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Summary

Since the development of microsized devices is moving forward at enor-
mous speed, there is huge amount of new industrial opportunities. How-
ever such devices also require high precision and understanding of the
operating of their constituent parts up to the quantum level. The device
of the purely quantum nature being developed so far is quantum com-
puter. However the physical realization of it is still not performed, as the
requirements for it are very rigorous.

In the pioneering work by Loss and DiVincenzo it was suggested to
use a spin of electron placed in a quantum dot as an information qubit.
Following this work the study of electron or hole spin qubits developed.
Both experimental and theoretical tools for studying them greatly ad-
vanced.

In the first part of the thesis we study the phonon-induced decoher-
ence and relaxation of singlet-triplet qubits in the double quantum dots.
First of all we consider AlGaAs/GaAs double quantum dots. The impor-
tant result we present here is the strong dephasing that occurs at large de-
tuning. This dephasing is due to two-phonon process that affects mainly
singlet state of the qubit and consequently changes the splitting between
singlet and triplet leading to dephasing. Remarkably at small detuning
this dephasing process is suppressed and the decoherence time is by or-
ders of magnitude longer than in case of large detuning and is mainly
defined by one-phonon process. We also present the dependence of re-
laxation time and decoherence time on the strength of spin-orbit interac-
tion and different directions of the system. Our results provide a deeper
insight into the recently obtained experimental data.

We also studied Si/SiGe quantum dots as a potential candidate for
a qubit. Apart from the absence of hyperfine interaction and bulk spin-
orbit interaction in the isotopically purified ?*Sj, its electron-phonon in-
teraction is different from GaAs that also leads to longer qubit lifetimes.
We study S-T_ qubit near the anticrossing of the basis states. This partic-
ular region is interesting due to possibilities in operating the qubit. We
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show that the type of singlet plays a crucial role, i.e. whether it is a sin-
glet with each dot singly occupied or a singlet with only one dot doubly
occupied. Depending on the type of singlet the qubit lifetimes change by
several orders of magnitude. We also study the influence of a micromag-
net, usually used in experiments to operate the qubit, on the relaxation
time and decoherence time and present the regime where its effect is neg-
ligible. We suggest how to test experimentally our theory of one-phonon
and two-phonon processes separately. We also show how the relaxation
and decoherence time depend on different system parameters for S-7
qubits.

The second part of the thesis is devoted to the other important con-
stituent part of microsized devices, namely nanowires. We are interested
in the dynamic of polarization of localized spins in the nanowires, as it
can affect such important device characteristics as e.g. conductance.

We studied Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction-in-
duced polarization in the nanowire in case when the voltage is applied
toit. It was already proposed theoretically that in the ground state the lo-
calized spins in 1D systems align in a helix due to RKKY interaction. This
polarization is still present until some critical temperature. The presence
of such polarization acts as a spin filter for electrons, that most likely af-
fects the conductance of the nanowire. Therefore we studied how this
helical polarization changes when the voltage is applied. The key result
is the appearance of the uniform polarization perpendicular to the helix
plane, that occurs due to backscattering of electrons that is accompanied
by flip-flop process with localized spins. When this uniform polarization
is formed, the helix starts to rotate as a whole around the direction of
the uniform polarization. We present the dependence of polarization of
the localized spins on temperature and voltage. Remarkably the uniform
polarization grows both with voltage and temperature in the given range
of parameters.

We also considered the electron-induced relaxation of the nuclear spins.
As the electron spins and nuclear spins interact via hyperfine interac-
tion, the nuclear relaxation time reflects some properties of electron bath.
Namely, we see a strong dependence of nuclear relaxation time on spin-
orbit interaction strength. We present here the dependence of the nuclear
relaxation time on the external magnetic field and chemical potential of
the wire, that can be experimentally varied via gate. The dependences
for the strong spin-orbit interaction and for the weak one are substan-
tially different. Moreover, they have distinct peaks, that allow to get the
value of spin-orbit interaction amplitude with the high precision.
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CHAPTER

Introduction

In this chapter we introduce the basic concepts that will be used in this
thesis. As half of the work presented here is about physical realization of
the qubits for the quantum computer, we will start from introducing the
“Loss-DiVincenzo” qubit and DiVincenzo criteria, see Sec. 1.1. We then
discuss the spin states of electrons populating quantum dots as a basis
for the qubit, main sources of decoherence, and consider singlet-triplet
qubits in more details.

The other part of this thesis is about the polarization of localized
spins in one-dimensional systems. One of the problems considered is
an RKKY-induced polarization of localized spins. It was suggested the-
oretically, that in the ground state the localized spins tend to align along
the helical direction [1]. However it was still unclear how the polariza-
tion reacts to the applied voltage, which might give a better insight into
the behavior of the conductance of the nanowire, see Sec. 1.2. In the end
of Sec. 1.2 we make a small note about Luttinger liquid theory which is
widely used in describing the one-dimensional systems and in this thesis
too.

1.1 Quantum Computing based on the
Loss-DiVincenzo proposal
Quantum Computation and Quantum Information are one of the most

rapidly developing areas of research in condensed matter physics world-
wide. The reason for that is the following. Using quantum objects for
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CHAPTER 1. INTRODUCTION 2

computation would allow to solve the problems which are impossible
to analyze using classical systems. As a simple example, to factor large
numbers. However the conditions for the quantum computation are very
restricting what makes it a challenge to actually build the quantum com-
puter. These conditions that are known as DiVincenzo criteria [2] are the
following;:

e to find a system that can be defined as a quantum bit (qubit),

e the possibility to initialize a qubit in a predefined state and read out
the final state,

e the lifetimes of the qubit states must be long enough to allow to
perform a large number of qubit operations,

e the coherent control over qubit and interactions between qubits
must be possible,

e scalability, i.e. it must be technically possible to use many qubits.

In the pioneering work by Loss and DiVincenzo [3] the information qubit
is proposed to be based on the spin state of electron placed in the quan-
tum dot. The quantum dot is suggested to be built in the semiconductor
heterostructure using gates. The example of a lateral double quantum
dot is shown in Fig. 1.1.

The Hamiltonian that describes the lowest states of the two electron
spins in two quantum dots, when the wavefunctions of electrons slightly
overlap, can be described using Heisenberg model

Hyy = J<7'>Sl - So, (1.1)

where S; and S, are the spins of electrons, and J(7) is the exchange
coupling, that depends on time 7. In frame of Hubbard model |J| =
4t*(1)/U, where U is the energy of the onsite repulsion and #(7) is the
tunneling coefficient that can be changed via gates. It was suggested to
initialize the qubit and perform single qubit gates using a local magnetic
field. The two-qubit gate can be performed via changing ¢. The readout
is possible detecting electrostatically the change in the charge state due
to the change in the spin state.
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2DEG

Figure 1.1: The scheme of the double quantum dot. Due to the band
mismatch between the materials forming the heterostructure there is a
two-dimensional electron gas (orange line). The gates on the top of the
heterostructure form the electrostatic potential in the other two dimen-
sions and allow to change the interaction between left spin (S;) and right
spin (Sg). The yellow arrow denotes the magnetic field B, that is usually
applied.

Quantum dot populated by electron as a physical platform
for a qubit

Quantum dots populated by one or more electrons or holes have become
a widely studied systems as candidates for a physical realization of a
logical qubit. There is a variety of methods to build quantum dots in
different hosting materials. For example, self-assembled quantum dots,
quantum dots in a nanowire, lateral quantum dots.

The self-assembled quantum dots are usually built via molecular beam
epitaxy. Due to the lattice mismatch the growing material form islands
on the host material surface. The widely used combination are GaAs
as the host material and InGaAs as the growing one. Due to the differ-
ence in the structure of valence and conduction bands, there is a confine-
ment potential in all three dimensions. As there is confinement in both
valence band and conduction band, the quantum dot is populated by
electron-hole pair and consequently is optically active. There are also ex-
periments on Si and Ge based self-assembled quantum dots. Due to their
band structure these quantum dots can be populated only by electrons or
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only by holes and consequently not active optically.

The other method is creating confinement in the nanowire in the re-
maining free dimension. This can be done for example via applying gates
or structuring the growth of the nanowire in a certain way. Regarding the
materials, the most popular ones for such quantum dots is InAs, however
much attention recently attracted InSb and Ge/Si core-shell nanowires.

The quantum dot type we study in this work is lateral quantum dot.
It is based on 2DEG, and the movement of electrons in the remaining two
dimensions is confined via gates. The 2DEG is confined in the quantum
well, which is formed due to bands mismatch of the materials in the het-
erostructure. The widely used heterostructures for the lateral quantum
dots are AlGaAs/GaAs, however recently Si/SiGe also attracted much
attention.

There are many different suggestions on how many dots should be
used for a qubit and how many electrons or holes should populate them.
For example, single dot with one electron, or with two electrons, double
dot with two electrons, triple dot with three electrons, etc. It is still un-
clear which system is the best. One of the most often experimentally
realized qubits is based on the spin states of two electrons in double
quantum dots, namely singlet-triplet qubits [4, 5, 6]. The spin part of the
possible basis electron wavefunctions are: |S) = 1t fm |To) = %,
7_) = | W), [T4) = | 11), where |S) and |1}), |T-), |T}) denote singlet
and triplet spin states with the magnetic quantum number 0, —1 and +1
respectively. Apart from singlet, one of the triplet states is normally cho-
sen to form the qubit.

Coherence of the qubit

Among all the requirements for the qubit, one of the most challenging is
the sufficently long lifetimes of the qubit states. For the lateral quantum
dots the main sources of decoherence usually are:

e spin-orbit interaction,

e nuclear bath spins,

e electric noise in the gates,
e phonons.

The effect of nuclear spins can be schematically described as fluctuations
of an Overhauser field, which they produce and which interacts with
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15)

1) 1)

7o)

Figure 1.2: The Bloch sphere that describes the state of the qubit. The
rotations |S)-|1) are due to magnetic field gradient b, and the rotations
| T1)-] 11) are due to the exchange splitting .J. Therefore if it is possible
to control J and db, any state of the qubit (point on the Bloch sphere) can
be reached.

the electron spin due to hyperfine interaction. However different exper-
imental methods allowed to suppress this noise [7, 5]. First of all, Hahn
echo technique, when in the middle of the evolution time of the qubit the
echo-pulse is applied. There are also more compicated pulse techniques
that allow to prolong the coherence of the qubit even more, for example,
Carr-Purcell-Meiboom-Gillecho pulse sequence[8].

The other very useful method to suppress nuclear-induced decoher-
ence of the qubit is dynamic nuclear polarization. It can be performed us-
ing the following scheme. The qubit is defined in the S-T'; space near the
anticrossing of these states. The initial state of the qubit is singlet, which
then due to hyperfine interaction evolves into triplet. This is possible due
to a flip-flop process between electron and nuclear spin. Repeating this
procedure, the nuclear spins can be polarized in one direction [9]. The
method of dynamic nuclear polarization allows to produce a stationary
(compared to the electron spin lifetimes) polarization of nuclei that pro-
duce the effective magnetic field gradient 6b. The reported measured
value of it is of the order [7, 10] 6b ~ 0.1 peV. This effective magnetic field
gradient leads not only to decoherence of the qubit, but is also used to
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control the state of the qubit [7]. For example, in S-T}, qubits it allows
for rotations in the plane S-Tj (see Fig. 1.2). Therefore the logical space
of S-T}, qubit is fully controlled as the rotations in the plane | 1\)-| |1) is
due to exchange coupling J, which in its turn is controlled via gates.

Similarly, spin-orbit interaction is both a source of decoherence and
a tool to control the qubit. The spin-orbit interaction appears due to vi-
olation of a symmetry. For example, inversion symmetry of the crystal
lattice. This kind of spin-orbit interaction was described by G. Dressel-
haus [11]. For 2DEG grown along the direction [001] (we denote here the
growth direction as z) the Hamiltonian for Dresselhaus spin-orbit inter-
action is

HD X pwpzo-x - pyp?cay - px<p§>0-x + py<p§>0-yv (12)

where p,, p, are the components of the momentum of the electron in the
plane of 2DEG, and p, is the momentum component out of the 2DEG
plane. The first two terms in Eq. (1.2) are usually called as the “cubic”
terms and the last two are the “linear” ones. As the width of 2DEG is
usually around 100 times smaller than the dimensions of the dot in the
2DEG plane, (p?) > p.p,, and consequently we can neglect the cubic
terms in comparison to the linear ones.

The other kind of spin-orbit interaction is the one that appears often
in the heterostructures due to the assymmetry of the quantum well or
any other structural inversion assymetry, Rashba spin-orbit interaction.
The Hamiltonian for it has the form

HR X _pyax +px0ya (13)

when the electric field produced by the given asymmetry is along z.

The physical meaning of spin-orbit interaction can be understood if
we consider a single quantum dot populated by one electron. Let’s say
the electron in the quantum dot is in the state |n, S), where n includes all
orbital quantum numbers and S denotes the spin state. We can see that
the matrix elements of spin-orbit interaction between the same orbital
states in the basis of non-perturbed electron wave functions are zero, be-
cause for the bound states (p,,) = 0:

(n, S|Hp,g|n, S') o< (nlpe.y|n) (S]owy| ). (14)
=0

However it appears that the matrix elements of Hy and H, are non-zero
between the different orbital states with different spin states [12]. In the
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limit, when the Zeeman splitting due to the external magnetic field is
much less than the orbital levels energy splitting, the electron wave func-
tions corrected by spin-orbit interaction can be approximately written as

(1 _ <’I’Ll,\l/ |HD,R|n7T> /
’Tl,T) - |7”L,T> + R,Z?én En . En’ . EZ |TL 7\1/)7 (15)

and for the state |n, |) analogously. Here E is the Zeeman splitting due
to the external magnetic field, £, and E, are the energies of the state
with the orbital part n and »' respectively. We can see from Eq. (1.5), that
the desired state of electron with the spin “up” is mixed with the higher
orbital states with the opposite value of spin, “"down”. This means, that
due to spin-orbit interaction the electron spin state can be affected by the
sources of decoherence which do not have spins. For example, phonons.

However spin-orbit interaction can also be used to operate the qubit,
for example Ref. [13]. In Ref. [13] was considered how the alternating
electric field couples to the electron spin via spin-orbit interaction. This
allows to control the qubit only by means of electric fields which is very
convenient experimentally.

The electric fluctuations in the gates is also a significant source of de-
coherence and a subject to a wide study both theoretically and experi-
mentally [10]. For example, it was shown recently that the low-frequency
gate noise can be suppressed if the 2DEG is removed underneath the
metallic gates [14].

As was mentioned above, even though phonons are spinless, they can
be coupled to the spin of the electron via some interaction that mixes spin
and orbital degrees of freedom, e.g. hyperfine or spin-orbit interactions.
The hybridization of the qubit states with the other states also plays an
important role, which we discuss in this thesis.

Following the development of experimental technique on singlet-trip-
let qubits and in particular the recent experiment by Dial et. al, Ref.
[10], we studied singlet-triplet qubits based on two-electron spin states
in a double quantum dot constructed in AlGaAs/GaAs and Si/SiGe het-
erostructures.

We show that the detuning between the quantum dots plays a crucial
role in dephasing of S-T; qubit. The strong dephasing occurs when the
detuning is enough large that the qubit subspace is close to the anticross-
ing between the singlet with each dot singly occupied |(1,1)S) and the
singlet with the one dot doubly occupied |(0,2)S). Then as the phonons
produce oscillations in detuning, which strongly affects the energy of
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1(0,2)S), the exchange energy of the qubit oscillates too. As a conse-
quence, the qubit loses its phase. We note that this process is a two-
phonon process, the one-phonon process cannot produce dephasing. We
also discuss the dependence of qubit lifetimes on spin-orbit interaction
and angles between the dot axis and other directions in the system. The
details and results can be found in Chapter 3.

Among all decoherence sources listed above the first two are charac-
teristic for GaAs-based quantum dots. They can be avoided by changing
the material to Si or Ge. Isotopically purified ?*Si or isotopes of Ge with
the nuclear spin 0 allow to avoid the effects of hyperfine interaction be-
tween electron spin and nuclear spins. The spin-orbit interaction due to
bulk inversion asymmetry is also absent in Si and Ge in contrast to GaAs.
The Si/SiGe heterostructures usually used in experiments have rectangu-
lar quantum well, which confines 2DEG in the third direction. Whereas
AlGaAs/GaAs heterostructures normally have triangular quantum well
shape, that is a source of Rashba spin-orbit interaction.

Taking all above mentioned into account, Si and Ge based qubits
seem to be attractive systems and there were many different suggestions
for the actual qubit structure: donor electron spin, donor nuclear spin,
nuclear-electron spin qubits, hole spin qubits in core-shell nanowires,
and lateral quantum dots. We study the lifetimes of two types of singlet-
triplet qubits based on spin states of two electrons in a double quantum
dot: S-T_ and S-T, qubits. We consider the S-T_ qubit near the anti-
crossing between singlet and triplet. In this case it is crucial whether
the singlet if of type |(1,1)S) or of type |(0,2)S). The one of the type
|(1,1)S) allows for several orders of magnitude longer times than the one
of the type | (0, 2)5). We also studied the dependence on the magnitude of
the magnetic field gradient which is usually applied to operate the qubit
[15, 16, 17, 18]. We showed that there is a range of values for the ampli-
tude of magnetic field gradient where the one-phonon process dominates
and the range, where the two-phonon process dominates. When the one-
phonon process dominates, the qubit lifetimes can decrease by more than
an order of magnitude. This happens because the one-phonon process
depends strongly on the qubit energy splitting, which in this case is pro-
duced mainly by the applied magnetic field gradient. We also show and
analyze the dependence of decoherence time and relaxation time on dif-
ferent sample parameters. All the results regarding the Si/SiGe double
quantum dots are presented in Chapter 4.
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1.2 Ruderman-Kittel-Kasuya-Yosida
interaction-induced helical polarization

The self-ordered magnetic phases in mesoscopic systems is of high in-
terest due to their possible use in different devices, e.g. memory [19] or
sensors [20]. Apart from the obviously magnetically ordered ferromag-
nets, some attention attracted Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction-induced magnetization in low-dimensional systems.

RKKY interaction is an effective interaction between localized spins
mediated via electrons. The mechanism can be schematically described
as follows. Electron spin and localized spin interact via hyperfine inter-
action

Hpyp x AS(R—r)o - I, (1.6)

where A is the hyperfine constant, o is the electron spin operator, I is
the localized spin operator, and r and R are the positions of the elec-
tron and the localized spin respectively. When the electron comes close
enough to the localized spin, their spins interact tending to align so that
the energy is minimal. The electron moves further, encounters another
localized spin and interacts with it in the same way as before. In such
a way the electron delivers information about the first localized spin to
the second one. This is a very simple model however it demonstrates the
main message that localized spins do interact via electrons and therefore
the ordered state of them is possible.

In a formal way RKKY interaction is derived as a second order per-
turbation in hyperfine interaction and has the form

Hrxry = ZL‘ - Jii1;, (1.7)

0]

where 7, j label localized spins and J;; is related to the static spin suscep-
tibility of electrons.

The RKKY-induced polarization was studied in the bulk [21, 22] and
in the two-dimensional structures [23, 24]. The possibility to control
hole-induced ferromagnetism via electric field [25] is one of the impor-
tant steps that might lead to the electric control of localized spins’ states
in semiconductors and consequently solve certain problems in quantum
information technique. The manipulation of magnetization direction in
such ferromagnetic semiconductors by electric field was already shown
experimentally [26, 27].
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k

Figure 1.3: The spectrum of electrons in the helical Overhauser field pro-
duced by polarization of the localized spins. We see that the spin degen-
eracy is lifted in the partial gap, that presumably leads to the twofold
decrease of the conductance.

It was shown theoretically that localized spins in the one-dimensional
system in the ground state are polarized into a helix due to RKKY inter-
action [1, 28]. This helical polarization is still present up to critical tem-
perature 7,. In the limit where the hyperfine constant A is much less
than the electron Fermi energy ¢, it can be assumed that electrons react
instantaneously to the changes in localized spin subsystem. This allows
to consider the effect of localized spins’ polarization on electrons as an
Overhauser field. Then the Hamiltonian of electrons is

h2
Hg = __8721 + :ueBOv "o, (18)
2m

where & is the Planck constant, m is an effective mass of electrons, . is
the electron magnetic moment, and By, is the Overhauser field. It was
shown, that this Overhauser field produces a partial gap in the electron
spectrum [1, 28]. Therefore it is natural to assume, that this gap affects the
conductance of the nanowire. This was the main hypothesis that explains
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the experimental results presented in Ref. [29]. However the effect of
current onto the electron-mediated polarization was still unclear.

It was shown by Slonczewski [30] and Berger [31] that when the elec-
tron current polarization differs from the polarization of the localized
spins, the spin torque can appear. In the first work the magnetic mul-
tilayer consisting from ferromagnetic and paramagnetic sublayers was
considered. It was shown that the current flowing perpendicular to the
plane of the layers transfers the spin angular momentum between them.
In the second work the “sandwich” structure was considered, consisting
from ferromagnetic-normal-ferromagnetic metallic films. It was shown
that when the current is driven through this structure the emission of
spin waves takes place. Under certain conditions, spontaneous preces-
sion of the magnetization arises. There are also works on the effect of
the current on domain walls [32, 33]. For example, it was shown that the
current causes the domain wall to move [34, 35]. These examples show
how complicated might be a reaction of spin system to a current flowing
through it. Therefore to understand whether the presence of the localized
spin helical polarization can explain the reduction of the conductance by
2 presented in Ref. [29], first of all the effect of current on the spin po-
larization should be studied. We address this problem in Chapter 6. The
detailed study of electron-induced nuclear spin relaxation can be found
in Chapter 7.

Luttinger Liquid Theory

Luttinger Liquid theory is the equivalent of the Fermi Liquid theory for
one-dimensional systems. It is applicable only for the processes that in-
volve the energies much smaller than the Fermi energy of electrons, how-
ever it is still very useful and gives results that are supported by experi-
ments.

One of the main steps is linearizing of the electron spectrum around
Fermi energy. Then the density fluctuations operator is defined as fol-

lows:
pi(a) = chiyers (1.9)
k

where k and ¢ denote the momentums of electrons and cL, ¢, are the cre-
ation and annihilation electron operators with the wavevector k respec-
tively. As p'(q) is a product of two fermionic operators, it is a bosonic
operator. Using this operator we can introduce then bosonic fields ¢ and
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where z includes time and position coordinate and p includes frequency
and momentum, L denotes the length of the one-dimensional system, Ny
and Ny, label the number of right-movers and left-movers respectively,
and « is a cutoff that reintroduces the finite bandwidth in these formulas
preventing momentum to become too large.

Using these bosonic fields one can represent Hamiltonian that de-
scribes electron-electron interaction in a quadratic form.

H= % /dw[uK(V@(x))2 + %(w(x))?], (1.11)

where K is the electron-electron interaction coefficient, and w is the ve-
locity of excitations. This form of Hamiltonian allows to get a thermo-
dynamic average of operators straightforwardly through the Gaussian
integral and allows to use Wick’s theorem. The great opportunities pos-
sible due to Luttinger liquid theory are widely studied and discussed in
a number of reviews and books , e.g. Refs.[36, 37].

In this thesis we use Luttinger liquid theory to investigate critical tem-
perature of the helical polarization of localized spins, when the voltage
is applied and to study the behavior of the electron-induced relaxation
time of nuclear spins in the nanowire.
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Adapted from:

Viktoriia Kornich, Christoph Kloeffel, and Daniel Loss
“Phonon-mediated decay of singlet-triplet qubits in double quantum dots”,
Phys. Rev. B 89, 085410 (2014),
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“Phonon-assisted relaxation and decoherence of singlet-triplet qubits in Si/SiGe
quantum dots”,

ArXiv:1511.07369 (2016).

The spin states of quantum dots (QDs) are promising platforms for
quantum computation [3, 38]. In particular, remarkable progress has
been made with S-Tj qubits in lateral GaAs double quantum dots (DQDs)
[4, 6,39, 40, 41], where a qubit is based on the spin singlet (S) and triplet
(Tp) state of two electrons in the DQD. In this encoding scheme, rota-
tions around the z axis of the Bloch sphere can be performed on a sub-
nanosecond timescale [39] through the exchange interaction, and rota-
tions around the x axis are enabled by magnetic field gradients across
the QDs [6].

The lifetimes of S-Tj qubits have been studied with great efforts. When
the qubit state precesses around the z axis, dephasing mainly results
from Overhauser field fluctuations, leading to short dephasing times 75 ~
10ns [7, 39, 42, 43, 44, 45]. This low-frequency noise can be dynami-
cally decoupled with echo pulses [39, 46, 47, 48], and long decoherence
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times 75 > 200 ps have already been measured [47]. In contrast to x-
rotations, precessions around the z axis dephase predominantly due to
charge noise [10, 49]. Rather surprisingly, however, recent Hahn echo ex-
periments by Dial et al. [10] revealed a relatively short 75 ~ 0.1-1 s and
a power-law dependence of 7, on the temperature 7. The dependence
on T suggests that lattice vibrations (phonons) may play an important
role.

Much progress both in theory and experiment was made in studying
GaAs-based QDs [4, 5, 8, 15, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 56,
57, 58, 59]. However, recently Si or Ge based QDs attracted much atten-
tion. The reason is that in isotopically purified **Si or isotopes of Ge with
nuclear spin 0 (e.g. ®Ge) decoherence sources characteristic to GaAs are
absent, namely hyperfine interaction and spin orbit interaction (SOI) due
to lattice-inversion asymmetry. Known schemes for spin qubits in Si or
Ge are based on, e.g., donor electron spins [60, 61, 62, 63], host [64] and
donor [65, 66, 67, 68, 69] nuclear spins, nuclear-electron spin qubits (Si:Bi)
[70], qubits based on Si/SiO, structures [71, 72, 73], hole spin qubits in
Ge-Si core-shell nanowires [74, 75, 76, 77], and lateral QDs within the
2D electron gas (2DEG) in Si/SiGe heterostructures [16, 78, 79]. The six-
fold degeneracy of conduction band valleys in Si can be an additional
source of decoherence [80] compared to GaAs. However, four of the six
valleys get split off by a large energy of the order of a hundred meV in
SiGe/Si/SiGe quantum wells because of the strain [81]. Due to confine-
ment, which may also be varied via electric fields, the twofold degener-
acy of the remaining valleys is lifted, and reported valley splittings are of
the order of 0.1-1 meV [81, 82, 83, 84]. For instance, electric control over
the valley splitting for QDs in Si/SiO, was reported, and the presented
energy range for the valley splitting is 0.3-0.8 meV [84]. Therefore, it is
possible to suppress the effect of many valleys in Si if the energies char-
acteristic for the qubit subspace are small enough.
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We study theoretically the phonon-induced relaxation (77) and decoher-
ence times (73) of singlet-triplet qubits in lateral GaAs double quantum dots
(DQDs). When the DQD is biased, Pauli exclusion enables strong dephas-
ing via two-phonon processes. This mechanism requires neither hyperfine
nor spin-orbit interaction and yields 7, < T, in contrast to previous cal-
culations of phonon-limited lifetimes. When the DQD is unbiased, we find
T, ~ 2T and much longer lifetimes than in the biased DQD. For typical
setups, the decoherence and relaxation rates due to one-phonon processes
are proportional to the temperature T', whereas the rates due to two-phonon
processes reveal a transition from 7% to higher powers as 7T is decreased. Re-
markably, both 77 and T3 exhibit a maximum when the external magnetic
field is applied along a certain axis within the plane of the two-dimensional
electron gas. We compare our results with recent experiments and analyze
the dependence of 71 and 7, on system properties such as the detuning,
the spin-orbit parameters, the hyperfine coupling, and the orientation of
the DQD and the applied magnetic field with respect to the main crystallo-
graphic axes.

3.1 Introduction

In this Chapter, we calculate the phonon-induced lifetimes of a S-T qubit
in a lateral GaAs DQD. Taking into account the spin-orbit interaction
(SOI) and the hyperfine coupling, we show that one- and two-phonon
processes can become the dominant decay channels in these systems and
may lead to qubit lifetimes on the order of microseconds only. While the
decoherence and relaxation rates due to one-phonon processes scale with
T for the parameter range considered here, the rates due to two-phonon
processes scale with 77 at rather high temperatures and obey power laws
with higher powers of T" as the temperature decreases. Among other
things, the qubit lifetimes depend strongly on the applied magnetic field,
the interdot distance, and the detuning between the QDs. Based on the
developed theory, we discuss how the lifetimes can be significantly pro-
longed.

This Chapter is organized as follows. In Sec. 3.2 we present the Hamil-
tonian and the basis states of our model. In the main part, Sec. 3.3, we
discuss the calculation of the lifetimes in a biased DQD and investigate
the results in detail. In particular, we show that two-phonon processes
lead to short dephasing times and identify the magnetic field direction at
which the lifetimes peak. The results for unbiased DQDs are discussed
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in Sec. 3.4, followed by our conclusions in Sec. 3.5. Details and further
information are appended.

3.2 System, Hamiltonian, and Basis States

We consider a lateral GaAs DQD within the two-dimensional electron
gas (2DEG) of an AlGaAs/GaAs heterostructure that is grown along the
[001] direction, referred to as the z axis. Confinement in the z-y-plane is
generated by electric gates on the sample surface, and the magnetic field
B is applied in-plane to avoid orbital effects. When the DQD is occupied
by two electrons, the Hamiltonian of the system reads

H =3 (Hé” + HY + HSS, + HY) + Héflph)
j=1,2

+He + th, (31)

where the index j labels the electrons, H, comprises the kinetic and po-
tential energy of an electron in the DQD potential, H, is the Zeeman
coupling, Hsor is the SOI, Hyy, is the hyperfine coupling to the nuclear
spins, He_pp is the electron-phonon coupling, H¢ is the Coulomb repul-
sion, and H,, describes the phonon bath.

The electron-phonon interaction has the form

Haph = Y Wa(q)age'"" + hec., (3.2)
q,s

where 7 is the position of the electron, q is a phonon wave vector within
the first Brillouin zone, s € {l,t;,t,} stands for the longitudinal (/) and
the two transverse (t1,?2) phonon modes, and “h.c.” is the hermitian
conjugate. The coefficient 1V,(q) depends strongly on g and s, and is
determined by material properties such as the relative permittivity ¢,, the
density p, the speed v; (v;) of a longitudinal (transverse) sound wave, and
the constants = and h,4 for the deformation potential and piezoelectric
coupling, respectively. The annihilation operator for a phonon of wave
vector g and mode s is denoted by aq,. The Hamiltonian

HSOI =« (px’ay’ - py’ax’) + 6 (py’gy’ - px’ga:’) (33)

contains both Rashba and Dresselhaus SOI. Here p,s and p, are the mo-
mentum operators for the =’ and y’ axes, respectively. The latter coin-
cide with the crystallographic axes [100] and [010], respectively, and o,
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Figure 3.1: The energy spectrum of the DQD calculated for the parame-
ters described in the text. The S-Tj, qubit is formed by the eigenstates of
type |(1,1)S) and |(1,1)Tp).

and o,/ are the corresponding Pauli operators for the electron spin. We
take into account the coupling to states of higher energy by perform-
ing a Schrieffer-Wolff transformation that removes Hgor in lowest order
[12, 85, 86, 87, 88, 89, 90]. The resulting Hamiltonian H is equivalent to
H, except that Hgoy is replaced by

Hsor ~ gug(rsor X B) - o, (3.4)

where g is the in-plane g factor, o is the vector of Pauli matrices, and

/ / / /
Tsor = (ly_ + ;-) €[100] — <l£ + ly_) €[010]- (3.5)

R D R D
Here 2’ and y’ are the coordinates of the electron along the main crystallo-
graphic axes, whose orientation is provided by the unit vectors e[;o¢) and
ejo10], respectively. The spin-orbit lengths are defined as iz = i/(meg)
and [p = h/(meg3), where m.g is the effective electron mass in GaAs and
a (B) is the Rashba (Dresselhaus) coefficient. For our analysis, the most

relevant effect of the nuclear spins is the generation of an effective mag-
netic field gradient between the QDs, which is accounted for by Hyy,.
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We note that this magnetic field gradient may also result from a nearby
positioned micromagnet [91, 92, 93]. For details of H and H , see Ap-
pendix 3.B.

The S-T}, qubit in this work is formed by the basis states |(1,1)S) and
|(1,1)Tp), where the notation (m,n) means that m (n) electrons occupy
the left (right) QD. In first approximation, these states read

(1,1)S) = [W4)]S9), (3.6)

(LYT) = [V-)ITv), (3.7)
with Mg 2) Mg 2)
_ [0 & @) )

0s) = NG : (3.8)

where the ®, p(r) are orthonormalized single-electron wave functions
for the left and right QD, respectively (see also Appendix 3.A) [50, 94].
The spin singlet is

=)
D (3.9)

whereas 10+ 1)
To) = — 5B (3.10)

with the quantization axis of the spins along B. Analogously, one can
define the states |(1,1)7) = [V_)| 11) and |(1,1)T_) = |¥_)| J{), which
are energetically split from the qubit by +gup|B|. For our analysis of
the phonon-induced lifetimes, a simple projection of H onto this 4D sub-
space of lowest energy is not sufficient, because

S (Wl g v ) — (v [HE v ) =0, (3.11)

J

That is, corrections from higher states must be taken into account in or-
der to obtain finite lifetimes [89, 95]. The spectrum that results from the
states considered in our model is plotted in Fig. 3.1. Depending on the
detuning e between the QDs, the lifetimes of the qubit are determined by
admixtures from |(2,0)S), |(0,2)S), or states with excited orbital parts.
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3.3 Regime of Large Detuning
Effective Hamiltonian and Bloch-Redfield theory

We first consider the case of a large, positive detuning ¢ at which the
energy gap between |(0,2)5) and the qubit states is smaller than the or-
bital level spacing fwy. In this regime, contributions from states with ex-
cited orbital parts are negligible, and projection of H onto the basis states
(L )Ty), [(1,1)S), [(L,1)T4), |1 1)T1), ](0.2)S), and |(2,0)S) yields
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+ Hy,.

0
0
0
e+ U —V_+ Pgy,

_€‘|‘U—V_‘|‘PSR

i (3.12)

Here Pr, Ps, P, Ps;, and Psp are the matrix elements of the electron-
S
phonon interaction, ¢ is the tunnel coupling, U is the on-site repulsion,
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Ve = (Vi|Ho|Vy), Ez = gup|B),

Q=gus ( (®r|(rsor x B).|®r)
—(®g|(rsor x B).|Pr)), (3.13)

and 6bp = 2((1,1)S|Hyyp|(1,1)T5) (see also Appendix 3.B). We note that
the energy in Eq. (3.12) was globally shifted by ((1,1)7j| (Hél) + Héz) +
H¢)|(1,1)T;). Furthermore, we mention that the state |(2,0)5) is very
well decoupled when e is large and positive. In Eq. (3.12), |(2,0)S) is
mainly included for illustration purposes, allowing also for large and
negative € and for an estimate of the exchange energy at e ~ 0.

In order to decouple the qubit subspace {](1,1)S), |(1, 1)T0>} we first

apply a unitary transformation to H that diagonalizes H — > H el oh
exactly. Then we perform a third-order Schrieffer-Wolff transformation
that provides corrections up to the third power in the electron-phonon
coupling, which is sufficient for the analysis of one- and two-phonon
processes. The resulting effective Hamiltonian can be written as H, +
Hy_pn(7) + Hpy in the interaction representation, where the time is de-
noted by 7 to avoid confusion with the tunnel coupling. Introducing the
effective magnetic fields B.g and d B(7) and defining o’ as the vector of
Pauli matrices for the S-Tj qubit,

1
H, = §gMBBeﬁ‘ o’ (3.14)
describes the qubit and
1 ’
Hy_pn(7) = EguBéB(T) o (3.15)

describes the interaction between the qubit and the phonons. The time
dependence results from

H

q

_on(T) = T/ em T/ (3.16)

For convenience, we define the basis of o’ such that Be, = 0 = Begsy.
Following Refs. [86, 96], the decoherence time (73), the relaxation time
(T1), and the dephasing contribution (7,) to 75 of the qubit can then be
calculated via the Bloch-Redfield theory (see also Appendix 3.E), which
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yields
1 1 1
T (3.17)
1
T = J! (wz) + J;;(wz), (3.18)
1 _ Jt+

)

where fiwy = Jioy = |91 Beg| and

Ji(w) = % /_OO cos(wT){(dB;(0)d B;(7))dT. (3.20)

The correlator (§B;(0)6B;(7)) is evaluated for a phonon bath in thermal
equilibrium and depends strongly on the temperature 7'.

Input parameters

The material properties of GaAs are g = —0.4, meg = 6.1 x 1073 kg,
e ~ 13, p = 532g/cm?, v, ~ 5.1 x 10® m/s and v; ~ 3.0 x 10 m/s
(see also Appendix 3.B)[97, 98, 99], hiy ~ —0.16 As/m?[98, 99, 100], and
E ~ —8eV [101, 102]. In agreement with wy/(27) = 30 GHz [10], we
set [. = \/h/(Mmeswp) =~ 96 nm, which is the confinement length of the
QDs due to harmonic confining potential in the z-y plane. For all basis
states, the orbital part along the z axis is described by a Fang-Howard
wave function [103] of width 3a, = 6 nm (see Appendix 3.A). Unless
stated otherwise, we set [ = 2 um and Ip = 1 pum [104, 105, 106], where
Ip is consistent with the assumed a. (see also Appendix 3.I) [106]. We
note, however, that adapting a. to [p is not required, because changing
the width of the 2DEG by several nanometers turns out not to affect our
results. All calculations are done for |B| = 0.7 T [7, 40], 6bp = —0.14 peV,
in good agreement with, e.g., Refs. [7, 10], and an interdot distance of
2a = 400 nm. For Figs. 3.1-3.5 (large ¢), we use U = 1 meV, ¢t = 7.25 peV,
and V, = 40 peV [94]. We choose here V_ = 39.78 ueV such that the
resulting energy splitting Jio((¢) between the qubit states is mostly deter-
mined by the hyperfine coupling at ¢ — 0, as commonly realized experi-
mentally [10, 39]. The detuning e is then set such that 0 < U -V, —e < hw
and Ji. = 1.43 peV, and we note that this splitting is within the range
studied in Ref. [10].
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Figure 3.2: (a) Temperature dependence of the decoherence time (75,
blue) and relaxation time (7, red) for the parameters in the text. The
solid line corresponds to a power-law fit to 75 for 0.1 K < 7" < 0.2K,
which yields 7> « 7% and good agreement with recent experiments
[10]. We note that 7, < T}. (b) The decoherence time due to one-phonon
(1/I'3?) and two-phonon processes (1/I'5”) and the full decoherence time
T, = 1/Ty = 1/(I'}® + T;?) as a function of temperature. We note that
1/ ng changes its behaviour from o C; + C2T° to < T2, where C} and
(% are constants, whereas 1/ Fép o T~ for the range of 7" considered here.

Temperature dependence

Figures 3.1-3.3 consider B applied along the x axis that connects the
two QDs, assuming that the = axis coincides with the crystallographic
[110] direction. The geometry = || [110] is realized in most experiments
[46, 48, 49], particularly because GaAs cleaves nicely along [110]. In
stark contrast to previous theoretical studies of phonon-limited lifetimes,
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where T, = 2T [76, 86, 107, 108, 109], Fig. 3.2(a) reveals T, < T) at
30 mK < T < 1K considered here, which implies 7, < Tj. In the discus-
sion below we therefore focus on the details of the temperature depen-
dence of I'y = 1/T5. We note, however, that the contributions to I'; and
I'y = 1/T} from one-phonon processes scale similarly with 7', and analo-
gously for two-phonon processes. Defining I';,” (I's?) as the decoherence
rate due to one-phonon (two-phonon) processes, Fig. 3.2(b) illustrates
I'? > Iy, and so I'y = I’ + I ~ I'2P. In the considered range of
temperatures, we find T',” o« 7. This behavior results from the fact that
hwy/(kpT) < 1 for our parameters, where kg is the Boltzmann constant.
Therefore, the dominant terms in the formula for F;p are proportional to
Bose-Einstein distributions defined as

1

TLB(W) = ehw/(kB—T)_l (321)

and may all be expanded according to ng(w) ~ kgT/(hw), keeping in
mind that the n(w) contributing to T',” are evaluated at w = w, because
of energy conservation. The time 1/T" due to two-phonon processes
smoothly changes its behaviour from C; + CoT° at T ~ 40 mK to 72
with increasing temperature, where C,, are constants. This transition is
explained by the fact that, in the continuum limit, the rate corresponds
to an integral over the phonon wave vector g, where the convergence of
this integral is guaranteed by the combination of the Bose-Einstein dis-
tribution and the Gaussian suppression that results from averaging over
the electron wave functions. More precisely, the decay rate is obtained
by integrating over the wave vectors of the two involved phonons. Due
to conservation of the total energy, however, considering only one wave
vector q is sufficient for this qualitative discussion. For I's?, we find that
the dominating terms decay with g due to factors of type

folg) = e BT n p(wg,) [np(wes) + 1], (3.22)

where ¢, and ¢, are the projections of g onto the = and y axis, respec-
tively, and hwgs = hvg|q| is the phonon energy. Whether the Bose-Einstein
part or the Gaussian part from f,(q) provides the convergence of the in-
tegral depends on [., vs € {v;,v:}, and mainly 7, as the latter can be
changed significantly. When the Gaussian part exp[—(g + ¢; )] cuts the
integral, T';” o< 72 due to the expansion ng(ng + 1) =~ (kgT)?/(hwgs)?
that applies in this case. When ng(ng + 1) affects the convergence of
the integral, terms with higher powers of 7" occur. The resulting tem-
perature dependence is rather complex, but is usually well described by
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Figure 3.3: Dependence of the decoherence time 75 on the temperature
for the parameters in the text and different spin-orbit lengths. Keeping
the splitting Ji,, between the qubit states constant, the values chosen
for the detuning e are 0.896 meV (black), 0.912 meV (blue), 0.918 meV
(green), and 0.933 meV (red), increasing with increasing SOI. Within the
range 7' = 100-200 mK, 7, oc 7% in all cases. We note that the best quan-
titative agreement with the experiment [10] is obtained for the strongest
SOI (red), where [p = 1 yum and Ip = 0.5 pm.

1/ 2 = C,, + C, T~ with v > 2 for different ranges of 7' [see Fig. 3.2(b)].
The temperature ranges for the different regimes are determined by the
details of the setup and the sample. For the parameters considered here,
a power-law approximation 7, oc 7 for 7' = 100-200 mK yields n ~ —3
mainly because of the dephasing due to two-phonon processes (see Figs.
3.2 and 3.3), which agrees well with the experimental data of Ref. [10].
Figure 3.3 shows the resulting temperature dependence of 75 for dif-
ferent spin-orbit lengths. Remarkably, the calculation yields short 75
even when SOI is completely absent. Keeping Ji,x = 1.43 peV fixed by
adapting the value of ¢, one finds that 7, decreases further with increas-
ing SOL As seen in Eq. (3.12), Hsor couples |(1,1)S) to the triplet states
|(1,1)7%) and |(1,1)7). An important consequence of the resulting ad-
mixtures is that greater detunings are required in order to realize a de-
sired Ji;. In Fig. 3.3, for instance, € increases from 0.896 meV (no SOI)
t0 0.933 meV (Ig = 1 um, Ip = 0.5 um). As explained below, increasing e
decreases the lifetimes because it enhances the effects of |(0,2).S) through
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reduction of the energy gap (see also Fig. 3.1).

Origin of strong dephasing

The results discussed thus far have revealed two special features of the
phonon-mediated lifetimes of S-T; qubits in biased DQDs. First, T, < T3,
as seen in Fig. 3.2(a). Second, the strong decay does not require SOI,
as seen in Fig. 3.3. These features have not been observed in previous
calculations for, e.g., spin qubits formed by single-electron [86, 104] or
single-hole [107, 108] or two-electron [89] states in GaAs QDs, hole-spin
qubits in Ge/Si nanowire QDs[76], or electron-spin qubits in graphene
QDs [109]. Therefore, we discuss the dominant decay mechanism for S-
Ty qubits in DQDs in further detail and provide an intuitive explanation
for our results.

Assuming again a large, positive detuning ¢, with 0 < U — VL — € <
hwy, and setting 2 = 0 (no SOI), the states |(1,1)7%), |(1,1)7-), and
|(2,0)S) of Eq. (3.12) are practically decoupled from the qubit. The rele-
vant dynamics are then very well described by

0 % 0
H = (N’TB V,—V_ —/2t + P} ) + Hpp, (3.23)
0 —V2t+Ps —e+U—-V_+P

with |(1,1)75), |(1,1)S), and |(0,2)S) as the basis states and
P = Psp — Pr. (3.24)

In the absence of SOI, the hyperfine interaction (dbg) is the only mecha-
nism that couples the spin states and enables relaxation of the S-T; qubit.
We note that even when (2 is nonzero the relaxation times 7; are largely
determined by the hyperfine coupling instead of the SOI for the param-
eters considered in this work. At sufficiently large temperatures, where
T, < T, 0bg is negligible in the calculation of 75, leading to pure dephas-
ing, T, = T,,. In addition, the matrix element Ps turns out to be negligible
for our parameters. Following Appendix 3.G, we finally obtain

1 1 24 =\ S0
T T AT /_ (P2(0) P2 (r))dr (3.25)

o0

from this simple model, where

Ay = /(U -V, — )2+ 8t2 (3.26)
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Figure 3.4: Decoherence time 75 as a function of temperature from two
different models. The dotted line is also shown in Fig. 3.3 and was calcu-
lated via Eq. (3.12), using the parameters in the text with 2 = 0 (no SOI)
and e = 0.896 meV. The crosses result from Eq. (3.25), using exactly the
same parameters. We note that the associated J;, differ only slightly. The
remarkable agreement demonstrates that the simple model of Sec. 3.3 ac-
counts for the dominant decay mechanism. At 7" < 50 mK, the curves
start to deviate because relaxation is no longer negligible. When the hy-
perfine coupling in Eq. (3.23) is not omitted, excellent agreement is ob-
tained also at low temperatures.

corresponds to the energy difference between the eigenstates of type
|(1,1)S) and |(0,2)S) (using 65 = 0). We note that terms of type agsaqs
and ag.al, must be removed from P?in Eq. (3.25), as the Bloch-Redfield
theory requires (6 B(7)) to vanish (see also Appendix 3.G) [110]. In Fig. 3.4,
we compare T, from Eq. (3.25) with 7T}, derived from Eq. (3.12) for Q@ = 0
(see also Fig. 3.3), and find excellent agreement at 7" 2> 50 mK where re-
laxation is negligible.

The above analysis provides further insight and gives explanations
for the results observed in this work. First, Eq. (3.25) illustrates that
dephasing requires two-phonon processes and cannot be achieved with
a single phonon only. As dephasing leaves the energy of the electrons
and the phonon bath unchanged, the single phonon would have to fulfill
wqs = 0 = |q|. However, phonons with infinite wavelengths do not affect
the lifetimes, which can be explained both via e’4" — 1 [see Eq. (3.2)]
and via the vanishing density of states at wqs — 0 for acoustic phonons
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in bulk. Thus, ')’ = I'{?/2 in all our calculations, where I';” is the relax-
ation rate due to one-phonon processes. Second, as discussed above, we
tind that the hyperfine interaction in combination with electron-phonon
coupling presents an important source of relaxation in this system [90].
Third, the strong dephasing at large detuning e results from two-phonon
processes between states of type |(1,1)S) and |(0,2)S). This mechanism
is very effective because the spin state remains unchanged. Therefore,
the dephasing requires neither SOI nor hyperfine coupling, and we note
that Eq. (3.25) reveals a strong dependence of T, on the tunnel coupling
t and the splitting A's. Hence, the short 7, in the biased DQD can be
interpreted as a consequence of the Pauli exclusion principle. When the
energy of the right QD is lowered (¢ > 0), the singlet state of lowest en-
ergy changes from |(1, 1)) toward |(0,2)S5), since the symmetric orbital
part of the wave function allows double-occupancy of the orbital ground
state in the right QD. The triplet states, however, remain in the (1,1)
charge configuration. While this feature allows tuning of the exchange
energy and readout via spin-to-charge conversion on the one hand,[39]
it enables strong dephasing via electron-phonon coupling on the other
hand: effectively, phonons lead to small fluctuations in ¢; due to Pauli
exclusion, these result in fluctuations of the exchange energy and, thus,
in dephasing [111]. This mechanism is highly efficient in biased DQDs,
but strongly suppressed in unbiased ones, as we show in Sec. 3.4 and
Appendix 3.H.

We note that the two-phonon process that doesn’t require SOI or hy-
perfine interaction, and still leads to dephasing, corresponds to two-phon-
on Raman process. It was studied for impurity atoms [112, 113, 114, 115],
considering also singlet states [113, 114, 115]. This mechanism is used in
Ref. [111], where the dephasing of singlet-triplet qubits in the unbiased
DQDs is studied. We note that our conclusions are substantially differ-
ent from the conclusions presented in Ref. [111]. While Ref. [111] finds
this Raman process as a dominating source of dephasing, we find that in
the case of unbiased DQD it produces negligible dephasing for realistic
system parameters (see Appendix 3.H).

Angular dependence

We also calculate the dependence of 7} and 75 on the angle between B
and the x axis, assuming that = || [110]. The results for 7' = 100 mK
and Jix = 1.43 peV are plotted in Fig. 3.5. Remarkably, the phonon-
induced lifetimes of the qubit are maximal when B 1 2z and minimal
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Figure 3.5: Dependence of the relaxation (77) and decoherence time (7%)
on the angle 0 between the in-plane magnetic field B and the z axis that
connects the QDs. When B 1 z (g = 7/2), both T7 and 75 exhibit a
maximum. Red (black) corresponds to the spin-orbit lengths iz = 2 ym
and Ip = 1 pym (Ig = 1 pgm and I[p = 0.5 pm). For the stronger SOI, the
lifetimes increase by almost two orders of magnitude. For details, see
text.

when B || z. The difference between minimum and maximum increases
strongly with the SOI, and for [z = 1 um and [p = 0.5 ym we already
expect improvements by almost two orders of magnitude. These features
can be understood via the matrix elements of the effective SOI [88, 89, 90],

Ipcos (0 —0) + lgcos (0 +0)

Q= Fsoi(a,l.)Ey Il

, (3.27)

where 03 (0) is the angle between B (the z axis) and the crystallographic
axis [110], and Fsoi(a, l.) is a function of a and [.. From this result, we
conclude that there always exists an optimal orientation for the in-plane
magnetic field for which the effective SOI is suppressed and, thus, for
which the phonon-mediated decay of the qubit state is minimal (com-
paring the lifetimes at fixed Ji,;). Remarkably, one finds for = || [110]
(6 = 0) that this suppression always occurs when B L z (p = 7/2), in-
dependent of [z and [,. In the case where € = 0, the finite 75 in our model
results from admixtures with |(0, 2)5), as explained in Sec. 3.3. Due to the
hyperfine interaction, these admixtures also lead to finite 7;. We wish to
emphasize, however, that suppression of the effective SOI only results
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in a substantial prolongation of the lifetimes when the spin-orbit lengths
are rather short, as the dominant decay mechanism in biased DQDs is
very effective even at (2 = 0.

3.4 Regime of Small Detuning

All previous results were calculated for a large detuning e ~ U — V..
Now we consider an unbiased DQD, i.e., the region of very small e. The
dominant decay mechanism in the biased DQD is strongly suppressed
at € ~ 0, where the basis states |(2,0)S) and |(0,2)S) are both split from
|(1,1)S) by a large energy U — V,. Adapting the simple model behind
Eq. (3.25) to an unbiased DQD yields

ﬁ /_ TP P ) (3.28)

as the associated dephasing time (see Appendix 3.H for details). Com-
paring the prefactor with that of Eq. (3.25) results in a remarkable sup-
pression factor below 10~ for the parameters in this work. As explained
in Appendix 3.H, this suppression factor may also be estimated via
(A%)*/(U—V,)* for fixed Jyo, where Al is the splitting between the eigen-
states of type |(1,1)S) and |(0,2)S) at large € and U — V4 is the above-
mentioned splitting at e ~ 0.

Consequently, the lifetimes 77 and 75 in the unbiased DQD are no
longer limited by |(2,0)S) or |(0,2)S), but by states with an excited or-
bital part (see Fig. 3.1). We therefore extend the subspace by the basis
states |(1*,1).5), |(1*,1)Ty), |(1*,1)T}), and |(1*,1)7_), and proceed anal-
ogously to the case of large detuning (see Appendixes 3.A and 3.C for
details). The asterisk denotes that the electron is in the first excited state,
leading to an energy gap of hw, compared to the states without asterisk.
Setting B || = || [110], the orbital excitation is taken along the x axis, be-
cause states with the excitation along y turn out to have negligible effects
on the qubit lifetimes. From symmetry considerations, states with the
excited electron in the right QD should only provide quantitative cor-
rections of the lifetimes by factors on the order of 2 and are therefore
neglected in this analysis. The resulting temperature dependence of 715,
1/T,°, and 1/T'3" is shown in Fig. 3.6. The plotted example illustrates that
two-phonon processes affect T, only at rather high temperatures when ¢
is small, leading to T3 < 7! for a wide range of T due to single-phonon
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Figure 3.6: Temperature dependence of the decoherence time (7%) and its
one-phonon (1/T,?) and two-phonon (1/T3P) parts for the detuning ¢ =~ 0,
where excited states are taken into account. For this plot U = 1 meV,
Vi =50 ueV, Vo = 49.5 peV, t = 24 peV, Jior = 1.41 peV, and the other
paramters as described in the text. We note that 7, ~ 277.

processes. In stark contrast to the biased DQD, we find 7, ~ 27}. Re-
markably, the absolute value of 75 is of the order of milliseconds, which
exceeds the T, at large e by 2-3 orders of magnitude. For B L z, z || [110],
and typical sample temperatures 7' ~ 0.1 K, we find that the lifetimes can
be enhanced even further.

3.5 Conclusions and outlook

In conclusion, we showed that one- and two-phonon processes can be
major sources of relaxation and decoherence for S-T; qubits in DQDs.
Our theory provides a possible explanation for the experimental data
of Ref. [10], and we predict that the phonon-induced lifetimes are pro-
longed by orders of magnitude at small detunings and, when the SOI is
strong, at certain orientations of the magnetic field. Our results may also
allow substantial prolongation of the relaxation time recently measured
in resonant exchange qubits [116].

While the model developed in this work applies to a wide range of
host materials, the resulting lifetimes depend on the input parameters
and, thus, on the setup and the heterostructure. By separately neglecting
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the deformation potential coupling (£ = 0) and the piezoelectric cou-
pling (h14 = 0), we find that the qubit lifetimes of Figs. 3.2-3.6 for GaAs
DQDs are limited by the piezoelectric electron-phonon interaction, the
latter providing much greater decay rates than the deformation potential
coupling. Consequently, the phonon-limited lifetimes of singlet-triplet
qubits may be long in group-IV materials such as Ge or Si [81, 117, 118],
where the piezoelectric effect is absent due to bulk inversion symmetry.

Essentially, there are two different schemes for manipulating singlet-
triplet qubits in DQDs electrically. The first and commonly realized ap-
proach is based on biased DQDs and uses the detuning to control the ex-
change energy [39]. Alternatively, the exchange energy can be controlled
by tuning the tunnel barrier [3] rather than the detuning. Our results sug-
gest that the second approach is advantageous, as it applies to unbiased
DQDs for which the phonon-mediated decay of the qubit state is strongly
suppressed. In addition, one finds d.J;ot/de < € at very small detunings
e [50], which implies that not only d.J;../de ~ 0 but also (dJi/de) ~ 0 at
e ~ 0, where (- --) now stands for the average over some random fluc-
tuations of e. Therefore, singlet-triplet qubits in unbiased DQDs are also
protected against electrical noise. The latter, for instance, turned out to
be a major obstacle for the implementation of high-fidelity controlled-
phase gates between S-T;, qubits [40]. Keeping in mind that two-qubit
gates for singlet-triplet qubits may also be realized with unbiased DQDs
[41], we conclude that operation at € ~ 0 with a tunable tunnel barrier
is a promising alternative to the commonly realized schemes that require
nonzero detuning. As single-qubit gates for S-7; qubits correspond to
two-qubit gates for single-electron spin qubits, the regime € ~ 0 is also
beneficial for many other encoding schemes.
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3.A Basis States

We consider a GaAs/AlGaAs heterostructure that contains a two-dimen-
sional electron gas (2DEG). Electric gates on the top of the sample induce
a double quantum dot (DQD) potential that confines electrons and en-
ables the implementation of a singlet-triplet qubit. Assuming that this
spin qubit is based on low-energy states of two electrons in the DQD, we
consider the four states of lowest energy,

(L)) = |u)[S), (3.29)
(LDTL) = [9)[T), (3.30)
(LT = |[W.)Ty), (3.31)
(LT = |w)To), (3.32)

two states with a doubly occupied quantum dot (QD),

|<072)S> = |\IIR>|S>7 (3.33)
(2,0)5) = [¥)|S), (3.34)

and four additional states that feature one electron in a first excited or-
bital state,

(15,1)8) = [95)]S), (3.35)
(15,173 = [99)|TL), (3.36)
(DT = [U)|Ty), (3.37)
(D7) = e, (3.39)

as the basis in this problem. In the notation used above, the first and
second index in parentheses corresponds to the occupation number of
the left and right QD, respectively. The asterisk denotes that the electron
in the QD is in the first excited state. The spin part of the wave functions
consists of the singlet |S) and the triplets |7p), |13 ), and |1_),

1S) = w (3.39)
D+

) = =5 (3.40)

Ty = [T, (3.41)

) = 1), (3.42)
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where 1 (]) corresponds to an electron spin oriented along (against) the
externally applied magnetic field, see Appendix 3.B.

As the two minima in the DQD potential may be approximated by
the confining potential of a 2D harmonic oscillator, the one-particle wave
functions for ground and first excited states can be constructed from the
eigenstates of the harmonic oscillators.[50] Defining the growth axis of
the heterostructure as the z axis, we consider harmonic confinement po-
tentials around (z,y) = (£a,0) with [. = \/h/(megwo) as the confinement
length in the QDs. The x axis connects the two QDs, pointing from the
left to the right one. The interdot distance is L = 2a, m.gq is the effective
mass of electrons in GaAs, and /wy is the orbital level spacing in each
QD. With these definitions, the orbital parts of the 2D harmonic oscil-
lator wave functions (ground, excited along z, excited along y) can be
written as

1 2 2 2
dL(ry) = —pe (A, (3.43)
’ VTl
z 2 C(z4a)2 42 2
¢L,R($7?J) = — (z+a)e [(z£a)?+y ]/(210)7 (3.44)
&Y plz,y) = 2l4ye‘“““)2+y2” @), (3.45)
k2 7-(- ¢

The confining potential along the = axis may be considered as a triangular
potential of type

0o, z<0,
Viz) = { Cr 250, (3.46)

where C'is a positive constant with units energy/length and z = 0 cor-
responds to the interface between AlGaAs (¢ < 0) and GaAs (z > 0).
The ground state in such a potential can be approximated by the Fang-
Howard wave function [103],

z
drn(z) = e(z)ﬂw/@az), (3.47)
with a. as a positive length and
0, z<0,
0(z) = { L 250 (3.48)

as the Heaviside step function. The Fang-Howard wave function from
Eq. (3.47) is normalized and fulfills

(Orul|z|opn) = 3a., (3.49)
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which may be interpreted as the width of the 2DEG.

Following Refs. [94, 50, 119] for constructing wave functions in the
DQD potential, we define overlaps between the harmonic oscillator wave
functions,

2

s = (dulgm) =€ %, (3.50)
T | T 2&2
e = <¢L|¢R>=s(1— 7 ) (3.51)
sy = (Prlog) = s, (3.52)
and

g = Lo¥1=F 51—32 (3.53)

g = —ViTw 21_82 (3.54)

1—/1—s2
g = ——t—y (3.55)
)

Then the normalized orbital parts of the one-particle wave functions for
the DQD are

By p(r) = OL,r(@,Y) — 9PrL(T,Y) ben(2), (3.56)

V1 —2sg+ g2

e,xr T (gj?y) - gSCQSx (:E,y)
Prp(r) = —° Ny ng drn(2), (3.57)

It L TICLIPEY (359)

V1—2sg+ g?

We note that these six states form an orthonormal set of basis states to
a very good accuracy. The only nonzero scalar products among differ-
ent states are (O |D77), (Pr|PL"), (PL|P%Y), and (Pr|D7"). Even though
there is a nonzero overlap, the absolute values of these scalar products
are small (~0.01-0.1 depending on the parameters of the DQD), which
indicates that Eqgs. (3.56-3.58) present a very good approximation for an
orthonormal basis. It is, however, important to note that we set (®|P}"),
(Dp|PL"), (Pr|P%"), and (Pr|P;") equal to zero when calculating the ma-
trix elements of the effective Hamiltonian later on, in order to avoid arte-
facts from the finite overlap of these basis states.
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Given the six basis states for the orbital part of single electrons, we
can construct the two-particle wave functions [50, 94]

Qr(r1)Ppr(r2) £ Pr(r)Pr(r2)

\Ifi(’l“l, ’I“Q) = \/§ s (359)
T (1, 1) = ‘PEL’V(Tl)‘bR(W)\}—L;R(?‘l)‘PeL’V(Tz)7 (3.60)
Ui r(ri,re) = O r(r)Prr(7T2), (3.61)

where v € {z,y}. The calculations for Fig. 3.6 were done with the orbital
excitation along the z axis only, ¥§ = U%", because the rates resulting
from ¥$Y are much smaller than those from ¥$” in this setup. For some
special configurations, such as B || y and z || [110], where B is the exter-
nal magnetic field, the calculations for V¢ = ¥%* lead to lifetimes similar
to or even shorter than those for U = U%$”, and so states with the excita-
tion along the y axis should be taken into account in these special cases.
States of type (1, 1*) with the excited electron in the right QD will change
the results only by factors around 2, and therefore were not included for
simplicity.

3.B Hamiltonian

The Hamiltonian of the considered system is

H =Y <H[§” + HY + H, + HY) + Héflph)
j=1,2
+He + th, (362)

where the index j denotes the electron, H, takes into account the motion
of the electron in the double dot potential, H; is the Zeeman term, Hgoy is
the spin-orbit interaction (SOI), Hy,y,, is the hyperfine coupling, H_pp is
the electron-phonon interaction, H¢ is the Coulomb repulsion, and Hp, is
the Hamiltonian of the phonon bath. Below, we discuss the contributions
to H in further detail.

Hamiltonian H,

Due to a, < [, the wave function along the z axis is the same for all basis
states in our model. The one-particle Hamiltonian H, can therefore be
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written as an effective 2D Hamiltonian
2 + 2
Ho =200 4 via,y), (3.63)
2meff

where p, (p,) is the momentum along the x (y) axis and V' (z,y) is the
confining potential in the transverse directions. The potential V' (z,y) is
provided by the electric gates and features a finite barrier between the
two QDs. It also accounts for electric fields applied along the DQD axis
that effectively shift the electron energy in the left QD by the detuning e
compared to the right QD.

Coulomb repulsion

The Hamiltonian that describes the Coulomb interaction between the

two electrons is
1 €2

- 47'('6067« ’T’l - T'Ql,

He (3.64)
where e is the elementary positive charge, ¢, is the vacuum permittivity,
and ¢, is the relative permittivity of GaAs.

Zeeman term

We consider an in-plane magnetic field B = |Bleg = Bep with arbitrary
orientation in the z-y plane. Here and in the following, e, (e;) stands for
the unit vector along the direction of some vector k (axis 7). As the 2DEG
is only a few nanometers wide, orbital effects due to an in-plane magnetic
tield are negligible. The Hamiltonian for the Zeeman coupling reads

E
HZ = TZUBa (365)

where E; = gupDB is the Zeeman energy, g is the in-plane ¢ factor, ;5 is
the Bohr magneton, B = | B| is the magnetic field strength, and

op =0 - €pg, (366)

with o as the vector of Pauli matrices, denotes the Pauli operator for the
electron spin along the magnetic field.
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Spin-orbit interaction

We assume that the heterostructure was grown along the [001] direction,
referred to as both the z and 2’ direction. Consequently, the SOI due to
Rashba and Dresselhaus SOI reads

HSOI = (px’ay’ - py’ax’) + B (py’ay’ - pw’ax’) (367)

for a single electron, where the axes 2’ and y' correspond to the main
crystallographic axes [100] and [010], respectively.
Using the antihermitian operator

Mg ’ / / /
Sy = ZTH [04 (33 Oy _yax’) +B<y Oy _-Tax’)}? (3.68)
which fulfills the commutation relation
[S1, Ho| = S1Hy — HyS1 = —Hsor, (3.69)

we can remove the SOI to lowest order via a unitary (Schrieffer-Wolff)
transformation [12, 85, 86, 87, 88, 89, 90],

o= et = oS (550 )
= Z (Héj)+H(Zj)+H}(1 +H1 ph) +HC+th

=12

+ > (189, Y] + [59 B, (3.70)

7j=1,2

The perturbation theory applies when both the SOI and the Zeeman cou-
pling are weak compared to the confinement (spin-orbit length > con-
finement length; Zeeman splitting < orbital level splitting), which is well
tulfilled in the system under study. Exploiting the commutation relations
0., 04] = 2i0, (and analogously for cyclic permutations) of the Pauli
matrices, one finds

[S1,Hz] = gus(rsor x B) -0, (3.71)

where we defined the SOI-dependent vector operator

/ a:,/ x/ /
TSo1 = z +— €+ | —7 — A €[010]- (3.72)
lR lD lR lD
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The unit vector along the [100] axis, i.e., the 2’ direction, is denoted by
e[i00] = €./, and analogously for all other crystallographic directions. The
spin-orbit lengths [ and [, are defined as

h

ln = : (3.73)
Meg
h
Ilp = : 3.74
D o—c (3.74)

The contribution due to [S1, Hsor]/2 is less important when B is suf-
ficiently large, and considering B ~ 0.7 T [7, 40] we therefore omit it in
our model. Nevertheless, we provide the result for completeness [87],

1
5[51, Hsol]l = —meg (o + 57)
+ 5 (2 = a?) Lo, (3.75)

Here the operator ., = (2'p,, — y'p.r) corresponds to the angular momen-
tum along the axis of strong confinement. Again, orbital effects (canoni-
cal momentum # kinetic momentum) are negligible when the magnetic
tield is applied in-plane.

Finally, we mention that corrections of type [S1, Hyy,| were neglected
in Eq. (3.70), because H is assumed to be much larger than the hyperfine
coupling H,,y, that we discuss next.

Hyperfine interaction

The hyperfine interaction between the electron and the nuclear spins can
be described in terms of an effective magnetic field. The latter can be split
into a sum field, which is present in both QDs, and a gradient field, which
accounts for the difference in the hyperfine field between the dots. As the
sum field is usually small compared to the external magnetic field, and,
moreover, may largely be accounted for by H,, we use Hyy, to quantify
the gradient field between the dots. Hence, this Hamiltonian reads
‘sﬁT” (PL—Pr)., (3.76)
where db arises from the hyperfine field gradient between the QDs. The
operators P, and P, are projectors for the left and right QD, respectively,
and can be written as

Pr = o) (Pr] + DL (PLT| + [@L7)(PL7, (3.77)
Pr = |p)(Pg|+ [P ) (PR"| + [PR')(PR], (3.78)

thp =
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for the basis states defined in Appendix 3.A.
We note that 5
(1, 1)] Hugpl (1, 1)To) = =7, (3.79)
where
5bB = 60b- eép (380)

is the component of b along the external magnetic field B. Because it
turns out that all other matrix elements of H,,, within the basis of Ap-
pendix 3.A are negligible for the lifetimes of the qubit, we approximate
the hyperfine coupling by

ob
Hiyp =~ =71(L1)S)((1 DTy| + hee., (3.81)

with the hermitian conjugate abbreviated as “h.c.”. We set 6bp = —0.14 peV
in our calculations, in good agreement with Refs. [7, 10].

Electron-phonon coupling

The electron-phonon interaction
Helfph = Hdp + Hpe (3-82)

comprises the deformation potential coupling Hg, and the piezoelectric
coupling H,.. Both mechanisms can be derived from the displacement
operator, which we therefore recall first. Most of the information sum-
marized in this appendix on electron-phonon coupling is described in
great detail in Refs. [97, 98, 101, 120, 121, 122, 123], and we refer to these
for further information.

Displacement operator

Acoustic phonons in an isotropic crystal (bulk) lead to the displacement
operator
U= e (cque " ags + e Mal,) (3.83)

q78

where cg, is an arbitrary coefficient with normalization condition |c,s|* =
h/(2pVwgs), pand V are the density and volume of the crystal, and wy; is
the angular frequency of the acoustic phonon of type s with wave vector
g. For the longitudinal mode s = [, the dispersion relation at small ¢ = |q|
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is wq = ¢/ (A +2p)/p = qu;, while for the transverse modes s = t; and
s = ty one finds wgt, = wqt, = Wqt = ¢/ 1/p = qui, where X and p are
the Lamé parameters of the material and v; (v;) is the speed of sound for
longitudinal (transverse) waves [97]. The operators af, and ag, create and
annihilate a corresponding phonon, and fulfill the commutation relations
[afls,afl,s,] = 0, ags, ags] = 0, and [aqs,az,s,] = 0q.q40s.s, With 644 and
s+ as Kronecker deltas. For each wave vector g, the three real-valued
polarization vectors e,; form an orthonormal basis with e, || g. The
summation over g runs over all wave vectors within the first Brillouin
zone.

With a suitable choice of the polarization vectors e, the displace-
ment operator from Eq. (3.83) can be simplified further. We choose these
vectors in such a way that the relations

€ _q = —€q, (384)
€_gt1 = —Eqi, (385)
€—qgty = Eqiy; (3.86)

are fulfilled. The advantages of this definition become obvious later
on, when we write down the Hamiltonian for the electron-phonon cou-
pling. In short terms, this choice allows one to define e,; = ¢/¢ and
to represent the vectors e, via a simple right-handed basis. Setting
cqs = VI/(2pVwys), and making use of Egs. (3.84) to (3.86) and of the
property w_qs = wgqs, the displacement operator can be written in the
convenient form

h t iq-r
u= ; 2V, €gs (aqs F. a,qs> e, (3.87)
where .
| = fors=11,
s = { + fors=t,. (3.88)

This representation of the displacement operator, Eq. (3.87), will now be
used to derive the Hamiltonian for the electron-phonon coupling. We
note that the time dependence u — wu(7) and Ho_pp, — Hepn(7) in
the interaction picture (see Appendix 3.E) is simply obtained via aq, —
(gs(T) = agse™™= " and af, — af (1) = af ™.

It is worth mentioning how we choose the values for the speeds of
sound in GaAs. The three elastic stiffness coefficients for GaAs are ¢;; =
118, ¢15 = 53.5, and ¢4y = 59.4, each in units of 10° N/m?. These values
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were taken from Ref. [97] and are in very good agreement with those in,
e.g., Refs. [98, 99]. It makes sense to approximate these coefficients by
11, C12, and cq4, respectively, for which the condition ¢, = ¢12 +2¢44 of an
isotropic material is fulfilled. By postulating that the relative deviation
for each of the three constants should be the same, we find A = ¢;5 =
435 x 10°N/m? and p = ¢y = 48.3 x 10° N/m?, corresponding to a
relative deviation of 18.7%. The resulting sound velocities in the isotropic
approximation are v; = 4/¢;1/p = 5.1 X 103 m/s and v; = \/éu/p =
3.0 x 10> m/s. We note that basically the same values are obtained by
simply averaging over the speeds of sound along the [100], [110], and
[111] directions (longitudinal or transverse waves, respectively), as listed,
for instance, in Refs. [98, 99].

Deformation potential coupling

The first coupling mechanism is the deformation potential coupling. In
the presence of strain, the energy of the conduction band changes. For
GaAs, a cubic semiconductor with the conduction band minimum at the
I" point, the shift of the conduction band edge is determined by the sim-
ple Hamiltonian

[1]

Hiyp =2V - u = Z(ez0 + €y + €22), (3.89)

where = is the hydrostatic deformation potential, V is the Nabla operator,
and ¢;; are the strain tensor elements, which are related to the displace-

ment via L /o :
ot U; Uj
€ij 5 (8xj + 3$i> . (3.90)

The trace of the strain tensor, V - u = €,, + €, + €., corresponds to the
relative change in the volume. One finds = ~ —8 eV for GaAs [101, 102],
and so compression increases the energy of the conduction band edge.
Exploiting Ve = ige'?" and defining e, = q/q, substitution of Eq.
(3.87) into (3.89) yields

i— h t iqr
Hyp = Z:zq: mq (aql — a_ql> e, (3.91)

We note that only the longitudinal mode contributes to the deformation
potential coupling. This is different for the piezoelectric electron-phonon
interaction that we derive next.
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Piezoelectric coupling

In crystals without inversion symmetry, lattice vibrations (i.e., phonons)
result in a finite polarization density P?"" and, consequently, lead to an
effective electric field E,. The latter is characterized by the equation

0= eoE, + P + PP = ¢, E, + PP, (3.92)

where we set the electric displacement on the left-hand side to zero due
to the absence of free charges in this mechanism. The vector P =
€o(e, — 1)E, is the polarization density induced by the field E,, ¢ is the
vacuum permittivity, and e, is the relative permittivity of the material
(e, ~ 13 in GaAs). In contrast to Pg', the term PP™" results directly
from the strain that is caused by the lattice vibrations. The polarization
density PP"" is related to the strain tensor elements via

PP = " hijuesi, (3.93)
gk

where the h;;;, are the elements of the third-rank piezoelectric tensor. In
zinc blende structures such as GaAs, the h;;;, take on a rather simple form,

hiy  for |e| =1,
hijk = hisl€iji| = { 0 for ‘Ezjk" = 0.

Here ¢,j;, is the Levi-Civita symbol, and the z;, z;, and z;, related to the
indices ¢, j, and k, respectively, correspond to the main crystallographic
axes.
We now proceed to calculate the electric field E, via the relation [122]
ijhon
E,=——"— (3.95)

€0€Er

(3.94)

which results directly from Eq. (3.92). In order to improve readability,
we use a short-hand notation in the remainder of this subsection for con-
venience: z, y, and z correspond to the coordinates along the main crys-
tallographic axes, with e,, e,, and e, as the unit vectors along the [100],
[010], and [001] directions, respectively. Substitution of Egs. (3.87), (3.90),
(3.93), and (3.94) into Eq. (3.95) yields

ihiy Qyeqs + 44
E = — g-€gs + qz€;
p €0€ z-qs r-qgs
" a8 qmegs'+'degs
h
2pV wqs

X

(aqs = a*_qs) Giar (3.96)
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where

q = qe;+ qy€y + q.e;, (397)

€qs = €g€rtehe, e e, (3.98)

and the three components of the vector refer to the basis {e,, e,, e.}. The
phonon-induced electric field F, can be split into two parts,

E,=E\ +E,, (3.99)

where the “longitudinal” part

ihia Z 2 (quy€is + Qyq-Chs + 4=02€Y,) ‘

2
q?s q

h T iq-r
x T (aqs = a,qs> e (3.100)

contains the contributions parallel to g for each mode, while the “trans-

lh— _
Ep— ;
0€r

verse” part B = E, — EI‘,‘ comprises the remaining components perpen-
dicular to q. The longitudinal and transverse parts fulfill

VxEl =0, (3.101)
V-E; =0, (3.102)

respectively. As a consequence, one can write E) as the gradient of a
scalar potential ®,, and E as the curl of a vector potential A,,

E! = -V9o, (3.103)
E; = VxA, (3.104)

From Egs. (3.100) and (3.103), one finds

h14 h T iq-r
(I)P - €o€r ; qu 2PVCUqS (aqs T aiqs> e (3105)

for the scalar potential, where we introduced

2 (Goy€is + Qya:Ch, + 4=0u€Y,)
> '

fas = (3.106)
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The vector potential A, and, hence, the transverse part E - are usually
omitted for the piezoelectric electron-phonon interaction. Reasons for
this omission may be inferred from Maxwell’s equations.

In accordance with common practice, we neglect the vector potential
A, in the following and consider only the scalar potential ®,. Using an
explicit representation for the unit vectors ey, the result from Eq. (3.105)
can be simplified further. We choose

q COS g Sin O

eq=— = |singgsinby |, (3.107)
q cos U4

sin ¢q

eq, = | —cosoq ], (3.108)

0

COS (g COS O
eq, = |singgcosby |, (3.109)

—sinf,

in agreement with Eqgs. (3.84) to (3.86), where 0 < ¢, < 27 is the az-
imuthal angle and 0 < 6, < 7 is the polar angle of g in spherical coordi-
nates. Again, the vector components in Egs. (3.107) to (3.109) refer to the
basis {e,, e,, €.}, i.e., to the unit vectors for the main crystallographic
directions (note the special definition of z, y, and z in this subsection).
Also, we note that the {ey, eq:,, €4, } defined above form a right-handed,
orthonormal set of basis vectors for any g. With this convenient represen-
tation, which is similar to the one chosen in Ref. [123], the expression fg,
from Eq. (3.106) simplifies to

fa = 3cosf,sin?0,sin(2¢,), (3.110)
fqu = —sin(2604) cos(2¢q), (3.111)
faz = — (3sin® 6y — 2) sin 0 sin(2¢q), (3.112)

where we mention that trigonometric identities allow one to rewrite the
above relations in many different ways.

Finally, the potential energy of an electron in the phonon-induced
electric field, i.e., the Hamiltonian for the piezoelectric electron-phonon
coupling, corresponds to

H,e = —e®

pe

(3.113)

P

where —e is the charge of the electron.
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Phonon bath
The Hamiltonian for the phonon bath is
1
Hy, = ; hwgs (agsaqs + 5) : (3.114)

where the sum runs again over all modes s and all wave vectors g within
the first Brillouin zone.

3.C Model Hamiltonian at small detuning

As described in detail in the main text, we study the lifetimes of the
singlet-triplet qubit at both small and large detuning e. In this appendix,
we explain the details of our model at small detunings, € ~ 0.

Exchange energy and orbital level spacing

In the unbiased DQD, the energy of |(0,2)S) and |(2,0).S) is much larger
than that of (1*, 1)-type states with an excited orbital part. This allows us
to calculate the lifetimes with an 8 x8 matrix [see Eq. (3.121)] that is based
on states of type (1,1) and (1*, 1) only. Even though |(0, 2)S) and |(2, 0)S5)
are not part of the basis, their presence can be accounted for as described
below.

Considering the basis states introduced in Appendix 3.A and shifting
the energy globally by ((1, 1)Tj| (Hél) +H + Hp)|(1,1)Ty), the Hamilto-

nian Hél) + HéQ) + H¢ can be approximated via

H" + HY + Ho ~ —Js[(1,1)S)((1,1)S] (3.115)
FAE (|T)(WE ]+ W) (¥ ),

where the exchange energy Jg results from admixtures with |(0,2).S) and
|(2,0)S). The energy gap AE ~ hwy is well described by the level spacing
Twy in the left QD and corresponds to the energy difference between the
four states of lowest energy in the DQD and the states with excited orbital
part.

We note that Js can be estimated [50, 94, 119] by projecting Hél) +
Héz) + H¢ onto the subspace {|(2,0)5),((0,2)S5),|(1,1)S)} through a pro-
jector Pgs, which yields the Hamiltonian

Hes — Pss (Hg” +H? 4 HC> Pes (3.116)
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with matrix representation

U—V._ 0 —V/2t
Hgy = 0 U-V. V2t |. (3.117)
-2t =2t V-V
Here |
t=— (D |Hy|®gr) — — (U, |Ho|T 3.118
(Pr|Ho|PR) \/5< +|He|VR) ( )

is the hopping amplitude (also referred to as the tunnel coupling), U =
(Vr|Hc|WR) is the on-site repulsion, V. = (V. |H¢ |V, ), and the energy
was globally shifted as mentioned before. Diagonalization of Hgs results
in

Hss = UggHssUss

U—2V_+Vi+Js 0 0
= 0 v-v. o |, (3.119)

0 0 —Js

where Ug; is the matrix for the unitary transformation and

1
Js =5 (VIR + U=V —U -V, +2V.) (3.120)

is the resulting exchange splitting between |(1,1)S) and |(1,1)7;). Con-
sidering € ~ 0, the formulas for Jg and Ugs from this estimate allow us to
account for admixtures of |(2,0)S) and |(0,2).S) to the qubit state of type
|(1,1)S) and, consequently, to study the effects of these admixtures on
the phonon-induced lifetimes of the qubit.

Matrix representation

We analyze the qubit lifetimes in an unbiased DQD by projecting the
Hamiltonian H, Eq. (3.70), onto the basis {|(1,1)5), |(1,1)T5), |(1,1)T}),
(1, 1)T2), |(1%,1)S), [(1*,1)T%), |(1*,1)Tp), |(1*,1)T_)}. The basis states
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are described in detail in Appendix 3.A, and the projection yields

+ Hpp
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AE — Ez + P¢
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Here the (2 with different indices quantify the matrix elements resulting
from the SOI. Defining

Rsor = (rsor X eB):, (3.122)
one obtains
Q = B, ((CDL|RSOI|(I>L> <(I>R|RSOI|CI)R)) , (3.123)
N = Ez(®L|Rsor|®}"), (3.124)
Qy = Ez (P77 Rso1| L") — (Pr|Rsor|Pr)) , (3.125)
Qg = Fy (< eV|RSOI|CI)€L’V> + <®R‘RSOI|¢R>). (3126)

Analogously, the electron-phonon coupling is denoted by P with differ-
ent labels,

Pr = (Pr|Ha—pn|Pr) + (Pr|He—pn|PL), (3.127)
P¢ = (DVY|Heoph|®7") + (Pr|He—ph|Pr), (3.128)
P = (PL|Hepu|P7"). (3.129)

The above expressions for €2, )y, 3, P¢, and P;. correspond to V¢ =
U%”, for which the orbital excitation is Chosen along the axis v € {z, y}

In order to account for the finite admixtures from the states |(0,2)5)
and |(2,0)S5), we set the matrix element ((1,1)S|(H{’ ph +H? )ph)\(l, 1)S)
of the electron-phonon interaction to Psg. The latter is a linear combina-
tion of Ps;, Psr, Pg, and Pg, where

Psp = 2(®r|Ha-pn|®Pr), (3.130)
PSR - 2<q)R|Hel—ph’(I)R>7 (3131)
Ps = V2(®p|Hepn|®L). (3.132)

The coefficients of the linear combination depend onU, V., V_, and t.

We find these coefficients by projecting H, 1 ph +H (1 )ph onto the subspace

{1(2,0)5),1(0,2)5),](1,1)5)},

Ps, 0 P
Pss(H el ph + Hef)ph)PS?) 0 Psg Ps|, (3.133)
Ps P. pPp

which allows calculation of Pgg via

Pgg = (Ug37953(H(1)

el—p

L+ HY ph)P53U53>33. (3.134)
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For further information on the transformation matrix Uss, see Appendix 3.C.

We note, however, that the above-mentioned contributions from |(2, 0)5)
and |(0,2)5) to Psg turn out to be negligibly small, because setting Pss =
Pr does not affect the lifetimes in our calculations. Furthermore, two-
phonon processes based on admixtures from |(2,0)S) and |(0,2)S) are
strongly suppressed at ¢ ~ 0 and can be omitted, as we explain in de-
tail in Appendix 3.H. In conclusion, we find for the parameters in this
work that the qubit lifetimes in unbiased DQDs are determined by the
basis states with excited orbital parts. The corrections from |(2,0)S) and
1(0,2)S) are negligible.

3.D Model Hamiltonian at large detuning

When |¢| ~ U — V. such that the energy gap between the qubit and either
1(2,0)S) (negative €) or |(0,2)S) (positive €) is smaller than the orbital
level spacing, 0 < U — Vi — |¢| < hwy, the effects of higher orbitals on
the lifetimes are negligible. In the regime of large detuning, we there-
fore project H, Eq. (3.70), onto the basis {|(1,1)Tp), |(1,1)S), |(1,1)TY),
|(1,1)12), |(0,2)S), [(2,0)S)} and investigate the lifetimes via this 6x6
matrix. The explicit form of the matrix is shown in Eq. (3.12) of the main
text, and details for all its matrix elements are provided in Appendix 3.C.

3.E Bloch-Redfield theory

Having identified a suitable matrix representation for small and large de-
tunings, we apply a unitary transformation to H that diagonalizes H -

>0 H @ )ph exactly. In order to decouple the qubit subspace {|(1,1)5),
(1, 1)T0>} perturbatively from the remaining states, we then perform a
third-order Schrieffer-Wolff transformation, leading to corrections up to
the third power in the electron-phonon coupling. The perturbation the-
ory applies when the matrix elements for the electron-phonon coupling
are smaller than the energy separation between the qubit and the other
states.

The resulting effective Hamiltonian Hey = Hy + Hy—pn + Hpn for the
S-T, qubit, its interaction with the phonon bath, and the bath itself can
be described in terms of a coupled spin-1/2 system and allows applica-
tion of the Bloch-Redfield theory [86, 96, 110]. Introducing the effective
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magnetic fields Beg and § B, we write the Hamiltonian of the qubit as
1
Hq = §gﬂBBeff ) 0_/’ (3.135)

and the Hamiltonian for the interaction between the qubit and the phonon
bath reads

1
Hy pn(7) = ég,uBéB(T) o’ (3.136)
Here o’ is the vector of spin-1/2 Pauli matrices for the S-Tj qubit, 7 is

the time, and the time-dependent H,_,,(7) is written in the interaction

representation,
Hy pn(7) = etonm/hpp L emiHont/h (3.137)

Next, following Refs. [86, 96], we define the spectral functions

2,2 ]
Jg(w) = LE / 7 (5 Bi(0)3 B, (7)) dr, (3.138)
0

where the temperature-dependent correlators (0B;(0)6B;(7)) with i, €
{z,y, z} are calculated for a phonon bath in thermal equilibrium. More
precisely, we assume that the density matrix p,;, that describes the mixed
state of the phonon bath is diagonal when represented via standard Fock
states for the phonons considered here (i.e., occupation numbers refer-
ring to acoustic phonons classified by the wave vectors g and modes s),
with the probabilities on the diagonal provided by Boltzmann statistics.
The correlator (§B;(0)0B,(7)) corresponds to the expectation value of the
operator 0B,(0)dB;(7) and, thus, is equal to the trace of p,,dB;(0)6B;(T).
In particular, one obtains <aflsaq/s/> = 0q.q/0s,515(Wqs), Wwhere

1

T (3.139)

np(w) =
is the Bose-Einstein distribution, kg is the Boltzmann constant, and 7" is
the temperature.

Using the formulas (C16) and (C25)—(C27) from Ref. [96], it is possi-
ble to express the lifetimes of the qubit in terms of the above-mentioned
spectral functions. For convenience, we define the basis of o’ such that
only the z component of the effective magnetic field Beg is nonzero. In
this case, the lifetimes depend solely on the quantities

Ji (W) = Re[Ji(w) + Ji(—w)]

92,U2 o0
2th/ cos(wT)(0B;(0)0B;i(7))dr. (3.140)

o0
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The last equality holds because the 0 B;(7) are hermitian and the correla-
tors are time-translational invariant. We finally calculate the relaxation
time T of the qubit via

1

T = T () + Ty ) (3.141)
where hwy; = |gupBes| is the effective Zeeman splitting. The time 7, that
accounts for pure dephasing is obtained through

1
— =J 142
= = JE0) (3142)

%)

and the decoherence time 75 can then be expressed in terms of 7} and 7T,,,

1 1 1
T oT + T (3.143)
Considering one- and two-phonon processes in our calculations, the

third-order contribution to 0 B;(0) [6 B;(7)] enters the correlator
(0B;(0)dB;(7)) in Eq. (3.140) together with the first-order contribution to
dB;(7) [0B;(0)]. As a consequence, the third-order terms in d B cannot
contribute to the dephasing rate 1/7,, (see also Appendix 3.G). Further-
more, we expect only a negligible effect on the relaxation rate 1/77, as
the rates that arise from third-order corrections can be considered small
compared to those from single-phonon processes that are based solely on
the first-order terms. For simplicity, the third-order contributions to 6 B
are therefore omitted in the calculations for Figs. 3.2-3.6.

3.F Continuum Limit

For the investigation of the phonon-induced lifetimes of the qubit, we
consider the continuum limit and replace the summation over the phonon
wave vectors g by an integral. Furthermore, the low temperatures dis-
cussed here allow integration up to infinite ¢, because the effects resulting
from terms with wave vectors outside the first Brillouin zone are clearly
negligible. We therefore substitute

V /oo 2/71' . /27r
- — dqq df, sin 0 do (3.144)
; (2m)3 Jo 0 g 1 0 ?

in our calculations. For details of the electron-phonon interaction, see
Appendix 3.B.
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3.G Simple model for dephasing at large
detuning

As discussed in Sec. 3.3 of the main text, the relevant dynamics at 0 <
U—Vi — € < hwy and 2 = 0 are very well described by the Hamiltonian

0 —V2t+Py V,—V_.+Ag+P

with basis states |(1, 1)7j), |(1,1).S), and (0, 2)S). Compared to Eq. (3.12),
we omitted here the decoupled states |(1,1)T%), |(1,1)T_), and |(2,0)5),
subtracted Pr from the diagonal (global shift, no effect on the lifetimes),
and introduced

0 %s 0
H= (‘"’TB V.- V. —V/2t + P} ) + Hpp, (3.145)

P = Psp— Pr (3.146)

as a matrix element for the electron-phonon coupling and
Ag=U—-V, —¢ (3.147)

as the bare splitting between |(1,1)S) and |(0, 2)5).

The hyperfine coupling, d5, is the only mechanism in Eq. (3.145) that
couples the spin states and, hence, is crucial for the relaxation of the S-Tj
qubit. In fact, we find for the parameters in this work that the relaxation
times 77 are mainly determined by the hyperfine coupling rather than the
SOL In order to derive a simple model for the short decoherence times
[1; <« T3, Fig. 3.2(a)], we neglect ¢ in the following, resulting in pure
dephasing, and so T, = T,. Furthermore, we find that the matrix element
Ps is negligible for our parameter range. Defining

H = H,+ Hy_p, + Hyp (3.148)

and omitting dp and Ps, one obtains

0 0 0
H=1|0 V,-V_ —V2t (3.149)
0 _\/Qt V+ - V_ + AS

for the part that describes the electronic system, and

000
Hew=10 0 0 (3.150)

00 P
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for the interaction with the phonon bath.
The Hamiltonians Hy and H,_p;, can be rewritten in a different basis

{I(L 1) To), [(1,1)57), 1(0,2)5) } as

0 0 0
H, =10 —Jiot 0 (3.151)
0 0 —Jiot + Al
and
(0 0 0
Hs—ph =P1l0 Ug’d Vs qVard | » (3152)
0 VgqUaa Uiy
where
Ay = /A% + 8¢2 (3.153)
and A A
Jior =V_ — Vi + %S (3.154)
The basis states
‘(171>Sl> = US'S‘(171)3> +Us’d‘(072)8>7 (3155)
|<Oa 2)8,> = Ud’s|(171)s> +Ud’d|(072)s>’ (3156)

are normalized eigenstates of H,. The notation |(1,1)S’) and |(0,2)5’) is
justified because we consider Ag > 0, and so |vys|? > 1/2 and |vgal* >
1/2. In Eq. (3.152), vy4 and vy 4 are assumed to be real. A suitable choice
for the coefficients is, e.g.,

Ag + Al

s's  — — 157

v D, (3.157)
2v/2t

Vgrg = D, (3.158)
Ag — A

Vgs = %, (3.159)
22t

Varda = DL, (3160)

where the denominator

Dy =/ (As % AL + 822 (3.161)
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ensures normalization.
Following the steps explained in Appendix 3.E, one finds

gpBBet . = Jiot (3.162)
and
2 B “2de2'¢1 2
gnpdB. = —vg P+ =GP
s
2 .9 (.2 2
VsrgVard (Us/d - Ud/d) 53

P 3.163
(%) (169

from the third-order Schrieffer-Wolff transformation. We recall that 6 B, =
0 = 0B, due to omission of the hyperfine coupling, and so T, = T, (pure
dephasing). Furthermore, we note that the Bloch-Redfield theory re-
quires (8 B(7)) to vanish [110]. Therefore, terms of type a,aqs and agsaf,
must be removed from thg second-order contributions to 4 B and, conse-
quently, from the part oc P? in Eq. (3.163). The terms removed from § B
can be considered as minor corrections to Beg, with agsaqs — np(wgs)
and aqsags — np(wgs) + 1, where np(w) is the Bose-Einstein distribution,
Eq. (3.139). In this work, we simply neglect these corrections to Beg be-
cause of their smallness.
The decoherence time T, = T, is calculated via

L gup [
7= opr | OB0)SB.(r))dr, (3.164)

see Appendix 3.E. Remarkably, the only nonzero contribution after in-
sertion of Eq. (3.163) into Eq. (3.164) is

1 _ Vilea / T (P0) P () (3.165)
T, 20%(A)? | |

In particular, one finds that single-phonon processes cannot lead to de-
phasing,

— 00

/ " (P(O)P(r))dr = 0. (3.166)

As there is no energy transfer between the electrons and the phonon bath
(evaluation of J (w) at w = 0), the left-hand side of Eq. (3.166) can only
be nonzero for a phonon with wgs = 0 = ¢, for which, however, the
expression vanishes as well. An analogous explanation applies to

/ h (PP(0)P(7))dr =0 = / h (P(0)P?(7))dr. (3.167)

— 50 —00
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Consequently, the dephasing in our model results purely from two-phonon
processes that are based on the second-order contributions to JB..
Finally, using Egs. (3.158) and (3.160) in Eq. (3.165) yields

1 2t X~

o0

We note that in the case of |t| < Ag and negligibly small V. — V_, one
finds Jyor =~ 2t*/Aly in this model and

2t T

PG 2R(AL) (0169

for the prefactor.

3.H Dephasing via singlet states at small
detuning

In order to estimate the dephasing due to the states |(2,0)S) and |(0,2).5)
in an unbiased DQD, ¢ ~ 0, we study a model similar to that of Ap-
pendix 3.G. Using |(2,0)5), |(0,2)S), |(1,1)S), and |(1,1)T}) as the basis
states, we consider

U-v. 0 —V2t 0
0 U=-V. —V2t 0
H, = 3.170
-2t V2t Vi -V_ 0 ( )
0 0 0 0
as the Hamiltonian for the electronic system and
—P 0 0 0
0 P 0O
Hy = 3.171
ph 0 000 (3-171)
0O 0 00

as the electron-phonon interaction. Again, we removed here P, from
the diagonal and neglected the off-diagonal matrix elements Ps and P}.
Furthermore, we exploited the relation

PSL—PT:—(PSR—PT) :—ﬁ (3172)
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This relation is based on the properties

(Or|cos(q-r)|PL) = (Pgr|cos(q-r)|Pr), (3.173)
<q)L| sin(q . 7’)|CDL> = —<(I)R‘ SiIl(q : ’I")|q)R> (3174)

Using the states |®;, i) defined in Appendix 3.A, Eq. (3.56), it is straight-
forward to show that these equations apply to our calculations (at least
in very good approximation, given the small width of the 2DEG). Pro-
ceeding analogously to Appendix 3.G and exploiting |t| < U — V,, the
calculation of T5 = T, with Egs. (3.170) and (3.171) yields

1 8t4 0 ~ ~,
T, m/_ (PE(0)P(7))dr, (3.175)

[e. 9]

which is formally equivalent to Eq. (3.168).

Operation of the qubit at € ~ 0 requires control over the tunnel cou-
pling ¢, which can be achieved by changing the tunnel barrier of the DQD
with electric gates.[3] Consequently, the value of ¢ at € ~ 0 is usually dif-
ferent from that at large e. As a simple estimate, using |t| < U — V, and
assuming that V, —V_ and dp are negligible, one finds Jy, ~ 4t /(U —V,)
through Taylor expansion of Jg, Eq. (3.120). Analogously, one obtains

st N J2,
R2(U — V)6 — 2R2(U — V)4

(3.176)

for the prefactor in Eq. (3.175). Considering J;. to be the same in the bi-
ased and unbiased DQD, comparison with Eq. (3.169) yields a suppres-
sion factor on the order of (A)*/(U — V,)*. For the parameters in this
work, the associated dephasing times at ¢ ~ 0 are therefore several or-
ders of magnitude longer than those at large e. The strong suppression
allows omission of this mechanism in our model for an unbiased DQD
described in Appendix 3.C.

The matrix elements Pg and P of the electron-phonon interaction
provide a direct coupling between the state |(1, 1)S) and the states |(0, 2).5)
and |(2,0)S). Consequently, these matrix elements enable dephasing via
two-phonon processes even at ¢ = 0. In the case of large detuning e,
the effect of Ps and P! on the dephasing time 7, (and on the lifetimes
in general) turns out to be negligible. At e ~ 0, this two-phonon-based
contribution to 7, is suppressed even further, by a factor on the order
of 4A% /(U — V,)?, and can therefore be neglected in the calculation with
excited orbital states (see Appendix 3.C).
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Table 3.1: Input parameters used for the calculations in the main text.

Parameter Value References

€ 13
p 5.32 g/cm?
U 5.1x 10°m/s [97, 98, 99], Appendix 3.B
vy 3.0 x 10°m/s [97, 98, 99], Appendix 3.B
= -8 eV [101, 102]

hia —0.16 As/m? [98, 99, 100]
g —-0.4
B 07T [7, 40]

Meft 6.1 x 107** kg

AE = hw 124 peV [10]

Ip 1, 0.8, 0.5 um | [104, 105, 106], Appendix 3.1
In 2, 1.6, 1 um

3a, 6 nm Appendix 3.1

L =2a 400 nm

obg —0.14 peV [7,10]

U 1 meV [94]

V. 40, 50 peV [94]

V_ 39.78, 49.5 ueV [94], Appendix 3.1
t 7.25, 24 peV [94], Appendix 3.1

3.1 Summary of input parameters

Table 3.1 lists the values that were used for the results discussed in the
main text. We note that the results are independent of the sample volume
V', because the volume cancels out in the calculation.

It is worth mentioning that the values [, ~ 0.5-1 pm [104, 105, 106] for
the Dresselhaus SOI are consistent with the assumed width of the 2DEG.
Neglecting orbital effects, the general form of the Dresselhaus SOI for an
electron in GaAs is

Hp =055 [(k}) — k2) kwow + cp.] (3.177)
where 7k; is the momentum along the i axis, o; is the corresponding Pauli
operator for spin 1/2, the axes 2/, 3/, and 2’ are the main crystallographic
axes [100], [010], and [001], respectively, “c.p.” stands for cyclic permuta-
tions, and b§5% ~ 28 A%eV [106]. For our 2DEG with strong confinement
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along the [001] direction (z axis), the Dresselhaus SOI can be well approx-
imated by ‘
Hp ~ bi§6C<¢FH\k§’¢FH> (k’y/%' - kx/Ux’) ) (3.178)

where 2’ = z and ¢pp(2) is the Fang-Howard wave function of Eq. (3.47).
Using (¢ru|k?|¢rn) = 1/(4a?), one finds

4h%a?

Mefr bfﬁj&

Ip =~ (3.179)

from comparison with Egs. (3.67) and (3.74). With mez = 0.067m, [106]
as the effective electron mass in GaAs and m, as the bare electron mass,
evaluation of Eq. (3.179) with 3a, = 6 nm yields [p ~ 0.65 um, in good
agreement with the values used in the calculation.

The splitting between the eigenstates of type |(1,1)S) and |(1,1)7})
after diagonalization is denoted by Jiox = Aiwz. When Jiot > |0bg|, the
spin states of these eigenstates are |S) and |7j) with high accuracy, and
the state of the S-T; qubit precesses around the z axis of the Bloch sphere.
When the splitting is provided by the hyperfine coupling dbp instead of
the exchange interaction, the eigenstates are of type | 1)) and | 1), lead-
ing to precessions around the z axis. In experiments, Ji,; > |0bp| is com-
monly realized for a biased DQD (large detuning) and the hyperfine cou-
pling dominates in the unbiased case [10, 39]. In order to account for this
feature, we set the parameters in Sec. 3.3 such that J;,; at € ~ 0 would be
largely provided by dbg. Using U, V., V_, and ¢ approximately as in Ref.
[94], we do this by adapting ¢ (or V_) such that Jg < |0bg|, where Jg is
the bare exchange splitting at ¢ = 0, Eq. (3.120). The lifetimes in Figs. 3.2—-
3.5 were calculated with U = 1 meV, V, = 40 peV, V_ = 39.78 neV, and
t = 7.25 peV, for which Jg < |0bg]| is fulfilled. The detuning € ~ 0.9 meV
in these calculations was chosen such that Ji,; = 1.43 peV, and we note
that the excited states are negligible due to 0 < U — Vi — € < hwy. In
Fig. 3.6, where we consider operation at small detuning, the parameters
U=1meV,V, =50 ueV,and V_ = 49.5 ueV are similar to before. How-
ever, in order to achieve J;,; = 1.41 eV at € ~ 0, we use a larger tunnel
coupling ¢t = 24 peV. Experimentally, this can be realized by tuning the
tunnel barrier of the DQD electrically [3].
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We study theoretically the phonon-induced relaxation and decoherence
of spin states of two electrons in a lateral double quantum dot in a
SiGe/Si/SiGe heterostructure. We consider two types of singlet-triplet spin
qubits and calculate their relaxation and the decoherence times, in particular
as a function of level hybridization, temperature, magnetic field, spin orbit
interaction, and detuning between the quantum dots, using Bloch-Redfield
theory. We show that the magnetic field gradient, which is usually applied
to operate the spin qubit, may reduce the relaxation time by more than an or-
der of magnitude. Using this insight, we identify an optimal regime where
the magnetic field gradient does not affect the relaxation time significantly,
and we propose regimes of longest decay times. We take into account the ef-
fects of one-phonon and two-phonon processes and suggest how our theory
can be tested experimentally. The spin lifetimes we find here for Si-based
quantum dots are significantly longer than the ones reported for their GaAs
counterparts.

66




CHAPTER 4. PHONON-ASSISTED DECAY OF SINGLET-TRIPLET
QUBITS IN SI/SIGE QUANTUM DOTS 67

41 Introduction

Following the development in theory and experiment investigating the
behavior of electron spin states in single and double quantum dots in Si
[81, 84, 117, 118, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135,
136], we study a lateral double quantum dot (DQD) built in a Si/SiGe
heterostructure and occupied by two electrons. We consider the relax-
ation and decoherence of the two-electron spin states due to phonons.
Given the recent high interest in spin qubits at the S-7_ anticrossing
[15, 137], where S is a spin singlet and 7_ a spin triplet with magnetic
quantum number m = —1, we investigate how the relaxation time T}
and the decoherence time 75 of such qubits depend on temperature for
different kinds of hybridization of the singlet. We derive and analyze
the dependence of 77 and 7, on the magnetic field gradient, which is
usually applied in order to operate the spin qubits [15, 16, 17, 18]. We
further study the effects of one-phonon and two-phonon processes and
suggest the regimes where our theory can be tested experimentally. We
also consider the S-Tj spin qubit [4, 5, 51] in two regimes: large detuning
and small detuning, as it was done in our previous work on DQDs in
GaAs/AlGaAs [138]. Here, Tj is the spin triplet with m = 0. We investi-
gate the dependence of 7} and 75 on temperature and on different system
parameters which were not considered before.

This Chapter is organized as follows. In Sec. 4.2, we present the
Hamiltonian of our model and a short description of the Bloch-Redfield
theory. In Sec. 4.3, we study the relaxation and decoherence in S-7_-
based spin qubits. The case of S-Tj spin qubits is discussed in Sec. 4.4.
Additional decay channels for the studied qubits are listed in Sec. 4.5 and
our conclusions follow in Sec. 4.6. Details of the calculation are shown in
the Appendix.

4.2 Model

Hamiltonian

We consider lateral DQDs in a Si/SiGe heterostructure grown along the
crystallographic direction [001], which we also denote as z. The confine-
ment in the plane perpendicular to z is generated by the gates. The ho-
mogeneous magnetic field B is in this plane. An applied magnetic field
gradient, which is usually produced via a micromagnet, enables control
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over the Bloch sphere of the spin qubit even in the absence of hyperfine
and spin orbit interactions [15, 16, 17, 18].
The Hamiltonian of the system reads

=3 (Héj) +HY + A+ HY + Hé{lph>
j=1,2

+He + Hpp, (4.1)

where j labels the electrons, H, comprises the kinetic and potential en-
ergy of an electron in a DQD potential, H; is the Zeeman term due to
the external magnetic field, Hso; is the spin orbit interaction after a suit-
able transformation that accounts for the effect of higher-energy states
[12, 85, 86, 87, 88], H, is the term that describes the effect of the applied
magnetic field gradient, H,;_,, is the electron-phonon interaction, H is
the Coulomb repulsion, and H,, is the Hamiltonian of the phonon bath.
The details and definitions of Eq. (4.1) are presented in Ref. [138] (Sec. II
and Appendix B), except for the applied magnetic field gradient and
the electron-phonon interaction Hamiltonian which we provide below
in general form for one electron.

The applied magnetic field gradient acts on electrons similarly to the
stabilized nuclear polarization in GaAs DQDs that produces a different
Overhauser field for each QD. The Hamiltonian is therefore of the same
form as for the hyperfine interaction and reads

_b-0'

Hy ===

(PL - PR); (42)
where b appears due to the magnetic field gradient between the QDs, o
is the vector of spin 1/2 Pauli matrices for the electron spin, and P;, and
Pr are projectors for the left and right QD, respectively [138].

Now we consider the electron-phonon interaction in Si. In contrast
to GaAs, only the deformation potential electron-phonon interaction is
present in Si. Another important difference is that the band minimum in
bulk Si is sixfold degenerate. However, because of the strain in
SiGe/Si/SiGe quantum wells this sixfold degeneracy is broken and there
are only two degenerate valleys of lowest energy [81]. The confinement
lifts the last degeneracy [81, 82]. Therefore, following Refs. [139, 140], the
electron-phonon Hamiltonian for our system reads

A A

Hel_phZEdTré'—l—Eul'é"l. (43)
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Here, [ is a unit vector along the direction of the lowest-energy valley, in
our case [001], € is a strain tensor defined as

1 8@61 8uj
Eij N 5 (87’j + 87"1) ’ (44)

where 7, j denote the spatial components, r is the position in the material,
and wu is the displacement operator. The trace of the strain tensor is Tre.
As we consider the valley in the [001] direction, in the end the electron-
phonon Hamiltonian reads

Helfph = EdTI'E -+ Eugzz- (45)

The displacement operator can be represented in the form [138]

h iq-r
o ; 2pV qus Cas (aqs T aT_q5> e, (4.6)

where s € {l,1,1,} stands for the longitudinal and transverse acoustic
modes, q is a wave vector within the first Brillouin zone, and ¢ = |g|. We
choose the normalized polarization vectors such that e, = q/q, e_qt, =
—€g4t,, €_qt, = €qi,, and so F; = — = F4, and F4, = +. A phonon with
properties q and s is annihilated and created by the operators a4, and af ,
respectively. For further calculations we use the density p = 2.33 g/cm?,
the deformation potential constants [140] =; = 5eV and =, = 8.77 eV,
and the averaged sound velocities [97, 98] v; = 9 x 10> m/s, vy, = vy, =
5.4 x 103 m/s. Later on, when we calculate the qubit lifetimes, we can
use the continuum limit and we integrate to infinite ¢ for covenience, as
terms with q outside the first Brillouin zone do not affect our results for
the temperatures considered here. The sample volume V' will cancel out
in the analysis.

In this section we consider the Hamiltonian [Eq. (4.1)] in the basis
|(1,1)To), |(1,1)S), |(1,1)T4), [(1,1)1-), [(0,2)S), |(2,0)S), where the first
and second indices in parentheses correspond to the occupation number
of the left and right QD, respectively, S denotes spin singlet states, and
T denotes spin triplet states. As each minimum of the DQD potential in
the plane of the 2DEG is well approximated by a 2D harmonic oscillator
potential, we use linear combinations of the harmonic oscillator eigen-
functions to describe the in-plane orbital part of the electron state in the
DQD potential [50]. For the explicit expressions of wave functions and
details see Appendix A of Ref. [138]. Due to the strong confinement of
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the electrons in the growth direction, it turns out that the wave functions
chosen along z hardly affect the phonon-assisted relaxation and decoher-
ence processes that we are interested in. In contrast to Ref. [138], where
a triangular potential based on typical GaAs/AlGaAs heterostructures
was assumed, we consider a SiGe/Si/SiGe quantum well and approxi-
mate it by a hard-wall potential

oo, z <0,
V(iz) =< C, 0<z<a,, 4.7)
00, 2z > a,

where (' is a constant with units of energy and z = 0, a. corresponds
to the interface between SiGe (z < 0, z > a,) and Si (0 < z < a). The
ground state wave function in such a potential is

. (2) = \/az sin [%] (4.8)

with a, being a positive length that is interpreted as the width of the
2DEQG in z direction. We take a, = 6 nm for all numerical calculations in
this work. We note that in experiments an electric field is usually applied
along the growth direction of Si/SiGe heterostructures, which changes
the shape of the assumed quantum well potential from rectangular to-
ward triangular. However, as the electrons are strongly confined along z,
the details of the well hardly affect the qubit lifetimes and we find that
our results do not change by more than ~10% when the potential be-
comes completely triangular. As a consequence, our theory is also well
applicable to, e.g., lateral Si DQDs formed in 5i/SiO, systems.
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The Hamiltonian in our basis reads
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where t is the tunnel coupling, U is the onsite repulsion, V. and V_ are
the matrix elements of Coulomb interaction, £; = gugB with g = 2 as
the Si g-factor is the Zeeman splitting, 5 is the Bohr magneton, and B =
|B|. The terms b,, b, and bp are produced by an applied magnetic field
gradient along z, z axes and B, respectively, where the three directions
for z, z, and B form a right-handed basis. For simplicity, we set b, = 0 in
the following, as it can be achieved experimentally using a micromagnet.
The electrical bias (detuning) between the dots is denoted by ¢, where
¢ = 0 is for the unbiased DQD [94].
The electron-phonon matrix elements are

Pro= ((L,1)s] > HY ,101,1)8) (4.9)

7=12

= (LD Y HY (1, 1)T),

7=1,2

Ps = ((1,1)8] Y HY ,1(2,0)8) (4.10)
7=12

= (0,208 > HY ,101,1)8),

7=12

Psr = ((0,2)S] > HY ,1(0.2)8), (411)
j=1,2

Psy = (2,008 > HY ,1(2,0)8). (4.12)

7=12

As evident from the provided equations, these matrix elements have a
similar structure but differ due to the integrals for the orbital parts. We
note that the matrix elements all commute with each other, even though
they still contain the creation and annihilation operators for the phonons.
The matrix element €2 comes from SOI and has the form [88, 138]
o FllopsB o (4.13)
Ir

The function F(L,!.) depends on the distance L between the centers of
the QDs and the confinement length I, = /h?/(mgAE), where mes =
1.73 x 1073! kg is the effective mass of an electron in Si and AF is the
orbital level spacing in each QD. We note that /. determines the Gaussian
decay of the wave functions and F(L,[.) ~ —L when the dots are only
weakly coupled. The Rashba length I = h/(meg«) is related to the SOI
amplitude « in the Rashba Hamiltonian, and 7 is the angle between B
and the axis that connects the two QDs.
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Bloch-Redfield theory

To calculate the relaxation time 7; and decoherence time 75 we use the
Bloch-Redfield theory [86, 96], which describes the dynamics of the qubit
interacting with the bath of phonons. In the following we will consider
S-T_ and S-T; qubits. To decouple the qubit subspace from the other
states, we first apply a unitary transformation to H that diagonalizes

o— Héllzph - H Szph, where (1) and (2) label the first and second elec-
tron, respectively. The transformation matrix for this first step is found
numerically. Depending on the qubit under study (S-7, or S-1_), we
then we perform a Schrieffer-Wolff transformation up to the third order
to take into account both one-phonon and two-phonon processes. The
Schrieffer-Wolff transformation is valid when the matrix elements result-
ing from electron-phonon coupling are much smaller than the energy dif-
ference between the qubit subspace and other states. After the Schrieffer-
Wolff transformation, the qubit subspace is well separated from other
states, which allows us to study the dynamics in terms of an effective
Hamiltonian of the form H, + H, ,.(7) + H,,, where H, is a 2x2 part
that contains information about the qubit without phonons and H,_,,(7)
is the interaction between qubit and phonons at time 7 in the interaction
representation.
Defining the pseudo-spin vector & as a vector of Pauli matrices o3, 0y, 03

in the qubit subpace, where 7, 3, Z are the directions in the pseudo-spin
space, we can represent I, and H,_,, as

H, = Buyos, (4.14)
H, ,=6B(1)- 6, (4.15)

where B, is a positive energy and ¢ B(7) contains electron-phonon inter-
action matrix elements. The expressions for B.g and  B(7) result from all
linear transformations performed before and are newly calculated when-
ever the input parameters or the qubit type change. Following the theory
from Refs. [86, 96], the times T5 and 77 are

1 1 1

ZTQ = 2_T1 + T_cp’ (4.16)
1
1
1
= = J(0). (4.18)

zZ
i
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The quantity Agr is defined as Agr = 2B, i.e., the energy splitting
between qubit states without taking into account electron-phonon inter-
action, and

2 oo
Ji(hw) = ﬁ/ cos(wt)(dB;(0)d B;(7))d. (4.19)

The correlator (6B;(0)dB;(7)) is evaluated for a phonon bath in thermal
equilibrium at temperature 7. The time T, represents the pure dephasing
part in the decoherence time 75.

43 S-T_ qubit

Following the interest in building a qubit based on the S-7_ anticross-
ing [15, 137] we study phonon-induced relaxation and decoherence for
the electron spin states at this anticrossing. Because of tunnel coupling,
magnetic field gradient, and SOI all the states in our basis are hybridized
to some extent. We therefore consider two possible regimes: the state that
mainly consists of |(1,1)7_) (we denote it as |(1,1)7”)) anticrosses with
the state that is mainly |(0,2)S) (|(0,2)5")) or mainly |(1,1)S) (|(1,1)5")).
This can also be seen from the spectrum. In Fig. 4.1a we plotted the de-
pendence of the energy of electron states on the detuning e. The green cir-
cle highlights the region of anticrossing between |(1,1)7”) and |(0,2)5"),
which is shown enlarged in Fig. 4.1b. In Fig. 4.2 we choose different
parameters and show the anticrossing between |(1,1)7”) and |(1,1)5").
When plotting these spectra, the electron-phonon interaction was omit-
ted.

The qubit based on |(1,1)7”)-/(0,2)5")

Here we study the case shown in Fig. 4.1. We plot the dependence of
Ty and 75 on temperature 7" in Fig. 4.3, for which we used the following
parameters: B = 04T, t = 10 pueV, V, = 40 peV, V_ = 39.99 peV, U =
1.2meV, b, =2 peV, L = 150 nm, [, = 42.7 nm (i.e., AE = 200 pueV), and
e = 1.201988 meV. The region where |(1,1)7”) and |(0,2)S’) anticross is
typically quite narrow, and therefore such a high precision in € is needed
to operate exactly in the anticrossing center. That is the point where, if
we take b, — 202 = 0, the energies of |(0,2)S’) and |(1,1)7") are equal,
ie., [(0,2)5") and |(1,1)T_) cross. We take by = 0 to decouple the qubit
subspace from |(1, 1)Tp) [137].
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Figure 4.1: (a) The energy spectrum of two-electron states in a double
quantum dot as a function of detuning e denoting the energy difference
between the two dots. The green circle shows the S-T_ anticrossing,
which is shown enlarged in (b). The parameters used are the same as
for Fig. 4.3. At the anticrossing, the singlet state is of type |(0,2)5).

As SOI enters in Eq. (4.9) together with b,, we neglect it assuming
Q2] < |by|. In lateral SiGe/Si/SiGe QDs, SOI might be due to QD con-
finement or other applied electric fields, imperfections of the quantum
well [141], or interface effects between two semiconductors [142, 143].
According to Ref. [141], the spin-orbit length is [z = 73 ym. Using this
value, we get 2 = —0.095 peV. The SOI due to interface effects between
semiconductors is absent if the amount of atomic monolayers of Si is
even [144]. However, experimental values for any of the three origins
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Figure 4.2: The energy spectrum of two-electron states in a double quan-
tum dot as a function of detuning e¢. The green circle shows the S-T_
anticrossing. The parameters used are the same as for Fig. 4.9. At the
anticrossing, the singlet state is of type |(1,1)5).

mentioned above are not known to us for present-day samples.

In Fig. 4.3 we see that T, ~ 27}, that means the relaxation part dom-
inates over dephasing in 7, [see Eq. (4.16)]. Up to a temperature of
T = 0.08 K, both T and 75 decay slowly and then change their behaviour
to a more rapid decay. To explain this change at around 7" ~ 0.08 K we
plot the one-phonon process decoherence rate (I'y”) and two-phonon pro-
cess decoherence rate (I'>), see Fig. 4.4. These rates contribute to 75 as

1_ Ly =15 + T (4.20)
15

We note that the one-phonon process can lead only to relaxation, it cannot

lead to dephasing [138]. Therefore T';” = I'}”/2, where T'}” is the one-

phonon process relaxation rate. From Fig. 4.4 we can see that Ty’ o T

for the whole interval of temperatures. This is so because the dominant

terms in 'y’ are proportional to a Bose-Einstein distribution,

Iy’ o (e% — 1)~ k:B—T.
Asr

In our case Agr < kgT for all temperatures under consideration, there-
fore the second equality in Eq. (4.21) is justified. The two-phonon pro-

(4.21)
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Figure 4.3: The dependence of T} (red) and 75 (blue) on temperature for
the parameters listed in Sec. 4.3. The anticrossing is between |(1,1)7")
and [(0,2)5").

cess rate I';” has a more complicated dependence on temperature. For
0.03K < T < 0.07K, we find I'?? « C; + C,T°, where C; and C, are
constants, then it grows more slowly, and for 0.5 K < 7' < 1 K'Y oc T
Consequently, the change in the decay of 7} and 75 at T ~ 0.08 K in
Fig. 4.3 is due to the fact that for lower temperatures the relaxation hap-
pens mainly via one-phonon processes, with rate oc 7', and for higher
temperatures two-phonon processes dominate with the rate depending
on higher powers of T'. The crossover between these two regimes occurs
at around 0.08 K (see Fig. 4.4).

As the magnetic field gradient is determined by the design of the ex-
perimental setup, we also plot the dependence of 7} and 75 on b,, see
Fig. 4.5. The parameter values we used are the same as for Fig. 4.3 and
T = 100 mK. Here again 7T, ~ 27}. We can see a plateau up to b, ~ 2 peV
and then a decay for both 7; and 75. To explain this behavior we study
the dependence of I';” and T'5” on b,, see Fig. 4.6. The rate I'}? scales as
F;p x C3 + C4bt, where C5 and Cy are constants. The rate ng does not
change noticeably with b,, and we will comment on this using a simple
model in Sec. 4.3. Consequently, as for smaller b, the rate I';’ dominates,
there is a plateau in the regime of small b,. For b, > 3 ueV the rate I'y”
dominates, therefore both 77 and 75 decay.
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Figure 4.4: The dependence of one-phonon (T'}?, red) and two-phonon
(T';?, blue) components of the decoherence rate 1/7; = I';” + 'y’ on tem-
perature. The parameters are the same as in Fig. 4.3.

In Fig. 4.3 we see that phonon-assisted relaxation and decoherence
are weak compared to the ones usually reported for GaAs. Neverthe-
less, we found regimes where 77 and 75 are in the millisecond range,
so that phonon-assisted relaxation and dephasing may dominate over
other sources of decoherence in the sample. This provides an option to
test our theory experimentally. We suggest to consider two cases: when
the one-phonon process dominates and when the two-phonon process
dominates.

To get the one-phonon process dominating, we use the following pa-
rameters: b, = 10 peV, e = 1.173 meV, T = 100 mK, and the other param-
eters are the same as for Fig. 4.3. This means we have a similar spectrum
as in Fig. 4.1 and stay in the region to the left from the denoted anticross-
ing to have a large splitting between the qubit states, which increases the
one-phonon relaxation rate. In Fig. 4.7 we plotted the dependence of T}
on the applied magnetic field B. Here 7; is mainly determined by the
one-phonon process, therefore T} ~ 1/T'}". The decay scales as 7} o< B~
We note that we do not expect this power-law to be universal for all pos-
sible parameter values.

To test experimentally our theory of the two-phonon process, we sug-
gest to change the magnetic field B around the value where we are ex-
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Figure 4.5: The dependence of T} (red) and 75 (blue) on b,. The temper-
ature for this plot is 7" = 100 mK, and the other parameters are listed in
Sec. 4.3. The anticrossing is between |(1,1)7” ) and |(0, 2)S5").

actly in the center of the anticrossing, and to use rather small b,. We
need b, to be small enough, because at larger b, the one-phonon process
starts to dominate as evident from Fig. 4.6. Therefore, we use b, = 1 eV,
T = 500 mK, and the other parameters as for Fig. 4.3. We plot the B
dependence of 75 and T in Fig. 4.8. Here we see a sharp peak for 75 at
B = 0.4 T, which is the center of the anticrossing between |(0,2)S’) and
|(1,1)T"). Interestingly, dephasing is dominating for B < 0.395T, B >
0.405 T, and the peak itself is limited by relaxation. The relaxation time
Ty is limited by two-phonon processes only at 0.375T < B < 0.425T.
Apart from its usefulness for checking our theory of two-phonon pro-
cesses the peak in 75 (or dip in 7}) is a clear indication of the |(0,2)5")
and |(1,1)7”) anticrossing center, the point which is most interesting for
spin qubit operation [15, 137].

Taking into account that the phonon-induced decoherence still allows
for relatively long qubit lifetimes, we suppose that for the present-day
samples the main source of decoherence in such a qubit will be charge
noise, because the anticrossing region is quite narrow. However, as was
discussed in Ref. [15], the charge noise can be substantially reduced using
t> Fy.
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Figure 4.6: The dependence of one-phonon (I'y”) and two-phonon (I'}")
components of the decoherence rate 1/7, = I'y’ 4+ T';” on b,. The parame-
ters are the same as in Fig. 4.5.

Simple model for the qubit based on |(1,1)7” )-|(0,2)5")

To analyze the results presented above, we propose to consider a simple
model, which besides energy separation arguments discussed below is
also justified by comparison with our numerical calculations. The states
that are closest in energy to our |(1,1)7”)-](0,2)S’) qubit subspace are
|(1,1)T5) and |(1,1)S"). However, |(1,1)T}) is decoupled from the qubit
subspace when bp = 0. Therefore we consider the Hamiltonian in the

basis [(1,1)7"),{(0,2)5), [(1,1)S):
1
~ —Ey 0 ) s5be
H = 0 —e+U—-V_+P —2t+ Pg (4.22)
1 T
ssbe V2t + Py Vi —V_
+ lem

where P = Pgp — Pr. Our numerical calculation also showed that Ps and
Pg can be neglected, therefore we will omit them in this subsection.
First of all we have to find the center of the |(0,2)5")-|(1,1)T") anti-

crossing. For that we diagonalize the phonon-independent part of H in
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Figure 4.7: The dependence of 77 on the absolute value B of the magnetic
field for T' = 100 mK and the parameters in the text. The blue line shows
a power-law decay o« B~*. The detuning e was chosen near (but not
exactly at) the anticrossing between |(1,1)7”) and |(0,2)5").

the basis |5(0,2)),|S(1,1)). This transformation is [94]

1 0 0
U =0 cos(¢/2) —sin(¢/2) |, (4.23)
0 sin(¢/2) cos(¢/2)
where
o —U + V+ + €
cos g V8 (U +V, +e)? (.24
sing = 2v21 (4.25)

B2 (—U+V, e

Consequently, the matrix U HU; corresponds to the Hamiltonian H writ-
ten in the basis {|(1,1)7-), |(0,2)5"), |(1,1)5")}, if we set b, = 0. The anti-
crossing center is the point where the energy of |(1,1)7_) is equal to the
energy of |(0,2)S") (with b, = 0 and P = 0). From this condition we find
the detuning e at which the anticrossing occurs,

22

B+ U-V — .
c=hrT Er—V +V,

(4.26)
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Figure 4.8: The dependence of 7, and 7} on the absolute value B of the
magnetic field for 7' = 500 mK and the parameters in the text. The center
of the anticrossing between |(1,1)7”) and |(0,2)5") is at B = 0.4 T. The
peak of 75 at B = 0.4 T is limited by T3, i.e., T5 ~ 2T}, whereas the valleys
at B < 0.395T, B > 0.405 T are dominated by T,. In this figure, T is due
to two-phonon processes, one-phonon processes are negligible. For T,
two-phonon processes dominate at 0.375 T < B < 0.425T.

Assuming that |b,|, |t|, and P (may, e.g., be estimated via the expecta-
tion value of P?) are much smaller than A = /82 + (U — V, — ¢)2, we
perform a Schrieffer-Wolff transformation up to the third order. The re-
sulting Hamiltonian is then split into the part which does not contain
phonons, the part with electron-phonon interaction, and H,,. To sim-
plify the analysis we apply to this Hamiltonian a unitary transforma-
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tion U, which exactly diagonalizes the part of the Hamiltonian without

phonons,
~ [cos(©/2) —sin(0/2)
Ve = (Sin (©/2)  cos(0/2) ) ’ (4:27)

where the angle O is defined in Appendix 4.A.

After all transformations our Hamiltonian is H, + He;—pn(7) + Hpp, as
it was described in Sec. 4.2. Therefore, in order to understand the results
from Sec. 4.3, we present here the expression for 6 B;(7) which induces
dephasing and the one for § B;(7) which induces relaxation,

SBy(r) — 12; - {1—%) cos [%} (G cos© — Gy sin ©)
+P%(1) (G308 © — Gy sin @)} , (4.28)
§B:(1) = ﬁ [15(7) cos? {%ﬁ} (G1sin© + Gy cos ©)
+P2(1) (Gysin © + G4 cos @)} . (4.29)
We note that § B;(7) = 0, and we introduced
Gi = V2b,sin M (02 + 32A% — b2 cos ¢) | (4.30)
Gy = 4A (b2 —16A% — b2 cos ¢) (4.31)
Gy = 2V/2b,sin¢cos m (
+5P(r) cos [2¢] + [8A — 6P(7)] cos ¢) (4.32)
G, = 16Asin?6 (A + P(7) cos ¢) (4.33)

for convenience. Using Egs. (4.28) and (4.29) we get the expressions for
dBz(0)0Bz(1) and 0B;(0)6B;(7). To simplify them we use the fact that
© ~7/2and A > |b,|, and get

5B:(0)8Bx(r) [16 cost [£] A2P(0)P(r)— (4.34)

~ s

4 cos? [£] cosqbsm2¢[P3(0) (1) + P(0)P3(r )] + sin’ ¢P2(0)]52(7') :
6B:(0)6Bz(1) = 55 cos* [£] sin? [£]b2 x (4.35)

[cos B[5 cos ¢ — 3][P3(0)P(7) + P(0)P3(7)] + [2 cos p — 1]2P2(0) P2(7)].
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The first term in the brackets in Eq. (4.34) is responsible for a one-phonon
process, and the rest for two-phonon processes. We note that in the nu-
merical calculations in this work we neglected terms of the type P?(0)P(7)
and P(0)P3(7). The relaxation mechanism that results from these terms
can be interpreted as a higher-order correction to the standard one-phonon
process. In the presence of phonons which are neither absorbed nor emit-
ted, one phonon matches the Zeeman energy and ensures energy conser-
vation. Furthermore, analogous to the standard terms of a one-phonon
process, such terms do not contribute to dephasing at all [138].

The coefficient of P?(0)P?(r) in Eq. (4.34) is more than 1000 times
larger than the coefficient of the same term in Eq. (4.35) for the parameter
values we used for Fig. 4.3. This suggests that two-phonon-based de-
phasing is negligibly small compared to two-phonon-based relaxation,
and explains why in Fig. 4.3 we have T, ~ 27). Qualitatively, the pre-
sented relaxation via two-phonon processes can be understood as fol-
lows. At the anticrossing, the eigenstates of the qubit Hamiltonian are ap-
proximately [|(0,2)S") £ |(1,1)7_)] /v/2. Two-phonon Raman processes
[112, 113, 114, 115] based on the singlet states of the biased DQD [138,
145] efficiently shift the energy of |(0, 2)S’), which corresponds to a trans-
verse coupling in the qubit subspace and therefore leads to relaxation.

From Egs. (4.34) and (4.35) it is evident that the dephasing part de-
pends on b, strongly, whereas for relaxation b, enters only with Agy in
J5(Asr). The explicit expressions for [* cos (Aspr/h)(P?(0)P?(7))dr
show that Agr enters in the dominating terms as ¢+ Agr/(hv;), where hq
is the momentum of a phonon. The integrals over ¢ (continuum limit) can
simply be performed from 0 to oo and converge because of Bose-Einstein
terms or because of the Gaussian terms that result when integrating out
the spatial dependence of the electron wave functions combined with os-
cillations of type ¢¢". We note that these Gaussian terms have decayed
when the phonon wavelength is (much) smaller than the size of a QD
[86, 89, 95]. The main contribution to the rates is provided by the part of
the integrals with ¢ > Agr/(hv;) within the range of parameters used for
Figs. 4.3 and 4.5. Therefore, for the two-phonon relaxation process, the
effect of b, is negligible, which is seen in Fig. 4.6.

The qubit based on |(1,1)7" )-|(1,1)S5")

Now let us consider the case where the qubit is based on the anticrossing
|(1,1)1")-|(1,1)S5"), as shown in Fig. 4.2. For this, we plot the temperature
dependence of 77 and 75 (see Fig. 4.9) using the following parameters:
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Figure 4.9: The dependence of relaxation time 7} (red) and 75 (blue) on
temperature. The anticrossing is between |(1,1)7” ) and |(1,1)5’). For the
parameters, see text.

B =45mT,t = 10 ueV, Vo, = 40 peV, V_ = 39.99 peV, U = 1.2 meV,
b, = 0.1 ueV, L = 150 nm, [, = 42.7nm, ¢ = 0.68737 meV. We see that
again T, ~ 2T;. In Fig. 4.10 we plotted the dependence of I';’ and TI'5?
on temperature. The transition where the two-phonon process starts to
dominate over the one-phonon process is now at lower temperature than
for the case plotted in Fig. 4.4. We note that at 0.03 K < 7" < 0.08 K the
power-law for the two-phonon process rate is T'y’ oc Cs + CsT'°, where
(5, Cg are constants.

Remarkably, from Fig. 4.9 it follows that phonon-induced relaxation
and decoherence are extremely slow. However, as we noted before, we
neglected the effect of SOI in this calculation. When b, is very small, it
can be that SOI effects are noticeable. Let us assume there is Rashba SOI
in our sample. Then, for the values of b,, £, L, and [. we use in this sub-
section, the Rashba SOI length must be I ~ 1.6 um for 22 to be of the
same absolute value as b,. We note that in GaAs/AlGaAs heterostruc-
tures [ of the order of 1 um has been reported [105]. Although we are
not aware of precise data for SOI in Si/SiGe-based QDs, we expect it to
be weaker (I longer) than in GaAs/AlGaAs.

We note that the |(1,1)77)-|(1,1)S")-type qubit is also robust against
charge noise, because the qubit is operated at the “sweet spot”, where
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Figure 4.10: The dependence of one-phonon (I'y”) and two-phonon (I';?)
components of the decoherence rate on temperature. The anticrossing
is between [(1,1)7”) and |(1,1)S"). The parameters are the same as in
Fig. 4.9 and are listed in the text.

0Agr/0e ~ 0, and the anticrossing region is wide [137].

44 S 'TO quit

In this section we consider the qubit based on |(1,1)5")-|(1, 1)Tf). There
are two cases which we are interested in. The first one is the region of
large detuning, where |(0, 2)5’) is close to the qubit subspace. The second
one is the zero-detuning case, where we have to take excited orbital states
into account. We already considered these cases in our previous work on
DQDs in GaAs/AlGaAs heterostructures, Ref. [138]. Here we consider
a DQD in a SiGe/Si/SiGe quantum well and present the dependence of
T and 75 on different quantities which were not studied in our previous
work.

Large detuning

In this subsection we consider the region near the anticrossing of |(1, 1).S")
and |(0,2)5"), where the state |(0,2)5") is sufficiently closer to the qubit
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subspace than states with excited orbital parts, so that the latter can be
omitted. We use the Hamiltonian from Eq. (4.9) and calculate 7} and 75
using the theory described in Sec. 4.2. At the end of this subsection we
present a simple analytic model and discuss our numerical results.

Dependence on the applied magnetic field gradient

We study the dependence of 77 and 75 on the energy b associated with
the magnetic field gradient. For Fig. 4.11 we used B = 0.4 T, ¢t = 4 eV,
Vi, =40 ueV, Vo = 39.99 eV, U = 1.2meV, b, = 0, L = 150 nm, [, =
42.7nm, and € = 1.144 meV. The chosen confinement length corresponds
to the level splitting AE = 200 peV, which allows us to neglect the effect
of the excited states compared to |(0,2)S’) due to the large energy gap. As
we took b, = 0, we consider non-zero Rashba SOI. The Rashba SOI length
we use is quite short, [ = 2 um, and we take 1 = 0 to make the effect of
SOI maximal [see Eq. (4.13)], resulting in 2 = —3.48 peV. However, our
numerical calculation showed that the effect of SOl in this regime of large
detuning, even with a rather small [z and n = 0, is negligible. For the
parameters described above the resulting Agr is in the range 1.8 ueV <
AST < 2.6 ,ueV

From Fig. 4.11 we see that the behavior of 7} and 75 is similar at
T = 100 mK and 7" = 500 mK. We note that in contrast to our previ-
ous work for GaAs QDs[138], the relation 7,, < 77 does not hold for
the whole range of parameters. For bp < 0.8 ueV the pure dephasing
part T, dominates over T}, bringing 75 to much lower values than T;.
However, as the magnetic field gradient enhances relaxation processes
strongly, T} decays rapidly with b, becoming of the order of 7, and even
Ty < T, for by > 1.6 peV. The strong dependence of relaxation on bp
is easy to understand from the Hamiltonian [Eq. (4.9)], because b5 /2 is
the off-diagonal term between |(1,1)S) and |(1,1)7}) and the only term
that connects |(1,1)7;) to other states. This means that relaxation occurs
only in case bp # 0 and strongly depends on the value of bz. We obtain
Ty by for by < 1 peV in Fig. 4.11 (both a and b).

Dependence on temperature

We also plot the temperature dependence of 77 and 75 (Fig. 4.12). For
this plot we used bp = —1 peV and otherwise the same parameters as for
Fig. 4.11. The splitting between the qubit states |(1,1)5") and |(1, 1)7}) is
Agr ~ 2 peV. From Fig. 4.12 we see that both 7, and T3, as expected,
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Figure 4.11: (a) The dependence of 7; (red) and 75 (blue) on bp for a
S-Ty qubit at large detuning. The temperature is 7' = 100 mK. The de-
coherence time 75 is slightly increasing (except for the last point) with
increasing b, whereas the relaxation time decreases drastically. (b) The
same dependence as in (a), but at 7 = 500 mK. Other parameters are
given in the text.

decrease with temperature. At very low temperatures, i.e., 7' < 0.06 K,
T, > T, however, then T;, decays faster than 7;. For 0.5 K < 7T < 1K,
their power-laws are the same, oc T~

To understand why 75 (similarly for 77) decays so slowly for T' <
0.06 K and then faster, we plot the temperature dependence of I';” and T'5”
(see Fig. 4.13). Here we see that for 7' < 0.05 K the one-phonon process
dominates and T;p o« T, which gives a slow decay of 7} and 75 with
temperature. The origin of this dependence of I'}” is the same as the
one explained in Sec. 4.3. For temperatures 7" > 0.1 K the two-phonon
process dominates. Therefore, as Fg” x T* for 0.5 K < T < 1K, we see
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Figure 4.12: The dependence of 75 (blue) and 7} (red) on temperature T’
for a S-T; qubit at large detuning e.

the same power-law for 1/75. With a similar analysis for 77, we find that
for 0.5 K < T < 1Kalso 1/7}  T* due to two-phonon processes. Since
we have a rather large bp, the dephasing part 7, is of the same order as
T;, as was shown in Sec. 4.4. The reason for choosing here a large bp are
the reported values for applied magnetic field gradients in experiments
with micromagnets [15, 16, 17, 18].

Dependence on detuning

Here we show that in the anticrossing region even small changes of ¢
affect both T and 75 strongly. Therefore we present the dependence of
Ty and 75 on ¢, see Fig. 4.14, where we used the same parameters as for
Fig.4.11 and took bz = —1 eV and T' = 100 mK. In the range of ¢ shown
in Fig. 4.14 the splitting Agy takes values in the range 1.3 peV < Agp <
2.7 neV. We see that even though the change of ¢ is only 30 peV, the
relaxation time and decoherence time both change drastically. The main
reason for this behavior is that in this region |(0, 2).S’) very quickly drops
in energy with ¢ and hence comes closer to the qubit subspace.
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Figure 4.13: The dependence of one-phonon (I'y”) and two-phonon (I';")
components of the decoherence rate on temperature 7. The parameters
are the same as for Fig. 4.12 and are provided in the text.

Dependence on tunnel coupling

To find the optimal regime for qubit operation we present the depen-
dence of 77 and 75 on the tunnel coupling ¢ between the dots, see Fig. 4.15.
For this calculation we used by = —1 peV and the other parameters as for
Fig. 4.11. The S-Tj splitting changed with 3 eV < t < 8 peV in the in-
terval 1.4 eV < Agr < 5.9 peV. For Fig. 4.15a we used 7' = 100 mK and
for Fig. 4.15b T" = 500 mK.

From Fig. 4.15a we see that both 77 and 75, decay with ¢, however, the
forms of their decays are different. The decay of 75 is close to the power-
law T, o« C; + Cgt=*, where C; and Cy are constants (the blue line in
Fig. 4.15a). In Fig. 4.15b we see that T, decays with ¢. However, T} grows
with ¢ for t > 4 peV.

To understand this behavior of 7; we plot the dependence of relax-
ation rates due to one-phonon (I'}”) and two-phonon processes (I'?) on t
again for 100 mK and 500 mK (see Fig. 4.16). The rates satisfy

/Ty =T, =T+ 1%, (4.36)

In both Figs. 4.16a (100 mK) and 4.16b (500 mK) the one-phonon rate
grows with ¢, whereas the two-phonon rate slowly decays at ¢ > 4 peV.
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S-Ty qubit at 7' = 100 mK. Details are described in the text.

The difference in behavior of 7} in Figs. 4.15 a and b arises from the
fact that for the lower temperature, i.e., 100 mK, for ¢ > 6 peV the one-
phonon relaxation rate dominates, which makes 77 decrease with t. How-
ever, at larger temperature, 7' = 500 mK, the two-phonon process starts
to dominate (see Fig. 4.16b), which makes 7 grow with ¢.

Simple model for the S-Tj, qubit at large detuning

To understand the dependences on different parameters presented above,
we consider a simple model. Similarly to the simple model of Ref. [138],
we consider the Hamiltonian

0 be 0
O=\% v, -V —V2t |+ Hp, (4.37)
0 —V/2t —e+U—-V_+P

in the basis |(1,1)7}), |(1,1)S), and |(0, 2).S), because the effect of |(0,2)S)
on the qubit lifetimes is dominating. Here P = Psp — Pr, and we note
that the electron-phonon interaction matrix elements Py and P} have a
negligible effect on 7} and 7, and were therefore omitted. To separate
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Figure 4.15: (a) The dependence of T, (blue) and 7} (red) on the tunnel
coupling ¢ for an S-T; qubit in a biased DQD. Here the temperature is
100 mK, for the other parameters see text. The blue line shows the power-
law C; 4+ Cst~*. Both T} and Ty decay with ¢. (b) The same dependence
as in (a), but at a higher temperature 7' = 500 mK. Here we see that T}
grows with ¢ in contrast to (a).

the qubit subspace from |(0, 2).S), we perform a second-order Schrieffer-
Wolff transformation assuming that |¢| and P are small compared to U —
e — Vi — |bg|/2. Then we apply a unitary transformation to the result-
ing 2x2 Hamiltonian that diagonalizes the phonon-independent part,
as it was done in Sec. 4.3. Consequently, the §B; and dB; that we de-
rive from the qubit Hamiltonian characterize 7} and T, respectively [see
Egs. (4.16)—(4.18)]. The parameters we use for our calculation allow us to
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rate (s71) <=

assume V, ~ V_ and simplify the expressions for 6 B; and ¢ B; as follows:

1 [bpt? (b5t + 2(12G2 + GE — 4t%)) -
0 = 4| = @
bt (G2 — t2)152(7)} , (4.38)
0B:(7) ~ [t2G5 [4£2(262 — G2) + 13,(2G2 — 3t*)| P(7)

1
2G5Gg’

AR+ 4(G2 — 2t2)]152(7)} (4.39)
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where we introduced
Gy = U-V, —e¢ (4.40)

t4 2 2 4 22
Ge = Gg\/bZB(tZ—Gg)QJr (b5 jgf @) (4.41)
5

Using these expressions, we will now discuss the numerical data shown
in Sec. 4.4. As a first example, we start with the remarkable decay of T}
by two orders of magnitude seen in Fig. 4.11. In the dependence of 7} on
bp the two-phonon process is dominating, especially for smaller b and
larger temperature (for bp = 2 peV and T = 100 mK, T7/T'}? ~ 2.7). To
analyze this dependence we therefore consider only two-phonon process
terms in ¢ B;, i.e., the prefactor before P (7)?. From Eq. (4.38), we see that
the numerator of the prefactor is linear in bp. The denominator is also a
function of bp, however it is of the form \/Cyb%, + C19b% + Cy1, where C,
Cho, and C'; are constants. Consequently, the power-law 77 o bl’f holds
very well for bp < 1 peV and slightly deviates for larger bp.

The dependence of T} on the detuning e plotted in Fig. 4.14 is more
complicated. Our numerical calculations show that in this case the two-
phonon process again dominates. To understand the detuning-dependen-
ce of T} we therefore study the prefactor before P?(7) again. For the range
of e presented in Fig. 4.14, the dependence of this prefactor on € is approx-
imately of the type (U — V. — €)%, and consequently 7} o (U — V. — ¢€)°.

The dependence on the tunnel coupling ¢ is very complex. As we see
from Figs. 4.15 and 4.16, both one- and two-phonon processes contribute
significantly to 77 and 75. However, Egs. (4.38) and (4.39) can be greatly
simplified when focusing on certain regimes. For example, we see from
Fig. 4.16 that the two-phonon process dominates in 7} for 7' = 500 mK. If
we consider the prefactor before P?(7), we find that the dependence on ¢
is indeed negligible for t < 7 eV, as seen for I'Y” in Fig. 4.16.

Zero detuning

For the case of zero detuning, i.e., e >~ 0, we have to take into account the
first excited orbital states. We will therefore consider our Hamiltonian
in the basis |(1,1)S), (1, 1)T5), |(1, )T4), (1, )T-), [(1%, 1)S), |17, 1)T.),
|(1*,1)T5), |(1*,1)T_), where the asterisk indicates that the electron in the
QD is in the first excited state [138],
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Here, the splitting Jg takes into account the hybridization of |(0, 2)S) and
1(2,0)S) with |[(1,1)S) and is defined as

Js = %(\/16t2+(U—V+)2—U—V++2V). (4.43)
The matrix elements P°, P, PS' result from the electron-phonon interac-
tion in the same way as was shown in Sec. 4.2, but for the corresponding
excited states. The matrix element Py is a linear combination of electron-
phonon interaction matrix elements including the effect of |(2,0)S) and
|(0,2)S). The terms €2y, €29, 23 arise from SOI. The derivation of all these
matrix elements is described in detail in Ref. [138], Appendix C.

We then perform an initial unitary transformation, followed by
a Schrieffer-Wolff transformation, and apply Bloch-Redfield theory as de-
scribed in Sec. 4.2 and plot the temperature dependence of 7} and 75, see
Fig.4.17. Here we take B = 0.4 T, t = 24 eV, U = 1.2 meV, V., = 50 peV,
V_ =495 peV, AE =200 peV, L = 150 nm, [ = 2 um, and bg = —1 peV.
Consequently, Jg = 1.5 peV and Agr = 2.5 peV. Comparing Fig. 4.17
with Fig. 4.12 we see that the qubit lifetimes are several orders of mag-
nitude longer than in the case of large detuning. This makes the zero
detuning regime favorable for S-T qubits, which was also shown for
DQDs in GaAs/AlGaAs in our previous work [138].

The calculations for Fig. 4.17 were done with the orbital excitation
along the axis that connects the QDs. The decay rates resulting from
excitation along the orthogonal direction do not change the qualitative
picture, which is sufficient for our consideration. For Fig. 4.17 we chose
n = 0. If we take n = 7/2, the rates are either smaller or of the same order
as for = 0. States of type (1,1*) with the excited electron in the right
QD will change the results only by factors around 2, and therefore were
not included for simplicity.

The valley degrees of freedom were neglected in our model because
valley splittings around 1 meV were already realized experimentally [82,
83, 84], which is a large gap compared to the orbital level spacing AE =
200 peV. While valley-related effects are strongly suppressed when the
valley splitting is large, we note that they can be a significant source of
decoherence when the splitting is small [80, 132, 146]. Therefore, setups
with a large valley splitting are usually favorable when implementing
spin qubits in Si/SiGe heterostructures, which is the case that we focus
on in this work.



CHAPTER 4. PHONON-ASSISTED DECAY OF SINGLET-TRIPLET

QUBITS IN SI/SIGE QUANTUM DOTS 97
T R .
o 104t ‘ .
£ LT
“ 100t ® 12 . ‘.
T * . .
1k - : . . * e
005 0.10 0.0 0.50 1.00
T (K)

Figure 4.17: The dependence of 75 and 7} of a S-T, qubit on temperature
for the unbiased case ¢ ~ 0. The parameters are provided in Sec. 4.4.

4.5 Comparison with other decay mechanisms

In our previous calculations for S-T; qubits in GaAs DQDs [138], we
found that the considered one- and two-phonon processes may very well
correspond to the dominant decay channels in an experiment. In con-
trast, for the Si DQDs studied here, the obtained decay times for singlet-
triplet qubits are relatively long, at least for many parameter regimes,
and so it is well possible that the experimentally feasible qubit lifetimes
will be limited by other mechanisms, some of which we briefly discuss
below. Nevertheless, even if other mechanisms turn out to dominate in
standard regimes, we identified and proposed ways how our theory can
be confirmed experimentally, which would be a desirable contribution
to understanding and assessing the role of the discussed one- and two-
phonon processes in these Si-based systems.

Among the most relevant noise sources for electrically controllable
qubits is charge noise [10, 147, 148], which may be due to charge traps
within the heterostructure or noise from the gates. For instance, electrical
noise was considered as a major obstacle for the implementation of high-
quality two-qubit gates between S-Tj qubits in GaAs [53]. Theoretical
studies suggest that the effects of charge noise in GaAs and Si are similar
to a great extent [149, 150]. As evident from, e.g., the pure-dephasing
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model discussed in Ref. [151], the resulting decay will depend both on
the spectral density of the noisy fluctuations in the level splitting of the
qubit and on the details of the operation scheme, as suitable pulse se-
quences for dynamical decoupling may strongly prolong the dephasing
time [5, 8, 46, 53, 152, 153]. Furthermore, decoherence due to charge noise
can be much suppressed by operating the qubit at a sweet spot, where the
level splitting of the qubit is insensitive to electric field fluctuations. This
is a particularly advantageous feature of S-T; qubits in unbiased DQDs
[59, 154] and S-T_ qubits (especially those based on |(1,1)7”)-|(1,1)5"),
see Sec. 4.3) operated at the anticrossing [137].

While we considered here the Bloch-Redfield theory and studied the
phonon-assisted relaxation and decoherence that results from one- and
two-phonon processes, such as the two-phonon Raman process [112, 113,
114, 115, 145], a spin-boson model was adopted in Ref. [155] in order to
describe pure dephasing of S-T;, qubits in the absence of any real or vir-
tual phonon absorption or emission. In the calculations of Ref. [155], in-
teractions between the electrons and a dissipative phonon reservoir lead
to an exponential decay of the qubit coherence, and the associated de-
phasing time depends strongly on the overlap of the electron wave func-
tions and the decay properties of the phonon bath. In contrast to our
model, where the qubit lifetimes in GaAs turned out to be limited by the
piezoelectric electron-phonon coupling [138], the lifetimes calculated in
Ref. [155] for both Si and GaAs are limited by the deformation potential
coupling. Depending on the experimental setup this additional decay
channel might dominate, particularly for strongly overlapping quantum
dots in Si, and it can be suppressed by moving the two dots farther apart
[155].

As mentioned before in Sec. 4.4, valley-related effects can become an
important source of decoherence if the energy splitting between valleys
is not sufficiently large[80, 132, 146]. Among other things, disorder or
interface effects for Si/SiGe and Si/SiO, can play a significant role here
[80, 146, 156, 157, 158, 159]. When the valley splitting is large, however,
qubit decoherence due to the valley degrees of freedom is suppressed,
and splittings of the order of 1 meV or even more are experimentally
teasible [81, 82, 83, 84, 160].

Finally, the coherence of qubits in Si/SiGe heterostructures can be
lost due to interaction with the nuclear spins, although the hyperfine-
induced dephasing time of 360 ns (no echo pulses) reported for a Si DQD
[117] is already one to two orders of magnitude longer than the typical
values for GaAs [5, 42, 43, 44]. Ultimately, however, the hyperfine cou-
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pling will not present a limiting factor for the qubit lifetimes, since Si and
Ge can be grown nuclear-spin-free.

4.6 Conclusions

We considered S-T_ qubits in the anticrossing region for the two cases
where the singlet is mainly |(0,2)S) and where it is mainly |(1,1)S5). In
the latter case, 77 and 75 turned out to be much longer than in the for-
mer one. We showed that the magnetic field gradient reduces 7; and 75
substantially, when it is above a certain value at which the one-phonon
process starts to dominate over the two-phonon process. This follows
from the fact that the magnetic field gradient provides the splitting in
the anticrossing, and therefore the one-phonon process is very sensitive
to its change. In contrast, two-phonon-based relaxation does not change
noticeably in the range of parameters we use, and two-phonon-based
dephasing is very weak even though it does depend on the magnetic
tield gradient. We proposed regimes where our theory of one- and two-
phonon processes may be experimentally tested. Remarkably, 75 (77) has
a peak (dip) at the center of the S-T_ anticrossing in the dependence on
the applied magnetic field (Fig. 4.8). As the external magnetic field can
easily be changed in an experiment, this peak (dip) might be an experi-
mental indication of the center of the anticrossing, which is a regime of
interest e.g. for Refs. [15, 137].

We also studied S-T; qubits in the regimes which were presented in
our previous work on DQDs in GaAs/AlGaAs [138], i.e., at large de-
tuning in the anticrossing region of the singlets and at zero detuning.
The key result that small detuning is much more favorable regarding
the qubit lifetimes than large detuning is valid here too. We showed
that in the anticrossing region even small changes in ¢ may shorten 73
and 75 by two orders of magnitude. We note that the relation 7, < 77,
shown in our previous work for the regime of large detuning, does not
hold for the usual parameters of experiments with SiGe/Si/SiGe DQDs
because of a rather large applied magnetic field gradient. We showed
that the magnetic field gradient can reduce 7} by orders of magnitude.
We demonstrated that the dependence of 7} on tunnel coupling is qual-
itatively different for different temperatures, which is explained by the
behavior of one- and two-phonon processes. Our study of the effect of
various system parameters on 7; and 75 shows ways how to prolong the
phonon-based decoherence and relaxation times by orders of magnitude.
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4.A Diagonalization of the Hamiltonian in the
S-T'_ basis

To diagonalize the part of the Hamiltonian that does not contain phonons
after the Schrieffer-Wolff transformation in Sec. 4.3, we use a unitary

transformation ©/2) n(6/2)
cos —sin
Us = (sin (0/2)  cos(0/2) ) ! (4.44)

where the angle O is defined as

03(8/2) = ——s, (4.45)

sin (9/2) = \/%, (4.46)
and
. 1 (4.47)

X
sin [qﬂ V2A (b2 — 32A2 + b2 cos ¢)

(4b,A%(1 4 cos ¢) — b cos® E] cos ¢ +

+\/COS4 [%} b2(b2 cos ¢ — 8A2)2 + 2A2(h2 — 32A2 + b2 cos $)? sin? {%ﬁ} ) :

d = 1. (4.48)
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Magnetic structures are promising platforms for many modern de-
vices, e.g. memory [19], sensors [161], and quantum computation hard-
ware [38]. The opportunities to get an ordered magnetic phase in the bulk
and low-dimensional systems due to Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction [162, 163, 164, 165] were studied in a number of the-
oretical and experimental works [21, 22, 23, 24, 25, 26]. The prominent
feature of RKKY interaction in 1D systems is the ordering of localized
spins into a helix [1, 28].

When the current is driven through the system of electrons and nu-
clei, the spin polarization can be swapped between the two subsystems
through the hyperfine interaction, leading to dynamic nuclear polariza-
tion effects [166, 167, 168, 169, 170, 171]. If the polarization of current car-
rying electrons and localized spins differ, the spin-transfer torque arises
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[30, 31], important for dynamics of domain walls [172, 173] and enhanc-
ing the tilting of the spiral structure in helimagnets [174]. Closely related
is the dynamic nuclear polarization, arising e.g. in helical edge states of
topological insulator. The backscattering of helical electrons can be of
different origins, such as assisted by phonons [175], magnetic impurities
[176], or absence of axial spin symmetry [177]. It was shown that nuclear-
assisted backscattering of electrons due to hyperfine interaction induces
nuclear polarization when the current is driven through the edge states
of topological insulator [178, 179].

The main motivation for our work comes from the recent experiment
by Scheller et al. [29], where the conductance of a cleaved edge over-
growth GaAs quantum wire was measured. The measurements showed
that the conductance of the first mode becomes ¢?/h at low temperatures
instead of the naively expected 2¢?/h. This suggests the lifting of electron
spin degeneracy. The possible explanation is the presence of a helical nu-
clear spin polarization that gaps out one subband and thus provides an
electron spin selection. Further ways to confirm the presence of the nu-
clear spin helix were suggested theoretically, by means of nuclear mag-
netic resonance [180], nuclear spin relaxation [181], and quantum Hall
effect anisotropies [182].

Low-dimensional condensed matter systems with strong spin-orbit
interaction (SOI) have attracted much attention both theoretically [183,
184,185, 186, 187] and experimentally [188, 189, 190, 191] for their realiza-
tion of nontrivial momentum space topology [185]. A particular example
of such systems are semiconducting Rashba nanowires in a helical state,
in which the Rashba SOI [192], locks the spin of the electron to its direc-
tion of motion. In a Rashba nanowire, the helical state can be obtained by
tuning the chemical potential into the partial gap at zero momentum in-
duced by a magnetic field. Insulating and superconducting states of he-
lical Rashba wires can host Jackiw-Rebbi [193, 194] and Majorana bound
states around topological defects [195].

Not only as a prerequisite for the creation and identification of these
exotic bound states, but also on its own right, it is important to gain infor-
mation about the strength of the SOI, and to detect signatures of the heli-
cal state in nanowires. For example, the drop of the conductance of a bal-
listic conduction channel from 2¢?/h to €2 /h as a function of Fermi level
can serve as an experimental probe of the helical state [1, 29, 196, 197].
Signatures of the helical state can also be found in the electron spin sus-
ceptibility [198]. So far, the SOI in nanowires has been measured only in
quantum dots (via transport) [199, 200, 201], where, however, the Rashba
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SOI of interest is masked by the one that is induced by the dot confine-
ment potential.
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We study the effect of bias voltage on the nuclear spin polarization of a
ballistic wire, which contains electrons and nuclei interacting via hyperfine
interaction. In equilibrium, the localized nuclear spins are helically polar-
ized due to the electron-mediated Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction. Focusing here on non-equilibrium, we find that an applied bias
voltage induces a uniform polarization, from both helically polarized and
unpolarized spins available for spin flips. Once a macroscopic uniform po-
larization in the nuclei is established, the nuclear spin helix rotates with
frequency proportional to the uniform polarization. The uniform nuclear
spin polarization monotonically increases as a function of both voltage and
temperature, reflecting a thermal activation behavior. Our predictions of-
fer specific ways to test experimentally the presence of a nuclear spin helix
polarization in semiconducting quantum wires.
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6.1 Introduction

In this chapter we propose and study a complementary method to detect
nuclear spin helical polarization in the wire. It is based on the effect of
bias voltage applied to the wire and therefore straightforward to perform
experimentally. We investigate how the bias voltage applied to the wire
affects its nuclear spin polarization. We assume that at zero bias and fi-
nite temperature, nuclear spins are partially polarized into a helix due to
the RKKY interaction. We find that an applied voltage induces a uniform
nuclear polarization from both helical and non-polarized nuclear spins
available for nuclear spin flips via electrons. Therefore, upon increasing
the voltage the helical nuclear polarization drops, while the uniform po-
larization grows, and the total polarization grows too. For small voltages
and increasing temperature, the uniform polarization grows because of
thermal activation of electrons, while the helical polarization dramati-
cally drops in magnitude. Once a macroscopic uniform polarization has
developed, the remaining nuclear spin helix rotates as a whole around
the axis along the uniform polarization. Since the helical polarization af-
fects the conductance of such systems [1, 28, 29, 182], these predicted
features are expected to show up in the voltage and temperature depen-
dence of the transport currrent and thus they can be tested experimen-
tally. Recently, cantilever-based magnetic sensing techniques have been
reported which enable nuclear spin magnetometry of nanoscale objects
such as the nanowires considered here [202, 203]. Such powerful tech-
niques offer promising perspectives for direct experimental tests of the
results obtained in this work.

This Chapter is organized as follows. In Sec. 6.2 we present the
Hamiltonian of our model. In Sec. 6.3 we describe the properties of the
electron bath. The derivation of the Bloch equation for the total nuclear
spin in the wire is discussed in Sec. 6.4. The resulting nuclear spin polar-
ization and its dependence on the parameters of the system are presented
and discussed in Sec. 6.5. Our conclusions follow in Sec. 6.6. Additional
information about our calculation is given in Appendix.

6.2 The model

We consider a one-dimensional electron gas and localized spins in a semi-
conductor nanowire. We will refer to these localized spins as nuclear spin
in the following, however, they can be also of other origins, such as e.g.
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magnetic impurities, etc. The electrons and nuclei interact via the hyper-
tine interaction described by the Hamiltonian

1
Hpyp = 5A051\¢L(RL)\25(7’ —R)o -1, (6.1)

where A is a hyperfine constant of the material, p, is the nuclear spin
density, ¢, is the transverse part of electron wavefunction, r denotes the
electron position along the wire, (R, R ) is the position of the nucleus
along the wire and in the transverse direction respectively, o is an elec-
tron spin operator, and I is a nuclear spin operator (in units of 7) with the
magnitude /. We assume that the transverse part of the electron wave-
function ¢, (R) is constant in the wire cross-section, |, (R,)|*> = 1/C,
where C' is the wire crossection area. We parametrize it alternatively by
the number of nuclear spins in the cross-section, N, = Clapy, with a be-
ing the lattice constant. In GaAs py = 8/a®, a = 0.565 nm, A = 90 peV,
I = 3/2, and N, is typically of the order of 10°. Finally, we introduce
N = L/awith L the wire length (typically of order microns), which gives
NN, as the total number of nuclear spins in the wire.

We note that in the case where the “wire” is not physically separated
from the surrounding medium, the extent of the electronic wave function
(confined, e.g., electrostatically) in the transverse direction sets the diam-
eter of the wire in our model. In such a case we assume that the localized
spins, if present outside the wire volume, are not ordered, meaning the
surrounding medium is a paramagnet. Such an environment would pro-
vide an additional dissipation channel, but would not change the wire
spin order, and thus our conclusions, in any qualitative way.

The total Hamiltonian reads

h2
H,,; = —%af + Hpyp, (6.2)

where m is electron effective mass and £ is the Planck constant. If the hy-
perfine interaction, Eq. (6.1), is weak on the energy scale of the electrons,
its effects can be treated perturbatively. The condition is quantified by
A < ep, where ¢ is the Fermi energy of the electron system. This con-
dition is well satisfied in the cases we consider here. A Schrieffer-Wolff
transformation on H,, perturbatively in Hy,,, i.e., in order A/ecp, results
to leading order in an effective interaction between the localized spins,
the RKKY interaction [24, 162, 163, 164, 165, 204],

HRKKY - ZIZ N ‘]UI] (63)
1,J
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Figure 6.1: A sketch of a conducting wire (yellow cylinder) with itin-
erant electrons (not shown) that couple to localized nuclear spins (red
arrows) via hyperfine interaction. As a result, a helical nuclear polar-
ization emerges below a critical temperature. The blue spiral is a guide
to the eye showing the direction of the helical polarization. The helical
plane is chosen to be perpendicular to the wire axis (which need not be
the case in general).

Here, the indexes 1, j label the nuclear spins and the RKKY coupling .J;; =
J(|R; — R;|) is related to the static spin susceptibility of electrons (see
Eq. (C1) and below in Ref. [182]), giving rise to the spatially dependent
RKKY interaction.

Let us rewrite Eq. (6.3) in the momentum representation, defined through
the Fourier transforms J, = >, exp[—iq(R;—R;)|J;j, with R; € a,2a, ..., Na,
and I, = >, exp(i¢R;)I;, with ¢ € 1,..., NN, and in both cases ¢ €
(2n/N) x {0,1,..., N — 1}. We get

1
Hurey = 1, J1, (6.4)
q

In one dimension, the RKKY coupling J, has a sharp minimum at mo-
mentum ¢ = +2kp, with kr = \/2mep/h the electron Fermi wavevector
[1, 28]. Consider an approximation in which we neglect all values of J,
with respect to the large (negative) value at this minimum,

1

Hpgry NJsz (Tokp - Loy + Toog, - Toky) (6.5)
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To understand the spectrum of this Hamiltonian, we introduce linearly
transformed spin operators,

I’i = R’u,,QkFRijh (6‘6)

with R, s the matrix corresponding to a rotation by angle ¢ around a unit
vector u. Inserting Eq. (6.6) into Eq. (6.5) we get

1 ~ -
Huscrr = 5ot (I;ZO P 8/2) , 6.7)

where we define the vector components along w as I* = I - u, and per-
pendicular to it as I+ = I — ["u, and we separated the terms bilinear in
the spin operators at finite momenta,

B= Y [0y, + 15 - T, +isgn(q)(I;; x I,,) -ul.  (6.8)
q=12kp

The first term in the bracket of Eq. (6.7) describes the energy of ferromag-
netically coupled spins I;: a configuration in which all these spins are
collinear, along a vector perpendicular to u, gives a minimal possible en-
ergy, of value NN? Jy, I*. This configuration corresponds to a classical
ground state of Eq. (6.4) as well, as it saturates the energy lower bound
obtained using > [I,[* = NN 37, |I;*, the Parseval’s identity.

Going back to the laboratory frame according to Eq. (6.6), the ground
state corresponds to a helical configuration where the nuclear spins are
oriented parallel to each other in the wire cross-section, along a direc-
tion which rotates in a fixed plane as one moves along the wire with the
spatial period equal to a half of the electron Fermi wavelength 7 /kp (for
illustration, see Fig. 6.1). We shall refer to this plane as the helical plane,
with u being its normal unit vector. A unit vector h L u gives the direc-
tion of the polarization within this plane at position i = 0.

Equation (6.7) has full spin rotation-symmetry, as it is just Eq. (6.5)
rewritten in a different reference frame. However, through the choice of
the definite helicity and the vector u, the first term in Eq. (6.7) breaks
this symmetry. To restore it, the finite momenta components, Eq. (6.8),
necessarily appear. To understand these terms in more detail, we note
that choosing a frame with helicity opposite to the ground state helicity
would lead to a swap of the roles of I and I T4k~ Second, configura-
tions where both helicities are populated lead to a lower energy gain.
For example, choosing both with the same weight, gives in the labora-
tory frame a spin-density wave, i.e., a cos-like oscillation along a fixed
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vector, I; = hcos (2krR;), which gives only half of the energy gain of a
helical order. Such oscillating, rather than rotating, configuration corre-
sponds to the first term in Eq. (6.8). We therefore conclude that up to the
spin rotational symmetry, which allows for arbitrary directions of u, and
I, the ground state with ferromagnetically aligned I; (helically ordered
I;) is unique.

If the order is established, the expectation value of I qL:O is macro-
scopic, and we parametrize it by a polarization py,

<IAqL:o> = NN, Iph, (6.9)

so that p, = 1 corresponds to a completely ordered state. With this we
reduce Eq. (6.5) by the mean field approximation to a Hamiltonian de-
scribing a set of non-interacting spins

Hpgry >~ Z,UfNBzN : Ii7 (610)

in the presence of the position-dependent internal field
pn B = 2pp N1 1o, Ru2kpr, b (6.11)

This concludes a simplified derivation of the reduction of the RKKY Hamil-
tonian, Eq. (6.3), into a set of non-interacting spins, Eq. (6.10), in an ef-
fective (mean) field, Eq. (6.11). A detailed analysis of the applicability of
such an approximation was given in Ref. [182], based on the derivation
of the spectrum of the full Hamiltonian Eq. (6.3), without employing a
mean field ansatz. There it was found that this approximation, in essence
neglecting the long wavelength magnons, is well justified for sub-Kelvin
temperatures and wire lengths relevant for mesoscopic experiments.

As we consider the limit A < ¢p, we adopt the Bohr-Oppenheimer
approximation, assuming that electrons react instantaneously to the chan-
ges in nuclear spin subsystem. Consequently, we can consider the effect
of the nuclear polarization on electrons as an Overhauser field [28]

peBoy = 77— Z 6(T - Rj)<Ij>7 (612)

where (i is an electron magnetic moment. Thus, the electron Hamilto-
nian is
h2
Hy=——0*+u.Bo, 0. (6.13)
2m



CHAPTER 6. VOLTAGE-INDUCED CONVERSION OF HELICAL TO
UNIFORM NUCLEAR SPIN POLARIZATION IN A NANOWIRE 114

In Eq. (6.13) we do not include electron-electron interactions explicitly. In
the following to evaluate the internal field B} we use Egs. (C4), and (C5)
from Ref. [182]. In these equations electron-electron interaction is signif-
icant (for example, for the critical temperature of the helical polarization
[1, 28, 180, 182]) and therefore is included.

To describe the nuclear polarization in the wire when a bias voltage is
applied, we will first investigate the behaviour of one nuclear spin placed
in an effective field of all others, Eq. (6.10), and interacting with the bath
of electrons described by Eq. (6.13).

6.3 Helical electrons and finite voltage

To find how a nuclear spin is affected by the electrons when the bias volt-
age is applied, we first consider the properties of the electron bath in the
wire. As already mentioned in Sec. 6.2, the electrons are moving in the
Overhauser field produced by the nuclear spins [see Eqgs. (6.12), (6.13)].
As the nuclear spins form a helix in equilibrium, this particular Over-
hauser field, denoted by B, is also helical. Consequently, the electron
spectrum is

h2(k2+k%) 1 2,,2R2 41.21.2
E4 = Tia\/m #eBh+h k kF’ (614)
where £ is the electron wavevector, and £_ and ¢, denote the lower and
upper subbands respectively. They are split by the gap 2u.B), at k = 0.

The corresponding wavefunctions are

U (r) = eﬁ[e"kﬂcosgl¢>+e“’”sin5’“|¢>], (6.15)
eikr ) 9 ) . 9
Uy i (r) = ﬁ[ezk”cosgm—e—““”smgw, (6.16)

W kkp —mpeBh

V(2K p)2+(mpe By)? V(2K )2+(mpe By)?’
| 1), | 4) denote the spin states with spin up and spin down respectively,
where u sets the quantization axis. These expressions of the wavefunc-
tions can be simplified since typically the ratio A = pBpoa/cr < 1,
where B,,,, is the maximum Overhauser field when all nuclei are fully
polarized along a given direction. For example, for a GaAs quantum
wire fieBee =~ 68 peV, while ep ~ 10 meV, which gives A ~ 0.0068.
Consequently, we can use A as a small parameter.

where cosf, = and sinf, = and
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We expand Eq. (6.15) in leading order of A and for the states within
the partial gap we get

\Ilk,—(r) ~ ﬁ { ez‘(lc-i-kp)r|5L>7 k<0, (6.17)

where for right-moving electrons (k£ > 0) the spinor is |g) = | 1), and for
left-moving (k < 0) itis [£,) = | |). Therefore, within our approximation
the electronic states in the partial gap are helical: the spin is determined
by the propagation direction, and is opposite for left-moving and right-
moving electrons.

Next, we consider the voltage applied to the wire and define it as the
difference between the chemical potentials for the left- and right-moving
electrons (see Fig. 6.2). Assuming a ballistic wire, the chemical potential
of a given branch is constant in space. With the polarity as assumed in
Fig. 6.2, the applied voltage depletes the left (L) branch and increases the
population of the right (R) branch. This imbalance in population opens
up an additional phase space for the electrons to backscatter - predom-
inantly from R to L. Because of the helical character of the states, such
backscattering is accompanied by an electron spin flip (from | 1) to | |)).
This, in turn, is enabled by the total spin-conserving hyperfine interac-
tion Eq. (6.1), so that each electron spin flip is compensated by a nuclear
spin flip in the opposite direction. In this way a uniform nuclear polariza-
tion along the u direction is built up. We denote B, as the Overhauser
tield corresponding to this uniform polarization.

From Fig. 6.2 one can see that this scattering induced spin polariza-
tion works only for the electronic states within the partial gap. Aiming
at the helical order detection, applying voltage larger than the partial
gap is therefore disadvantageous: it will not increase the spin pump-
ing rate, but it will decrease all polarizations through heating, similarly
as high temperature. We can therefore restrict our theory to small volt-
age, i.e. eV < 2u.Bj, where —e is the electron charge, and small tem-
peratures T, ie., kgT < 2u.B,. We can then adopt two approxima-
tions. First, we neglect the influence from electron states which are not
in the partial gap (the upper (+) subband is neglected completely), be-
cause their contribution to transport is exponentially small, proportional
to exp[(—peBn + €V/2)/kpT]. Second, we use Eq. (6.17) for the electron
wavefunctions, which means that we consider Eq. (6.15) in leading order
of kgT'/er, €V /ep, and A. Therefore, for a description of the electron sys-
tem in terms of a heat bath that causes the relaxation of the nuclear spins,
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we take into account two branches: left- and right-moving electrons with
spins | |) and | 1), respectively.
The spectrum of electrons moving in the total Ovehauser field B,+ B,

reads

R2(k2 4 k2 h2kk 2

s = Rk + k) \/ 12B2 + { £ ueBu} : (6.18)
2m m

see Fig. 6.2. The asymmetry of the spectrum is due to the uniform Over-
hauser field B,. The corrections to the wave functions, Eq. (6.17), due
to B, are negligible in leading order of A. Namely, the presence of the
uniform component in the Overhauser field rotates (cants) the spinors
|{L(r)) away from down (up) direction by a very small angle (for a max-
imal possible field B, = B,,., this angle is for our parameters smaller
than 0.1°). Even though the canted up- and down spinors are no longer
orthogonal to each other, it does not play any substantial role. Indeed,
since the spin flips of electrons are compensated by nuclei, there is no
spin conservation (no selection rules) within the two subsystems taken
individually.

We note that from Eqs. (6.15) and (6.16) it follows that the electron
spins become also polarized, thereby producing a Knight shift acting as
an effective magnetic field B back on the nuclear spins. This Knight
shift is defined as (Hpyp)er = pnBj§ - I, where (...)er denotes averaging
over the eigenstates of the Hamiltonian in Eq. (6.13) with populations
defined by the voltage. In this work, however, we can neglect B with
respect to B} produced by the RKKY interaction [28, 182].

6.4 Bloch Equation for the total nuclear spin in
the wire

To investigate the time-dynamics of the nuclear spins, we apply the stan-
dard Bloch-Redfield theory to our problem, which is valid for weak cou-
pling between spin system and bath degrees of freedom [86, 205], as is
the case here. First, we write down the Bloch equation for the average
(I;) of the jth nuclear spin. By applying Eqgs. (7)-(11) from Ref. [86] to
our Egs. (6.1), (6.10), and (6.13), we get (for more details see Appendix
6.A)

0i{I;) = w; x {I;) = Tj(I;) + 1, (6.19)

where w; = yiy B /I determines the precession, the relaxation tensor T';
the decay and the inhomogeneous vector term Y, the stationary value of
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Figure 6.2: Sketch of the energy spectrum given in Eq. (6.18) and the
direction of the electron spins in the presence of the helical Overhauser
tield B}, and the uniform Overhauser field B,, perpendicular to the plane
of the helix. Red arrows denote the spin directions of the electrons in
the lower subband, and the blue arrows label the spin directions for the
upper subband. The coordinate system for the spins is formed by h and
u shown in the right lower corner. The chemical potentials for left- and
right-movers are denoted as .7, and pg, respectively. The voltage applied
to the wire is eVg, = ur — g

I;). Both, I'; and T ; are expressed in terms of time correlators (see App.
j J J p 9%
A)

1

2n2
where ¢ is time, the indexes n, [ label the components of the effective
fluctuating internal field 6 B defined via Hy,, — (Hpyp)et = 6B - I,;. The
time-dependence follows from the interaction representation dB(t) =
etHat/h§ Be~iHat/h We note that above equations are valid for a spin 1/2.
However, it is well-known [110] that the relaxation time of a spin into its

Tulw) /0 " et (5 B 0V Bi(t))adt, (6.20)
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stationary value does not depend on the spin length (in Born approxima-
tion). Thus, we will assume that our results apply for arbitrary spins.

As follows from Secs. 6.2 and 6.3, we can define the expectation value
of a nuclear spin at position R = 0 as

(Io)/1 = prh + pyu, (6.21)

where 0 < p;,, < 1 denote the polarizations along the two orthogonal
directions h and u, respectively.

We also introduce position-independent tensors I'y and Y in the ro-
tated frame defined by the rotation matrix RLQ kR, Vid

T = Rusker, TR o, (6.22)
Tj - Ru’ngRjﬁro. (623)

Having Egs. (6.11), (6.19), (6.22), and (6.23), we can describe the time-
evolution of the nuclear spin I in the rotated frame.

Eventually we are interested in the dynamics of the total (macro-
scopic) polarizations, rather than the one of an individual nuclear spin.
We therefore introduce the total nuclear spin in the rotated frame
> RL%F r;(I;) = NN (Iy), and write the equation of motion for it using
Egs. (6.11), (6.19), (6.22), and (6.23). We get

Oy (Io) = =Q({Lo) - h)h x u = T'o(Ly) + Yo, (6.24)

where we denoted Q2 = Ip,|Ja,.|/h. The first term implies a rotation of
the helical direction h, around the axis u with frequency 2. This can
be seen by introducing a time-dependent vector h(t) = Ry ) h, where
a(t) = fot Qdr. In the Born-Oppenheimer approximation, the tensors TI';
and Y ; are functions of the instantaneous values of h and u, so we write

T, = RuaTiRL 0 (6.25)
T]’ - Rma(t)'fj. (626)

With this the time evolution of (Ij,) in the rotating frame, (Iy) = Ry a(){1o),
is described by
0y (Iy) = —To(Iy) + Y. (6.27)

To evaluate the tensors in this equation, we use the results of Sec. 6.3
and approximate the electronic states within the gap by Eq. (6.17) and
the spectrum by Eq. (6.18) with B;, = 0 = B,,. We can then use Eq. (6.27)
to describe the polarization of the nuclear spins in the wire as function of
temperature and voltage.
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6.5 Resulting Polarizations

To find the polarizations p;, and p, from Eq. (6.27) we now evaluate the
tensors I'y and Y, explicitly. For that we first evaluate the correlator
Jn(w). Using Egs. (6.17) and (6.18) we get

A%q?

_ ab
Tulw) = spsrr e ag{jm My} Qu (6.28)
Mw(;lb = <§a|o-n|§b> <§b|0l|§a>a (629)
Qu = / def (=4 Vi /D) [L— f (e + hw— eVi/2)] . (6.30)

where eV, = 1, — p, is the difference between chemical potentials of
branch b and a, with @ and b denoting L (left-movers) or R (right-movers).
Here we also use the Fermi distribution function f(¢) = [exp [¢/(kgT)] + 1]
As was mentioned in Sec. 6.3, we consider voltages and temperatures
smaller than the partial gap 2u. B, given by the helical polarization. There-
fore the term f (e + eV /2)[1 — f(e + hw — €V}, /2)] allows us to consider
only the energy window of +/.B), around ¢5, because f(c) decays ex-
ponentially for ¢/kgT > 1. Consequently, we approximate the electron
density of states (per spin) by v(¢) ~ v(ep), Up to first order in A, we
have v(ep) = 1/(rhvr), where vp = ep/(hkp) is the Fermi velocity of the
electrons.

Having obtained J,,(w), it is straightforward to calculate 'y and Y,
using Egs. (6.37)-(6.39) and (6.28)-(6.30). We can then solve Eq. (6.27) for
the steady state polarizations (keeping wy as a constant) and obtain

-1

4hwg
Ph = ’
(o — V') coth (%) + (hwo + €V) coth ("'g;;iy) + 2hug coth (27;;%)
(6.31)
(hwo—eV) coth( ﬁ;g;;v) —(hwo+eV') coth (%)
Ao (hwo—eV) coth(hwo_ev)+(ﬁwo+eV) coth(hw0+ev)+2ﬁwo COth( sy ) eV
2kgT 2kpT 2kgT
Pu = .
(hwg — €V) coth (%) + (hwo + €V') coth (%) + 2eV coth (QEZT)
(6.32)

However, from Eq. (6.11) it follows that iwy = 2py N I Jox, b, i.e., wy
depends on pj,. This leads to non-linear algebraic equations for two un-
knowns, p, and p,, which we solve numerically using material param-
eters for GaAs (analytical expressions for small deviations of the polar-
izations are given below). We plot the values obtained in this way and
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discuss their behaviour as a function of voltage and temperature, the ex-
perimental parameters that are most directly accessible.

The voltage dependence of the polarizations is shown in Fig. 6.3. We
can see that the polarization p, grows faster with voltage than p;, decays,
therefore the overall polarization of the nuclei /p2 + p} grows with volt-
age, too. This means that the nuclear spins are more polarized when a
voltage is applied than when they are in equilibrium at the same tem-
perature. We also note that having a non-zero component p,, means that
nuclear spins have a conical polarization, rather than a helical one. To
plot Fig. 6.3 we used Egs. (C4), and (C5) from Ref. [182] as was men-
tioned above, where the dependence of iw, on temperature is described
in detail. To evaluate hw, we used the characteristic values for GaAs:
the Fermi velocity vp = 2.3 x 10° m/s, and the number of nuclei in the
wire cross-section N; = 1300. For the expression for .Jy;, taken from Ref.
[182] we use the electron-electron interaction Luttinger liquid parameter
K, = 0.2 and the absolute value of spin / = 3/2. For the constants de-
scribed above and at 7" = 90 mK and p,, = 0.1 the rotation frequency of
the nuclear spin helix is Q ~ 1.5 x 10° s71,

It is natural to expect that high temperature destroys the nuclear he-
lical order [1, 28, 180, 182]. Indeed, Fig. 6.4 shows that the helical polar-
ization p;, decays with temperature and then drops in magnitude around
T ~ 109 mK. As our calculation is valid for eV, kgT < 2u.B},, the small-
est value of p;, allowed by self-consistency for our parameters is p;, ~ 0.2.
From Fig. 6.4 it also follows that the polarization p, grows with tempera-
ture. This growth is explained by the fact that due to higher temperature
the electron states with higher energy become occupied. This makes the
nuclear spin flip more probable. It is obvious that there is a temperature
where the polarization p, gets destroyed, however, for the range of tem-
peratures given in Fig. 6.4 p,, does grow, whereas the helical polarization
pr, decays significantly. The decay of p;, with temperature is rapid, while
the growth of p, is less pronounced. Therefore, the overall nuclear polar-
ization in the wire strongly decays with increasing temperature. For the
parameters we used for Fig. 6.4 the effect of temperature on pj, is stronger
than the one of a finite voltage. The initial temperature scaling of p, away
from unity (see Fig. 6.4) can be obtained readily from Eq. (6.31) by treat-
ing 1 — pj, as a small perturbation. This yields

2 1
by +em7 1— % sech’(52) (6.33)

1 — 277, (6.34)

Q
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Figure 6.3: (a) The voltage dependence of the polarization p;, along heli-
cal direction h (blue), polarization p, in the direction of u perpendicular
to the helix plane (red), and the overall polarization of nuclei \/p2 + p
(black). (b) Enlarged from (a) the voltage dependence of p, and /p2 + p3.
We use T' = 90 mK and other parameters as given in the text. We recall
that our parametrization is such that p, = 1 corresponds to B,, = B4z,
which is about 5 T in GaAs, and analogously for B,.
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Figure 6.4: Plot of the temperature dependence of the polarization p,, (up-
per panel, red) and the polarization p;, (lower panel, blue). For these plots
the same parameters were used as in Fig. 6.3 and the applied voltage is
eV = 0.5 ueV. We note that our calculation is valid for eV, kgT < 2u.By,
therefore the smallest value of p;, we consider here is p, ~ 0.2.
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where the first equality holds well for the temperature interval 60mK <
T < 90mK, while the second one is a good approximation for 60mK <

T < 80mK. Here we denoted g = 3 — ——=2__, and the temperature-
2(1+K32)

independent parameter k = 2N, I|Jo;,.|T97! /kp depends on the material
and geometrical properties of the sample (see Eq. (11) and Egs. (C4) and
(C5) of Ref. [182]). For K, = 0.2 (chosen for the plots) we get g = 2.4
(we recall that K, = g = 1 corresponds to vanishing electron-electron
interactions).
The initial decrease of p;, due to voltage in Fig. 6.3 for V < 3 eV
scales as
pr~a—AV2 (6.35)

where a and 7 depend on material and geometrical parameters of the
nanowire and on temperature.

Finally, we mention that recent progress in nuclear spin magnetom-
etry on nanowires [202, 203] has opened the perspective to measure the
nuclear spin polarizations directly and thus to test the predictions made
here. Moreover, due to the helical nuclear polarization which acts on
electrons as an Overhauser field B, there is a partial gap in the elec-
tron spectrum [see Eq. (6.18)]. As a result, the conductance of a bal-
listic nanowire is less than 2¢?/h for sufficiently low temperatures and
V < 2u.By [1,28,29,182]. As was shown above, the polarization p;, and
consequently By, decrease with increasing voltage and temperature. We
thus expect qualitatively that the conductance of the wire will increase
with the decrease of the partial gap 2u.B; « py.However, we caution
that the behaviour of the polarizations pj,, can only indicate the trend
for the conductance but does not give its precise dependence on tem-
perature and voltage. Indeed, in transport new temperature and voltage
effects emerge, especially in the transition region where the partial gap is
comparable to temperature and voltage.

6.6 Conclusions

We have shown that due to the hyperfine interaction between electrons
and nuclei in the wire the applied voltage changes the form of the nu-
clear polarization and its amplitude. Assuming that in equilibrium there
is a helical nuclear polarization pj, present in the wire due to RKKY inter-
action, a bias voltage induces a uniform polarization p, perpendicular to
the helix plane. Due to this polarization the nuclear spin helix starts to ro-
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tate around the axis perpendicular to the helical plane. When a non-zero
polarization p, buidls up, the nuclear polarization changes from helical
to conical.

We have also presented the voltage dependence of p, and p;, and seen
that p, increases with voltage, whereas p;, decreases. Following from
these two effects the overall nuclear polarization in the wire grows with
voltage. Remarkably, p, grows with temperature in the considered range
of temperatures. This is because the nuclear spin flip becomes more prob-
able as electrons occupy higher energy states. This thermal activation
effect is noticeable for the considered regime hw, > eV. The growth
of the overall polarization \/p2 + p? with voltage and the growth of p,
with temperature are intriguing and a priori non-obvious effects. The
polarization effects predicted here might be observed in transport experi-
ments [29] or more directly via cantilever based nanoscale magnetometry
[202, 203].

Finally we note that the current induced dynamical effects we found
are not restricted to nuclear helimagnets. Among other systems, they
are expected to appear in a wire with magnetic impurities, such as Mn-
doped GaAs, once the helical order in the impurities is RKKY-induced.
Even for moderate dopings, in such a system the coupling constant A/ py,
which is central to the energy scales in question, is more than thousand
times larger than for nuclear spins. Even though the critical temperature
can not be directly estimated from this ratio, as it is strongly influenced
also by the electron-electron interactions, it is still expected to be larger
by several orders of magnitudes compared to the sub-Kelvin range typ-
ical for nuclear spins. Though this was not our focus here, we note that,
correspondingly, the partial gap and the resulting upper bound on the
applied voltage will move to mV scale, more realistic for possible spin-
tronics device applications.
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6.A Bloch equation for one nuclear spin

To write down the Bloch equation for the total nuclear spin in the wire,

we use Egs. (7)-(11) from Ref. [86]. Here we present them adopted to our

case of a nuclear spin interacting with the bath of electrons and placed

into the effective field produced by all other nuclear spins in the wire.
The Bloch equation for the nth nuclear spin reads

To express tensors I', and Y,, we introduce a unit vector [ along w,, i.e.
w, = wyl. The tensor T, consists of a dephasing part I'Y which comes
from energy conserving processes and a pure relaxation part I';,, which
comes from the energy exchange with the bath [86, 96] (played here by
the electron system),
I‘Z ii [5ijlplquZ(o) - lilpj;;‘(o)]a (6.37)
F; ij [6ij(5pq - lplq)jpg (wn) - (638)
- (0 — lilp)jpg(wﬁ — Oij€hpg iy (wn) +
+  €ipglpLy; (wn)]-
Here, the indexes i, j denote components of tensors, and we use the
Einstein convention of summation over repeated indexes. Further, €,
is the Levi-Civita symbol and ¢;; the Kronecker delta, while [, denotes
the kth component of vector . The inhomogeneous part of the Bloch
equation Y, reads [86, 96]

Tm:%(zjji;(wn) LT3 (@a) + €inaT (w0a) + (6.39)
+eigrlilp[Z (wn) — T, (0)]),

where ¢ denotes the component of Y,,. The terms Jj(w) ( ) are de-
fined as

Jiw) = Re[T;(w) £ Jij(-w)], (6.40)
T;(w) = Im[J;(w) £ Jy(-w)]. (6.41)

The term J;;(w) is the Laplace transformation of the correlator of the fluc-
tuating fields 0 B at different times,

1 > —iw

ﬁ /0 e t<5Bl(O)5B](t)>eldt, (642)
where §B(t) = eHat/h§Be~iHat/h Using BEq. (6.36) we expressed the
Bloch equation for the total nuclear spin in the wire resulting in Eq. (6.24).

Jij(w) =
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We study the nuclear spin relaxation in a ballistic nanowire with hyperfine
and Rashba spin-orbit interactions (SOI) and in the presence of magnetic
field and electron interactions. The relaxation rate shows pronounced peaks
as function of magnetic field and chemical potential due to van Hove sin-
gularities in the Rashba bands. As a result, the regimes of weak and strong
SOIs can be distinguished by the number of peaks in the rate. The relax-
ation rate increases with increasing magnetic field if both Rashba subbands
are occupied, whereas it decreases if only the lowest one is occupied.

7.1 Introduction

In this work, we propose an alternative and non-invasive way to access
information about the SOI and the helical regime in a Rashba nanowire,
namely via the nuclear spins. These are sensitive to the electronic state
due to the hyperfine interaction present in III-V semiconductors such as
GaAs or InAs.
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Figure 7.1: Schematics of a nanowire of cross-sectional area, d, x d,, con-
tining a one-dimensional electron gas with Rashba electric field Ep di-
rected along y-axis and with magnetic field B along z-axis. The itinerant
electrons are coupled by hyperfine interaction to localized nuclear spins
(arrows). The Fermi wave-length A\ =~ d,,d, is much larger than the
lattice spacing between nuclear spins.

A main motivation for our proposal stems from striking experimen-
tal progress in the field of nanoscale magnetometry. In particular, it has
recently been demonstrated that cantilever-based magnetic sensing en-
ables the nuclear spin magnetometry of nanostructures, in particular of
InP and GaP nanowires [202]. In the remainder, we show how such ultra-
sensitive techniques can be used to probe the strength of the SOI, and to
detect the helical states via the Korringa nuclear spin relaxation mecha-
nism, i.e. the change of the nuclear spin state due to the spin-flip scat-
tering of itinerant electrons of energies within the thermally broadened
region close to the Fermi level [110].

We evaluate the nuclear spin relaxation rate in a one-dimensional bal-
listic electron gas in the presence of Rashba SOI and magnetic field. We
first derive an explicit dependence of the nuclear relaxation rate on the
parameters of the electronic spectrum for non-interacting electrons, in
which the relaxation rate is proportional to the electronic temperature.
We then discuss how electron interactions modify this temperature de-
pendence to an interaction-dependent power law.

We find that the relaxation rate shows distinct peaks as function of
magnetic field and chemical potential due to van Hove singularities in
the Rashba bands. Remarkably, the regime of weak SOI is characterized
by one peak while the one of strong SOI by three peaks. The relaxation
rate for weak SOI vanishes as a function of y if the Zeeman energy ex-
ceeds u. Strong SOI gives rise to regions in the spectrum with negative
group velocity and thus to pronounced peaks in the relaxation rate as
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function of u. Finally, we show that the relaxation rate increases with
increasing Zeeman energy if the Fermi level crosses both Rashba bands,
while the rate decreases if only the lowest Rashba subband is occupied.

The outline of this Chapter is as follows. In Sec. II, we introduce
the model Hamiltonian and derive the nuclear spin relaxation for non-
interacting electrons for a Rashba band due to the hyperfine interaction.
In Sec. III, we include electron-electron interactions described by a Lut-
tinger liquid approach. In Sec. IV, we give numerical estimates for the
nuclear spin relaxation making use of the material parameters appropri-
ate for In-based nanowires.

7.2 Relaxation in a non-interacting electron gas

We consider nuclear spins coupled by hyperfine interaction to itiner-
ant electrons in a semiconducting quantum or nano-wire with Rashba
SOL. Our goal is to calculate the nuclear spin relaxation rate, first with-
out electron-electron interactions. We assume the electrons to occupy the
lowest transverse subband of the wire with cross-sectional area d, x d,,
see Fig. (7.1), described by the wave function

U(x,y) = cos(mz/d,) cos(my/d,). (7.1)

d,d

<

Taking into account that the nuclear density in the wire is much larger
than the electron density we can approximate the wave function |V (z, y)| ~
2/+/d,d, by its value at the centre of the wire and sum over the nuclear
spin density in the transverse direction. The Hamiltonian of the system
becomes (A = 1)

2
H= /dzci(z) [— ( % + u) dss — 10,0, + hajs,] co(2) + (7.2)

2m
+ / dz{@/ﬂ(z) : %ci(z)csz(z) —wN]Z(z)}

Here, 11 is the chemical potential of the electrons with effective mass m
and spin projection s, where summation over repeated spin indexes is
implied, « is the SOI constant, h = g.upB/2 the Zeeman energy of the
electrons due to the external magnetic field, B, applied along the z axis,
where ¢, is the electron g-factor and ;5 the Bohr magneton, o*¥# the
Pauli matrices, and A = A;p4/(d,d,), where A;p is the bulk value of
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the hyperfine interaction constant between a nuclear spin and the spin of
an electron. We assume that the dominant contribution to the hyperfine
interaction is given by Fermi contact interaction.

The nuclear spin density is givenby I(z) = N, >, 1;0(2—2;), where I;
is the spin operator of the j-th nuclei, IV, is the number of nuclear spins in
the plane transverse to the wire axis, and the sum runs over the nuclear
spins the wire axis. We assume that the Zeeman energy of the nuclear
spins induced by the external magnetic field, wy = gnpunB, where py
and gy are the nuclear magneton and the effective g-factor, respectively,
is small compared to the temperature 7. We also assume temperature to
be larger than the Kondo temperature associated with the localized spin.

It is convenient to express the single-particle Green function in the
Rashba eigenbasis (for A = 0),

558/ o /\ocpcr:s/—l-ha;,

Vel (7.3)

N—t1 1€y — 6)\(]7) ’

Gss’ (p7 €n> -

where €,(p) = p*/2m — p — A\\/a?p? + h? is the electron spectrum and
p the momentum in the Rashba spin-split subband defined by A = +1;
= (2n + 1)7T is the fermionic Matsubara frequency.

We can now calculate the nuclear spin relaxation rate 1/7; in a one-
dimensional electron gas with SOI and Zeeman energy in second order
perturbation theory in the hyperfine interaction between the nuclear spin
and electron spin density. The relaxation rate is determined by the dy-

namical spin susceptibility of the conduction electrons at the nuclear site
as [110, 206]:

1 . TA? [d
— = lim /_qu[Xxx(Q7wk)|zwk%wN+10+] (74)

1 wN—0 Wy 2T

where w;, = 2mkT is the bosonic Matsubara frequency and we take the
analytical continuation of the spin susceptibility, which for noninteract-
ing electrons is given by,

Xab(Q>wk = __/ ZGssl p+aq, €n+wk) 0159

X G8283 (p7 En) 535 : (75)
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Summing over spin indexes and Matsubara frequencies and taking the
limit wy — 0 we obtain,

1 T AT dpdq Ong(e)
i O b S ORI -

z / ¥4
5. Aho, s s Nho?,,, .
581 05182 5283 05357

[a2p? 1 h2 [a2q® + h2
where np(¢€) is the Fermi distribution function.

We integrate over momentum and obtain the relaxation rate in the
linear temperature regime as,

(7.6)

X

1 O(h% + m?a’ 4 2ma’p) )
— = E E_ 7.7
b= S e e e(B) + OB (77)
O —h?) 2, Vs 2 2\ | mA*T
QWUL + ma“p)sign(h® + 2ma“p) y

where E. = p + ma? £ \/h2 + m2a* + 2ma2y; O(x) and sign(x) are the
Heaviside and sign functions, respectively. The dependencies of the re-
laxation rate on the chemical potential i and the Zeeman energy h are
plotted in Figs. 7.2 and 7.3, respectively.

Let us now consider the relaxation rate in several limiting regimes of
the electronic spectrum. Without the SOI, i.e., & = 0, we obtain,

1 mA*TO(u* — h?)
T, 2 \J2—h?
which in the absence of a magnetic field, h = 0, leads to the well-known
result for the Korringa relaxation rate, T;' = 7T A%/?, where v = 1/(7vr)
is the density of states per spin in the one-dimensional electron gas. If
the chemical potential is smaller than the Zeeman energy, |¢| < |h|, then
the relaxation rate 1/7; vanishes. Physically, this expresses the fact that
the nuclear spin polarization cannot decay via flip-flop processes with
the electrons if the latter are spin polarized due to the presence of a large
Zeeman field. We note that the present calculation does not take into
account competing nuclear spin relaxation mechanisms.
In the vicinity of the van-Hove singularity, 1 2 h > 0, see Fig. 7.2, the
relaxation rate scales with the chemical potential as

(7.8)

Tfl_mA2T@(,u—h) 2h
Y o4 hd+ma2\ p—h

(7.9)
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Figure 7.2: The nuclear spin relaxation rate 1/7; = T3(0)/(2T1(u/h)) as
function of p/h for small (a) and large (b) SOI strengths mA*/h = 0.2 and
mA?/h = 10, respectively, as numerically obtained from Eq. (7.6). The
rate is normalized by its value at i = 0 (we set u = 0 at the middle of the
Zeeman gap between the Rashba subbands at p = 0). The pronounced
peaks are due to van Hove singularities at the edges of the Rashba sub-
bands. (a) Curves from top to bottom are for 7'/h = 0.07,0.1,0.2,0.3,
respectively. (b) Curves from top to bottom are for 7'/h = 0.05,0.07,0.1,
respectively. Inset (a): The Rashba spectrum with possible Fermi levels
(lines). Strong SOI gives rise to regions in the spectrum (dashed-dotted
line) with negative group velocity and non-monotonic relaxation rate as
shown in (b). The strong increase of the rate for p/h approaching the
band bottom Ey/h = —5 (see also inset (b)) signals the breakdown of
perturbation theory.
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On the other hand, in the presence of both SOI and magnetic field,
tuning the chemical potential to the middle of the gap of the spectrum at
p =0, u = 0, we obtain,

1 mA*T  ma?

Ty~ 4r k2 +mPat (7.10)

We note that the relaxation rate diverges at the van Hove singularities
of the spectrum occurring at zeroes of Jey(p)/0p. For instance, 1/17 ~
[h(i — h)]~Y/2 for weak SOl and p > h, and 1/T} ~ |u — Ey|~* for strong
SOI, where £ denotes the band bottom. Formally, the perturbation ex-
pansion in A for the rate breaks down at these singularities. However,
these singularities turn into well-defined peaks by finite-temperature ef-
fects, as we confirmed by evaluating Eq. (7.6) numerically for various
temperatures, see Figs. 7.2 and 7.3. The peak at £, however, remains
large also for T" > 0 and thus is outside the perturbative regime consid-
ered here. As an important result, we see that the relaxation rate behaves
qualitatively very different for weak and for strong SOIs: in the former
case, there is only one peak, while in the latter there are three peaks in
1/T; as function of 1, see Figs. 7.2(a) and 7.2(b).

Finally, let us discuss the dependence of the relaxation rate on the
magnetic field 4. The relaxation rate increases with the increase of the
Zeeman energy as ~ h?/u? for > ma? if the Fermi level crosses both
Rashba subbands, see Fig. 7.3(a) and inset in Fig. 7.2(a), where the
position of the Fermi level is shown by the solid line. On the other
hand, the relaxation rate decreases with increase of the Zeeman energy
as ~ —h?/m?a* for |u| < ma? if the Fermi level crosses only the lowest
Rashba subband, see Fig. 7.3(b) and inset in Fig. 7.2(a), where the posi-
tion of the Fermi level is shown by the dashed-dotted line. The singular-
ity of the relaxation rate shown in Figs. 7.3(a) and 7.3(b) corresponds to
the condition when h = |u].

7.3 Relaxation in an interacting electron system

In a one-dimensional system, electron-electron interactions modify the
temperature dependence of the nuclear spin relaxation rate from a lin-
ear scaling to interaction dependent power laws. We derive these in a
Luttinger liquid calculation valid when the chemical potential is suffi-
ciently far from the van Hove singularities, so that the dispersion can
be linearized. For |u| > |h|, ma?, the system can be understood as
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Figure 7.3: Nuclear spin relaxation rate 1/77 = Ti(h =
0)u=o/(2T1(h/ma?)) as a function of Zeeman energy h normal-
ized by the SOI energy h/ma? for two cases: (a) pu/ma® = 2,

T/ma? = 0.01,0.02,0.025. The corresponding Fermi level is shown by the
solid line in Fig. 7.2(a). (b) u/ma? = —0.38, T'/ma? = 0.005,0.0075, 0.01.
The corresponding Fermi level is shown by the dashed-dotted line in
Fig. 7.2(a). Note that the singularities are smoothened into finite peaks
by temperature effects.



CHAPTER 7. NUCLEAR SPIN RELAXATION IN RASHBA
NANOWIRES 135

a spinful Luttinger liquid with subleading corrections due to the SOI
and the magnetic field. Neglecting these subleading terms, we first de-
compose the fermionic operators into their right and left moving parts,
cs(2) & e#FF R (2) + e #*r [ (2), where kp is the Fermi momentum. Next,
we bosonize these operators using standard techniques [36] as r,(z) =
Urs/2mag exp(—i(rge(2) + r8¢q(2) — 0:(2) — s0,(2))/v/2), where U,, is a
Klein factor, and ay is the short distance cutoff of the Luttinger liquid the-
ory (this cutoff is of the order of the lattice constant). The parameters r =
R, L = +1,—1 and s =71, ]= +1, —1 denote the direction of motion and
the spin, respectively, while the bosonic fields ¢; are proportional to the
integrated charge (i = c) or spin (i = o) density, ¢, is proportional to the
integrated charge or spin current, and [¢;(2), 0;(2")] = d;;(im/2)sgn(z’ — 2).
The effect of electron-electron interactions is captured by a Luttinger liq-
uid parameter 1 > K, > 0 for the charge fluctuations (we take the Lut-
tinger parameter in the spin sector to be K, ~ 1), such that the Luttinger

liquid Hamiltonian reads H = [ £ Y iceo [%—(@@)2 + UiKi(azei)ﬂ/

where u. (u,) is the effective velocity in the charge (spin) sector. This
Hamiltonian in turn allows us to calculate the relaxation rate 7, ' for
interacting electrons. We first bosonize the real space, imaginary time

susceptibility x,.(z, ) according to the above prescription, which yields

Torl(z, 7)r (=, 7)r,T(0,0)r4(0, 0
o) = 3 DD COOD) |
_efi(rfr/)zkp . -
_ TT (P, (2,7)— 0,1 (0,0))
; 4(2mag)? (Tre )
+h.c., (7.11)

with @, (2, 7) = (r=1")¢e(z, T)+(r+1")dy (2, 7)—204(z, 7)) /+/2. From this
expression, the retarded spin susceptibility as a function of frequency can
be calculated by virtue of a Wick rotation to real time, and a subsequent
Fourier transformation [36]. Eq. (7.4) then yields the relaxation time as

1 ~

7~ T K) T+ T, Ke) T (7.12)
1

Here, T (1, K.) and T (i, K.) are prefactors which in general depend on

the short distance cutoff ay, and which reduce to 7 (i, 1) = T (p, 1) = TT/LZ
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in the non-interacting limit. This is the expected scaling for the Korringa
law in a Luttinger liquid, in which forward scattering gives rise to the
term ~ T, while backscattering results in the contribution ~ T [36].

In the limit ma? > |h| > |u|, the system is to a good approximation
helical (half of the spectrum is gapped, see Fig. 7.2(a), while the gap-
less modes move in opposite directions and have antiparallel spins). In
this case, all terms in Eq. (7.11) involving the gapped modes (i.e. right
and left movers of the “wrong” spin polarization) are negligibly small,
while the contribution of the gapless helical modes can be derived from
an effective spinless Luttinger liquid Hamiltonian. The latter can either
be obtained by linearizing the gapless helical modes and then bosonizing
these, or by starting from the full Luttinger liquid Hamiltonian including
right and left movers of both spin species and integrating out the gapped
degrees of freedom along the lines of Ref. [198]. In the latter case, the Lut-
tinger liquid parameter of the helical modes relates to the ones in the spin
and charge sectors as Ky = 2KC\/M/\/(uC + K. K,uy)(uy + u K Ky)
(this implies 1 > Ky > 0), while their effective velocity is given by
\/ Uy (Ue + e K K, ) [V Ue + uK K, [182]. Using these effective param-
eters, we find that the contribution of the gapless modes to (0, 7) is:

-1 TaoT [ Unel el
Xax(0,7) = A (maoT ) ine)” —— . (7.13)

8(mag)? [sinh(inT'T) sinh(—inT'T)| Knel
This implies that the relaxation rate takes the form, [36]

1

— & The(a, Kper) T2~ (7.14)

T
where The (o, Khe) is again a cutoff-dependent prefactor that reduces to
Ther(a, 1) = % in the non-interacting limit. This power law complies

with the fact that in the helical regime the nuclear spin relaxation re-
sults from electronic backscattering processes only. Quite remarkably, for
strong interaction such that K} < 1/2 the relaxation rate increases with
decreasing temperature, in stark contrast to weak or absent interactions
where the rate decreases with decreasing temperature.

For ma? > |u| > |h|, the system is gapless, and thus shows a scaling
of the type given in Eq. (7.12). For |h| > |u|, ma?, finally, the system
essentially behaves like a spinful wire with a Zeeman splitting between
spin up and spin down in which only the lower of the two Zeeman-split
band is occupied. In this case, we obtain 7} ' ~ 0, which follows from
Eq. (7.8), as well as from Eq. (7.10) in the limit ma?/h — 0.



CHAPTER 7. NUCLEAR SPIN RELAXATION IN RASHBA
NANOWIRES 137

7.4 Conclusions

Let us now comment on the experimental observability of the predicted
behavior of the nuclear spin relaxation rates in InAs nanowires. For an
InAs nanowire with a cross-sectional area of d, x d, = 50 x 50 nm?, and
with Fermi velocity vp = 3 x 10° cm/s, we obtain for the one-dimensional
density of states v = 1/(rhvr) ~ 16 (eVnm)~'. For an electron g-factor

= 8, the Zeeman energy h ~ 4 K at a magnetic field of 1 T, requires
correspondingly low temperatures, ' < 4 K. The dominant hyperfine
coupling comes from In with nuclear spin / = 9/2 and bulk constant
Asp = 3 peVnm?. With this, we estimate the nuclear spin relaxation time
Tk =~ (%)27## ~ 380 s, at T = 1K. Remarkably, this estimate for
Tk is consistent with recent measurements performed on InP nanowires
with cantilever techniques [202].

The phonon-assisted relaxation mechanism can be distinguished by
the temperature dependence of the relaxation rate, 1/77 "~ T (T?) for
T smaller (larger) than the Debye temperature [207], which is 280K in
InAs. The effect of the nuclear dipole-dipole interaction on the nuclear
relaxation can be suppressed by small magnetic fields of the order of few
mT when the nuclear Zeeman splitting is larger than the dipolar energy
[208].

Hence, we conclude that the hyperfine contact interaction is the most
important term for describing nuclear spin relaxation in In-based nano-
wires with s-type conduction band at low temperatures. Again, this con-
clusion is supported by recent experiments [202], which measured val-
ues for T of the same order as found above for the hyperfine interaction.

The measurement of the Rashba and Dresselhaus SOI coefficients via
weak antilocalization (WAL) effects in quasi-one dimensional InGaAs
wires was recently reported in Ref. [209] These 750nm wide wires with
several transverse conduction channels were treated as quasi-one dimen-
sional due to the fact that the spin-relaxation length is much larger than
the width of the wire. For a 1D wire with only a single conduction chan-
nel the WAL mechanism does not work, in contrast to the mechanism of
the nuclear spin relaxation proposed here. The nuclear relaxation rate
measures directly the spectrum of the electrons via the density of states,
while the WAL signal is more indirect, and could also be strongly af-
fected by ‘extrinsic” spin orbit effects, Elliot-Yafet effect, etc. Thus, it
seems worthwhile to search experimentally for the predicted signatures
of the SOl in the relaxation rate as a function of magnetic field, chemical
potential, and temperature.
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