
Formosa, N. and Scerri, K. (2015).Xjenza Online, 3:23–30.

Xjenza Online - Journal of The Malta Chamber of Scientists
www.xjenza.org
DOI: 10.7423/XJENZA.2015.1.03

Research Article

Real-Time Modelling and Interpolation of Spatio-Temporal Marine
Pollution

N. Formosa, K. Scerri
University of Malta, Faculty of Engineering

Abstract. Due to the complexity of the interactions
involved in various dynamic systems, known physical,
biological or chemical laws cannot adequately describe
the dynamics behind these processes. The study of these
systems thus depends on measurements often taken at
various discrete spatial locations through time by noisy
sensors. For this reason, scientists often necessitate in-
terpolative, visualisation and analytical tools to deal
with the large volumes of data common to these sys-
tems. The starting point of this study is the seminal
research by C. Shannon on sampling and reconstruction
theory and its various extensions. Based on recent work
on the reconstruction of stochastic processes, this paper
develops a novel real-time estimation method for non-
stationary stochastic spatio-temporal behaviour based
on the Integro-Difference Equation (IDE). This meth-
odology is applied to collected marine pollution data
from a Norwegian fjord. Comparison of the results ob-
tained by the proposed method with interpolators from
state-of-the-art Geographical Information System (GIS)
packages will show, that significantly superior results are
obtained by including the temporal evolution in the spa-
tial interpolations.

1 Introduction

Complex spatio-temporal interactions are exhibited in
various natural systems as witnessed in ecology, meteor-
ology, physics and epidemiology. Such natural systems
evolve on a continuous spatial domain, but the data
sets collected from these systems are made up of spa-
tially localised measurements taken at different discrete
spatial locations through time by noisy sensors. Never-
theless, for analysis and visualisation purposes, the un-
derlying, spatially continuous processes must often be
reconstructed from these discrete measurements.

Traditionally, spatial interactions have been math-
ematically explained using spatial models, and several
interpolation techniques are readily available. Never-
theless, these methods provide interpolations that ig-
nore the temporal behaviour of the process. Typical
examples include Inverse Distance Weighting (IDW)
(Poshtmasari, Sarvestani, Kamkar, Shataei & Sade-
ghi, 2012), Gaussian Radial Basis Functions (GRBF)
(Poshtmasari et al., 2012) and Kriging (Poshtmasari et
al., 2012; Schabenberger & Gotway, 2005). However,
since spatial measurements are also often repeatedly
taken in time, any interpolated field could greatly bene-
fit from augmenting the temporal evolution of the data
with the spatial information. A modern approach to the
interpolation from spatial-temporal information may be
based on the reconstruction step of sampling theory
first attributed to C. Shannon’s seminal work (Shannon,
1949). The aim of this paper is thus to provide a novel
real-time procedure for the estimation of the underlying
stochastic process from noisy observations that serves as
a new tool for better interpolations. Another significant
contribution is the validation of the developed methods
on a pollution data set highlighting the applicability of
this methodology to real-world applications.

The remainder of this paper is structured as follows.
The historical developments of sampling and reconstruc-
tion theory fundamental to this research are presented
in Section II. More recent developments required for this
work together with the chosen real-time estimation ap-
proach are presented in Section III. Section IV is dedic-
ated to an illustrative example highlighting the benefits
of this procedure. Finally, some concluding remarks are
drawn together with an overview of some possible future
additions in Section V.
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2 Historical Developments
The starting point of this research is the seminal study
by C. Shannon on sampling and reconstruction theory
and its various extensions. Shannon first presented the
fundamental framework to represent a bandlimited, con-
tinuous time signal as a discrete sequence without any
loss of information in 1949 (Shannon, 1949). He also
introduced an approach for a perfect reconstruction of
the original time signal from its sampled representa-
tion. Over the past decades, Shannon’s work has been
extended by various notable contributors as summar-
ised by M. Unser in (Unser, 2000). These extensions
aim to relax some of Shannon’s assumptions and ex-
tend the framework to account for non-ideal sampling
(S. Ramani D. Van De Ville & Unser, 2008), multidi-
mensional settings (Petersen & Middleton, 1962; Izen,
2005; Feuer, 2004; Jr. & Sangsari, 1989) and more con-
venient reconstruction spaces (Yao, 1967; Eldar & Un-
ser, 2006; Eldar & Werther, 2005; Nashed & Walter,
1991). Table 1 summarises the main contributions to
sampling and reconstruction theory published since the
seminal work of Shannon together with the contribu-
tions envisaged through this work.

The restriction to unidimensional processes assumed
in Shannon’s sampling theory prevents the applica-
tion of this seminal theory to multidimensional signals.
Petersen et. al. (Petersen & Middleton, 1964) extended
this theory to accommodate other areas where physical
phenomena need to be measured in a multidimensional
continuum. Some conspicuous fields within this area in-
clude meteorology, oceanography, seismology, acoustics,
optics and radar (Petersen & Middleton, 1962). Pa-
poulis (Papoulis, 1977) continued Shannon’s work stat-
ing that it is unrealistic to assume that the acquisition
device is ideal. The theory thus developed shows the
introduction of a non-ideal acquisition device prior to
sampling. However due to the introduction of a non-
ideal acquisition device, a discrete correction filter prior
to the reconstruction stage is required to limit its effect.

Moreover, sampling, as presented by Shannon is re-
stricted to bandlimited signals. However, for non-
bandlimited signals, Aldroubi and Unser (Aldroubi, Un-
ser & Aldroubi, 1994) proposed the use of alternative
reconstruction spaces which take into account both the
input signal and the sampling process. Conventional
sampling and interpolation theories provide solutions to
the problem of reconstructing a signal from its samples
limited to a noise-free scenario. Perfect reconstruction
can, therefore, be achieved as long as this noise free ac-
quisition is respected. In any real world application, the
measured signals are always corrupted by various de-
grees of noise levels and, therefore, perfect reconstruc-
tion is no longer attainable. Eldar and Unser in (Eldar &
Unser, 2006), therefore, proposed the use of the Weiner

filter as the discrete correction filter to limit the effect
of measurement noise on the reconstruction process.

Classical sampling theory assumes that each realisa-
tion of the sampling processes is independent of all
past signals. Wikle showed that although such an as-
sumption is valid in various temporal or spatial applic-
ations, it is violated for spatio-temporal signals where
successive spatial samples are temporally related to
the dynamics of the process under observation (Wikle,
2002). Thus, sampling and reconstruction theory of
non-stationary stochastic processes utilises a dynamic
filter to capture the temporal evolution of the process
(Scerri, Dewar & Kadirkamanathan, 2008).

Building on the extensions discussed in this section,
this work provides a method for the reconstruction of
sampled non-stationary stochastic processes observed
in the presence of noise. A modern shift-invariant ap-
proach is also adopted in a multi-dimensional domain.
The sampling and reconstruction methods developed in
this paper are based on the same building blocks as
presented in (Scerri et al., 2008). Nevertheless, this re-
search extends the work in (Scerri et al., 2008) such that
the estimation of the kernel from noisy observations is
implemented in real-time. As opposed to previous work,
the methods developed were validated on collected mar-
ine pollution measurements.

3 Theoretical Developments

The temporally evolving signal z(s, t) ∈ L2 ∀ t where
L2 is the space of measurable, square-integrable, real-
valued functions with s ∈ Rn and t ∈ Z+. The signal
z(s, t) is continuous in the spatial domain (s) but dis-
crete in the temporal domain (t).

As done in (Scerri et al., 2008), an approximation to
the spatially continuous signal z(s, t) in the shift invari-
ant space V , is given by this projection into V given by

z(s, t) ≈
∑
j∈Z
〈z(s, t), φxj (s)〉φxj (s) = x(t)> φx(s) (1)

where

x(k, t) = [〈z(s, t), φx1
(s)〉 . . . 〈x(s, t), φxnx (s)〉]>

φi(s) = [φi1(s) . . . φini (s)]
> (2)

φi(s) is some chosen reconstruction function. In this
work it is assumed that the temporal evolution of the
stochastic process z(s, t) can be described by the lin-
ear spatial convolution of the previous field with an un-
known kernel k(s) and subject to some additive noise
process given by:

z(s, t) =

∫
z(., t− 1)k(.) + η(s, t) (3)
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Table 1: Comparison of the various extensions to Shannon’s sampling theorem.

Method Dimensions Acquisition
Device

Reconstruction
Space

Dynamics Noise Real-
Time

(Shannon, 1949) 1-D Ideal Bandlimited No No No
(Petersen & Middleton, 1964) Multi-D Ideal Bandlimited No No No
(Papoulis, 1977) 1-D Non-ideal Bandlimited No No No
(Aldroubi, Unser & Aldroubi, 1994) 1-D Non-ideal Shift-

Invariant
No No No

(Wikle, 2002) 1-D Non-ideal Harmonic Yes No No
(Eldar & Unser, 2006) 1-D Non-ideal Shift-

invariant
No Yes No

(Scerri, Dewar & Kadirkamanathan, 2008) Multi-D Non-ideal Shift-
invariant

Yes Yes No

This research (2014) Multi-D Non-ideal Shift-
invariant

Yes Yes Yes

where η(s, t) is a zero mean stationary Gaussian noise
process with covariance Ση given by

Ση = COV[z(s, t), z(s + s, t+ t)] =

{
λ(s) if t = 0

0 otherwise

(4)
Sampling is performed where filtering by the non-ideal

acquisition device is followed by an ideal sampler. The
output of the non-ideal filter is dictated by its impulse
response, h(s), and is given by:

y(si, t) =

∫
S
h(si − r)z(r, t)d r+v(t) (5)

where v(t) is a zero mean white Gaussian noise pro-
cess uncorrelated with η(s, t) representing measurement
noise.

A major difficulty in making use of the unknown tem-
poral dynamics in the reconstruction of z(s, t) is the con-
tinuous nature of the convolution describing the tem-
poral dynamics as given by (3). An approximate dis-
cretised representation of the dynamics (3) and the ob-
servation process (5) can be obtained by considering the
approximations:

z(s, t) ≈
nx∑
j=1

〈z(s, t), φxj (s)〉φxj (s) = x(t)> φx(s) (6)

k(s) ≈
nθ∑
j=1

〈k(s), φθj (s)〉φθj (s) = θ> φθ(s) (7)

h(s) ≈
nϑ∑
j=1

〈h(s), φϑj (s)〉φϑj (s) = ϑ> φϑ(s) (8)

λ(s) ≈
n%∑
j=1

〈λ(s), φ%j (s)〉φ%j (s) = %> φ%(s) (9)

where

x(t) = [〈z(s, t), φx1
(s)〉 . . . 〈x(s, t), φxnx (s)〉]>

θ = [〈k(s), φθ1(s)〉 . . . 〈k(s), φθnθ (s)〉]>

ϑ = [〈h(s), φϑ1(s)〉 . . . 〈h(s), φϑnϑ (s)〉]>

% = [〈λ, (s)φ%1(s)〉 . . . 〈λ(s), φ%n% (s)〉]>

φi(s) = [φi1(s) . . . φini (s)]
>

(10)

Based on these decompositions an approximate discrete
representation of the dynamics (3) and the non-ideal
sampler (5) with known error bounds is given by The-
orem 1 (Scerri et al., 2008).

Theorem 1. Using the spatially discrete representa-
tions (6) to (9), the dynamic equation (3) and the ob-
servation equation (5) can be approximated by the finite
dimension state-space model

x(t+ 1) = A(θ)x(t) + w(t) (11)

and

y(t) = C(ϑ)x(t) + v(t) (12)

where

A(θ) = Ψ -1

∫
S
φx(s)θ> Ξθ(s)ds (13)

Ψ =

∫
S
φx(s)φx(s)>ds (14)

Ξθ(s) =

∫
S
φθ(s− r)φx(r)>d r (15)

C(ϑ) =

 ϑ> Ξϑ(s1)
...

ϑ> Ξϑ(sny )
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Ξϑ(s) =

∫
S
φϑ(s− r)φx(r)>d r (16)

w(t) ∼ N (0,Σw) (17)

with

Σw = Ψ−1
∫
S
φ%(s)%(s)>Ξ%(s)dsΨ

−> (18)

Ξ%(s) =

∫
S
φ%(s− r)φx(r)>d r (19)

and v(t) ∼ N (0,Σv) with Σv = σvIny ; with errors in
the approximation of z(s, t) given by

εz = |z(s, t)− x(t)> φx(s)| 6 ε′z

∫
Rn:ν>νc

Φx(ν)dν

(20)
where

ε′z = sup
Rn:ν>νc

|Z(ν)Φ−1x (ν)| (21)

Proof is found in (Scerri et al., 2008). Since the
dynamics are unknown, a joint estimation technique
is being proposed to simultaneously reconstruct both
the stochastic non-stationary spatio-temporal process
and the systems dynamics from the noise-corrupted ob-
servations. This research necessitates real-time learn-
ing of the model parameters and states, with the most
widely used techniques being the online version of the
Expectation-Maximisation (EM) algorithm, particle fil-
ters and the Dual Kalman filter. Despite being a math-
ematically rigorous technique, the online version of the
EM algorithm is not easily applicable to different solu-
tions due to the possible intractability of the maximisa-
tion function (Ozkan, Fritsche & Gustafsson, 2012). On
the other hand, although particle filters are easily applic-
able to varied dynamics and provide accurate and rig-
orous solutions, they carry a significant computational
burden which can easily become excessive in a spatio-
temporal setting (Kwok, Fox & Meila, 2004). Thus, the
dual Kalman filter was chosen for this application due
to its low computational cost, easy of adoption, rapid
convergence and well-studied behaviour (Wan, van der
Merwe & Nelson, 1999).

The state estimates based upon the initial estimates of
θ are obtained from the first state space representation
given in (3) and (12). Estimates of the parameter θ
based on the values from first state-space model, are
then obtained from the state space representation given
by:

θ(t+ 1) = Iθ(t) + q(t) (22)

x(t+ 1) = B(x(t))θ + w(t) (23)

Note that (23) is a rewriting of (11) as done in (Scerri
et al., 2008). This completes one run of the algorithm.
Therefore, the use of dual Kalman filtering based on the
state space model describing both the states and para-
meter evolution in real-time leads to the reconstruction
of the spatio-temporal process z(s, t). Note that, the
sensor’s spatial characteristics are assumed to be known
when the spatio-temporal process and the model dy-
namics are being inferred. Such an assumption is reas-
onable since sensor characteristics may be either given
by the manufacturer or measured by experimentation.
Nevertheless, this assumption may be relaxed by adding
the estimation of the sensors parameters, ϑ, to the dual
estimation procedure.

4 Marine Pollution Spread Mod-
elling and Interpolation

An important contribution of this research was to apply
the developed models on a real data set. To the author’s
best knowledge, this is the first application of such a
methodology to real data. The marine pollution dataset
was provided by NORUS, a north American and Norwe-
gian educational programme (Medina, Moline, Clark &
Wood, 2011). Its main focus is the study of the effect of
climate change on the ecosystems and living organisms.
Part of the data required for NORUS is obtained via
the Slocum Glider (Medina et al., 2011), an autonom-
ous underwater robot.

The dataset used for this project was taken from
this glider deployed in the fjord of Svalbard, Norway.
The glider’s mission extended from longitude 13.3042◦

East to 16.6875◦ East and latitude 78.1042◦ North and
78.7042◦ North (Medina et al., 2011). During the 17-
day mission, which began on June 30, 2009, the glider
collected a large data set of measurements for each of
its 20 onboard sensors. The data set available for this
research includes the position of the glider and the oxy-
gen concentration at the robot’s location and the time
of measurement. Oxygen concentration is an important
indicator of water quality, and it is envisaged that this
methodology can adequately capture its spatio-temporal
evolution from the measured data in real time. Such be-
haviour is similar to other spreading pollutants in large
bodies of water which may necessitate real-time spatio-
temporal interpolation and prediction in the natural dis-
aster scenarios.

4.1 Pre-Processing of Data

The stochastic spatio-temporal measurement of interest
in this research is the oxygen concentration. Thus,
these measurements were plotted against their discrete
sampling instances as shown in Figure 1. This plot
shows variations in oxygen concentrations with time as
the glider is moving and collecting the data. It indic-
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ates that there exists a cyclical variation in the oxygen
readings.

Figure 1: Oxygen concentration plotted against time.

With the aim to visualise the main causes of the cyc-
lic variations in oxygen concentration, a similar graph of
the depth against the time instances is shown in Figure
2 . Both Figures 1 and 2 are seen to exhibit very sim-
ilar behaviour, each having similar cycles at the same
time instances. This highlights the strong relationship
between oxygen concentration and depth.

Figure 2: Depth variation as the glider is moving in time.

A detrending procedure was carried out to capture
the apparent relationship between the oxygen level and
the depth. Detrending is often applied to remove a fea-
ture thought to distort or obscure the relationships of
interest (Chatfield, 2004). After detrending, to facil-
itate interpretation and modelling of the dataset, trend
estimation was carried out. In trend estimation, a model
is developed to pick up the main characteristics of the
data. Based on this pre-processing procedure, the re-
siduals were clustered into four groups, with models for
each cluster given by:

• Cluster 1

l(t) = m1 + c1d+ r(t) (24)

• Cluster 2

l(t) = m2 + c2d+ r(t) (25)

• Cluster 3
l(t) = m3 + r(t) (26)

• Cluster 4
l(t) = m4 + r(t) (27)

where l(t) is the oxygen level, d is the depth, m is the
mean of the data, c is the linear regression model para-
meter and r(t) represents the residual left after detrend-
ing. Using Least Squares estimation, the model para-
meters obtained are presented in Table 2.

Table 2: Simulation function and parameters.

Parameter Value

m1 3.1947
c1 1.2115
m2 −1.1732
c2 −0.9596
m3 1.0678
m4 −8.6269

A plot of the detrended version of the original data
set is given in Figure 3. This figure indicates that the
residuals form a horizontal band about zero and have a
very small variance up to a depth of 6m. Moving, how-
ever, to a greater depth, even though the mean remains
around zero, the variance is significantly larger.

Figure 3: Detrended Data.
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To verify if significant spatial and temporal correla-
tions are still present after detrending, correlation coef-
ficients are obtained. The correlogram presented in Fig-
ure 4, facilitates the interpretation of the results of the
autocorrelation coefficients. The 95% confidence inter-
vals are also included in Figure 4. Values outside these
confidence intervals are considered to be statistically in-
significant. Figure 4 shows that significant spatial and
temporal correlations still exist in the residues since val-
ues at low lag exhibit correlation coefficients well beyond
the 95% confidence interval.

Figure 4: Correlogram for the Detrended Data.

4.2 Spatio-Temporal Modelling

Since the pollution spread dynamics are unknown, the
reconstruction being proposed reconstructs both the
spatio-temporal process and the model kernel via the
joint estimation technique in real-time. This is carried
out based on the spatial location of the measurements
and their evolution through time. Fourier and correla-
tion analysis were used to identify the bandwidth and
kernel support of the data as suggested in (Scerri et al.,
2008). Based on this analysis, a spatio-temporal model
was proposed using cubic B-splines as the basis func-
tions. The functions and parameters for reconstruction
of both the process and the underlying dynamics are
presented in Table 3.

The tests carried out on the proposed interpolation
technique measure the accuracy of the spatio-temporal
interpolation. To quantify the accuracy of the recon-
structed spatio-temporal process, Table 4 shows the
Root Mean Square Error (RMSE) difference between the
measured spatio-temporal process and the reconstruc-
ted process. These RMSE measures indicate relatively
small errors between the measurements and the recon-

Table 3: Simulation function and parameters.

Function and Parameter Simulation Value

λ(s) = δ(s)

h(s) = 0.3 exp( s2

3 )
ny = 3134
nθ = 3
nϑ = 3

nx = nρ = 7
basis locations for z(s, t) = {−11,−7.5, ..., 10}
basis locations for k(s) = {−3.5, 0, 3.5}
basis locations for h(s) = {−3.5, 0, 3.5}

structed field. The values from Table 4 show that for
the randomly chosen time points, the proposed method-
ology for real-time estimation of the parameters and the
states obtained a reasonably smoothed representation
of the measured data. Running on standard computer
hardware with Intel(R) Core(TM) i7-2670QM CPU at
2.20GHz processor and 8GB of main memory, the com-
putational time for each time point was approximately
0.388s, thus near immediate estimates are obtained for
each now measured field. Most importantly, the overall
RMSE over all time points is measured at 0.5345mg/l,
indicating that the proposed procedure for real-time
parameter and state estimation was able to pick the
main process behaviour at each time and the interpol-
ated behaviour is a good representative sample of the
general behaviour.

The widely used 10-fold validation method (McLach-
lan, Do & Ambroise, 2004) is used as a validation of
the proposed methodology. Thus, a sample of 300-time
points is removed from the data set for each run to be
used as a validation set. The advantage of this method
is that all observations are used for both training and
validation, and each observation is used for validation
only once. The RMSE of each fold used as a validation
set is presented in Table 5. For each fold, the results
show that good estimates are obtained with low RMSEs
and relatively low percentage errors. Moreover for each
fold tested, the kernel parameters converged to the same
values, obtaining a repeatable kernel reconstruction.

4.3 Comparison with Other Interpola-
tion Techniques

Furthermore, standard spatial interpolation techniques
provided by the latest GIS software were used to com-
pare their performance with the results obtained from
the proposed real-time methodology. 10-fold validation
was carried out for each interpolation technique avail-
able in GIS software. The results from each interpol-
ation technique are included in Table 6 together with
the spatio-temporal methodology developed in this pa-
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Table 4: RMSE of the reconstructed spatio-temporal process for the randomly chosen time points.

t RMSE (mg/l) % error t RMSE (mg/l) % error

89 0.5004 0.4924 162 2.0910 1.9366
332 0.5366 0.4910 520 1.2928 1.1600
787 0.2517 0.2444 890 2.1250 2.7420

1222 0.2904 0.2851 1329 1.2021 1.7563
1546 0.3534 0.3440 1800 0.5198 0.5072
1844 0.3303 0.3125 1963 0.2165 0.2090
2385 1.0642 1.0048 2855 2.6440 2.1341
3005 0.3193 0.3135 3118 0.3247 0.3188

Table 5: Overall RMSE of the reconstructed spatio-
temporal process within each fold.

t RMSE (mg/l) % error

1:300 0.2054 0.2015
301:600 0.2942 0.2797
601:900 0.3711 0.3506
901:1200 0.4049 0.3826

1201:1500 0.2956 0.2786
1501:1800 0.2396 0.2260
1801:2100 0.3085 0.2906
2101:2400 0.1649 0.1555
2401:2700 0.2205 0.2082
2701:3000 0.2262 0.2133

per. These results show that the lowest RMSE from all
standard interpolation techniques is obtained via empir-
ical Bayesian kriging. Nevertheless, this is still signific-
antly outperformed by the spatio-temporal methodology
developed in this paper.

Table 6: Summary of the results for all the interpolators
which were considered.

All Functions in GIS software and de-
veloped models

RMSE
(mg/l)

Inverse Distance Weighting 1.0521
Global Polynomial Interpolation - Order
10

2.1503

Radial Basis Functions - Multiquadratic
Kernel

1.0156

Local Polynomial Interpolator - Order 1
with Exponential Kernel

1.7826

Kriging/CoKriging - Ordinary Kriging 1.0283
Kriging/CoKriging - Universal Kriging 1.0283
Empirical Bayesian Kriging 0.9862
Diffusion Kernel 2.0332
Spatio-Temporal Modelling 0.2731

5 Conclusion
This research presented a structured approach to data-
driven spatio-temporal modelling and spatial interpol-
ation utilising a state space representation of the IDE
with parameter and state estimation in real-time. Clas-
sical interpolation theory assumes that the data col-
lected from sensors is independent of all past signals.
However, in spatio-temporal signals, successive spatial
samples are temporally related based on the dynam-
ics of the process under observation. Novel methods
for modelling and spatial interpolation were developed
based on multidimensional sampling theory, to cater
for noise-corrupted observations from spatially discrete
sensors. A real-time estimation procedure was utilised
to estimate the model dynamics and the hidden spatio-
temporal process with the use of the dual Kalman filter.
This methodology was applied to a real data set thus
providing the very first validation of these methods on
gathered, rather than simulated data. The proposed
models together with the methodology developed, ob-
tained better interpolative results than any competitive
spatial interpolator. This can be attributed to the use of
the temporal information in the developed interpolator.
Thus, these spatio-temporal models may aid in both the
visualisations of the data and a better understanding of
the evolving process.

To further enhance the applicability of the proposed
methodology, various other extensions could be con-
sidered. In one such extension, the assumptions of full
knowledge of the spatial response of the sensor and the
support of the continuous functions of the IDE is re-
moved. Furthermore, the homogeneous representation
of the IDE can be altered to a spatially heterogeneous
representation allowing for the modelling and interpol-
ation of more complex dynamics.
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