.

Let us now discuss the messenger fields appearing in figure D.14 closer. There are three
supergraphs generating the superpotential term y12. The renormalisable superpotential
corresponding to figure D.14 is

W ⊃ γ1H5T1Z10,4 + γ2H5T2Z10,3 + γ3 T3θ1Z̄10,3 + γθ θ
2
1Z1

+ λ1 θ2Z2Z̄1 + λ10 θ2Z10,3Z̄10,4

+ η1 T1Z̄10,3Z̄2 + η2 T2Z̄10,4Z̄2 + η′2 T2Z̄10,3Z̄1

+ M1 Z1Z̄1 +M2 Z2Z̄2 +M10,3 Z10,3Z̄10,3 +M10,4 Z10,4Z̄10,4 , (D.4)

where we explicitly denote the coupling constants at the ends of a diagram with γx, coupling
constants in the middle of the diagrams with λx if they involve θj, ηi if they involve Ti,
and messenger masses with Mx.

After Zx and Z̄x are integrated out and the flavons θi obtain vevs, the elements (9.62)
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H5 T3

θ1

Z̄10,3Z10,3

T2

H5 T3

θ1

Z̄10,4Z10,4

T1

Z10,3 Z̄10,3

θ2

H5 θ1

θ1

Z̄10,3Z10,3

T2

Z̄1 Z1

T2

H5

θ1

θ1

Z̄10,4Z10,4

T1

Z10,3 Z̄10,3

θ2

Z1Z̄1

T2

H5

θ1

θ1

Z̄10,3Z10,3

T2

Z̄2 Z2

T1

Z1Z̄1

θ2

H5

θ1

θ1

Z̄10,4Z10,4

T1

Z̄2 Z2

θ2

Z1Z̄1

T2

H5

θ1

θ1

Z̄10,4Z10,4

T1

Z10,3 Z̄10,3

θ2

Z2Z̄2

T1 θ2

Z̄1 Z1

Figure D.14: Supergraphs leading to the effective superpotentialWu of our model in 9.4.1
when the heavy messenger fields get integrated out. Note that there are three supergraphs
contributing to the superpotential term generating y12.

of Yu are given by

y11 = γ1 λ10 η1 λ1 γθ
〈θ1〉2〈θ2〉2

M1M2M10,3M10,4

,

y12 = γ2 η1 λ1 γθ
〈θ1〉2〈θ2〉

M1M2M10,3

+ γ1 η2 λ1 γθ
〈θ1〉2〈θ2〉

M1M2M10,4

+ γ1 λ10 η
′
2 γθ

〈θ1〉2〈θ2〉
M1M10,3M10,4

,
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y22 = γ2 η
′
2 γθ

〈θ1〉2
M1M10,3

,

y13 = γ1 λ10 γ3
〈θ1〉〈θ2〉
M10,3M10,4

,

y23 = γ2 γ3
〈θ1〉
M10,3

, (D.5)

and y33 is a renormalisable Yukawa coupling coefficient.
One might feel motivated to remove the messenger pair Z2, Z̄2 from the spectrum,

thereby eliminating two supergraphs and thus the first two terms contributing to y12.1 In
this case however, without Z2Z̄2, evaluating y12 would yield

y12 = γ1 λ10 η
′
2 γθ

〈θ1〉2〈θ2〉
M1M10,3M10,4

= y13
〈θ1〉
M1

η′2 γθ
γ3

= y13 y22
M10,3

〈θ1〉
1

γ2γ3

=
y13y22

y23

. (D.6)

From a small angle expansion of Yu one finds for the mixing angles

θu12 =
y12

y22

, θu13 =
y13

y33

, and θu23 =
y23

y33

, (D.7)

which are identical to the GUT scale CKM mixing angles since our model features diagonal
Yd. Therefore (D.6) would imply the phenomenologically bad GUT scale relation

θC =
θCKM

13

θCKM
23

. (D.8)

To fit Yu to the observed data an additional degree of freedom is needed. In our model
this is realised through Z2Z̄2 enabling additional diagrams contributing to y12.

This illustrates that besides guaranteeing a certain Yukawa matrix structure and unique
CG factors, the messenger sector also has to be carefully chosen with respect to its cou-
plings, to avoid non-phenomenological predictions for observables.

1A different pair of fields Z ′2, Z̄ ′2 would need to be introduced anyway (using different charge assignment
than Z2,Z̄2) in order to generate y11. The charges can be assigned such that no extra contributions to y12

appear.
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SU(5) Z2 Z4 Z4 Z4 Z7 Z7 Z9 Z2

Matter and light Higgs superfields

H5 5 . . . . . . . .
H̄5 5̄ . 2 . . . 1 2 .
T1 10 . . 3 . 6 . . 1
T2 10 . . . . 6 . . 1
T3 10 . . . . . . . 1
F1 5̄ 1 1 1 2 1 1 2 1
F2 5̄ 1 . . 2 1 . 2 1
F3 5̄ 1 2 . 1 . 6 7 1

Superfields with vevs around the GUT scale

H24 24 . . . . . . . .
H ′24 24 1 . . . . . . .
S 1 . 3 . . . 2 . .
S ′ 1 . . . 1 . . . .
θ1 1 . . . . 1 . . .
θ2 1 . . 1 . . . . .
θ3 1 . 2 . . . 6 5 .
θ4 1 . . . . . . 5 .

DMPM superfields

H ′5 5 . 3 . . . 5 7 .
H̄ ′5 5̄ . 1 . . . 6 . .
X45 45 . 2 . . . 6 7 .
X̄45 45 . 3 . . . 6 2 .
Y45 45 . . . . . 3 7 .
Ȳ45 45 . 1 . . . 2 2 .
Z50 50 . 1 . . . 1 7 .
Z̄50 50 . . . . . 4 2 .
X ′45 45 . 3 . . . 1 . .
X̄ ′45 45 . 2 . . . 4 . .
Y ′45 45 . 1 . . . 5 . .
Ȳ ′45 45 . . . . . . . .
Z ′50 50 . 2 . . . 3 . .
Z̄ ′50 50 . 3 . . . 2 . .

Table D.5: SU(5) representations and charges under the discrete shaping symmetry for
the model of 9.4.1. A dot denotes charge zero.
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SU(5) Z2 Z4 Z4 Z4 Z7 Z7 Z9 Z2

Z5,1 5 . 2 . 3 . 1 2 1
Z̄5,1 5̄ . 2 . . . 6 7 1
Z10,1 10 1 . . 3 6 . . 1
Z̄10,1 10 1 . . . 1 . . 1
Z10,2 10 1 2 . 2 6 6 5 1
Z̄10,2 10 1 2 . 1 1 1 4 1
Z45,1 45 . 3 3 2 6 6 7 1
Z̄45,1 45 . 1 1 1 1 1 2 1
Z45,2 45 . 3 3 3 6 6 2 1
Z̄45,2 45 . 1 1 . 1 1 7 1

Z10,3 10 . . . . 1 . . 1
Z10,4 10 . . 1 . 1 . . 1
Z1 1 . . . . 5 . . .
Z2 1 . . 3 . 5 . . .

Table D.6: SU(5) representations and charges under the discrete shaping symmetry of
the flavon and flavour messenger fields of the model in 9.4.1. Note that the messenger pairs
Z5,1Z̄5,1, Z10,1Z̄10,1, Z10,2Z̄10,2, Z45,1Z̄45,1, and Z45,2Z̄45,2 have no direct mass term, but get
their masses through the vevs of S and S′. The other messengers in the lower part of the
table have direct mass terms, so we omit their corresponding conjugated partner Z̄i. A dot
denotes charge zero.
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D.4 Appendix to the second model of chapter 9

Let us first show the supergraphs which generate the effective superpotentials (9.82) and
(9.83) in figures D.15 and D.16.
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Figure D.15: Supergraphs leading to the effective superpotential Wd when the heavy
messenger fields get integrated out in the model 9.4.2.
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Figure D.16: Supergraphs leading to the effective superpotential Wu when the heavy
messenger fields get integrated out in the model 9.4.2.
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All superfields of the model and their charges under the model’s symmetries are shown
in tables D.7 and D.8. As for the model 9.4.1, some messengers get their masses through
vevs of S and S ′ instead of direct mass terms, as can be seen in figures D.15 and D.16. The
messenger fields in the lower part of table D.7 have direct mass terms, so their corresponding
conjugated fields are not shown in the table.

SU(5) Z2 Z3 Z4 Z5 Z6 Z7 Z7 Z2

Z5 5 . 2 1 1 4 6 6 1
Z̄5 5̄ . 1 . 4 2 1 1 1
Z10,1 10 . 1 . 1 . 3 2 1
Z̄10,1 10 . 2 1 4 . 4 5 1
Z10,2 10 . . 1 . 4 1 . 1
Z̄10,2 10 . . . . 2 6 . 1
Z10,3 10 . 2 . 1 2 6 5 1
Z̄10,3 10 . 1 1 4 4 1 2 1
Z10,4 10 . . 1 . 2 1 . 1
Z̄10,4 10 . . . . 4 6 . 1
Z45,1 45 . 1 . 2 2 5 4 1
Z̄45,1 45 1 . . 1 4 2 3 1

Z10,5 10 . . . . . 6 . 1
Z10,6 10 . . . . . 1 2 1
Z1 1 . . . . . 2 . .
Z2 1 . . . . . . 5 .
Z3 1 . . . . . 5 3 .

Table D.7: SU(5) representations and charges under the discrete shaping symmety of the
flavon and flavour messenger fields of the model 9.4.2. Note that the messengers Z5,1Z̄5,1,
Z10,1Z̄10,1, Z10,2Z̄10,2, Z10,3Z̄10,3, Z10,4Z̄10,4, and Z45,1Z̄45,1 have no direct mass term, but
get their masses through vevs of S and S′, as shown in figures D.15 and D.16. The other
messenger fields in the lower part of the table have direct mass terms, so their corresponding
barred fields are not shown in the table. A dot denotes charge zero.
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SU(5) Z2 Z3 Z4 Z5 Z6 Z7 Z7 Z2

Matter and light Higgs superfields

H5 5 . . . . . . . .
H̄5 5̄ . 2 . 1 4 6 6 .
T1 10 . . . . . 6 5 1
T2 10 . . . . . 1 . 1
T3 10 . . . . . . . 1
F1 5̄ . . . 3 2 5 6 1
F2 5̄ . 2 . 3 . 2 3 1
F3 5̄ . 1 3 4 . 1 1 1

Superfields with vevs around the GUT scale

H24 24 . . . . 4 . . .
H ′24 24 . . . . 2 . . .
S 1 1 2 . 2 . . . .
S ′ 1 . . 3 . . . . .
θ1 1 . . . . . 6 . .
θ2 1 . . . . . . 1 .
θ3 1 . 1 2 1 2 2 2 .
θ4 1 . 2 2 1 . 5 5 .
θ5 1 . . . . 3 1 2 .

DMPM Superfields

H ′5 5 1 1 . . 4 1 1 .
H̄ ′5 5̄ 1 . . 1 2 . . .
X45 45 . 1 . 4 4 1 1 .
X̄45 45 1 . . 4 2 6 6 .
Y45 45 . 2 . 3 2 1 1 .
Ȳ45 45 1 2 . . 4 6 6 .
Z50 50 1 . . 1 . 1 1 .
Z̄50 50 . 1 . 2 . 6 6 .
X ′45 45 1 . . 4 . . . .
X̄ ′45 45 . 1 . 4 . . . .
Y ′45 45 1 1 . 3 4 . . .
Ȳ ′45 45 . . . . 2 . . .
Z ′50 50 . 2 . 1 2 . . .
Z̄ ′50 50 1 2 . 2 4 . . .

Table D.8: SU(5) representations and charges under discrete shaping symmetries for the
model of 9.4.2. A dot denotes charge zero.



APPENDIX E

The β-functions in the seesaw type-I
extension of the MSSM

In this appendix we list the β-functions of the SUSY soft-breaking parameters in the MSSM
extended by the additional terms in the seesaw type-I extension (obtained using the general
formulae of [136]), which are implemented into REAP and SusyTC. Thus they are given here
in our conventions (10.1) and (10.2) for W and Lsoft, respectively.
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2YeTr(Y †d Td) + TeTr(Y †d Yd)

)
+

6

5
g2

1

(
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ẽYeY
†
e Ye + 2TeT
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†
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(
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(
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ẽYe + 3Ydm

2
Q̃
Y †d + 3Y †dm

2
d̃
Yd)
)

+

(
6g2

2 +
2

5
g2

1

)(
m2
d̃
YdY

†
d + YdY

†
dm

2
d̃

+ 2m2
hd
YdY

†
d + 2Ydm

2
Q̃
Y †d + 2TdT

†
d

)
− 12g2

2

(
M∗

2TdY
†
d − 2|M2|2YdY †d +M2YdT

†
d

)
− 4

5
g2

1

(
M∗

1TdY
†
d − 2|M1|2YdY †d +M1YdT

†
d

)
− 128

3
g4

3|M3|2 13 +
128

45
g2

1g
2
3

(
|M1|2 +Re(M1M

∗
3 ) + |M3|2

)
13

+
808

75
g4

1|M1|2 13 +
4

15
g2

1σ1 13 +
16

3
g2

3σ3 13 +
4

5
g2

1S
′ 13 , (E.27)

(16π2)2β
(2)

m2
ẽ
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ẽ + 2m2

hd
YeY

†
e + 2Yem

2
L̃
Y †e + 2TeT

†
e

)
− 12g2

2

(
M∗

2TeY
†
e − 2|M2|2YeY †e +M2YeT

†
e

)



E.2 Two-Loop β-functions 205

+
12

5
g2

1

(
M∗

1TeY
†
e − 2|M1|2YeY †e +M1YeT

†
e

)
+

2808

25
g4

1|M1|2 13 +
12

5
g2

1σ1 13 +
12

5
g2

1S
′ 13 , (E.28)

(16π2)2β
(2)

m2
ν̃

= − 2
(

2m2
hd

+ 2m2
hu +m2

ν̃

)
YνY

†
e YeY

†
ν − 2

(
4m2

hu +m2
ν̃

)
YνY

†
ν YνY

†
ν

− 4Tν

(
T †eYeY

†
ν + T †νYνY

†
ν + Y †e YeT

†
ν + Y †ν YνT

†
ν

)
− 4Yν

(
T †eTeY

†
ν + T †νTνY

†
ν + Y †e TeT

†
ν + Y †ν TνT

†
ν

)
− 2Yν

(
2Y †em

2
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Tr(YeY

†
ν YνY

†
e + 3YdY

†
uYuY

†
d )

− 12m2
hd

Tr(YeY
†
e YeY

†
e + 3YdY

†
d YdY

†
d )

− 12Tr(T †eTeY
†
e Ye + 3T †dTdY

†
d Yd + T †eYeY

†
e Te + 3T †dYdY

†
d Td)

− 2Tr(TeT
†
νYνY

†
e + 3TdT

†
uYuY

†
d + TeY

†
ν YνT

†
e + 3TdY

†
uYuT

†
d )

− 2Tr(YeT
†
νTνY

†
e + 3YdT

†
uTuY

†
d + YeY

†
ν TνT

†
e + 3YdY

†
uTuT

†
d )

− 36Tr(YdY
†
dm

2
d̃
YdY

†
d + Y †d Ydm

2
Q̃
Y †d Yd)

− 12Tr(YeY
†
em

2
ẽYeY

†
e + Y †e Yem

2
L̃
Y †e Ye)

− 6Tr(YuY
†
dm

2
d̃
YdY

†
u + YdY

†
um

2
ũYuY

†
d + Y †uYum

2
Q̃
Y †d Yd + Y †d Ydm

2
Q̃
Y †uYu)

− 2Tr(YνY
†
em

2
ẽYeY

†
ν + YeY

†
νm

2
ν̃YνY

†
e + Y †ν Yνm

2
L̃
Y †e Ye + Y †e Yem

2
L̃
Y †ν Yν)
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+

(
32g2

3 −
4

5
g2

1

)
Tr(T †dTd +m2

hd
Y †d Yd + Ydm

2
Q̃
Y †d + Y †dm

2
d̃
Yd)

+
12

5
g2

1Tr(T †eTe +m2
hd
Y †e Ye + Yem

2
L̃
Y †e + Y †em

2
ẽYe)

− 12

5
g2

1Tr(M∗
1Y
†
e Te +M1T

†
eYe − 2|M1|2Y †e Ye)

+
4

5
g2

1Tr(M∗
1Y
†
d Td +M1T

†
dYd − 2|M1|2Y †d Yd)

− 32g2
3Tr(M∗

3Y
†
d Td +M3T

†
dYd − 2|M3|2Y †d Yd)

+
18

5
g2

1g
2
2

(
|M1|2 +Re(M1M

∗
2 ) + |M2|2

)
+

621

25
g4

1|M1|2 + 33g4
2|M2|2 +

3

5
g2

1σ1 + 3g2
2σ2 −

6

5
g2

1S
′ , (E.30)

(16π2)2β
(2)

m2
hu

= − 2
(
m2
hd

+m2
hu

)
Tr(YeY

†
ν YνY

†
e + 3YdY

†
uYuY

†
d )

− 12m2
huTr(YνY

†
ν YνY

†
ν + 3YuY

†
uYuY

†
u )

− 12Tr(T †νTνY
†
ν Yν + 3T †uTuY

†
uYu + T †νYνY

†
ν Tν + 3T †uYuY

†
uTu)

− 2Tr(TeT
†
νYνY

†
e + 3TdT

†
uYuY

†
d + TeY

†
ν YνT

†
e + 3TdY

†
uYuT

†
d )

− 2Tr(YeT
†
νTνY

†
e + 3YdT

†
uTuY

†
d + YeY

†
ν TνT

†
e + 3YdY

†
uTuT

†
d )

− 36Tr(YuY
†
um

2
ũYuY

†
u + Y †uYum

2
Q̃
Y †uYu)

− 12Tr(YνY
†
νm

2
ν̃YνY

†
ν + Y †ν Yνm

2
L̃
Y †ν Yν)

− 6Tr(YuY
†
dm

2
d̃
YdY

†
u + YdY

†
um

2
ũYuY

†
d + Y †uYum

2
Q̃
Y †d Yd + Y †d Ydm

2
Q̃
Y †uYu)

− 2Tr(YνY
†
em

2
ẽYeY

†
ν + YeY

†
νm

2
ν̃YνY

†
e + Y †ν Yνm

2
L̃
Y †e Ye + Y †e Yem

2
L̃
Y †ν Yν)

+

(
32g2

3 +
8

5
g2

1

)
Tr(T †uTu +m2

huY
†
uYu + Yum

2
Q̃
Y †u + Y †um

2
ũYu)

− 8

5
g2

1Tr(M∗
1Y
†
uTu +M1T

†
uYu − 2|M1|2Y †uYu)

− 32g2
3Tr(M∗

3Y
†
uTu +M3T

†
uYu − 2|M3|2Y †uYu)

+
18

5
g2

1g
2
2

(
|M1|2 +Re(M1M

∗
2 ) + |M2|2

)
+

621

25
g4

1|M1|2 + 33g4
2|M2|2 +

3

5
g2

1σ1 + 3g2
2σ2 +

6

5
g2

1S
′ , (E.31)

with

σ1 =
1

5
g2

1

(
3m2

hu + 3m2
hd

+ Tr
(
m2
Q̃

+ 3m2
L̃

+ 2m2
d̃

+ 6m2
ẽ + 8m2

ũ

))
, (E.32)

σ2
2 = g2

2

(
m2
hu +m2

hd
+ Tr

(
3m2

Q̃
+m2

L̃

))
, (E.33)

σ3 = g2
3Tr

(
2m2

Q̃
+m2

d̃
+m2

ũ

)
, (E.34)
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and

S ′ = m2
hd

Tr
(
YeY

†
e + 3YdY

†
d

)
−m2

huTr
(
YνY

†
ν + 3YuY

†
u

)
+ Tr

(
m2
L̃
Y †e Ye +m2

L̃
Y †ν Yν

)
− Tr

(
m2
Q̃
Y †d Yd +m2

Q̃
Y †uYu

)
− 2Tr

(
YdY

†
dm

2
d̃

+ YeY
†
em

2
ẽ − 2YuY

†
um

2
ũ

)
+

1

30
g2

1

(
9m2

hu − 9m2
hd

+ Tr
(
m2
Q̃
− 9m2

L̃
+ 4m2

d̃
+ 36m2

ẽ − 32m2
ũ

))
+

3

2
g2

2

(
m2
hu −m2

hd
+ Tr

(
m2
Q̃
−m2

L̃

))
+

8

3
g2

3Tr
(
m2
Q̃

+m2
d̃
− 2m2

ũ

)
. (E.35)



APPENDIX F

Self-energies and one-loop tadpoles including
inter-generational mixing

Here we present formulae used in chapter 10 and SusyTC for the self-energies ΠT
ZZ , ΠH+H− ,

ΠAA, and the one-loop tadpoles tu, td, which are based on [201] but generalised to include
inter-generational mixing. In this appendix we employ SLHA 2 conventions [123] in the
Super-CKM and Super-PMNS basis, to agree with the convention of [201]. With the R-L
REAP conventions (10.1) and (10.2) employed in chapter 10, the SCKM/SPMNS matrices
are obtained via

yf ≡ Y diag
f =

(
U

(f)
R

)†
Yf

(
U

(f)
L

)
,

T̂f ≡
(
U

(f)
R

)†
Tf

(
U

(f)
L

)
,

m̂2
Q̃
≡
(
U

(d)
L

)†
m2
Q̃

(
U

(d)
L

)
,

m̂2
L̃
≡
(
U

(e)
L

)†
m2
L̃

(
U

(d)
L

)
,

m̂2
ũ ≡

(
U

(u)
R

)†
m2
ũ

(
U

(u)
R

)
,

m̂2
d̃
≡
(
U

(d)
R

)†
m2
d̃

(
U

(d)
R

)
,

m̂2
ẽ ≡

(
U

(e)
R

)†
m2
ẽ

(
U

(e)
R

)
. (F.1)

Note that all formulae of appendix B, i.e. the definition of sparticle mass and mixing
matrices, are in SCKM/SPMNS basis with SLHA 2 conventions and thus valid in this
appendix as well. When starting from the flavour basis of chapter 10, one only needs to
replace (B.2) by (F.1). Let us remark that the convention in [201] for µ differs by a sign
from our convention.

We now present the generalisation of ΠT
ZZ , ΠH+H− , ΠAA, tu, and td of [201] to include

inter-generational mixing. For all formulae we have checked that our equations reduce to
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the corresponding equations in [201] when

Wf̃i i
= Wf̃i+3 i+3

= cos θf̃i
Wf̃i i+3

= −Wf̃i+3 i
= − sin θf̃i , (F.2)

where i = 1 . . . 3 and Wf̃ is defined in (B.6).
We keep the abbreviations of [201]:

sαβ ≡ sin(α− β) , (F.3)

cαβ ≡ cos(α− β) , (F.4)

gfL ≡ I3 −Qe sin2 θW , (F.5)

gfR ≡ Qe sin2 θW , (F.6)

e ≡ g2 sin θW , (F.7)

NC ≡
{

3 for (s)quarks

1 for (s)fermions
. (F.8)

The conventions for the one-loop scalar functions A0, B22, B̃22, H, G, and F [220] are
adopted from appendix B of [201]. Summations

∑
f are over all fermions, whereas sum-

mations
∑

fu
,
∑

fd
are restricted to up-type and down-type fermions, respectively. Sum-

mations
∑

Q,
∑

Q̃ are over SU(2) (s)quark doublets, and analogously for (s)leptons. In

summations over sfermions the indices i, j, s, and t run from 1 to 6 for ũ, d̃, and ẽ and from
1 to 3 for ν̃. In summations of neutralinos (charginos) the indices i, j run from 1 to 4 (2).
The summation

∑
h0 runs over all neutral Higgs- and Goldstone bosons, the summation∑

h+ over the charged ones.

16π2 cos2 θW
g2

2

ΠT
ZZ(p2) =− s2

αβ

(
B̃22(mA,mH) + B̃22(MZ ,mh)−M2

ZB0(MZ ,mh)
)

− c2
αβ

(
B̃22(MZ ,mH) + B̃22(mA,mh)−M2

ZB0(MZ ,mh)
)

− 2 cos4 θW

(
2p2 +M2

W −M2
Z

sin4 θW
cos2 θW

)
B0(MW ,MW )

−
(
8 cos4 θW + cos2(2θW )

)
B̃22(MW ,MW )

− cos2(2θW )B̃22(mH+ ,mH+)

−
∑
f̃

NC

∑
s,t

∣∣∣∣∣I3

∑
i

W ∗
f̃is
Wf̃it

−Qe sin2 θW δst

∣∣∣∣∣
2

4B22(mf̃s
,mf̃t

)

+
1

2

∑
f̃

NC

∑
s

(
(1− 8I3Qe sin2 θW )

∑
i

W ∗
f̃is
Wf̃is

+ 4Q2
e sin4 θW

)
A0(mf̃s

)
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+
∑
f

NC

((
g2
fL

+ g2
fR

)
H(mf ,mf )− 4gfLgfRm

2
fB0(mf ,mf )

)
+

cos2 θW
2g2

2

∑
i,j

f 0
ijZH(mχ̃0

i
,mχ̃0

j
) + 2g0

ijZmχ̃0
i
mχ̃0

j
B0(mχ̃0

i
,mχ̃0

j
)

+
cos2 θW
g2

2

∑
i,j

f+
ijZH(mχ̃+

i
,mχ̃+

j
) + 2g+

ijZmχ̃+
i
mχ̃+

j
B0(mχ̃+

i
,mχ̃+

j
) .

(F.9)

The couplings f 0
Z , f+

Z , g0
Z , and g+

Z are given in Eqs. (A.7) and (D.5) of [201].

16π2ΠH+H−(p2) =
∑
Q

NC

((
cos2 βy2

u + sin2 βy2
d

)
G(mu,md)

− 2 sin(2β)yuydmumdB0(mu,md)

)
+
∑
L

sin2 βy2
eG(0,me)

+
∑
Q̃

NC

∑
i,j

(
λH+Q̃

)2

ij
B0(mũi ,md̃j

)

+
∑
L̃

∑
i,j

(λH+L̃)2
ij B0(mν̃i ,mẽj)

+
∑
f̃

∑
i

(
λH+H−f̃

)
ii
A0(mf̃i

)

+
g2

2

4

(
s2
αβF (mH ,MW ) + c2

αβF (mh,MW ) + F (mA,MW )

+
cos2(2θW )

cos2 θW
F (mH+ ,MZ)

)
+ e2F (mH+ , 0) + 2g2

2A0(MW ) + g2
2 cos2(2θW )A0(MZ)

+
∑
h+

(∑
h0

(λH+h0h−)2B0(mh0 ,mh+) + λH+H−h+h−A0(mh+)

)

+ g2
2

M2
W

4
B0(MW ,mA)

+
1

2

∑
h0

λH+H−h0h0A0(mh0)

+
∑
j,i

fijH+G(mχ̃+
j
,mχ̃0

i
)− 2mχ̃+

j
mχ̃0

i
gijH+B0(mχ̃+

j
,mχ̃0

i
) . (F.10)

The couplings fH+ and gH+ are given in Eq. (D.70) and Eqs. (D.39-D.42) of [201]. The cou-
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plings λH+H−h− , λH+H−h+h− , and λH+H−h0h0 are defined in Eqs. (D.63-D.65) and Eq. (D.67)
of [201]. The couplings to sfermions in the case of inter-generational mixing are given by

λH+Q̃ = Wũ

(
g2√

2
M̂W sin(2β) 13 − (y2

u + y2
d) cos β v sinβ√

2
−T̂ †d sin β − µyd cos β

−T̂u cos β − µ∗yu sin β −yuyd v√
2

)
Wd̃ ,

(F.11)

λH+L̃ = Wν̃

(
g2√

2
M̂W sin(2β) 13 − y2

e cos β v sinβ√
2

−T̂ †e sin β − µye cos β
)
Wẽ , (F.12)

λH+H−f̃ = −W †
f̃

(
−g2

2

2
cos(2β)

(
cos(2θW )
cos2 θW

I3 + tan2 θWQe

)
13 0

0
g2
2

2
cos(2β) tan2 θWQe 13

)
Wf̃

+



W †
ũ

(
y2
d sin2 β 0

0 y2
u cos2 β

)
Wũ f̃ = ũ

W †
d̃

(
y2
u cos2 β 0

0 y2
d sin2 β

)
Wd̃ f̃ = d̃

W †
ẽ

(
0 0

0 y2
e sin2 β

)
Wẽ f̃ = ẽ

, (F.13)

λH+H−ν̃ = −W †
ν̃

(
−g

2
2

2
cos(2β)

(
cos(2θW )

cos2 θW
I3 + tan2 θWQe

)
13 − y2

e sin2 β

)
Wν̃ (F.14)

16π2ΠAA(p2) = cos2 β
∑
fu

NCy
2
fu

(
p2B0(mfu ,mfu)− 2A0(mfu)

)
+ sin2 β

∑
fd

NCy
2
fd

(
p2B0(mfd ,mfd)− 2A0(mfd)

)
+
∑
f̃

∑
i

NC

((
λAAf̃

)
ii
A0(mf̃i

) +
∑
j

(
λAf̃

)2

ij
B0(mf̃i

,mf̃j
)

)

+
g2

2

4

(
2F (mH+ ,MW ) +

s2
αβ

cos2 θW
F (mH ,MZ) +

c2
αβ

cos2 θW
F (mh,MZ)

)

+
1

2

∑
h0
n

∑
h0
m

λAh0
nh

0
m
B0(mh0

n
,mh0

m
) + λAAh0

nh
0
n
A0(mh0

n
)


+ g2

2

(
M2

W

2
B0(MW ,mHp) + 2A0(MW ) +

1

cos2 θW
A0(MZ)

)
+
∑
h+

λAAh+h+A0(mh+)
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+
1

2

∑
i,j

f 0
ijAG(mχ̃0

i
,mχ̃0

j
)− 2g0

ijAmχ̃0
i
mχ̃0

j
B0(mχ̃0

i
,mχ̃0

j
)

+
∑
i,j

f+
ijAG(mχ̃+

i
,mχ̃+

j
)− 2g+

ijAmχ̃+
i
mχ̃+

j
B0(mχ̃+

i
,mχ̃+

j
) . (F.15)

The couplings f 0
A, g0

A, f+
A , and g+

A are given in Eq. (D.70) and Eqs. (D.34-D.38) of [201].
The couplings λAh0h0 , λAAh0h0 , and λAAh+h+ are defined in Eqs. (D.63-D.65) and Eq. (D.67)
of [201]. The couplings to sfermions in the case of inter-generational mixing are given by

λAũ = W †
ũ

 0 − 1√
2

(
T̂ †u cos β + µyu sin β

)
1√
2

(
T̂u cos β + µ∗yu sin β

) Wũ , (F.16)

λAẽ(d̃) = W †
ẽ(d̃)

 0 − 1√
2

(
T̂ †e(d) sin β + µye(d) cos β

)
1√
2

(
T̂e(d) sin β + µ∗ye(d) cos β

) Wẽ(d̃) ,

(F.17)

λAν̃ = 0 , (F.18)

λAAf̃ = W †
f̃

(
−g2

2

2
cos(2β)

(
1

cos2 θW
I3 − tan2 θWQe

)
13 0

0 −g2
2

2
cos(2β) tan2 θWQe 13

)
Wf̃

+



W †
ũ

(
y2
u cos2 β 0

0 y2
u cos2 β

)
Wũ f̃ = ũ

W †
d̃

(
y2
d sin2 β 0

0 y2
d sin2 β

)
Wd̃ f̃ = d̃

W †
ẽ

(
y2
e sin2 β 0

0 y2
e sin2 β

)
Wẽ f̃ = ẽ

, (F.19)

λAAν̃ = −g
2
2

2
cos(2β)

(
1

cos2 θW
I3 − tan2 θWQe

)
13 (F.20)

16π2td = −2
∑
fd

NCy
2
fd
A0(mfd)

+
∑
f̃

NC

∑
i

g2
2

2MW cos β

(
λdf̃
)
ii
A0(mf̃i

)

− g2
2

cos(2β)

8 cos2 θW
(A0(mA) + 2A0(mH+)) +

g2
2

2
A0(mHp)

+
g2

2

8 cos2 θW

(
3 sin2 α− cos2 α + sin(2α) tan β

)
A0(mh)
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+
g2

2

8 cos2 θW

(
3 cos2 α− sin2 α− sin(2α) tan β

)
A0(mH)

− g2
2

∑
i

mχ̃0
i

MW cos β
Re (Ni3(Ni2 −Ni,1 tan θW ))A0(mχ̃0

i
)

−
√

2g2
2

∑
i

mχ̃+
i

MW cos β
Re (Vi1Ui2)A0(mχ̃+

i
)

+
3

4
g2

2

(
2A0(MW ) +

A0(MZ)

cos2 θW

)
+ g2

2

cos(2β)

8 cos2 θW
(2A0(MW ) + A0(MZ)) . (F.21)

The couplings to sfermion in the case of inter-generational mixing are given by

λdũ = W †
ũ

(
g2

MZ

cos θW
guL cos β 13 −yu µ√

2

−yu µ
∗
√

2
g2

MZ

cos θW
guR cos β 13

)
Wũ , (F.22)

λdf̃ = W †
f̃

(
g2

MZ

cos θW
gfL cos β 13 T̂ †f

1√
2

T̂f
1√
2

g2
MZ

cos θW
gfR cos β 13

)

+


W †
d̃

(
Y 2
d v cos β 0

0 Y 2
d v cos β

)
Wd̃ f̃ = d̃

W †
ẽ

(
Y 2
e v cos β 0

0 Y 2
e v cos β

)
Wẽ f̃ = ẽ

, (F.23)

λdν̃ = g2
MZ

cos θW
gνL cos β 13 (F.24)

16π2tu = −2
∑
fu

NCy
2
fuA0(mfu)

+
∑
f̃

NC

∑
i

g2
2

2MW sin β

(
λuf̃
)
ii
A0(mf̃i

)

+ g2
2

cos(2β)

8 cos2 θW
(A0(mA) + 2A0(mH+)) +

g2
2

2
A0(mHp)

+
g2

2

8 cos2 θW

(
3 cos2 α− sin2 α + sin(2α) cot β

)
A0(mh)

+
g2

2

8 cos2 θW

(
3 sin2 α− cos2 α− sin(2α) cot β

)
A0(mH)

− g2
2

∑
i

mχ̃0
i

MW sin β
Re (Ni4(Ni2 −Ni,1 tan θW ))A0(mχ̃0

i
)

−
√

2g2
2

∑
i

mχ̃+
i

MW sin β
Re (Vi2Ui1)A0(mχ̃+

i
)
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+
3

4
g2

2

(
2A0(MW ) +

A0(MZ)

cos2 θW

)
− g2

2

cos(2β)

8 cos2 θW
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The couplings to sfermion in the case of inter-generational mixing are given by

λuũ = W †
ũ

(
−g2

MZ

cos θW
guL sin β 13 + y2

uv sin β T̂ †u
1√
2

T̂u
1√
2

−g2
MZ

cos θW
guR sin β 13 + y2

uv sin β

)
Wũ ,

(F.26)

λuf̃ = W †
f̃

(
−g2

MZ

cos θW
gfL sin β 13 −yf̃ µ√

2

−yf̃ µ
∗
√

2
−g2

MZ

cos θW
gfR sin β 13

)
f̃ = ẽ , d̃ ,

λuν̃ = −g2
MZ

cos θW
gνL sin β 13 . (F.27)



APPENDIX G

SusyTC documentation

Here we present a documentation of the REAP extension SusyTC. To get started, please
follow first the steps described in 10.3.

We now describe the additional features of SusyTC: In addition to the features of the
REAP model RGEMSSM.m (described in the REAP documentation), SusyTC adds the following
options to the command RGEAdd:

• STCsignµ is the general factor eiφµ in front of µ in (10.15). (default: +1)

• STCcMSSM is a switch to change between the CP-violating (complex) MSSM and CP-
conserving (real) MSSM. (default: True)

• STCSusyScale sets the SUSY scale Q (in GeV), where the MSSM is matched to the SM.
If set to "Automatic", SusyTC determines Q automatically from the sparticle spectrum.
(default: "Automatic")

• STCSusyScaleFromStops is a switch to choose whether SusyTC calculates the SUSY
scale Q as geometric mean of the stop masses Q =

√
mt̃1mt̃2 , where the stop masses

are defined by the up-type squark mass eigenstates ũi with the largest mixing to t̃1 and
t̃2, or as geometric mean of the lightest and heaviest up-type squarks Q =

√
mũ1mũ6 .

Without effect if STCSusyScale is not set to "Automatic". (default: True)

• STCSearchSMTransition is a switch to enable or disable the matching to the SM and
the calculation of supersymmetric threshold corrections and sparticle spectrum. (default:
True)

• STCCCBConstraints is a switch to enable or disable a warning message for potentially
dangerous charge and colour breaking vacua, if large trilinear couplings violate the con-
straints of [135] at the SUSY scale Q

|Tij|2 ≤
(
m2
Rii

+m2
Ljj

+m2
hf

+ |µ|2
)

(y2
i + y2

j ) i 6= j

3y2
i i = j

, (G.1)
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where mL, mR and mhf denote the soft-breaking mass parameters of the scalar fields as-
sociated with the trilinear coupling T in the basis of diagonal Yukawa matrices. (default:
True)

• STCUFBConstraints is a switch to enable or disable a warning message for possibly
dangerous “unbounded from below” directions in the scalar potential, if the constraints
of [134] are violated at the SUSY scale Q

m2
hu + |µ|2 +m2

L̃i
− |m3|4
m2
hd

+ |µ|2 −m2
L̃i

> 0 UFB-2 , (G.2)

m2
hu +m2

L̃i
> 0 UFB-3 , (G.3)

evaluated in the basis of (10.9). Note that the UFB-I constraint is automatically satisfied,
since SusyTC calculates m2

3 from m2
hu

, m2
hd

, MZ , and tan β by requiring the existence of
electroweak symmetry breaking. (default: True)

• STCTachyonConstraints is a switch to enable or disable the rejection of a parameter
point with tachyonic running masses of sfermions at any renormalisation scale above the
SUSY scale Q. Regardless of this switch, tachyonic sfermion masses at Q are always
rejected. (default: False)

Thus, a typical call of RGEAdd might look like

RGEAdd["MSSMsoftbroken",RGEtanβ->20,STCcMSSM->False,STCsignµ->-1];

In addition to the parameters known from the MSSM REAP model, the following soft-
breaking parameters are available as input for RGESetInitial:

• RGETu, RGETd, RGETe, and RGETν are the soft-breaking trilinear coupling matrices given
in GeV. If given, the Constrained MSSM parameter RGEA0 for the corresponding trilinear
coupling is overwritten. (default: Constrained MSSM)

• RGEM1, RGEM2, and RGEM3 are the soft-breaking gaugino mass parameters given in GeV.
If given, the Constrained MSSM parameter RGEM12 for the corresponding gaugino is
overwritten. (default: Constrained MSSM)

• RGEm2Q, RGEm2L, RGEm2u, RGEm2d, RGEm2e, RGEm2ν are the soft-breaking squared mass
matrices m2

f̃
for the sfermions given in GeV2. If given, the Constrained MSSM parameter

RGEm0 for the corresponding scalar masses is overwritten. (default: Constrained MSSM)

• RGEm2Hd and RGEm2Hu are the soft-breaking squared masses for hd and hu, respectively,
given in GeV2. If given, the Constrained MSSM parameter RGEm0 for the corresponding
scalar mass is overwritten. (default: Constrained MSSM)

• RGEM12 is the Constrained MSSM parameter for gaugino mass parameters in GeV. (de-
fault: 750)
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• RGEm0 is the Constrained MSSM parameter for all soft-breaking masses of scalars in
GeV. (default: 1500)

• RGEA0 is the Constrained MSSM parameter A0 for trilinear couplings, e.g. Tf = A0Yf ,
in GeV. (default: -500)

An example for an input at a GUT scale of 2 · 1016 GeV would be

RGESetInitial[2·10^16,RGEM1->863,RGEM2->131,
RGEM3->-392,RGESuggestion->"GUT"];

The solution at a lower energy scale such as MZ ≈ 91 GeV can now be obtained by the
REAP command RGESolve:

RGESolve[91.19,2·10^16];

Some parameter points might lead to tachyonic sparticle masses. In such instances the
evaluation of SusyTC is stopped and an error message is returned using the Mathematica
command Throw. In order to properly catch such error messages, we therefore recommend
to use instead

Catch[RGESolve[91.19,2·10^16],TachyonicMass];

In addition to the parameters known from the MSSM REAP model, the following soft-
breaking parameters are available for RGEGetSolution at all energy scales between MGUT

and the SUSY scale Q:

• RGETu, RGETd, RGETe, and RGETν are used to get the soft-breaking trilinear coupling
matrices.

• RawTν is used to get the raw (internal representation) of the soft-breaking trilinear matrix
for sneutrinos.

• RGEM1, RGEM2, and RGEM3 are used to get the soft-breaking gaugino mass parameters.

• RGEm2Q, RGEm2L, RGEm2u, RGEm2d, RGEm2e, RGEm2ν are used to get the soft-breaking
squared mass matrices m2

f̃
for the sfermions.

• RGEm2Hd and RGEm2Hu are used to get the soft-breaking squared masses for hd and hu,
respectively.

To obtain the running DR gluino mass at a scale of two TeV for example, one uses

RGEGetSolution[2000,RGEM3];
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With SusyTC the DR sparticle spectrum is automatically calculated. The following
functions are included in SusyTC:

• STCGetSUSYScale[] returns the SUSY scale Q in GeV.

• STCGetSUSYSpectrum[] returns a list of replacement rules for the SUSY scale Q, the
DR tree-level values of µ and m3, and the DR sparticle masses in GeV and (tree-level)
mixing matrices at the SUSY scale. In detail it contains

– "Q" the SUSY scale Q.

– "µ","m3" the values of µ and m3.

– "M1","M2","M3" are the gaugino mass parameters.

– "Mh","MH","MA","MHp" the (tree-level) masses of the MSSM Higgs bosons.1

– "mχ0" a list of the four neutralino masses.

– "mχp" a list of the two chargino masses.

– "msude" a 3×6 array of the six up-type quarks, down-type squarks and charged slepton
masses, respectively.

– "msν" a list of the three light sneutrino masses.

– "θW" the weak mixing angle.

– "tanα" the mixing angle of the CP-even Higgs bosons.

– "N" the mixing matrix of neutralinos.

– "U","V" the mixing matrices for charginos.

– "Wude" a list of the three sparticle mixing matrices for up-type squarks, down-type
squarks and charged sleptons.

– "Wν" the mixing matrix of the three light sneutrinos.

To obtain for example the SUSY scale and the tree-level masses of the charginos call

"Q"/.STCGetSUSYSpectrum[];

"mχp"/.STCGetSUSYSpectrum[];

The squark masses and charged slepton masses are contained in a joint list as {mũ,md̃,mẽ},
and analogously for the sfermion mixing matrices. To obtain for example the up-type
squark masses, the charged slepton mixing matrix, and the sneutrino masses type

("msude"/.STCGetSUSYSpectrum[])[[1]];

("Wude"/.STCGetSUSYSpectrum[])[[3]];

"msν"/.STCGetSUSYSpectrum[];

• STCGetOneLoopValues[] returns a list of replacement rules containing

1Note that there is no CP-violation in the MSSM Higgs sector on tree-level.
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– "µ","m3" the one-loop corrected DR µ-parameter and m3 as in (10.15) and (10.16)
at the SUSY scale Q in GeV.

– "vev" the one-loop DR vev v̂ as in (10.20) at the SUSY scale Q in GeV.

– "MHp" ("MA") the pole-mass mH+ (mA) of the charged (CP-odd) Higgs boson for
STCcMSSM = True (False) in GeV.

The value of µ can for example be obtained from

"µ"/.STCGetOneLoopValues[];

• STCGetSCKMValues[] returns a list of replacement rules with the soft-breaking mass
squared and trilinear coupling matrices in the SCKM basis, where sparticles are rotated
analogously with their corresponding superpartners2. Since they are used for the self-
energies calculation as described in the previous appendix F, they are returned in SLHA2
convention [123]! In detail, there are

– "VCKM" the CKM mixing matrix.

– "VPMNS" the PMNS mixing matrix.

– SCKMBasis["m2Q"], SCKMBasis["m2u"], SCKMBasis["m2d"] the squark soft-breaking
mass squared matrices in the Super-CKM basis with SLHA2 convetions in GeV2.

– SCKMBasis["m2L"], SCKMBasis["m2e"] the slepton soft-breaking mass squared ma-
trices in the Super-PMNS basis with SLHA2 conventions in GeV2.

– SCKMBasis["T"] a list of the three trilinear coupling matrices for up-type squarks,
down-type squarks, and charged sleptons in the SCKM basis with SLHA2 conventions
in GeV.

– SCKMBasis["Y"] a 3×3 array of the Yukawa coupling singular values for up-type
squarks, down-type squarks, and charged sleptons.

To obtain the down-type trilinear coupling matrix and the mass squared matrix of the
squark doublet in the SLHA basis for example, type

(SCKMBasis["T"]/.STCGetSCKMValues[])[[2]];

SCKMBasis["m2Q"]/.STCGetSCKMValues[];

• STCGetInternalValues[] returns everything that is internally used for the calculation
of the threshold corrections and sparticle spectrum, i.e. the results from STCGetSCKMValues[]

and STCGetSUSYSpectrum[] with the one-loop corrected parameters from STCGetOneLoopValues[]

replacing tree-level ones if available. We recommend to the user to use those separate
functions instead.

As additional feature, SusyTC optionally supports input and output as SLHA “Les
Houches” files. These files follow SLHA conventions [123,194]:

2Here we use the term “SCKM” for the Super-CKM and Super-PMNS basis.
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• STCSLHA2Input[“Path”] loads an “Les Houches” input file stored in “Path” and exe-
cutes REAP and SusyTC. If no path is given, the default path is assumed as “SusyTC.in”
in the Mathematica notebook directory. An important difference to other spectrum cal-
culators is the pure “top-down” approach by SusyTC, i.e. there is no attempt of fitting
SM inputs at a low scale or calculating a GUT scale from gauge couplings unification.
Instead, all input is given at a user-defined high energy scale, which is then evolved to
lower scales. The input should be given in the flavour basis in SLHA 2 convention [123]
as in (5.64) and (5.65), and the seesaw parameters in the convention (5.77). The relation
between the SusyTC conventions of chapter 10 and the SLHA 2 conventions is given in
10.2. In the following, we list all SLHA 2 input blocks, which are available in SusyTC:

– Block MODSEL: The only available switch is:
5 : (Default = 2) CP violation (STCcMSSM)

– Block SusyTCInput: Switches (1=True, 0=False) are defined for RGEAdd:
1 : (Default = 1) STCSusyScaleFromStops
2 : (Default = 1) STCSearchSMTransition
3 : (Default = 1) STCCCBConstraints
4 : (Default = 1) STCUFBConstraints
5 : (Default = 1) Print a Warning in case of Tachyonic masses
6 : (Default = 1) One or Two Loop RGEs

– Block MINPAR: Constrained MSSM parameters as defined in [123,194]. Note however,
that the input value of tan β is interpreted to be given at the SUSY scale.

– Block IMMINPAR: Reads the sinφµ in case of the complex MSSM:
4 : sinφµ

– Block EXTPAR:
0 : (Default = 2 · 1016): Minput Input scale in GeV
Note that with SusyTC an automatic calculation of the GUT scale is not possible.
The remainder of the block works as usual, e.g. optionally one can overwrite common
Constrained MSSM gaugino or Higgs soft-breaking parameters:
1 : M1(Minput) bino mass (real part) in GeV
2 : M2(Minput) wino mass (real part) in GeV
3 : M3(Minput) gluino mass (real part) in GeV
21 : m2

hd
(Minput) in GeV2

22 : m2
hu

(Minput) in GeV2

Imaginary components for the gaugino masses can be given in Block IMEXTPAR.

– Block IMEXTPAR: as defined in [123].

– Block QEXTPAR: low energy input:
0 : (Default = 91.1876): The low energy scale in GeV to which REAP evolves the SM
RGEs.
23 : “SUSY scale” Q, where the MSSM is matched to the SM. If this entry is set, it
overwrites the automatically calculated SUSY scale.
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– Block GAUGE: the DR gauge couplings at the input scale
1 : g1(Minput) U(1) gauge coupling
2 : g2(Minput) SU(2) gauge coupling
3 : g3(Minput) SU(3) gauge coupling

– Block YU, Block YD, Block YE, Block YN: The real parts of the Yukawa matrices
Yu, Yd, Ye, and Yν in the flavour basis (5.64) and (5.77). They should be given in the
FORTRAN format (1x,I2,1x,I2,3x,1P,E16.8,0P,3x,‘#’,1x,A), where the first two
integers correspond to the indices and the double precision number to Re(Yij).

– Block IMYU, Block IMYD, Block IMYE, Block IMYN: The imaginary parts of the
Yukawa matrices Yu, Yd, Ye, and Yν in the flavour basis (5.64) and (5.77). They are
given in the same format as the real parts.

– Block MN: The real part of the symmetric Majorana mass matrix Mn of the right-
handed neutrinos in the flavour basis (5.77) in GeV. Only the “upper-triangle” entries
should be given, the input format is as for the Yukawa matrices.

– Block IMMN: The imaginary part of the symmetric Majorana mass matrix Mn of the
right-handed neutrinos in the flavour basis (5.77) in GeV. Only the “upper-triangle”
entries should be given, the input format is as for the Yukawa matrices.

The remaining blocks can be given optionally to overwrite Constrained MSSM input
boundary conditions:

– Block TU, Block TD, Block TE, Block TN: The real parts of the trilinear soft-
breaking matrices Tu, Td, Te, and Tν in GeV in the flavour basis (5.65). They should
be given in the same format as the Yukawa matrices.

– Block IMTU, Block IMTD, Block IMTE, Block IMTN: The imaginary parts of the
trilinear soft-breaking matrices Tu, Td, Te, and Tν in GeV in the flavour basis (5.65).
They should be given in the same format as the Yukawa matrices.

– Block MSQ2, Block MSU2, Block MSD2, Block MSL2, Block MSE2,

Block MSN2: The real parts of the soft-breaking mass squared matrices m2
Q̃

, m2
ũ, m

2
d̃
,

m2
L̃
, m2

ẽ, and m2
ν̃ in GeV2 in the flavour basis (5.65). Only the “upper-triangle” entries

should be given, the input format is as for the Yukawa matrices.

– Block IMMSQ2, Block IMMSU2, Block IMMSD2,Block IMMSL2,

Block IMMSE2, Block IMMSN2: The imaginary parts of the soft-breaking mass squared
matrices m2

Q̃
, m2

ũ, m
2
d̃
, m2

L̃
, m2

ẽ, and m2
ν̃ in GeV2 in the flavour basis (5.65). Only the

“upper-triangle” entries should be given, the input format is as for the Yukawa ma-
trices.

• STCWriteSLHA2Output[“Path”] writes a “Les Houches” [123,194] output file to “Path”.
If no path is given, the output is saved in the Mathematica notebook directory as
“SusyTC.out”. The output follows SLHA conventions, with the following exceptions:
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– Block MASS: The mass spectrum is given as DR masses in GeV at the SUSY scale.
The only exception is the pole mass MH+ (MA) for CP violation turned on (off).

– Block ALPHA: the tree-level Higgs mixing angle αtree.

– Block HMIX: Instead of MA we give
101 : m3

The other blocks follow the SLHA2 output conventions, e.g. DR values at the SUSY scale
in the Super-CKM/Super-PMNS basis. To avoid confusion, the blocks Block DSQMIX,

Block USQMIX, Block SELMIX, Block SNUMIX and the corresponding blocks for the
imaginary entries, return the sfermion mixing matrices Rf̃ in SLHA 2 convention!
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