
Xjenza Online - Journal of The Malta Chamber of Scientists
www.xjenza.org
DOI: 10.7423/XJENZA.2014.2.03

Research Article

Uniqueness Typing For A Higher-Order Language

Adrian Francalanza and Melanie Zammit
CS, ICT, University of Malta

Abstract. We investigate type-based analysis for a
higher-order channel passing language with strong update,
whereby messages of a different kind are communicated
over the same channel. In order to reason about such pro-
grams, our type system employs the concept of uniqueness
to be able to assert when it is safe to change the object
type a channel. We design a type system based on this
concept and prove that our type system is sound, meaning
that it only accepts programs that do not produce runtime
errors.

1 Introduction

Resource usage in settings with limited amounts of re-
sources is an important aspect of computation and one
common way how to manage limited resources is through
resource reuse. In this paper we investigate type-based
analysis for resource reuse in concurrent settings; in such
settings, the reuse of resources is easy to get wrong because
one thread of computation may change the mode of usage
of a particular resource while other threads still employ the
previous usage mode. In particular, we focus on message-
passing programs, such as those written in Go (“The Go
Programming Language”, n.d.) and Erlang (Armstrong,
2007; Cesarini and Thompson, 2009), where the resources
reused are the channels used to transmit the messages on.
We carry out our analysis using the pi-calculus(Sangiorgi
and Walker, 2003), a standard model for channel-passing
computation and, in particular, extend the results obtained
in (De Vries et al., 2012) to a higher-order version of the
calculus where the values communicated include also the
programs themselves.

Consider, as an example, the client-server protocol de-
picted in Fig. 1. The client sends a program to be executed
by the server whereby, for the program to run, it needs to
be instantiated with a particular dataset. From the server
side, it needs to perform the necessary checks on the code
before it runs it whereas the client would ideally not com-
municate the dataset unless it is certain that the code will
be executed (the dataset may be bulky or contain sensitive
information).

Figure 1: Communication links between a client and a server

Fig. 1 thus describes a two-phase protocol, whereby the
client sends the code to the server in the first phase. The
server checks the code and acknowledges back if the check
is successful and it is prepared to run the code, at which
point the client send the data to the server in the second
phase of the protocol. Once the server receives the data, it
executes the validated code with this data.

A program implementing the protocol of Fig 1 can be ex-
pressed as the higher-order pi-calculus parallel composition
of a client with a server

client | server (1)

defined as follows:

server
def
= port1?(xcode, xinst, xack).

if check(xcode) then

runxcode.

(newport2)(xack!port2.port2?(xdata).xinst!xdata)

else nil

client
def
= (new ack, inst)(

port1!(code, inst, ack) | ack?(xport).xport!data
)

code
def
= 〈inst?(y).P (y)〉

In (1), the server and client originally interact only on the
port port1. The server inputs three values on this channel,

Correspondence to: Adrian Francalanza (adrian.francalanza@um.edu.mt)

© 2014 Xjenza Online

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/46602589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.xjenza.org
10.7423/XJENZA.2014.2.03
mailto:adrian.francalanza@um.edu.mt

Uniqueness Typing For A Higher-Order Language 15

namely the code to check and run, xcode, an acknowledg-
ment channel, xinst, and a channel on which to instantiate
the code with, xinst. If the check succeeds, it runs the
code and acknowledges back to the client, sending it a new
channel, port2, on which to initiate the second phase of the
protocol. Once it receives the data on port2, it forwards
it to the executing code through channel xinst. Dually, the
client first sends the code along with two new channels, ack
and inst, on port1 and as soon as it receives an acknowledg-
ment with the channel for the second phase of the protocol,
it sends the data on this channel. The code consists of a
thunked process, 〈−〉, that inputs its data on channel inst
once it is executed, and then continues as P with the data
inputted, y.

An alternative server that economises on channels is the
one defined below, whereby it reuses channel port1 for the
second phase of the protocol instead of creating a new chan-
nel port2. Note that when port1 is reused, different forms
of values are communicated on it, namely data as opposed
to (code, inst, ack). In the literature, this is often referred
to as strong update(Ahmed et al., 2005).

srvOpt
def
= port1?(xcode, xinst, xack).

if check(xcode) then

runxcode.xack!port1.port1?(xdata).xinst!xdata

else nil

When we execute

client | srvOpt (2)

it turns out that we obtain the same behaviour as that of
(1). However channel reuse is not always safe and can lead
to erroneous executions. For instance, executing

client | srvOpt | client

does not have the same behaviour as that of its original
counterpart client | server | client; in fact, the former re-
sults in a runtime error whereby the second phase of the
protocol between one client and srvOpt is interfered with
by a message on port1 from the other client with mismatch-
ing communicated values (this is a direct consequence of
the strong update on port1). Alternatively, in the thunked
process in code is instantiated through port1

codeErr
def
= 〈port1?(y).P (y)〉

the channel reuse in srvOpt would also be unsafe and gen-
erate a runtime error.

In this paper we develop a type system that statically
analyses programs and guarantees that type-checked pro-
grams do not generate runtime errors. Our type system
accepts correct higher-order programs such as (1), but also
programs with safe strong updates such as (2), while reject-
ing all unsafe programs. § 2 describes our language whereas
§ 3 presents the uniqueness type system. § 4 presents the
main soundness results and § 5 concludes.

2 The Language
Fig. 2 presents the higher-order pi-calculus that will be

used. The syntax assumes separate denumerable sets for
channel names, c, d ∈ Chan, and variables, x, y ∈ Var;
identifiers i, j ∈ Id = Chan∪Var range over both channels
and variables. The main syntactic class is that of processes
P,Q,R ∈ Proc using values, u, v ∈ Val, consisting of
identifiers and thunked processes, 〈P 〉. We sometimes use
the shorthand notation c!v to denote c!v.nil.

The reduction relation (−→) is defined as the least rela-
tion over closed processes satisfying the rules in Figure 2;
it assumes a standard structural equivalence relation (Hen-
nessy, 2007) over processes, ≡, that allows us to abstract
over aspects such as the commutativity of parallel compo-
sition, P | Q ≡ Q | P (amongst others). The main rules are
rCom, describing communication amongst processes, and
rRun, describing the spawning of thunked processes using
the command run. The remaining rules are standard. In
what follows, we use P −→∗ Q to denote the transitive
closure of our reduction relation.

The reduction relation allows us to deduce that

client | server −→∗ P (data)

and also that

client | srvOpt −→∗ P (data)

It also allows us to show that, whereas

client | server | client −→∗ P (data) | client

is the only possible evaluation, we have the following se-
quence of reductions for the analogous system that uses
the alternative srvOpt instead.

client | srvOpt | client −→∗
port1!data |
(new inst)

(
inst?(y).P (y) | port1?(xdata).inst!xdata

)
| client

At this point, the input on channel port1 can react with
either the output port1!data (carrying the right format of
values) or with the output port1!(code, inst, ack) from the
second client, which carries values of a different (erroneous)
format.

We define a predicate on processes to describe the run-
time errors we want to rule out; the rules defining this
predicate P→err are given in Fig. 2. For example, eOut
and eIn state that thunked process values 〈P 〉 cannot be
used instead of channels to communicate on, whereas eRun
states that we cannot use channel values instead of thun-
ked process values when spawning new executions. eIf1
and eIf2 state that comparisons are only allowed on chan-
nel values. The remaining rules are the usual contextual
rules.

3 Type System
Although there exist numerous type systems for the vari-

ous variants pi-calculus, they tend to rule out well-behaved

10.7423/XJENZA.2014.2.03 www.xjenza.org

10.7423/XJENZA.2014.2.03
www.xjenza.org

Uniqueness Typing For A Higher-Order Language 16

Syntax:

u, v ∈ Val : := i | 〈P 〉
P,Q,R ∈ Proc : := nil | P | Q | v!u.P | v?x.P | if (v=u) thenP else Q | run v.P | (new c)P

| recx.P | x

Semantics:

rCom
c!v.P | c?x.Q −→ P | (Q[v/x])

rRun
run 〈P 〉.Q −→ P | Q

rRec
recx.P −→ P{|recx.P/x|}

rThen
if (c=c) thenP else Q −→ P

rElse
if (c=b) thenP else Q −→ Q

P ≡ P ′ P ′ −→ Q′ Q′ ≡ Q
rStr

P −→ Q

P −→ P ′

rPar
P | Q −→ P ′ | Q

P −→ P ′

rRes
(new c)P −→ (new c)P ′

Errors:

eIf1
if (〈Q〉=v) thenP1 else P2→err

eOut
〈P 〉!v.Q→err

eRun
run c.P→err

P→err
eRes

(new c)P→err

eIf2
if (v=〈Q〉) thenP1 else P2→err

eIn
〈P 〉?x.Q→err

P→err
ePar

P | Q→err

P ≡ Q Q→err
eStr

P→err

Figure 2: Higher-Order Pi-Calculus

processes, such as the client-server example with strong up-
dates of (2). Substructural type systems have been proven
useful when reasoning about resource management (Pierce,
2004). In particular, De Vries et al. (2012) have defined
a sound substructural type system that can reason about
channel reuse for the basic pi-calculus, whereby code can-
not be communicated at values. In this work we extend
this type system so as to be able to handle resource reuse
in higher-order pi-calculus programs.

3.1 Types and Type Environments

Uniqueness is a concept of exclusive access (De Vries et
al., 2012), meaning that if a channel has a unique type,
then it is guaranteed that only the process typed with that
channel type has access to use that channel. Thus, strong
update is safe for unique channels. However, even though a
channel may not be unique at this instant, it may become
unique after n computations. We describe these channels
by the channel type attribute, unique-after-i. Uniqueness
can also be represented as type annotations and reasoned
about statically. More precisely, following (De Vries et al.,
2012), a channel type has the syntactic form [C]

a
and de-

scribes two things: C is the object type and denotes the
values that are allowed to be communicated over the chan-
nel; a denotes a type attribute (defined in Fig. 3). Thus,
we say that

� An Affine channel ([C]
1
) is a channel with an access

restriction that limits the channel to only one use at
most.

� A Unique-after-n channel ([C]
(r,n)

) is a channel with

an access guarantee that the channel will become
unique after it is used for n times.

� An Unrestricted channel ([C]
ω

) is a channel with no
usage restrictions or guarantees.

We note that unique channel types (De Vries et al., 2012)
are in a sense, dual to affine channels (Kobayashi et al.,
1999): whereas one yield a guarantee, the other imposes a
restriction on usage. However, in order for the guarantees
to be sound, we shall need to impose global restrictions
on our type analysis (c.f. Def. 1) As an example of this,
consider two parallel processes, A and B, that are using a
channel c exclusively (i.e., channel c is unique for process
A | B):

� We would typically type-check one process, sayA, with
respect to a number, say m, of affine channel types for
channel c. This restricts A to use c m times at most.

� Dually we would type-check the other process, B , with
respect to a unique-after-n channel type for c. At each
use, the count is reduced by 1, because this would
mean that A used up one of its restrictions. Once 0
is reached, this would mean that A has used up all of
its usage permissions, and since access was restricted
to the process A | B, this would mean that B has
exclusive access.

� Crucially, however, for the uniqueness guarantee to be
sound, we need to require that m ≤ n; otherwise we
would reach 0 while A would still have further usage
permissions.

Equipped with this analogy, we present the full type
structure and operations for environment manipulation in

10.7423/XJENZA.2014.2.03 www.xjenza.org

10.7423/XJENZA.2014.2.03
www.xjenza.org

Uniqueness Typing For A Higher-Order Language 17

Type Structure:

a : := 1 | ω | (r, n)

A,B ∈ bTyp : := int | bool
C,D ∈ cTyp : := B | [C]

a | 〈L〉
L,K ∈ pTyp : := ε | i = C,L

S, T ∈ Typ : := C | {L}

Type Splitting:

pBase
B = B ◦B

pUnr
[C]

ω
= [C]

ω ◦ [C]
ω

pUnq
[C]

(r,n)
= [C]

1 ◦ [C]
(r,n+1)

Subtyping:

sIndx
(r, n) <: (r, n+ 1)

sUnq
(r, i) <: ω

sAff
ω <: 1

a1 <: a2
sTyp

[C]
a1 <: [C]

a2

Structural Manipulations for Environments:

tWeak
Γ, v : T � Γ

T1 <: T2
tSub

Γ, v : T1 � Γ, v : T2

tRev
Γ, c : [C1]

r
� Γ, c : [C2]

r
T = T1 ◦ T2

tCon
Γ, v : T � Γ, v : T1, v : T2

T = T1 ◦ T2
tJoin

Γ, v : T1, v : T2 � Γ, v : T

Figure 3: Type Structure and Operations

our type system, given in Fig.3. We have three classes of
types:

� The base types (A,B ∈ bTyp) can either be integers
(int) or boolean values (bool).

� The communicative types (C,D ∈ cTyp) represent
those types that can be sent over a channel, namely
base types, channel types and process abstraction
types, 〈L〉 (representing thunked processes).

� The general types (S, T ∈ type), made of communica-
tive type and active process types {L}.

Our type system is substructural(Pierce, 2004), whereby
type assumptions, mapping identifiers to types, are used
in a controlled manner. We therefore represent our type
environments, Γ, as lists of type assumptions whereby in
particular, we can have duplicate multiple types assigned
to an identifier. Type environments are manipulated using
the environment structural relation Γ1 � Γ2 (Fig. 3) which
rely on the type splitting T1◦T2 and the subtyping relations
T1 <: T2.

Typing assumptions can be split and re-joined under cer-
tain conditions. Active processes, process abstractions and
affine channels cannot be split. This way, they can only be
used once. However, basic types and unrestricted assump-
tions can be duplicated, (pBase and pUnr), while (r, i)
assumptions can be split into an affine assumption and a
(r, i+ 1) assumption (pUnq), manifesting the duality dis-
cussed earlier. Joining is the dual of splitting.

To enhance the expressivity of our type system, we use
also a notion of subtyping. When we define a type S of
being a subtype of type T (S <: T), we mean that we
can at any time use the value of type S instead of a value
of type T (Pierce, 2002). The rules in Fig. 3 allow us to
deduce the following subtyping chain:

[C]
r
<: [C]

(r,1)
<: [C]

(r,2)
<: ... <: [C]

ω
<: [C]

1

We can there allow an unrestricted channel to be used
in place of an affine one (but not vice-versa, as this would
break it restriction constraints). As a result of subtyp-
ing combined with splitting, we can use a unique-after-n
assumption as an unrestricted assumption, and then split

it into 2 unrestricted assumptions (([C]
(r,n)

<: [C]
ω

) =
[C]

ω ◦ [C]
ω

). We also can split a unique-after-n assumption
into and affine assumption and a unique-after-n+1 assump-
tion, and use the latter instead of an affine assumption

([C]
(r,n)

= [C]
1 ◦ ([C]

(r,n+1)
<: [C]

1
)).

The structural relation for environments (�) is the least
reflexive transitive relation satisfying the rules in Fig. 3.
The most obvious rule is weakening (tWeak), which al-
lows extra fresh identifiers to be mapped in the environ-
ment and still type-check the process. Splitting (tCon),
joining (tJoin) and subtyping (tSub) are other ways of
modifying the environment in a safe way. The most im-
portant is the rule that allows revision or strong update
(tRev). Since a channel is unique, it means that only one
process has access to it and therefore, we can change the

10.7423/XJENZA.2014.2.03 www.xjenza.org

10.7423/XJENZA.2014.2.03
www.xjenza.org

Uniqueness Typing For A Higher-Order Language 18

type of that channel to allow different types to be commu-
nicated over it.

When there is only one type assumption for each identi-
fier in a type environment, we say that the type environ-
ment denotes a partial function (from identifiers to types).
We define a condition on type environments, consistency,
that ensures that multiple type assumptions are not in con-
flict (this ensures that the guarantees given by unique types
are indeed sound, as discussed earlier). In particular, we
need to check this also for thunked process types, that may
eventually be executed.

Definition 1 (Consistency). A typing environment Γ is
consistent if:

1. There exists a partial function Γ′ such that Γ′ � Γ
2. Γ = Γ1, x : 〈Γ2〉 implies Γ1,Γ2 is consistent

�

3.2 The Typing Relation

The typing relation is defined as two separate, mutually
dependent relations. One relation is defined over values
(`v) and the other is defined over processes (`p). The rules
for typing relation over values are given in Fig. 4 whereas
those for the typing relation over processes are given in
Fig. 5.

tvId
Γ, i : C `v i : C

Γ1,Γ2 `p P
tvProc

Γ1 `v 〈P 〉 : 〈Γ2〉
Figure 4: Value Typing

To type-check an identifier there needs to be a map-
ping for it in the typing environment (tvId). A new rule
(tvProc) is introduced to type-check process abstractions
with respect to some environment (Γ1 `v 〈P 〉 : 〈Γ2〉). In or-
der to do so, we need to ensure that the spawned process,
P , type-checks with respect to the existing environment
extended with the mappings of the thunked process type,
Γ1,Γ2.

In Fig. 5, we have three separate rules for typing input
processes (c?x.P) that differ only in the channel type. If
c had no restrictions, (rule tpInW) we can continue to
use it in an unrestricted fashion in P . If c had an affine
assumption (tpInA), we can no longer use it in the contin-
uation P . Moreover, if it has a unique-after-n assumption
(tpInU), we need to account for this one communication
and update the guarantee for P accordingly. Therefore,
we can now guarantee that c will be unique for process P
after n − 1 other communications. Apart from updating
the channel’s assumption, we also need to include the vari-
able’s type in the environment. The type will correspond
to the type that channel c is allowed to communicate.

Similar reasoning is used to type-check output processes
(c!v.P). However, we also need different rules for when we
communicate an identifier or a process abstraction. When
communicating a channel (rules tpOutIA, tpOutIW and
tpOutIU), there should be a respective identifier type

mapping in the type environment; importantly, the type-
checking for the continuation process P can no longer use
this type assumption. Once again we will need three sepa-
rate rules for different channel assumptions.

On the other hand, we cannot use the same logic to type-
check higher-order output processes (c!〈Q〉.P). This is be-
cause the process abstraction is not in the environment.
Therefore, we will need to type-check it before sending it
to another process. We employ three additional rules for
outputting process abstractions. The logic behind chan-
nel assumptions is the same as before. However, the pro-
cess abstraction type is matched to the channel’s type by
value typing the process (using tvProc) with respect to an
empty environment. By doing so, we are not only making
sure that Q is being type-checked, but we are also making
sure that it is self-contained (the environment abstracted
in its type is enough to type-check it).

The rule for conditionals (tpIf) type checks both possi-
ble processes (i.e., P and Q) with respect to the same typ-
ing environment as only one of them will be executed. The
same environment must also type-check the values we are
comparing to channel types. Even though this rule only
matches channel names (as is standard in other work in
process-calculi), extending the typing rule to more generic
boolean conditions is straightforward.

We have two different rules for running a process
(run v.Q). One of them (tpRun1) covers the case when v
is a variable. This rule requires the environment to include
a mapping for this variable, with its type corresponding to
a process abstraction type. The rest of the environment
should be able to type-check the continuation process (Q).
The second rule (tpRun2) covers the case when v = 〈P 〉.
This time, we do not have a mapping for the process ab-
straction in the environment. So we divide the environment
in two, part of it type checks the continuation process (Q),
and the other part should be used in value typing the thun-
ked process with respect to an empty environment.

In order to type-check a recursive process (recx.P) we
need to add the recursive variable x to the environment
and use it to type-check the continuation processes P . The
variable should be an active process type with the same en-
vironment used to type-check the original process. Then,
when we need to type check a recursion variable, we just
need to make sure that the environment contains a map
for the variable that corresponds to the rest of the envi-
ronment. All this is represented in the rules tpRec and
tpVar.

The remaining constructs are standard. nil always type-
checks, with any environment (tpNil). The rule for paral-
lel processes (tpPar) needs to divide the assumptions into
two environments, to type-check the parallel processes sep-
arately. If both processes need to use the same channel, it
is first split using the rules in Fig. 3. The rule for chan-
nel name creation (tpRes) introduces new channels with
a unique access guarantee. Finally, in tpStr, if process
P type-checks with respect to an environment Γ, it should
still type-check after Γ has been restructured using rules in
Fig 3.

10.7423/XJENZA.2014.2.03 www.xjenza.org

10.7423/XJENZA.2014.2.03
www.xjenza.org

Uniqueness Typing For A Higher-Order Language 19

Γ `p P
tpOutIA

Γ, c : [C]
1
, j : C `p c!j.P

∅ `v 〈Q〉 : 〈Γ2〉 Γ1 `p P
tpOutPA

Γ1, c : [〈Γ2〉]1 `p c!〈Q〉.P

Γ, c : [C]
ω `p P

tpOutIW
Γ, c : [C]

ω
, j : C `p c!j.P

∅ `v 〈Q〉 : 〈Γ2〉 Γ1, c : [〈Γ2〉]ω `p P
tpOutPW

Γ1, c : [〈Γ2〉]ω `p c!〈Q〉.P

Γ, c : [C]
(r,n−1) `p P

tpOutIU
Γ, c : [C]

(r,n)
, j : C `p c!j.P

∅ `v 〈Q〉 : 〈Γ2〉 Γ1, c : [〈Γ2〉](
r,n−1) `p P

tpOutPU
Γ1, c : [〈Γ2〉](

r,n) `p c!〈Q〉.P
Γ, x : C `p P

tpInA
Γ, c : [C]

1 `p c?x.P
Γ, c : [C]

ω
, x : C `p P

tpInW
Γ, c : [C]

ω `p c?x.P
Γ, c : [C]

(r,n−1)
, x : C `p P

tpInU
Γ, c : [C]

(r,n) `p c?x.P
tpNil

Γ `p nil
Γ1 `p P

tpRun1
Γ1, x : 〈Γ2〉 `p runx.P

Γ1 `p Q ∅ `v 〈P 〉 : 〈Γ2〉
tpRun2

Γ1,Γ2 `p run 〈P 〉.Q

Γ, c : [C]
r
`p P

tpRes
Γ `p (new c)P

Γ1 `p P Γ2 `p Q
tpPar

Γ1,Γ2 `p P | Q
Γ, x : {Γ} `p P

tpRec
Γ `p recx.P

tpVar
Γ, x : {Γ} `p x

Γ � Γ′ Γ′ `p P
tpStr

Γ `p P

Γ `v v : [C1]
a1 Γ `v u : [C2]

a2 Γ `p P Γ `p Q
tpIf

Γ `p if (v=u) thenP else Q

Figure 5: Process Typing

4 Results
We prove soundness for our type system with respect to

the errors formalised in Fig. 2. As is standard, we do so by
proving Subject Reduction (Thm. 1) and Safety (Thm. 2)

Theorem 1 (Subject Reduction).

if Γ is consistent and Γ `p P and P −→ P ′ implies

there exists Γ′ such that Γ′ is consistent

and Γ′ `p P ′

Proof. By rule induction on Γ `p P . See (Zammit, 2012)

Theorem 2 (Type Safety).

Γ `p P implies P 6−→err

Proof. By rule induction on Γ `p P . See (Zammit, 2012)

We are also able to type-check the programs (1) and (2)
discussed in the introduction and reject the erroneous pro-
grams discussed there. Repeated applications of Thm. 1
ensure that typed programs will remain typed when they
compute, whereas Thm. 2 ensures that as long as they type-
check, programs never produce an error.

5 Conclusion and Future Work
We have presented a sound type system for reasoning

statically about higher-order pi-calculus programs using

strong updates. This extended the work in De Vries et
al. (2012), which did not consider higher-order communi-
cations.

In De Vries et al. (2012) (of which, this work is an imme-
diate extension) the authors give an extensive discussion of
related work and type systems. One possible avenue for
future work is that of extending our type systems with
input/output modalities as in Hennessy (2007), yielding
richer notions of channel subtyping. One could also extend
uniqueness typing to session types (Honda et al., 1998).

References

Ahmed, A., Fluet, M. and Morrisett, G. (2005). A step-
indexed model of substructural state. In Acm sigplan
notices (Vol. 40, pp. 78–91). ACM.

Armstrong, J. (2007). Programming erlang. The Pragmatic
Bookshelf.

The Go Programming Language. (nodate).
http://golang.org/.

Cesarini, F. and Thompson, S. (2009). Erlang program-
ming. O’Reilly.

De Vries, E., Francalanza, A. and Hennessy, M. (2012).
Uniqueness typing for resource management in
message-passing concurrency. J. Logic. Computation.
24(3), 531–556.

Hennessy, M. (2007). A distributed pi-calculus. Cambridge
University Press.

10.7423/XJENZA.2014.2.03 www.xjenza.org

10.7423/XJENZA.2014.2.03
www.xjenza.org

Uniqueness Typing For A Higher-Order Language 20

Honda, K., Vasconcelos, V. T. and Kubo, M. (1998).
Language primitives and type disciplines for struc-
tured communication-based programming. In Esop
(Vol. 1381, pp. 22–138). LNCS. Springer.

Kobayashi, N., Pierce, B. and Turner, D. (1999). Linearity
and the pi-calculus. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 21(5), 914–
947.

Pierce, B. (2002). Types and programming languages. MIT
press.

Pierce, B. (2004). Advanced topics in types and program-
ming languages. MIT press.

Sangiorgi, D. and Walker, D. (2003). The pi-calculus: a the-
ory of mobile processes. Cambridge University Press.

Zammit, M. (2012). A type system for a higher-order lan-
guage. University of Malta.

10.7423/XJENZA.2014.2.03 www.xjenza.org

10.7423/XJENZA.2014.2.03
www.xjenza.org

	Introduction
	The Language
	Type System
	Types and Type Environments
	The Typing Relation

	Results
	Conclusion and Future Work

