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Multilevel accelerated quadrature for PDEs with log-normally distributed
diffusion coefficient∗
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Abstract. This article is dedicated to multilevel quadrature methods for the rapid solution of stochastic partial
differential equations with a log-normally distributed diffusion coefficient. The key idea of such
approaches is a sparse-grid approximation of the occurring product space between the stochastic
and the spatial variable. We develop the mathematical theory and present error estimates for the
computation of the solution’s moments with focus on the mean and the variance. Especially, the
present framework covers the multilevel Monte Carlo method and the multilevel quasi-Monte Carlo
method as special cases. The theoretical findings are supplemented by numerical experiments.
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1. Introduction. In this article, we consider multilevel quadrature methods to compute
the moments of the solution to elliptic partial differential equations with log-normally dis-
tributed diffusion coefficient. The basic idea of the multilevel quadrature is a sparse-grid-like
discretization of the underlying Bochner space L2

P
(
Ω;H1

0 (D)
)
. The spatial variable is dis-

cretized by a classical finite element method whereas the stochastic variable is treated by an
appropriately chosen quadrature rule, which naturally leads to a non-intrusive method. Since
the problem’s solution provides the necessary mixed Sobolev regularity, the approximation
errors on the different levels of resolution can be equilibrated in a sparse-grid-like fashion,
cf. [8, 20, 42]. This idea has already been proposed for different quadrature strategies in
case of uniformly elliptic diffusion coefficients in [23]. The well-known Multilevel Monte Carlo
Method (MLMC), as introduced in [3, 15, 16, 26, 27], and also the Randomized Multilevel
Quasi-Monte Carlo Method, as introduced in [30], only provide probabilistic error estimates
in the mean-square sense. To avoid this drawback, two fully deterministic methods have
been proposed in [23], namely the Multilevel Quasi-Monte Carlo Method (MLQMC) and the
Multilevel Polynomial Chaos Method (MLPC).

The multilevel Monte Carlo method has been considered at first for a log-normal diffusion
coefficient in [12] and further been analyzed in [11, 40]. However, for deterministic quadra-
ture methods, the log-normal case is much more involved due to the unboundedness of the
domain of integration, i.e. Rm for some m ∈ N, in combination with the stronger regularity
requirements on the integrand. This makes the analysis of the quadrature error difficult. In
particular, special regularity results are required which extend those of [2, 10, 29].

For a finite stochastic dimension, we show that the multilevel quasi-Monte Carlo quadra-
ture is feasible also for a log-normal diffusion coefficients if an auxiliary density is introduced.
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If the stochastic dimension tends to infinity, this technique is no longer applicable since the
error estimates involve a discrepancy which grows exponentially in the stochastic dimension
m. A possibility to bypass this obstruction has recently been proposed in [19] by means of
randomly shifted lattice rules. There, however, only probabilistic error estimates are obtained
in the mean-square sense. In case of the Halton sequence, cf. [33], it is possible to adapt
the ideas presented in [36] to show an almost dimension independent, i.e. up to a constant
which depends linearly on the dimension, and deterministic convergence rate, see [24] for the
details. We emphasize that the mixed regularity estimates provided here directly carry over
to multilevel methods based on those quasi-Monte Carlo quadrature formulae.

A log-normally distributed diffusion coefficient depends non-linearly on the stochastic
parameter. Thus, MLPC is no longer feasible since a polynomial chaos expansion, cf. [13, 14],
would yield a fully coupled system of partial differential equations. This can be avoided by the
application of stochastic collocation, cf. [2, 5, 34]. If statistics of the solution, like the mean
or the variance, are desired rather than the solution itself, the stochastic collocation coincides
with a quadrature rule based on polynomial interpolation. Especially, for the log-normal
case, quadrature formulae based on the Hermite polynomials are convenient. This yields the
Multilevel Gaussian Quadrature Method (MLGQ) which we also analyze in this article.

We mention that a sparse-grid-like discretization of the Bochner space L2
P
(
Ω;H1

0 (D)
)

has already been proposed in [6, 18] for partial differential equations with uniformly elliptic
diffusion coefficient in the context of a stochastic Galerkin method. Then, however, one arrives
again at a huge, fully coupled system of partial differential equations which is hard to solve.
In particular, this approach is intrusive. In [5], however, a sparse collocation method for the
approximation in the stochastic variable is combined with a wavelet Galerkin discretization
in the spatial variable. This decouples the spatial and the stochastic approximation. In our
approach, we do not apply an explicit representation with respect to appropriate detail spaces.
Instead, we mimic this representation with differences of Galerkin projections on consecutive
grids of refinement. This has the advantage that we can employ a standard finite element
method in the spatial discretization. Nevertheless, the convergence analysis requires that the
differences of Galerkin projections provide sufficient regularity. The related result is proven
in Section 8 and constitutes one of the main novelties of the present article.

The rest of this article is organized as follows. Section 2 specifies the diffusion problem
under consideration. In particular, the parametric reformulation as a high dimensional de-
terministic problem is performed here. The solution’s moments are hereby transformed into
Bochner integrals over a high dimensional parameter domain. In Section 3, we give a brief
outline of the multilevel finite element method which we will employ for the spatial discretiza-
tion later on. The multilevel quadrature method is presented in Section 4. This method
equilibrates the quadrature error and the finite element error on each level of refinement. Of
course, one could also equilibrate the number of unknowns or even the overall work, cf. [20].
In Section 5, we derive crucial regularity estimates for the solution of the stochastic diffusion
problem under consideration. Especially, we present regularity results for the powers of the
solution which are the integrands in case of the computation of the moments. Section 6 pro-
vides the theoretical background for the Gaussian quadrature in the stochastic variable and
follows closely the arguments of the stochastic collocation method in [2]. Here, the regularity
estimates from the preceding section are employed to determine the order of quadrature for
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each stochastic dimension which is required to guarantee the convergence of the quadrature.
Section 7 is concerned with the Monte Carlo and the quasi-Monte Carlo quadrature. In case
of the quasi-Monte Carlo quadrature, we introduce an auxiliary density to bound the quadra-
ture error. In Section 8, the previously specified spatial and stochastic discretizations are
combined to get convergence results for the multilevel quadrature applied to the solution’s
moments. In order to apply the convergence results of the single-level quadrature methods
to the multilevel quadrature method, the regularity results of Section 5 are extended to the
differences of Galerkin projections on two consecutive levels of refinement. Section 9 provides
the complexities of the different multilevel quadrature methods under the finite dimensional
noise assumption. Finally, in Section 10, the theoretical findings are validated by numerical
examples.

In the following, in order to avoid the repeated use of generic but unspecified constants,
by C . D we mean that C can be bounded by a multiple of D, independently of parameters
which C and D may depend on. Obviously, C & D is defined as D . C, and we write C h D
if C . D and C & D, simultaneously.

2. Problem setting. In the following, let D ⊂ Rn for n = 2, 3 be a polygonal or polyhedral
domain and let (Ω,F ,P) be a complete probability space with σ-field F ⊂ 2Ω and probability
measure P. We intend to compute the random function u(ω) ∈ H1

0 (D) which solves for almost
every ω ∈ Ω the stochastic diffusion problem

(2.1) −divx

(
a(ω)∇xu(ω)

)
= f in D

in the weak sense. Throughout this article, we shall assume that the load f is purely deter-
ministic and belongs to L2(D). Furthermore, we assume that the logarithm of the diffusion
coefficient is a centered Gaussian field which can be represented by a Karhunen-Loève expan-
sion, cf. [31],

(2.2) b(x, ω) := log
(
a(x, ω)

)
=

∞∑
k=1

√
λkϕk(x)ψk(ω).

Here, {ϕk}k ⊂ L∞(D) are pairwise orthonormal functions and {ψk}k are independent, stan-
dard normally distributed random variables, i.e. ψk(ω) ∼ N (0, 1). For the uniform conver-
gence of the series in (2.2), it is sufficient that the sequence

(2.3) γk :=
√
λk‖ϕk‖L∞(D)

satisfies {γk}k ∈ `1(N), which we assume in the sequel.
In practice, one has of course to compute the expansion (2.2) from the given covariance

kernel Covb(x,y) :=
∫

Ω b(x, ω)b(y, ω) dP(ω). Thus, the Karhunen-Loève expansion is either
finite of length m or needs to be appropriately truncated after m terms. We will assume this
in the following. The respective truncation error has been discussed in [10].

The fact that the random variables {ψk(ω)}k are stochastically independent implies that
the pushforward measure Pψ := P ◦ψ−1 with respect to the measurable mapping

ψ : Ω→ Rm, ω 7→ ψ(ω) :=
(
ψ1(ω), . . . , ψm(ω)

)



4 H. Harbrecht, M. Peters, M. Siebenmorgen

is given by the joint density function with respect to the Lebesgue measure

(2.4) ρ(y) :=
m∏
k=1

ρ(yk), where ρ(y) :=
1√
2π

exp

(
− y2

2

)
.

With this representation at hand, we can reformulate the stochastic problem (2.1) as a para-
metric deterministic problem. To that end, we replace the space L2

P(Ω) by L2
ρ(Rm) and substi-

tute the random variables ψk by the coordinates yk ∈ R. Thus, we obtain the parameterized
and truncated diffusion coefficient b : D × Rm → R via

(2.5) b(x,y) :=

m∑
k=1

√
λkϕk(x)yk and a(x,y) := exp

(
b(x,y)

)
for all x ∈ D and y = (y1, y2, . . . , ym) ∈ Rm. In particular, the variational formulation for the
parametric diffusion problem reads as follows:

(2.6)
find u ∈ L2

ρ

(
Rm;H1

0 (D)
)

such that

− divx

(
a(x,y)∇xu(x,y)

)
= f(x) in D for all y ∈ Rm.

Here and in the sequel, for a given Banach space X, the Bochner space Lpρ(Rm;X), 1 ≤ p ≤ ∞,
consists of all equivalence classes of strongly measurable functions v : Rm → X whose norm

‖v‖Lpρ(Rm;X) :=


(∫

Rm
‖v(·,y)‖pXρ(y) dy

)1/p

, p <∞

ess sup
y∈Rm

‖v(·,y)‖X , p =∞

is finite. If p = 2 and X is a separable Hilbert space, then the Bochner space is isomorphic to
the tensor product space L2

ρ(Rm)⊗X. Note that, for notational convenience, we will always
write v(x,y) instead of

(
v(y)

)
(x) if v ∈ Lpρ(Rm;X).

The stochastic diffusion coefficient a(x,y) is neither uniformly bounded away from zero
nor uniformly bounded from above for all y ∈ Rm. Consequently, it is impossible to show
unique solvability in the classical way for elliptic boundary value problems. Especially the
Lax-Milgram theorem does not directly apply to the problem (2.1). Nevertheless, in [37], it
is shown that the set

(2.7) Γ :=

{
y ∈ Rm :

m∑
k=1

γk|yk| <∞
}

is of measure Pψ(Γ) = 1 for all m ≤ ∞. Moreover, for all y ∈ Γ, the diffusion coefficient
satisfies

(2.8) 0 < amin(y) ≤ ess inf
x∈D

a(x,y) ≤ ess sup
x∈D

a(x,y) ≤ amax(y) <∞

with

(2.9) amin(y) = exp

(
−

m∑
k=1

γk|yk|
)

and amax(y) = exp

( m∑
k=1

γk|yk|
)
.
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It is convenient to make in the sequel use of the abbreviation

(2.10) κ(y) :=
amax(y)

amin(y)
= exp

(
2

m∑
k=1

γk|yk|
)
.

Remark 2.1. In the framework of [37], the situation m → ∞ is considered. Then, the
restriction (2.3) of the parameter domain ensures for all y ∈ Γ that |b(x,y)| < ∞ holds
uniformly in x ∈ D. Obviously, we have Γ = Rm for all m <∞.

Remark 2.2. In the following, the Sobolev space H1
0 (D) is considered to be equipped with the

norm ‖ · ‖H1(D) := ‖∇ · ‖L2(D). Likewise, we use corresponding norms for the Sobolev spaces

W 1,p
0 (D), i.e. ‖ · ‖W 1,p(D) := ‖∇ · ‖Lp(D). Since we take here only homogenous Dirichlet data

into account, by Sobolev’s norm equivalence theorem, cf. [1], they all induce norms that are
equivalent to the standard norms for these spaces. Of course, all results are straightforwardly
extendable to the case of non-homogenous Dirichlet problems.

Due to (2.8), for every fixed y ∈ Rm, the problem (2.6) is elliptic and admits a unique
solution u(y) ∈ H1

0 (D) which satisfies

(2.11) ‖u(y)‖H1(D) .
1

amin(y)
‖f‖L2(D).

We refer the reader to e.g. [37] for a proof of this result. The constant involved here arises
from the estimate ‖f‖H−1(D) ≤ C(D)‖f‖L2(D).

The goal of this article is to compute the moments Mpu(x) := E[u(x,y)p] of the solution
to (2.6). Especially, the solution’s mean

(2.12) Eu(x) := E[u(x,y)] =

∫
Rm

u(x,y)ρ(y) dy ∈ H1
0 (D)

and its variance

(2.13) Vu(x) := Eu2(x)− E2
u(x) =

∫
Rm

u2(x,y)ρ(y) dy − E2
u(x) ∈W 1,1

0 (D)

are of interest to us. They correspond to the first and the second (centered) moment of the
solution u. Notice that the knowledge of all moments is sufficient to determine the solution’s
distribution.

Remark 2.3. In contrast to e.g. [11, 12, 40], we do not aim at evaluating functionals of
the solution. Our goal is the approximation of its p-th moment which is the trace of the p-
point correlation. The computation of the p-point correlation by the multilevel Monte-Carlo
method is analyzed in [3]. Therein, a sparse tensor product approximation is used for the p-
point correlation since it arises from the p-fold tensorization of equation (2.1) and is therefore
contained in [H1

0 (D)]p. Of course, the p-point correlation contains more information than the
p-th moment of u, but the computational complexity can be reduced by sampling the moments
of u directly if one is only interested in them. Hence, it is necessary to analyze the regularity
of the p-th power of u which is performed in Section 5.
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3. Finite element approximation in the spatial variable. For the spatial discretization of
the diffusion problem under consideration, we will employ multilevel finite elements. To that
end, we consider a coarse grid triangulation T0 = {τ0,k} of the domain D. Then, for ` ≥ 1,
a uniform and shape regular triangulation T` = {τ`,k} is recursively obtained by uniformly
refining each simplex τ`−1,k into 2n simplices with diameter h` h 2−`. For d ≥ 1, we define
the finite element spaces on level ` by

Sd` (D) := {v ∈ C(D) : v|∂D = 0 and v|τ ∈ Pd for all τ ∈ T`} ⊂ H1
0 (D),

where Pd denotes the space of all polynomials of total degree d. In the subsequent analysis,
we restrict ourselves to piecewise linear finite elements, i.e. d = 1. Nevertheless, we emphasize
that, by performing obvious modifications, all results remain valid also for higher order finite
elements.

Now, given y ∈ Rm, we define the Galerkin projection G`(y) : H1
0 (D) → S1

` (D) via the
Galerkin orthogonality:∫

D
a(y)∇

(
v −G`(y)v

)
∇w dx = 0 for all w ∈ S1

` (D).

Moreover, we set G−1(y) := 0 for all y ∈ Rm. In the sequel, letters in the German type setting
will always refer to a Galerkin projection, i.e.

v`(y) := G`(y)v ∈ S1
` (D).

The Galerkin projection u`(y) of the solution u(y) to the diffusion problem (2.6) is known to
fulfill the following error estimate.

Lemma 3.1. Let the domain D be convex, f ∈ L2(D) and a(y) ∈ C1(D). Then, the
Galerkin projection u`(y) ∈ S1

` (D) of the diffusion problem (2.6) satisfies the error estimate

(3.1) ‖u(y)− u`(y)‖H1(D) . 2−`
√
κ(y)‖u(y)‖H2(D),

where κ(y) is given by (2.10). Moreover, if f ∈ Lp(D) for given p ≥ 2, then it holds up` (y) ∈
Sp` (D) with

(3.2)
∥∥(up − up`

)
(y)
∥∥
W 1,1(D)

. 2−`κ(y)p‖u(y)‖p
W 2,p(D)

.

Here, the constants hidden in (3.1) depend on D and in (3.2) additionally on p but not on
y ∈ Rm.

Proof. The parametric diffusion problem (2.6) is H2-regular since D is convex and f ∈
L2(D). Hence, the first error estimate immediately follows from the standard finite element
theory. We further find that for functions v1, . . . , vp ∈ W 1,p(D) it holds ‖v1 · · · vp‖W 1,1(D) ≤∑p

k=1 ‖∇vk
∏
i 6=k vi‖L1(D). By the generalized Hölder inequality, we obtain ‖v1 · · · vp‖W 1,1(D) .∏p

k=1 ‖vk‖W 1,p(D), where the hidden constant depends on p and D. This yields

∥∥(up − up`
)
(y)
∥∥
W 1,1(D)

=

∥∥∥∥(u− u`
)
(y)

p−1∑
i=0

ui(y)up−1−i
` (y)

∥∥∥∥
W 1,1(D)

≤
p−1∑
i=0

‖(u− u`)(y)‖W 1,p(D)‖u(y)‖iW 1,p(D)‖u`(y)‖p−i−1
W 1,p(D)

.
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By using the estimate ‖(u− u`)(y)‖W 1,p(D) . 2−`κ(y)‖u(y)‖W 2,p(D), cf. [7], it follows

‖u`(y)‖W 1,p(D) ≤ ‖u(y)‖W 1,p(D) + ‖(u− u`)(y)‖W 1,p(D) .
(
1 + κ(y)2−`

)
‖u(y)‖W 2,p(D).

Putting this into the previous estimate, we finally arrive at (3.2).

4. Multilevel quadrature. LetX denote some Banach space of functions which are defined
on the domain D, for example X = H1

0 (D) or X = W 1,1
0 (D). For X and a weight w : Rm → R,

we define the weighted space, cf. [2],

(4.1) C0
w(Rm;X) :=

{
v : Rm → X : v is continuous and sup

y∈Rm
‖w(y)v(·,y)‖X <∞

}
,

equipped with the norm ‖v‖C0
w(Rm;X) := supy∈Rm‖w(y)v(·,y)‖X . Here, for the sake of sim-

plicity, it suffices to consider w ≡ 1. Later on, we need to specify the weight to establish
regularity results for the solution u to (2.6).

The crucial idea of the multilevel quadrature is a finite dimensional approximation of the
mapping

E : C0
w(Rm;X)→ X, v 7→ Ev.

To that end, we have to combine an appropriate quadrature rule for the stochastic variable
with the multilevel finite element discretization in the spatial variable. More precisely, for a
function v ∈ C0

w(Rm;X), we perform a multilevel splitting of Ev in X and approximate each
level with a level dependent quadrature accuracy. This accuracy is chosen contradirectional
to the approximation power of the finite element spaces for the spatial domain.

For the approximation in the stochastic variable y, we shall hence provide a sequence of
quadrature formulae {Q`} for the Bochner integral Ev(x) =

∫
Rm v(x,y)ρ(y) dy of the form

Q` : C0
w(Rm;X)→ X, Q`v =

N∑̀
i=1

ω`,iv(·, ξ`,i).

For our purposes, we assume that the number of points N` of the quadrature formula Q` is
chosen such that the corresponding accuracy is

(4.2) ε` = 2−`.

The multilevel quadrature of the mean of a function v ∈ C0
w(Rm;X) is now defined by

(4.3) Ev(x) ≈
j∑
`=0

Qj−`(v` − v`−1)(x,y) =

j∑
`=0

Nj−`∑
i=0

ωj−`,i(v` − v`−1)(x, ξj−`,i).

The higher order moments are approximated in complete analogy by

(4.4) Mp
v(x) ≈

j∑
`=0

Qj−`
(
vp` − vp`−1

)
(x,y) =

j∑
`=0

Nj−`∑
i=0

ωj−`,i
(
vp` − vp`−1

)
(x, ξj−`,i).

Since the multilevel quadrature (4.3) and (4.4) can be interpreted as a sparse-grid approach,
cf. [23], it is known that mixed regularity results of the integrand have to be provided.
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5. Regularity of the solution. As motivated before, we consider in this section the regu-
larity of u and its square u2. Under certain regularity assumptions it is also possible to obtain
bounds for arbitrary powers of the solution, i.e. up for p ∈ N. The regularity of the solution
u has already been addressed in [2, 10, 29, 37]. We will adapt here some of the results, which
originate from those articles, for our framework.

Remark 5.1. The constants hidden in this section appear due to the repeated application
of Poincaré’s inequality. The dependency of the constants on p is also suppressed. In most
cases, they depend exponentially on p but they are independent of the stochastic dimension m.

Since the diffusion coefficient a(x,y) is not uniformly elliptic with respect to y, we cannot
expect the solution to be uniformly bounded in y. Thus, the solution u to (2.6) may not be
contained in the Bochner space Ckw

(
Rm;H1

0 (D)
)

with w ≡ 1. Nonetheless, we can multiply u
by an appropriate auxiliary weight and end up with a bounded product in the sense of (4.1).

Definition 5.2. For β = (β1, . . . , βm) ∈ Rm+ , we define the auxiliary weight σ(y) :=∏m
k=1 σk(yk), where σk(yk) := exp(−βk|yk|). For the special case β = γ with γ := (γ1, . . . , γm),

cf. (2.3), the auxiliary weight is denoted by σmin(y).
If we choose w = σ in (4.1), the space C0

σ(Rm;X) is a subset of Lpρ(Rm;X) for all p ∈ N.
This fact issues from

‖v‖Lpρ(Rm;X) ≤ ‖v‖C0
σ(Rm;X)

(∫
Rm

(
σ(y)

)−p
ρ(y) dy

) 1
p

<∞

because of pβkyk = O(y2
k) for yk →∞ and the integrability of the normal distribution’s tails.

Especially, we will employ several times the continuity of the mapping

E : C0
σ(Rm;X)→ X, v 7→ Ev,

which satisfies

‖Ev‖X ≤ C(σ)‖v‖C0
σ(Rm;X) with C(σ) =

∫
Rm

(
σ(y)

)−1
ρ(y) dy.

The constant C(σ) depends on the choice of β and may grow exponentially in m since the
domain of integration is Rm. This is however not necessarily the case here. If we integrate
σmin or even the p-th power of σmin with respect to the Gaussian measure, we get, cf. [17],

(5.1)

(∫
Rm

(
σmin(y)

)−p
ρ(y) dy

) 1
p

≤ exp

(
p2

m∑
k=1

γ2
k + p

√
2

π

m∑
k=1

γk

)
.

This expression depends only on the decay of the sequence {γk}k and is bounded independently
of the dimension m due to (2.3).

Proposition 5.3. For all weights σ satisfying β ≥ γ, the solution u of (2.6) is contained in
C0
σ

(
Rm;H1

0 (D)
)

and satisfies u2 ∈ C0
σ2

(
Rm;W 1,1

0 (D)
)
. In particular, it holds

‖u‖C0
σ(Rm;H1(D)) . ‖f‖L2(D),

∥∥u2
∥∥
C0

σ2 (Rm;W 1,1(D))
. ‖f‖2L2(D).
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Proof. In view of inequality (2.11) and since 1/amin(y) = exp
(∑m

k=1 γk|yk|
)
, we conclude

the first estimate

σ(y)‖u(y)‖H1(D) . exp

( m∑
k=1

(γk − βk)|yk|
)
‖f‖L2(D) ≤ ‖f‖L2(D)

while the second estimate follows from

σ2(y)
∥∥u2(y)

∥∥
W 1,1(D)

≤ σ2(y)‖2u(y)∇u(y)‖L1(D) .
(
σ(y)‖u(y)‖H1(D)

)2
. ‖f‖2L2(D).

The differentiability of u follows from the differentiability of a(x,y). An estimate on
multivariate derivatives has been proven in [4] and was extended to our problem setting in
[29]. We use here the related lemma from [29], which is adjusted for our purposes.

Lemma 5.4. For every y ∈ Rm, it holds that

∥∥∂jyku(y)
∥∥
H1(D)

≤ j!
(

γk
log 2

)j√
κ(y)‖u(y)‖H1(D).

With this lemma at hand, we are able to show the following result.

Proposition 5.5. For all weights σ with β ≥ 2γ, the partial derivatives of the solution u to
(2.6) satisfy

(5.2)
∥∥∂jyku∥∥C0

σ(Rm;H1(D))
. j!

(
γk

log 2

)j
‖f‖L2(D).

Especially, it holds ∂jyku ∈ C0
σ

(
Rm;H1

0 (D)
)
.

Proof. From Lemma 5.4, we obtain

∥∥∂jyku∥∥C0
σ(Rm;H1(D))

= sup
y∈Rm

∥∥σ(y)∂jyku(y)
∥∥
H1(D)

≤ j!
(

γk
log 2

)j
sup

y∈Rm

√
κ(y)σ(y)‖u(y)‖H1(D).

In view of (2.10), we have
√
κ(y) = exp

(∑m
k=1 γk|yk|

)
. This yields the desired estimate as

follows

∥∥∂jyku∥∥C0
σ(Rm,H1(D))

≤ j!
(

γk
log 2

)j
sup

y∈Rm
exp

( m∑
k=1

(γk − βk)|yk|
)
‖u(y)‖H1(D)

≤ j!
(

γk
log 2

)j
sup

y∈Rm
exp

( m∑
k=1

−γk|yk|
)
‖u(y)‖H1(D) . j!

(
γk

log 2

)j
‖f‖L2(D).

The previous result shows the regularity of the solution u. In the following proposition,
we consider the regularity of u2.
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Proposition 5.6. The partial derivatives of u2, where u is the solution of (2.6), satisfy
∂jyku

2 ∈ C0
σ2

(
Rm;W 1,1

0 (D)
)

for all σ with β ≥ 2γ. Especially, it holds

(5.3)
∥∥∂jyku2

∥∥
C0

σ2 (Rm;W 1,1(D))
. (j + 1)!

(
γk

log 2

)j
‖f‖2L2(D) ≤ j!

(
2γk
log 2

)j
‖f‖2L2(D).

Proof. By the Leibniz rule, we obtain

(5.4)
∥∥∂jyku2(y)

∥∥
W 1,1(D)

≤
j∑
`=0

(
j

`

)∥∥∂`yku(y)∂j−`yk
u(y)

∥∥
W 1,1(D)

.

Each summand on the right hand side can be estimated as follows:∥∥∂`yku(y)∂j−`yk
u(y)

∥∥
W 1,1(D)

=
∥∥∇∂`yku(y)∂j−`yk

u(y) + ∂`yku(y)∇∂j−`yk
u(y)

∥∥
L1(D)

≤
∥∥∇∂`yku(y)

∥∥
L2(D)

∥∥∂j−`yk
u(y)

∥∥
L2(D)

+
∥∥∂`yku(y)

∥∥
L2(D)

∥∥∇∂j−`yk
u(y)

∥∥
L2(D)

.
∥∥∂`yku(y)

∥∥
H1(D)

∥∥∂j−`yk
u(y)

∥∥
H1(D)

+
∥∥∂`yku(y)

∥∥
H1(D)

∥∥∂j−`yk
u(y)

∥∥
H1(D)

.

Application of Lemma 5.4 yields

∥∥∂`yku(y)∂j−`yk
u(y)

∥∥
W 1,1(D)

. 2`!(j − `)!
(

γk
log 2

)j
κ(y)‖u(y)‖2H1(D).

Inserting this inequality into (5.4) results in

∥∥∂jyku2(y)
∥∥
W 1,1(D)

. 2

j∑
l=0

j!

(
γk

log 2

)j
κ(y)‖u(y)‖2H1(D) ≤ 2(j + 1)!

(
γk

log 2

)j
κ(y)‖u(y)‖2H1(D).

The estimate (5.3) is now obtained analogously to estimate (5.2) in Proposition 5.5.
Remark 5.7. Given that the load satisfies f ∈ Lp(D) for p > 2, the solution u(y) to (2.6)

is contained in W 1,p
0 (D) and satisfies the regularity estimate∥∥u(y)

∥∥
W 1,p(D)

.
1

amin(y)
‖f‖Lp(D).

The derivatives of u with respect to the parametric variable y can be estimated by

∥∥∂jyku(y)
∥∥
W 1,p(D)

. j!

(
C(p,D)γk

log 2

)j
κ(y)‖u(y)‖W 1,p(D).

The constant C(p,D) stems from the dense embeddeding of W 1,q
0 (D) into [Lq(D)]d by the

mapping v 7→ ∇v, cf. [38], for the dual exponent q of p. Additionally, the derivatives of the
powers up with respect to the parametric variable y fulfill

∥∥∂jykup(y)
∥∥
W 1,1(D)

. j!

(
pC(p,D)γk

log 2

)j
κ(y)p‖u(y)‖p

W 1,p(D)
.
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For all weights σ with β ≥ 3γ this leads to

(5.5)
∥∥∂jykup∥∥C0

σp
(Rm;W 1,1(D))

. j!

(
pC(p,D)γk

log 2

)j
‖f‖Lp(D).

A proof of this remark is found in [24] for multivariate derivatives.
Lemma 5.4 provides only a bound on the derivatives of ∂jyku when the spatial regularity is

measured in H1
0 (D). We shall thus complete this section by a result from [29] which establishes

estimates on ∂jyku when the spatial regularity is measured in the spaceW := H2(D)∩H1
0 (D).

This result guarantees us the mixed regularity which is necessary for the sparse-grid con-
struction between the spatial and the stochastic variable. To establish this result, we shall
assume that the corresponding eigenfunctions of the Karhunen-Loève expansion (2.2) belong
to W 1,∞(D) which is for example fulfilled in case of a Gaussian covariance. If we then replace
γk by

(5.6) γ̃k := γk +
√
λk‖∇ϕk‖L∞(D) =

√
λk
(
‖ϕk‖L∞(D) + ‖∇ϕk‖L∞(D)

)
in the definition of the set Γ, cf. (2.7), and if we assume that {γ̃k}k ∈ `1(N), we still have
the parameter domain Rm for each finite m ∈ N. Hence, this sharpened condition induces
no further restriction to the parameter domain. In analogy to (2.9) and (2.10), it is useful to
define

(5.7) ãmin(y) := exp

(
−

m∑
k=1

γ̃k|yk|
)
, ãmax(y) := exp

( m∑
k=1

γ̃k|yk|
)
, κ̃(y) :=

ãmax(y)

ãmin(y)
.

Furthermore, we will employ spaces C0
σ(Rm;X), see (4.1) and Definition 5.2, where the aux-

iliary weight σ is defined with respect to γ̃ instead of γ.
For convex or sufficiently smooth curved domains, a norm on W is given by

‖u‖W := ‖∇u‖L2(D) + ‖∆u‖L2(D),

cf. [29]. Along the lines of [29], we have the following
Proposition 5.8. For all y ∈ Rm, the solution to problem (2.6) satisfies

∥∥√a(y)∆∂jyku(y)
∥∥
L2(D)

. j!

(
2γ̃k
log 2

)j(∥∥√a(y)−1f
∥∥
L2(D)

+ 2g(y)
∥∥√a(y)u(y)

∥∥
H1(D)

)
with g(y) := 1 + 2

∑m
k=1 |yk|

√
λk‖∇ϕk‖L∞(D) <∞.

This proposition implies the estimate

∥∥∆∂jyku(y)
∥∥
L2(D)

.
√
κ(y)j!

(
2γ̃k
log 2

)j(
‖f‖L2(D) + 2g(y)‖u(y)‖H1(D)

)
,

which can be further estimated by

∥∥∆∂jyku(y)
∥∥
L2(D)

. κ(y)g(y)j!

(
2γ̃k
log 2

)j
‖f‖L2(D).
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due to (2.9) and (2.11). It follows together with Lemma 5.4 and with

κ(y)g(y) = exp

(
2

m∑
k=1

γk|yk|
)(

1 + 2

m∑
k=1

|yk|
√
λk‖∇ϕk‖L∞(D)

)

≤ exp

(
2

m∑
k=1

γk|yk|
)

exp

(
2

m∑
k=1

|yk|
√
λk‖∇ϕk‖L∞(D)

)
= κ̃(y)

that

(5.8)
∥∥∂jyku(y)

∥∥
H2(D)

.
∥∥∂jyku(y)

∥∥
W . κ̃(y)j!

(
2γ̃k
log 2

)j
‖f‖L2(D).

This establishes the following
Proposition 5.9. The solution u to (2.6) is contained in C0

σ

(
Rm;H2(D)

)
for all σ with

β ≥ 2γ̃ and it holds

(5.9)
∥∥∂jyku∥∥C0

σ(Rm;H2(D))
. j!

(
2γ̃k
log 2

)j
‖f‖L2(D).

Remark 5.10. All estimates in this section are given for univariate derivatives of the solu-
tion u to (2.6). They can easily be extended to multidimensional derivatives ∂αy u. The factor
j!(γk/ log 2)j which appears in the estimates for the j-th derivative in the k-th direction in
Lemma 5.4 is then replaced by |α|!(γ/ log(2))α, see [4, 29]. Furthermore, multivariate ver-
sions of Proposition 5.6 and Remark 5.7 are proven in [24] and of Proposition 5.8 in [29],
respectively.

6. Gauss-Hermite quadrature for the stochastic variable. For given sets of points

(6.1)
{
η

(k)
0 , . . . , η

(k)
Nk

}
⊂ R, Nk ∈ N, k = 1, . . . ,m,

the Lagrangian basis polynomials L
(k)
0 , . . . , L

(k)
Nk

of degree Nk are uniquely determined by

the property L
(k)
i

(
η

(k)
j

)
= δi,j . Thus, for a multi-index α = (α1, . . . , αm) ∈ J with J :=

×m
k=1{0, . . . , Nk}, we define the corresponding tensor product Lagrangian basis polynomial

Lα(y) :=
m∏
k=1

L(k)
αk

(yk) with Lα(ηα′) = δα,α′ for ηα :=
(
η(1)
α1
, . . . , η(m)

αm

)
.

Given a continuous function v : Rm → R, we introduce the associated interpolation operator
by (

ΠJ v
)
(y) :=

∑
α∈J

v(ηα)Lα(y).

If we choose for each k the sets (6.1) to be the roots of the Hermite polynomials of degree
Nk + 1, which are known to be orthogonal with respect to the inner product

(q, r)L2
ρ(R) =

∫
R
q(y)r(y)ρ(y) dy, q, r ∈ L2

ρ(R),
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we straightforwardly derive the associated Gaussian quadrature formula from the interpolation
operator. These quadrature rules are known to be exact of degree 2Nk+1. Further, one easily
verifies (

L
(k)
i , L

(k)
j

)
L2
ρ(R)

= ω
(k)
i δi,j with ω

(k)
i =

(
L

(k)
i , 1

)
L2
ρ(R)

.

By tensor product construction, we get the multivariate weights ωα :=
∏m
k=1 ω

(k)
αk . Then,

for α,α′ ∈ J , we have the corresponding multivariate relations(
Lα,Lα′

)
L2
ρ(Rm)

= ωαδα,α′ and ωα =
(
Lα, 1

)
L2
ρ(Rm)

.

Now, we can interpolate the solution u ∈ L2
ρ

(
Rm;H1

0 (D)
)

of (2.6) in the stochastic variable

(6.2) u(x,y) ≈ (Id⊗ΠJ u)(x,y) =
∑
α∈J

u(x,ηα)Lα(y).

With (6.2) at hand, we can approximate the solution’s mean (2.12) and its variance (2.13)
by

Eu(x) ≈
∑
α∈J

u(x,ηα)ωα and Vu(x) ≈
∑
α∈J

u(x,ηα)2ωα −
( ∑
α∈J

u(x,ηα)ωα

)2

.

The remainder of this section is dedicated to the analysis of the occurring quadrature error
for the Gauss-Hermite quadrature. To that end, we define for a function v ∈ C0

σ(Rm;X) with
σ as in Definition 5.2 the quadrature operator

QJ : C0
σ(Rm;X)→ X, (QJ v)(x) :=

∑
α∈J

ωαv(x,ηα).

Of course, it is possible to consider quadrature operators with respect to other weighted spaces
C0
w(Rm;X) analogously.

In the following, we adopt the analysis and the notation presented in [2], where the poly-
nomial approximation error in case of stochastic collocation for uniformly elliptic equations
is analyzed. In [10], this analysis has been extended to the case of log-normal diffusion coef-
ficients. According to [2], we shall introduce the one-dimensional Gaussian auxiliary measure√
ρ(y) h exp(−y2/4) and the corresponding space C0√

ρ(R;X). This norm is weaker than the

norm of C0
σ(R;X) from the previous section, that is C0

σ(R;X) ⊂ C0√
ρ(R;X). On C0√

ρ(R;X),

we can now define the univariate quadrature operator of degree N ∈ N by

QN : C0√
ρ(R;X)→ X, (QNv)(x) :=

N∑
i=0

ωiv(x, ηi),

where η0, . . . , ηN are again the N + 1 roots of the Hermite polynomial of degree N + 1.
The following two lemmata imply that the univariate quadrature error is bounded by the

polynomial approximation error. They are modifications of the corresponding lemmata in [2]
for the polynomial interpolation.
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Lemma 6.1. The quadrature operator QN : C0√
ρ(R;X)→ X is continuous.

Proof. Consider v ∈ C0√
ρ(R;X). By using the triangle inequality and exploiting the

positivity of the weights wk of the Gauss-Hermite quadrature, we have

‖QNv‖X =

∥∥∥∥ N∑
i=0

ωiv(ηi)

∥∥∥∥
X

≤
N∑
i=0

ωi‖v(ηi)‖X =

N∑
i=0

ωi√
ρ(ηi)

∥∥√ρ(ηi)v(ηk)
∥∥
X

≤ max
i=0,...,N

∥∥√ρ(ηi)v(ηi)
∥∥
X

N∑
i=0

ωi√
ρ(ηi)

. ‖v‖C0√
ρ
(R;X).

The last inequality follows from [41], where the convergence

N∑
i=0

ωi√
ρ(ηi)

N→∞−→
∫
R

ρ(y)√
ρ(y)

dy <∞

is shown.

The next lemma relates the quadrature error to the best approximation error in C0√
ρ(R;X).

We denote by Pd(R) the space of polynomials of degree at most d.

Lemma 6.2. For every v ∈ C0√
ρ(R;X), the quadrature error of the (N + 1)-point Gauss-

Hermite quadrature is bounded by ‖Ev −QNv‖X . infw∈P2N+1(R)⊗X ‖v − w‖C0√
ρ
(R;X).

Proof. Since the (N + 1)-point Gauss-Hermite quadrature has degree of exactness 2N + 1,
it holds QNw = Ew for all w ∈ P2N+1(R) ⊗X. Thus, for arbitrary w ∈ P2N+1(R) ⊗X, we
have

‖Ev −QNv‖X ≤ ‖Ev−w‖X + ‖QN (v − w)‖X . ‖v − w‖L1
ρ(R;X) + ‖v − w‖C0√

ρ
(R;X)

. ‖v − w‖C0√
ρ
(R;X).

In the next step, we show that functions v ∈ C0
σ(Rm;X) admit an analytic extension

under certain decay properties of their derivatives. This is crucial to bound the error of the
best approximation in the polynomial space. Following the notation in [2], we introduce

ρ?k(y
?
k) :=

m∏
i=1
i 6=k

ρ(yi) and y?k := (y1, . . . , yk−1, yk+1, . . . , ym) ∈ Rm−1.

Lemma 6.3. Let (yk,y
?
k) ∈ Rm, v ∈ C0

σ(Rm;X), and assume that there holds∥∥∂jykv∥∥C0
σ(Rm;X)

. j!µjk

with some constant µk ∈ (0,∞). Then, for τk ∈ (0, 1/µk), the function

v : R→ C0
σ?k

(Rm−1;X), yk 7→ v(x, yk,y
?
k)



Multilevel accelerated quadrature 15

admits an analytic extension v(x, z,y?k) for z ∈ Σ(τk) := {z ∈ C, dist(z,R) ≤ τk}. Moreover,
the function v is bounded in the norm

(6.3) ‖v‖
C0
σ

(
Σ(R,τk);C0

σ?
k

(Rm−1;X)
) := sup

z∈Σ(R,τk)
σk
(

Re(z)
)
‖v(z)‖C0

σ?
k

(Rm−1;X).

Proof. For given yk ∈ R, we define a formal Taylor expansion in z ∈ C:

v(x, z,y?k) =
∞∑
j=0

(z − yk)j

j!
∂jykv(x, yk,y

?
k).

Thus, given an arbitrary yk ∈ R, we can estimate

σk(yk)‖v(z)‖C0
σ?
k

(Rm−1;X) ≤
∞∑
j=0

|z − yk|j

j!
σk(yk)

∥∥∂jykv(yk)
∥∥
C0

σ?
k

(Rm−1;X)

≤
∞∑
j=0

|z − yk|j

j!

∥∥∂jykv∥∥C0
σ(Rm;X)

.
∞∑
j=0

(
|z − yk|µk

)j
.

The last expression converges for all |z − yk| ≤ τk < 1/µk. Hence, since we can cover Σ(τk)
by the union of balls |z − yk| ≤ τk, the function v can be extended analytically to the whole
region Σ(τk).

Finally, we have to bound the approximation error of a function v which admits an analytic
extension. This was done in [2], where the next lemma has been proven.

Lemma 6.4. Suppose that v ∈ C0
σ(R;X) admits an analytic extension in Σ(R, τ) for some

τ > 0 and recall that σ(y) = exp(−β|y|), cf. Definition 5.2. Then, the error of the best
approximation by polynomials of degree at most d can be bounded by

(6.4) inf
w∈Pd(R)⊗X

‖v − w‖C0√
ρ
(R;X) ≤ C(τ)

√
d exp(−τ

√
d)‖v‖C0

σ(Σ(R,τ);X).

Remark 6.5. Notice that the constant C(τ) may grow extremely fast in τ , namely like
exp(τ2/2) as τ →∞ and, thus, (6.4) is not useful to exploit anisotropies in the integrand.

We are now able to estimate the error of the tensor product Gaussian quadrature for
functions v ∈ C0

σ(Rm;X) which fulfill the condition of Lemma 6.3. For this purpose, we
define the following tensor product integral operator:

I :=

m⊗
k=1

Ik with Ikv =

∫
R
v(yk)ρ(yk) dyk.

Note that Iv coincides with Ev due to the product structure of the measure ρdx.

Theorem 6.6. Let v ∈ C0
σ(Rm;X) satisfy the conditions of Lemma 6.4 in every direction,

i.e. for all k = 1, . . . ,m there exists a τk > 0 such that v(x, yk,y
?
k) admits as a function of yk an

analytic extension in Σ(τk). Furthermore, let the tensor product Gaussian quadrature operator
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QJ : C0
σ(Γ;X)→ X as well as the integration operator I : C0

σ(Γ;X)→ X be continuous and
let 0 < ε < 1. If we choose the number of quadrature points Nk such that

(6.5) Nk ≥
| log ε|2

2(1− δ)2
− 1

2

for some δ > 0, then the quadrature error is of order O(ε). More precisely, it holds the
estimate

(6.6) ‖(I−QJ )v‖X . ε max
k=1,...,m

‖v‖
C0
σk

(
Σ(Γk,τk);C0

σ?
k

(Γ?k;X)
).

Proof. Let v ∈ C0
σ(Rm;X) be a function which fulfills the conditions of Lemma 6.3 for all

directions yk, k = 1, . . . ,m. We estimate the tensor product quadrature error as usual by the
sum of the one dimensional quadrature errors:

(6.7) ‖(I−QJ )v‖X ≤
m∑
k=1

∥∥(QN1 ⊗ . . .⊗QNk−1
⊗ (Ik −QNk)⊗ Ik+1 ⊗ . . .⊗ Im

)
v
∥∥
X
.

With the continuity of the multivariate integral as well as the multivariate Gaussian quadra-
ture operator, we can further deduce∥∥(QN1 ⊗ . . .⊗QNk−1

⊗ (Ik −QNk)⊗ Ik+1 ⊗ . . .⊗ Im
)
v
∥∥
X

. sup
y1∈R

σ1(y1)
∥∥(QN2 ⊗ . . .⊗QNk−1

⊗ (Ik −QNk)⊗ Ik+1 ⊗ . . .⊗ Im
)
v(·, y1)

∥∥
X

. sup
y?k∈Rm−1

σ?k(y
?
k)‖(Ik −QNk)v(·,y?k)‖X

By the Lemmata 6.2, 6.3 and 6.4, we conclude

(6.8)

∥∥(QN1 ⊗ . . .⊗QNk−1
⊗ (Ik −QNk)⊗ Ik+1 ⊗ . . .⊗ Im

)
v
∥∥
X

. sup
y?k∈Rm−1

σ?k(y
?
k) min

w∈P2Nk+1⊗X
‖v(y?k)− w‖C0√

ρ
(R;X)

.
√

2Nk + 1 exp
(
−
√

2Nk + 1
)
‖v‖

C0
σk

(
Σ(Γk,τk);C0

σ?
k

(Γ?k;X)
).

With the choice (6.5) for the number of quadrature points, the assertion follows from√
2Nk + 1 exp

(
−
√

2Nk + 1
)
. exp

(
−
√

2Nk + 1(1− δ)
)
≤ ε

and summing up the terms in (6.8) with respect to (6.7).
Remark 6.7. The norm in the error estimate (6.6) obviously depends on the choice of τk and

tends to infinity if τk comes close to the boundary of the analyticity region, i.e. if τk → 1/µk,
as can be seen from the proof of Lemma 6.3. Moreover, note that the regularity result (5.2) for
the solution u to (2.6), the result (5.3) for the second moment u2, and, if f ∈ Lp(D), the result
(5.5) for the higher order moments up imply the conditions of Lemma 6.3 and, therefore, of
Theorem 6.6.
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7. (Quasi)-Monte Carlo quadrature for the stochastic variable. In this section, we
discuss the use of Monte Carlo and quasi-Monte Carlo quadrature rules. These quadrature
rules are classically of the form

Q(Q)MCv =
1

N

N∑
i=1

v(ξi),

where N denotes the number of samples and ξi ∈ Rm is a sample point. In case of the Monte
Carlo quadrature, the sample points are chosen randomly. Therefore, we need a (pseudo-)
random number generator which produces m-dimensional normally distributed random vec-
tors. There are two main advantages of the Monte Carlo quadrature: the method does not
suffer from the curse of dimensionality and requires very weak regularity assumptions on the
integrand. The drawback of this method is that it produces only probabilistic error esti-
mates, also known as root mean square error, cf. [9], and that it converges only with the rate
O(N−1/2). More precisely, given a Hilbert space X, one has

(7.1)
(
E‖(I−QMC)v‖2X

) 1
2 . N−

1
2 ‖v‖L2

ρ(Rm;X).

For the error estimation of the quasi-Monte Carlo method, it is required that the integrand
has integrable, mixed first order derivatives. Then, the error of a quasi-Monte Carlo method
over the unit cube [0, 1]m is bounded by means of the L∞-star discrepancy

D?∞(Ξ) := sup
t∈[0,1]m

∣∣∣∣Vol
(
[0, t)

)
− 1

N

N∑
i=1

1[0,t)(ξi)

∣∣∣∣
of the set of sample points Ξ = {ξ1, . . . , ξN} ⊂ [0, 1]m, where Vol

(
[0, t)

)
denotes the Lebesgue

measure of the cuboid [0, t), cf. [33]. In case of certain point sequences, like the Halton
sequence, see [21], this discrepancy is typically estimated to be of the order O

(
N−1(logN)m

)
.

To obtain a quasi-Monte Carlo method for the domain of integration Rm, the sample
points have to be mapped to Rm by the inverse distribution function. Numerically, this can
be done very efficiently by employing a rational interpolant of the inverse distribution function,
cf. [32]. It has been shown in e.g. [28] that the error can again be bounded by D?∞(Ξ) for
a certain set of functions. To specify this, we define the Bochner space W 1,1

mix(Rm;X) which
consists of all equivalence classes of strongly measurable functions v : Rm → X with finite
norm

(7.2) ‖v‖
W 1,1

mix(Rm;X)
:=

∑
‖q‖∞≤1

∫
Rm

∥∥∂q
yv(y)

∥∥
X

dy <∞.

Then, the error of the quasi-Monte Carlo method is typically estimated by

‖(I−QQMC)v‖X . D?∞(Ξ)‖v‖
W 1,1

mix(Rm;X)
,

cf. [28], which is an extension of the Koksma-Hlawka inequality, cf. [33], to unbounded do-
mains. The condition that the norm ‖v‖

W 1,1
mix(Rm;X)

is bounded is in general very restrictive
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and is not necessarily fulfilled in our application. Hence, we follow a suggestion of [28] and
rewrite the integral Iv(x) according to

(7.3) Iv(x) =

∫
Rm

v(x,y)ρ(y) dy = ρ

∫
Rm

v(x,y)
√
ρ(y)

√
ρ(y)

ρ
dy,

with the scaling factor ρ being defined by ρ :=
∫
Rm
√
ρ(y) dy. Now, we employ a quasi-Monte

Carlo method with respect to the auxiliary density function
√
ρ(y)/ρ and obtain the error

estimate

(7.4) ‖(I−QQMC)v‖X . D?∞(Ξ)‖v√ρ‖
W 1,1

mix(Rm;X)
.

Herein, the last norm is finite (with a constant which depends on m but not on N) in case of
the moment computation as it is proven in the next theorem.

Theorem 7.1. For the solution u to (2.6), the following bound is valid

‖u√ρ‖
W 1,1

mix(Rm;H1(D))
.

( ∑
‖q‖∞≤1

1

2|q|

∑
α≤q

(
2γ

log 2

)α
|α|!

)
‖f‖L2(D) <∞, p = 1.

Furthermore, if f ∈ Lp(D), it holds for the p-th power up of u that

‖up√ρ‖
W 1,1

mix(Rm;W 1,1(D))
.

( ∑
‖q‖∞≤1

1

2|q|

∑
α≤q

(
2pγ

log 2

)α
|α|!

)
‖f‖pLp(D) <∞, p ≥ 2.

Proof. Each summand in the expression

‖v√ρ‖
W 1,1

mix(Rm;X)
=

∑
‖q‖∞≤1

∫
Rm

∥∥∂q
y

(
v(y)

√
ρ(y)

)∥∥
X

dy

can be estimated by∫
Rm

∥∥∂q
y

(
v(y)

√
ρ(y)

)∥∥
X

dy =
∑
α≤q

q!

α!(q−α)!

∫
Rm

∥∥∂αy v(y)∂q−α
y

√
ρ(y)

∥∥
X

dy.

Due to the product structure of the auxiliary density and since we consider only mixed first

derivatives, we find ∂q−α
y

√
ρ(y) = (−1)|q−α|yq−α

2|q−α|

√
ρ(y) and q! = 1, α! = 1, (q − α)! = 1.

Hence, we arrive at∫
Rm

∥∥∂q
y

(
v(y)

√
ρ(y)

)∥∥
X

dy =
∑
α≤q

1

2|q−α|

∫
Rm

∥∥∂αy v(y)
∥∥
X

yq−α√ρ(y) dy.

For all functions v whose mixed first order derivatives grow at most exponentially in ‖y‖, the
norm

∥∥v√ρ∥∥
W 1,1

mix(Rm;X)
is bounded since

√
ρ(y) =

∏m
k=1 exp(−y2

k/4) decays double exponen-

tially in ‖y‖. Thus, the integrals on the right hand side of this equation are all finite.



Multilevel accelerated quadrature 19

For the solution u, the multivariate version of (5.2) is

(7.5)
∥∥∂αy u∥∥C0

σ(Rm;H1(D))
. |α|!

(
γ

log 2

)α
‖f‖L2(D).

Therefore, we obtain the first assertion∫
Rm

∥∥∂q
y

(
u(y)

√
ρ(y)

)∥∥
H1(D)

dy .
∑
α≤q

|α|!
2|q−α|

(
γ

log 2

)α
‖f‖L2(D)

∫
Rm
σ−1(y)yq−α√ρ(y) dy

.
∑
α≤q

|α|!
2|q−α|

(
γ

log 2

)α
‖f‖L2(D).

Note that the last step holds since
∫
Rm σ

−`(y)yq−α√ρ(y) dy <∞ for all ` ∈ N.

For the p-th power up of the solution, the multivariate version of (5.5) reads

(7.6)
∥∥∂αy up∥∥C0

σp
(Rm;W 1,1(D))

. |α|!
(
pγ

log 2

)α
‖f‖pLp(D).

By setting v = up, we thus arrive at∫
Rm

∥∥∂q
y

(
up(y)

√
ρ(y)

)∥∥
W 1,1(D)

dy .
∑
α≤q

|α|!
2|q−α|

(
pγ

log 2

)α
‖f‖pLp(D)

∫
Rm
σ−p(y)yq−α√ρ(y) dy

.
∑
α≤q

|α|!
2|q−α|

(
pγ

log 2

)α
‖f‖pLp(D).

This implies the second assertion.

Remark 7.2. The estimation of the discrepancy of a set Ξ ⊂ [0, 1]m, especially for high
dimensions m, has been the topic of many publications in the past fifteen years. The aim is to
avoid the factor (logN)m−1 in the estimation of the discrepancy which grows exponentially in
the dimension m. This exponential dependence is called intractability in the literature, cf. [35,
39]. To avoid intractability, further regularity assumptions on the integrand are necessary.
Such assumptions are not imposed in the analysis presented above. In particular, the constant
occurring in the previous theorem can only be bounded by

∑
‖q‖∞≤1

1

2|q|

∑
α≤q

(
2pγ

log 2

)α
|α|! . exp(cm logm)

with some constant c > 0 if we do not take into account the decay of the sequence {γk}k. As
a consequence, for large values of m, one has to modify the analysis of the quasi-Monte Carlo
quadrature. This can be done by extending the ideas in [36] and additionally exploiting the
decay of the sequence {γk}k, see [24] for the case of the Halton-sequence.
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8. Analysis of the multilevel quadrature. We now want to use the results from Sections 6
and 7 to analyze the error of the multilevel quadrature approximation to the mean and the
moments of the solution to (2.6). As we have seen, the error analysis in case of the Gaussian
quadrature or the quasi-Monte Carlo quadrature is based on the derivatives of the integrand.
Since the integrands in the multilevel quadrature are given by terms of the form

(
up`−u

p
`−1

)
(y),

cf. (4.4), we shall show that their derivatives exhibit a behaviour similar to the derivatives of
up(y) but provide an additional factor 2−`.

Lemma 8.1. For the error δ`(y) := (u` − u)(y) of the Galerkin projection, there holds the
estimate

(8.1)
∥∥∂αy δ`(y)

∥∥
H1(D)

. 2−`|α|!κ̃(y)2

(
3γ̃

log 2

)α
‖f‖L2(D) for all |α| ≥ 0.

Therefore, we have for the detail projections θ`(y) := (u` − u`−1)(y) the estimate

(8.2)
∥∥∂αy θ`(y)

∥∥
H1(D)

. 3 · 2−`|α|!κ̃(y)2

(
3γ̃

log 2

)α
‖f‖L2(D) for all |α| ≥ 0.

Proof. Since the Galerkin projection satisfies
(
a(y)∇xδ`(y),∇xv

)
L2(D)

= 0 for all v ∈
S1
` (D), it follows by differentiation that

−
∫
D
a(y)∇x∂

α
y δ`(y)∇xv dx =

∑
0 6=β≤α

(
α

β

)∫
D
∂βy a(y)∇x∂

α−β
y δ`(y)∇xv dx

for all v ∈ S1
` (D). For an arbitrary function v ∈ S1

` (D), we therefore obtain:∥∥√a(y)∇∂αy δ`(y)
∥∥2

L2(D)
=

∫
D
a(y)

∣∣∇x∂
α
y δ`(y)

∣∣2 dx

=

∫
D
a(y)∇x∂

α
y δ`(y)

[
∇x∂

α
y δ`(y)−∇xv

]
dx

+
∑

0 6=β≤α

(
α

β

)∫
D
∂βy a(y)∇x∂

α−β
y δ`(y)

[
∇x∂

α
y δ`(y)−∇xv

]
dx

−
∑

0 6=β≤α

(
α

β

)∫
D
∂βy a(y)∇x∂

α−β
y δ`(y)∇x∂

α
y δ`(y) dx.

From (2.5), we derive
∥∥∂βy a(y)/a(y)

∥∥
L∞(D)

≤ γβ. Hence, we can further estimate

∥∥√a(y)∇∂αy δ`(y)
∥∥2

L2(D)
≤
∫
D
a(y)∇x∂

α
y δ`(y)

[
∇x∂

α
y δ`(y)−∇xv

]
dx

+
∑

0 6=β≤α

(
α

β

)
γβ
∫
D
a(y)

∣∣∇x∂
α−β
y δ`(y)

[
∇x∂

α
y δ`(y)−∇xv

]∣∣ dx

+
∑

0 6=β≤α

(
α

β

)
γβ
∫
D
a(y)

∣∣∇x∂
α−β
y δ`(y)∇x∂

α
y δ`(y)

∣∣dx.



Multilevel accelerated quadrature 21

The Cauchy-Schwarz inequality yields

(8.3)

∥∥√a(y)∇∂αy δ`(y)
∥∥2

L2(D)
≤
∥∥√a(y)∇∂αy δ`(y)

∥∥
L2(D)

∥∥√a(y)∇
(
∂αy δ`(y)− v

)∥∥
L2(D)

+
∑

0 6=β≤α

(
α

β

)
γβ
∥∥√a(y)∇∂α−βy δ`(y)

∥∥
L2(D)

∥∥√a(y)∇
(
∂αy δ`(y)− v

)∥∥
L2(D)

+
∑

0 6=β≤α

(
α

β

)
γβ
∥∥√a(y)∇∂α−βy δ`(y)

∥∥
L2(D)

∥∥√a(y)∇∂αy δ`(y)
∥∥
L2(D)

.

Since v ∈ S1
` (D) can be chosen arbitrarily, the bound holds also for the infimum∥∥√a(y)∇∂αy δ`(y)

∥∥2

L2(D)
≤
∥∥√a(y)∇∂αy δ`(y)

∥∥
L2(D)

inf
v∈S1` (D)

∥∥√a(y)∇
(
∂αy δ`(y)− v

)∥∥
L2(D)

+
∑

0 6=β≤α

(
α

β

)
γβ
∥∥√a(y)∇∂α−βy δ`(y)

∥∥
L2(D)

inf
v∈S1` (D)

∥∥√a(y)∇
(
∂αy δ`(y)− v

)∥∥
L2(D)

+
∑

0 6=β≤α

(
α

β

)
γβ‖

√
a(y)∇∂α−βy δ`(y)‖L2(D)

∥∥√a(y)∇∂αy δ`(y)
∥∥
L2(D)

.

The expression containing the infimum is now estimated in two different ways. On the one
hand, the approximation property of the finite element space S1

` (D) implies

inf
v∈S1` (D)

∥∥√a(y)∇
(
∂αy δ`(y)− v

)∥∥
L2(D)

. 2−`
√
amax(y)‖∂αy u(y)‖H2(D).

On the other hand, due to 0 ∈ S1
` (D), we find

inf
v∈S1` (D)

∥∥√a(y)∇
(
∂αy δ`(y)− v

)∥∥
L2(D)

≤
∥∥√a(y)∇∂αy δ`(y)

∥∥
L2(D)

.

Dividing (8.3) by
∥∥√a(y)∇∂αy δ`(y)

∥∥
L2(D)

leads in combination with both estimates to∥∥√a(y)∇∂αy δ`(y)
∥∥
L2(D)

. 2−`
√
amax(y)‖∂αy u(y)‖H2(D)

+ 2
∑

06=β≤α

(
α

β

)
γβ
∥∥√a(y)∇∂α−βy δ`(y)

∥∥
L2(D)

.

In view of (5.8), we obtain

(8.4)

∥∥√a(y)∇∂αy δ`(y)
∥∥
L2(D)

. 2−`
√
amax(y)κ̃(y)|α|!

( 2γ̃

log 2

)α
‖f‖L2(D)

+ 2
∑

0 6=β≤α

(
α

β

)
γβ
∥∥√a(y)∇∂α−βy δ`(y)

∥∥
L2(D)

.

We conclude now by induction that∥∥√a(y)∇∂αy δ`(y)
∥∥
L2(D)

. 2−`
amax(y)√
amin(y)

κ̃(y)(3γ̃)αB|α|‖f‖L2(D).
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Herein, Bk denotes the k-th ordered Bell-number which satisfies the recurrence relation Bk =∑k−1
i=0

(
k
i

)
Bi with B0 = 1. For |α| = 0, this is simply obtained by estimate (5.8) and (3.1). Let

now the induction hypothesis hold for all β < α. Inserting this hypothesis into (8.4) yields∥∥√a(y)∇∂αy δ`(y)
∥∥
L2(D)

. 2−`
amax(y)√
amin(y)

κ̃(y)‖f‖L2(D)

(
|α|!

( 2γ̃

log 2

)α
+ 2γ̃α

∑
0 6=β≤α

(
α

β

)
3|α−β|B|α−β|

)
.

With

∑
0 6=β≤α

(
α

β

)
3|α−β|B|α−β| ≤ 3|α|−1

|α|−1∑
k=0

Bk
∑
β<α
|β|=k

(
α

β

)
= 3|α|−1

|α|−1∑
k=0

Bk

(
|α|
k

)
= 3|α|−1B|α|

and the estimate Bk ≤ k!(log 2)−k, cf. [4], we get

∥∥√a(y)∇∂αy δ`(y)
∥∥
L2(D)

. 2−`
amax(y)√
amin(y)

κ̃(y)‖f‖L2(D)|α|!
( γ̃

log 2

)α(
2|α| + 2 · 3|α|−1

)
.

Moreover, since 2|α| + 2 · 3|α|−1 ≤ 3|α| for |α| > 2, amax(y) ≤ ãmax(y) and amin(y) ≥ ãmin(y),
we conclude

∥∥√a(y)∇∂αy δ`(y)
∥∥
L2(D)

. 2−`
(
ãmax(y)

)2(
ãmin(y)

)3/2 |α|!( 3γ̃

log 2

)α
‖f‖L2(D),

which implies finally the assertion.

For p > 2, there holds the following Lp-extension of estimate (8.2)

(8.5)
∥∥∂αy θ`(y)

∥∥
W 1,p . κ̃(y)2|α|!

(
3C(p,D)γ̃

log 2

)α
‖f‖Lp(D),

which can be proven if the load f belongs to Lp(D). It is applied to get the following result
also for moments of order p > 2.

Lemma 8.2. The derivatives of the difference u2
` − u2

`−1 satisfy the estimate

(8.6)
∥∥∂αy (u2

` − u2
`−1

)
(y)
∥∥
W 1,1(D)

. 2−`|α|!
(

6γ̃

log 2

)α
κ̃(y)3‖f‖2L2(D).

Moreover, for the p-th powers of two successive Galerkin projections up` and up`−1, there holds
the estimate

(8.7)
∥∥∂αy (up` − up`−1

)
(y)
∥∥
W 1,1(D)

. 2−`|α|!
(

3pC(p,D)γ̃

log 2

)α
κ̃(y)3/2p+1/2‖f‖pLp(D)

provided that f ∈ Lp(D) for p > 2.
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Proof. For the sake of convenience, we demonstrate the proof only for the case of p = 2.
The case of a general p can be treated in a similar way with the help of Faà di Bruno’s formula,
the Lp(D)-extension of Proposition 5.8 and the m-dimensional Hölder inequality. It holds

∥∥∂αy (u2
` − u2

`−1

)
(y)
∥∥
W 1,1(D)

≤
∑
β≤α

(
α

β

)∥∥∂βy θ`(y)∂α−βy (u` + u`−1)(y)
∥∥
W 1,1(D)

.
∑
β≤α

(
α

β

)∥∥∂αyθ`(y)
∥∥
H1(D)

∥∥∂α−βy (u` + u`−1)(y)
∥∥
H1(D)

.

Using the estimate (8.2), the fact that the Galerkin projection u`(y) has the same regularity
with respect to the parametric variable as the solution itself, and Lemma 5.4, we obtain

∥∥∂αy (u2
` − u2

`−1

)
(y)
∥∥
W 1,1(D)

.
∑
β≤α

(
α

β

)
2−`|β|!κ̃(y)2

(
3γ̃

log 2

)β
(α− β)!

(
2γ

log 2

)α−β
κ(y)‖f‖2L2(D)

. 2−`|α|!
(

3γ̃

log 2

)α
κ̃(y)3‖f‖2L2(D)

∑
β≤α

(
α

β

)

= 2−`|α|!
(

3γ̃

log 2

)α
κ̃(y)3‖f‖2L2(D)2

|α|,

which yields the assertion for p = 2.

By employing Lemma 8.1 and Lemma 8.2, we derive now the crucial estimate which will
be used in the forecoming Theorem 8.4.

Lemma 8.3. In case of MLQMC and MLGQ, the estimate

(8.8)
∥∥(I−Qj−`)

(
up` − up`−1

)
(y)
∥∥
X

. εj−`2
−`‖f‖p

Lp+e(D)

holds for all p ≥ 1, where X = H1(D), e = 1 if p = 1 and X = W 1,1(D), e = 0 if p ≥ 2,
respectively.

Proof. The results of Lemma 8.1 and Lemma 8.2 imply

(8.9) ‖∂αy θ`‖C0
σ(Rm;H1(D)) . 2−`|α|!

(
3γ̃

log 2

)α
‖f‖L2(D)

for all α ≥ 0, provided that the weight σ from Definition 5.2 satisfies β ≥ 4γ̃, and

(8.10)
∥∥∂αy (u2

` − u2
`−1

)
(y)
∥∥
C0

σ(Rm,W 1,1(D)
. 2−`|α|!

(
6γ̃

log 2

)α
‖f‖2L2(D)

for all α ≥ 0, provided that the weight σ satisfies β ≥ 6γ̃. Moreover, if f ∈ Lp(D), we derive
from (8.7) that

(8.11)
∥∥∂αy (up` − up`−1

)
(y)
∥∥
C0

σ(Rm,W 1,1(D)
. 2−`|α|!

(
3pC(p,D)γ̃

log 2

)α
‖f‖pLp(D)
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for all α ≥ 0, provided that the weight σ satisfies β ≥ (3p+ 1)γ̃. In the analysis of Section 6,
the dependency of the error estimate on the behaviour of the derivatives arises in Lemma 6.3.
In view of the proof of this lemma, it holds for τk <

log 2
3γ̃k

that

sup
z∈Σ(τk)

σ
(

Re(z)
)∥∥θ`(z)∥∥C0

σ?
k

(Rm−1;X)
. 2−`‖f‖L2(D).

Analogously, we get for the p-th moments with τk <
log 2
p3γ̃k

that

sup
z∈Σ(τk)

σ
(

Re(z)
)∥∥(up` − up`−1

)
(z)
∥∥
C0

σ?
k

(Rm−1;X)
. 2−`‖f‖pLp(D).

We thus obtain the estimate (8.8) in case of the Gaussian quadrature when the number of
quadrature points of Qj−` in (6.5) is chosen according to εj−`. In the analysis of the quasi-
Monte Carlo quadrature, we have to replace the estimate (7.5) by (8.9) for the mean and
the estimate (7.6) by (8.10) and (8.11) to obtain the additional factor 2−` in Theorem 7.1.
Choosing the number of quadrature points of Qj−` according to the accuracy εj−`, yields then
(8.8).

With the previous lemmata at hand, we are finally able to bound the error of the multilevel
quadrature methods under consideration. Again, to show this result also for moments of order
p > 2, we need the Lp-extension of estimate (5.8) for j = 0:

(8.12) ‖u(y)‖W 2,p(D) . κ̃(y)‖f‖Lp(D).

This estimate holds if the load f belongs to Lp(D).
Theorem 8.4. Let {Q`} be a sequence of quadrature rules which satisfy (4.2) and let u ∈

C0
σ

(
Rm, H1

0 (D)
)

be the solution to (2.6) which satisfies (3.1) and (3.2). Then, in case of
MLQMC and MLGQ, the errors of the multilevel estimators (4.3) and (4.4) are bounded by

(8.13)

∥∥∥∥Mp
u −

j∑
`=0

Qj−`
(
up` − up`−1

)∥∥∥∥
X

. 2−jj‖f‖p
Lp+e(D)

where e = 1, X = H1(D) if p = 1 and e = 0, X = W 1,1(D) if p ≥ 2.
Proof. We shall apply the following multilevel splitting of the error

(8.14)

∥∥∥∥Mp
u −

j∑
`=0

Qj−`
(
up` − up`−1

)∥∥∥∥
X

≤
∥∥Mp

u −Mp
uj

∥∥
X

+

j∑
`=0

∥∥(I−Qj−`)
(
up` − up`−1

)∥∥
X
.

Employing (4.2) in (8.8), the sum on the right hand side is estimated by

j∑
`=0

∥∥(I−Qj−`)
(
up` − up`−1

)∥∥
X

.
j∑
`=0

2−(j−`)2−`‖f‖p
Lp+e(D)

. j2−j‖f‖p
Lp+e(D)

.

For p = 1, due to (3.1) and the continuity of I on C0
σ(Rm;H2(D)) for σ with β ≥ 3γ̃, the

first term on the right hand side of (8.14) satisfies

‖Eu − Euj‖H1(D) . 2−j sup
y∈Rm

σ(y)
√
κ(y)‖u(y)‖H2(D) . 2−j‖f‖L2(D).
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For p ≥ 2, we use (3.1), the continuity of I on C0
σ(Rm;H2(D)) for σ with β ≥ 4pγ̃ and the

assumption (8.12) to obtain

(8.15)
∥∥Mp

u −Mp
uj

∥∥
W 1,1(D)

. 2−j sup
y∈Rm

σ(y)κ(y)p‖u(y)‖p
W 2,p(D)

. 2−j‖f‖pLp(D).

Inserting (8.15) into (8.14) yields∥∥∥∥Mp
u −

j∑
`=0

Qj−`
(
up` − up`−1

)∥∥∥∥
X

. 2−j‖f‖p
Lp+e(D)

+ j2−j‖f‖p
Lp+e

. j2−j‖f‖p
Lp+e(D)

.

This completes the proof.
Finally, when applying Monte Carlo quadrature, we have to modify the above arguments

since the error needs now to be bounded in the mean square sense.
Theorem 8.5.Under the assumption of Theorem 8.4, the errors of the multilevel estimators

(4.3) and (4.4) are in case of MLMC bounded by

(8.16)

(
E
∥∥∥∥Mp

u −
j∑
`=0

Qj−`
(
up` − up`−1

)∥∥∥∥2

X

) 1
2

. 2−jj‖f‖p
L2p(D)

.

Proof. It holds(
E
∥∥∥∥Mp

u−
j∑
`=0

Qj−`
(
up`−u

p
`−1

)∥∥∥∥2

X

) 1
2

≤
(
E
∥∥Mp

u−Mp
uj

∥∥2

X

) 1
2
+

j∑
`=0

(
E
∥∥(I−Qj−`)

(
up`−u

p
`−1

)∥∥2

X

) 1
2

by the triangle inequality. The first term on the right hand side is just
∥∥Mp

u −Mp
uj

∥∥
X

which
is already estimated in the proof of Theorem 8.4. The second term on the right hand side is
estimated in accordance with(
E
∥∥(I−Qj−`)

(
up` − up`−1

)
(y)
∥∥2

X

) 1
2
. εj−`

∥∥(up` − up`−1

)
(y)
∥∥
L2
ρ(Rm;H1

0 (D))
. εj−`2

−`‖f‖p
L2p(D)

.

Here, the last inequality is obtained by using estimate (3.1) if p = 1. If p ≥ 2, then the
estimate is immediately derived by the generalized Hölder inequality.

9. Complexity. In this section, we give estimates for the complexity of the different mul-
tilevel quadrature methods. We assume for each quadrature point in Qj−` that the computa-
tional cost for solving the resulting elliptic partial differential equation on level ` is O(2n`).

The complexity of the multilevel Monte-Carlo quadrature has been considered before in
e.g. [3, 11, 12], where the number of quadrature points on each level is chosen in order to get
an overall root mean square error of ε. Our analysis differs slightly since we equilibrate the
error contribution on each level.

The Monte Carlo quadrature with N` quadrature points has a precision of O
(
N
−1/2
`

)
.

Thus, to reach an accuracy of 2−`, we need N` h 22` quadrature points. Therefore, the overall
cost of MLMC quadrature to achieve the accuracy 2−j are bounded by

CMLMC =

j∑
`=0

22(j−`)2n` = 22j
j∑
`=0

2(n−2)` =


O(22j), if n = 1,

O(j22j), if n = 2,

O(2nj), if n > 2.
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For the quasi-Monte Carlo quadrature, we need N` h 2``m quadrature points to ensure
the accuracy 2−`. Indeed, there holds

N−1
`

(
logN`

)m
= 2−``−m log

(
2``m

)m
≤ 2−``−m

(
`+m log `

)m ≤ C1(m)2−`.

This leads to the overall cost of MLQMC method

CMLQMC =

j∑
`=0

2j−`
(

log(2j−`)
)m

2n` ≤
j∑
`=0

2j−`(j − `)m2n` =

{
O(2jjm+1), if n = 1,

O(2nj), if n ≥ 2.

In case of the Gaussian quadrature, we have that N` h
⌈

1
2

(
(` log 2)2 + 1

)⌉m ≤ C2(m)`2m

according to (6.5). This yields

CMLGQ ≤ C2(m)

j∑
`=0

(
j − `

)2m
2n` ≤ C3(m)2nj .

quadrature points in total for MLGQ.

The cost complexities of the multilevel quadrature methods under consideration are sum-
marized in Table 9.1.

spatial dimension n = 1 n = 2 n = 3

MLMC 22j 22jj 23j

MLQMC 2jjm+1 22j 23j

MLGQ 2j 22j 23j

Table 9.1
Cost complexities of the different multilevel quadrature methods to get the accuracy j2−j.

Remark 9.1. The constants hidden in the computational cost estimates depend in case of
MLQMC and MLGQ exponentially on the dimension m and thus explode for large m. For
high dimensions m, the anisotropy induced by the weight γ̃ has to be taken into account to
avoid this exponential dependence.

Figure 10.1. Computational domains with inscribed coarse grids.
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10. Numerical results. In this section, we present numerical examples to validate and
quantify the presented methods by studying the convergence for the mean and for the second
moment of the solution to (2.1). To that end, we consider two different settings. In the
first case, the diffusion coefficient is represented exactly by a Karhunen-Loève expansion of
finite rank. In the second case, the diffusion coefficient is described by a Gaussian correlation
function. Hence, the Karhunen-Loève expansion has to be appropriately truncated, where
the truncation rank m tends to ∞ as the overall accuracy increases. The domain of the
spatial variable is always the unit square. For the approximation of the Karhunen-Loève
expansion, we employ the pivoted Cholesky decomposition as described in [22, 25] together
with a piecewise constant finite element discretization of the two-point correlation.

Since we use linear finite elements, the representation on different grids for the solution’s
second moment is performed via a quadratic prolongation. The reference solution is not
analytically known. Thus, we compute it numerically by a quasi-Monte Carlo method on a
finer spatial grid with 1 048 576 finite elements and 106 samples based on the Halton sequence,
cf. [21], as described in Section 7. All computations have been carried out on a computing
server consisting of four nodes∗ with up to 64 processes.

10.1. An example with a covariance of finite rank. In our first numerical example, we
focus on the covariance function Covb(x,y) =

∑4
i=1 1Bi(x)1Bi(y), where the sets B1, . . . , B4

are discs of diameter 0.3 equispaced in D = (0, 1)2. A visualization of the associated trian-
gulation can be seen in the left picture of Figure 10.1. We consider f ≡ 1 as load vector.
Figure 10.2 shows the solution’s mean (on the left) and the solution’s variance (on the right).

Figure 10.2. Solution’s mean (left) and uncentered second moment (right) in case of the first example.

For the multilevel methods, we choose the respective number of samples as follows. We set
N` = 10 · 4j−` for MLMC and N` = 10 · 2(j−`)/(1−δ) for MLQMC where δ = 0, 0.25, 0.5. As
quadrature method in the quasi-Monte Carlo case, we employ the quasi Monte-Carlo method
based on the Halton sequence with respect to the auxiliary density function

√
ρ(y)/ρ as pre-

sented in Section 7. The number of samples for MLGQ is controlled by the quadrature orders
determined from (6.5). In order to guarantee the overall precision of ε, we set the accuracy
of the Gaussian quadrature in each stochastic dimension to ε/4. On the right hand side of
Figure 10.3, we visualize the chosen quadrature orders for MLGQ on each level and in each
stochastic dimension for the computations on level 6. A comparison of the number of samples

∗Each node consists of two quad-core Intel(R) Xeon(R) X5550 CPUs with a clock rate of 2.67GHz (hyper-
threading enabled) and 48GB of main memory.
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Figure 10.3. Number of samples for the different quadrature methods for the first example (left) and related
orders of the Gaussian quadrature (right).

for each of the methods is depicted on the left hand side of Figure 10.3. Here, the different
colors refer to the samples on each particular level sorted in decreasing order from left to
right, i.e. ` = 6, 5, . . . , 1. Note that, for MLMC, we averaged five realizations of the multilevel
estimator in order to approximate the root mean square error. This fact is not taken into
account in the visualization in Figure 10.3, i.e. the number of samples refer to one realization
of the multilevel estimator. The error plots found in Figure 10.4 indicate that the three meth-
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Figure 10.4. Error of the mean (left) and of the second moment (right) in case of the first example.

ods, i.e. MLGQ, MLMC, and MLQMC, provide the theoretic order of convergence of j2−j for
the approximate mean with respect to the H1-norm (picture on the left) and for the approx-
imate second moment with respect to the W 1,1-norm (picture on the right). Indeed, it seems
that the logarithmic term j which stems from the summation of the multilevel error does not
occur here. Moreover, the choice of δ = 0, i.e. linearly increasing number of samples, seems
sufficient in MLQMC to maintain the optimal rate of convergence. Since MLGQ provides a
higher convergence rate for the second moment, it seems that the finite element error for the
computation of the second moment converges with a higher rate than expected in Lemma 3.1.
In addition, this suggests that MLGQ overestimates the quadrature error.
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Figure 10.5. Solution’s mean (left) and solution’s uncentered second moment in case of the second example.

10.2. An example with a covariance of infinite rank. For our second example, we con-
sider the covariance function Covb(x,y) = 0.5 exp

(
− 2‖x−y‖22

)
. The computational domain

is again the unit square D = (0, 1)2 which is triangulated as seen in the right picture of Fig-
ure 10.1. The load vector is again f ≡ 1. The Karhunen-Loève expansion for the reference
solution is approximated with a trace error of 10−12, cf. [25], which results in m = 72 terms.
Figure 10.5 shows the solution’s mean (picture on the left) and its variance (picture on the
right). Notice that the QMC approach with auxiliary density is here no longer feasible since
m tends to infinity, cf. Section 7. Therefore, we apply the QMC approach without auxiliary
density. According to [24], convergence can then be shown if the sequence {γk}k decays suffi-
ciently fast. Nevertheless, we emphasize that, in case of a finite and relatively small stochastic
dimensionality like in the previous example, the QMC approach with auxiliary density per-
forms better.
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Figure 10.6. Number of samples for the different quadrature methods for the second example (left) and
related orders of the Gaussian quadrature (right).

In order to preserve the approximation order of 2−j , the Karhunen-Loève expansion is
truncated after m = 21 terms on the finest level of computation j = 8. The number of
samples for MLMC and MLQMC is chosen as in the previous example. For MLGQ, to
account for the anisotropies in the integrand, we choose in this example Nk h log(ε)/ log(τk),
which is in accordance with the related formula from [2] for the case of a bounded parameter
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method MC QMC(δ = 0.5) QMC(δ = 0.25) QMC(δ = 0) GQ

single-level 51200 10240 1015 320 456976
Example 1 multilevel 300 60 25 20 2371

speed-up 171 171 41 16 193

single-level 819200 163840 6450 1280 663552000
Example 2 multilevel 400 80 26 20 267749

speed-up 2048 2048 248 64 2478

Table 11.1
Cost of the multilevel quadrature methods and the related single-level methods in terms of fine-grid samples.

domain. Although the results of Section 8 imply that we have to choose τk with respect to
3γ̃k/ log 2, we set for reasons of computability τk = log 2/γk which already seems to provide
a sufficiently small quadrature error. The related orders of the Gaussian quadrature in each
single dimension and on each level are illustrated in the right plot of Figure 10.6. The number
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Figure 10.7. Error of the mean (left) and of the second moment (right) in case of the second example.

of samples obtained is shown in the left plot of Figure 10.6. The related computational errors
are depicted in Figure 10.7. We achieve similar results as in the previous example. As before,
it seems that the logarithmic factor j does not occur in the computation of the mean. In case
of the second moment, only MLQMC with δ = 0.5 and MLGQ provide a linear convergence
rate 2−j . The convergence rate of MLQMC with δ = 0.25 and MLMC is rather j2−j . For
MLQMC with δ = 0, the convergence rate even stagnates on level 6, 7 and 8. This suggests
that all methods except for MLQMC with δ = 0 yield the expected convergence rate and
that the quadrature settings of MLQMC with δ = 0.5 and MLGQ slightly overestimate the
quadrature error. Nevertheless, a higher order convergence of MLGQ for the second moment,
as in the previous example, is not obtained here.

11. Conclusion. In this article, we have presented the analysis for approximating the mo-
ments of the solution to partial differential equations with log-normally distributed diffusion
coefficient by multilevel quadrature techniques. Our theoretical results as well as our numer-
ical findings corroborate that any given single-level quadrature method can significantly be
accelerated by multilevel techniques. To quantify this gain of the multilevel quadrature, we
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list in Table 11.1 the total cost of the different quadrature methods for j = 6 levels in the first
example and for j = 8 levels in the second example. The total cost of the multilevel Monte
Carlo method, includes now that we average five runs. The cost for the multilevel methods
is measured in terms of samples on the finest grid. We determine this number by summing
up the number of samples on all level ` scaled by the respective work 2−n(j−`). The cost are
found in the row entitled by “single-level” and “multilevel” for the single-level and multilevel
quadrature, respectively. In addition, Table 11.1 contains the ratios between these cost in the
row entitled by “speed-up”. As can be seen, we obtain a remarkable acceleration for each
particular quadrature method up to a factor 2478 in case of the Gaussian quadrature for the
second example.
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