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Abstract 

Expression quantitative trait loci (eQTLs), as 

determined through a series of statistical association 

studies collectively known as genome-wide association 
(GWA) studies, have provided us with a hypothesis free 

approach for the investigation into regulatory loci for 

disease and disease-associated proteins. This has led to the 
identification of multiple novel gene-disease interactions, 

especially in the field of respiratory medicine. This review 

describes the case study of a GWA approach in order to 
identify eQTLs for the soluble form of the urokinase 

plasminogen activator receptor (uPAR), a protein 

associated with obstructive respiratory disease. Molecular 

and cellular investigations based on the eQTLs identified 
for this GWA study has led to the identification of a novel 

regulatory mechanism with implications in the disease 

processes with which this protein is associated. This 
highlights the potential of eQTLs defined associations in 

the identification of novel mechanisms, with implications 

in disease.  
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Introduction 

Expression quantitative trait loci (eQTLs) are regions 

present in the human genome that are (i) able to regulate 

the expression of mRNA and/or protein of a related or 
unrelated gene or (ii) able to influence changes in the 

observed phenotype. EQTLs are driven by genetic 

variation including single nucleotide polymorphisms 
(SNPs). These SNPs may be located within, or are in 

linkage with, regions that contain a gene that either (i) 

drives changes in expression of the target mRNA or 
protein or (ii) are associated with a particular outcome, 

such as obesity1 and lung function.2 Investigations into 

eQTLs are carried out through a series of statistical 

associations collectively known as a genome-wide 
association (GWA) study. These GWA studies have 

allowed for investigation into regulatory loci for disease 

and disease-associated proteins, without the burden of 
having a pre-defined hypothesis. Indeed, this has led to 

the identification of multiple novel gene-disease 

interactions, especially in the field of respiratory 

medicine.2,3 Our research has involved the implementation 
of a GWA approach in order to identify eQTLs for the 

urokinase plasminogen activator receptor (uPAR), which 

has been associated with the obstructive respiratory 
diseases asthma & chronic obstructive pulmonary disease 

(COPD).4-11 Through our research, we have identified a 

novel mechanism of action derived from a genome-wide 
significant protein eQTL, which has significant regulatory 

effect on uPAR driven biological effects on primary 

human bronchial epithelial cells (HBECs) in vitro.  

 

The plasminogen activator receptor – a respiratory 

disease associated molecule 

Multiple studies (see below), have identified a 
relationship between uPAR and respiratory disease. Initial 

work has identified the uPAR gene PLAUR as an asthma 

susceptibility gene in 587 asthma families.7 In the same 
study, the authors also identify that SNPs across PLAUR 

and its five and three prime untranslated regions (5`UTR 

and 3`UTR) as being associated with asthma, bronchial 

hyper-responsiveness (BHR) susceptibility, baseline lung 
function and lung function decline in populations 

originating from multiple centres, as well as serum uPAR 

levels.7 A follow up study on the same 25 SNPs in a 
population of 992 smokers, identified association with 

baseline lung function.8 Association with an alternate 
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obstructive lung disease, i.e. COPD, was determined in an 

independent study, where through gene expression 

profiling and lung function studies in 43 COPD subjects, 

PLAUR was determined to be differentially expressed in 
the COPD lung when compared to controls.6 Interestingly, 

the association of PLAUR with COPD was found to be 

independent of the smoking pack/year status.6 Our own 
study has identified a strong association between 

circulating uPAR levels and obstructive lung disease. A 

further two studies identify elevated soluble cleaved 
uPAR (scuPAR) levels in the induced sputum of asthmatic 

and COPD patients4, 5, with levels associated with airflow 

limitation, health status and exercise tolerance in COPD 

patients.4 Levels of circulating scuPAR were also found to 
be correlated with lung function in a separate study.7 This 

suggests that identified uPAR dependant effects may be at 

least partially driven by the soluble cleaved form of the 
receptor, a situation previously hypothesised in a human 

bronchial epithelial cell population.9 

Further evidence for the role of uPAR in obstructive 

lung disease has been published in a number of in vitro 
and ex vivo studies as described below. While membrane 

bound uPAR has been shown to be standardly expressed 

in the apical membrane of the airway epithelium12, levels 
were elevated in the inflamed asthmatic epithelium when 

compared to healthy controls9,13 and in COPD subjects 

when compared to controls.6 uPAR was also elevated in 
the lungs of patients who died of status asthmaticus, when 

these were compared to the airways obtained from 7 lung 

donors with no prior diagnosis of asthma.14 In an in vitro 

study using normal HBECs, mechanical stimulation of 
cells in order to mimic the process that occurs in the lung 

during bronchoconstriction, an important event in both 

asthma and COPD, resulted in a 16.2 fold increase in the 
expression of PLAUR mRNA in conjunction with the 

elevation of other molecules involved in the fibrinolytic 

pathway, such as the uPAR ligand urokinase (uPA) and its 
inhibitor the plasminogen inhibitor type 1 (PAI-1).14  A 

more recent study has also identified a role for the 

receptor in the epithelial-mesenchymal transition of 

bronchial epithelial cells.15 Here data suggests that a 
uPAR-dependent signaling pathway is required for EMT 

induced through exposure of cigarette smoke, contributing 

to small airway fibrosis occurring in COPD.15 Globally, 
this evidence suggests that uPAR may be involved in 

asthma and COPD pathogenesis, where elevated receptor 

levels could cause changes in the airways synonymous 

with both asthma and COPD, a hypothesis supported by a 
study which identifies uPAR as a potential marker of 

airway disease severity.16  

Direct roles for uPAR in obstructive respiratory 
disease has in fact been suggested, where uPAR is 

identified as being involved in lung tissue remodelling and 

repair in COPD subjects. This hypothesis that uPAR is 

involved in asthma and COPD pathophysiology through a 

direct role in airway remodelling, is further supported by a 
number of other studies.17-19 In the first instance, elevated 

levels of  uPA and PAI-1 in the airways post injury17, 

suggest involvement of uPAR in airway disease. 
Involvement of uPAR in airway disease was confirmed 

through the concomitant discovery that uPAR is not only 

critical for efficient bronchial wound repair in vitro, but 
that in vivo, inhalation of uPA protects against sub-

epithelial fibrosis and airway hyper-responsiveness in an 

asthma mouse model.18 Together, these data suggest that 

the uPAR pathway is likely important in airway injury. 
Indeed, a recent study has confirmed the role of uPAR in 

airway injury in uPAR-deficient mice, where the knockout 

mice spontaneously developed airway fibrosis.19 Airway 
injury and the deregulation of repair are prevalent in 

asthma and COPD and are known to have a role in airway 

remodelling during disease development.  

 

Structure of the urokinase plasminogen activator 

receptor 

The plasminogen activator receptor is a three 
homologous domained protein20, where each domain 

(annotated as DI, DII and DIII respectively) is separated by 

a 15 residue inter-domain linker sequence and which is 
attached to the outer leaflet of the phospholipid bilayer of 

the cellular membrane via a glycosylphosphatidylinositol 

(GPI) anchor.13, 21-23 uPAR is encoded for by a gene 

located on chromosome 19q13 and is present on the anti-
sense strand of the human genome.20 The PLAUR gene in 

its full form consists of 7 exons; of these, exon 1 encodes 

the 5`UTR and a signal peptide, while exons 2-3, 4-5 and 
6-7 respectively encode the homologous protein domains 

DI, DII and DIII.
20 (see Fig. 1.)  

The GPI anchor, which attaches the receptor to the 
cellular phospholipid bilayer, is susceptible to glycolytic 
and lipolytic cleavage, most significantly by the enzymes 
phospholipase C and D.25, 26 This results in the release of 
the entire protein moiety from the cell surface forming 
scuPAR (Fig. 2). This soluble moiety has been detected in 
the periphery (serum levels) and has been shown to be 
elevated in asthmatic patients when compared to non-
respiratory disease controls and in COPD patients when 
compared to asthmatics and non-respiratory disease 
controls, with elevated levels also identified in the 
induced sputum of these patients.11 The scuPAR has also 
been identified to have a direct role in the modulation of 
disease, specifically in focal segmental 
glomerulosclerosis, which leads to proteinuric kidney 
disease, where scuPAR is directly involved in disease 
development through activation of the podocyte β(3) 
integrin.27 
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Figure 1: Gene structure for the PLAUR gene. PLAUR is located on chromosome 19q13 and in its full form consists of 7 

exons when code for the full-length membrane-bound protein uPAR, Exon 1 encodes for the gene’s 5`UTR and a signal 

peptide, while the exon pairs 2&3, 4&5 and 6&7 each code for the receptors three homologous domains, known as DI, 

DII and DIII. This gene has been identified to be expressed in the lung, in human airway smooth muscle cells and in 
human bronchial epithelial cells 24. Other splice variants exist in either form, namely Exon 3, Exons 4 & 5, Exon 5 and 

Exon 6 deletions and an alternate exon 7(b) located at a further distal region and encoding for an alternate DIII and 

3`UTR. 
 

 

 
 

 

 

 
 

 

Figure 2: PLAUR cleavage products. PLAUR is a 3 globular domain protein attached to the cellular membrane via a 
GPI anchor. Cleavage occurring on the membrane bound receptor can either be proteolytic or glyco/lipolytic. Glycolytic 

and lipolytic cleavage occurs at the GPI anchor by substances such as Phospholipase C & D, and results in the formation 

of a soluble form of the receptor which structurally mirrors the corresponding membrane bound receptor. Proteolytic 

cleavage occurs in the linker region between DI and DII and results in the loss of DI to form a DII/DIII fragment which 
has chemotactic activity. 
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Genome-wide association identifies a novel regulatory 

region for scuPAR 

As part of our interest into uPAR and its role in 

obstructive lung disease, we were concerned about the 
regulation of circulating scuPAR. A 2009 genetics study 

had identified a link between uPAR polymorphisms 

associated with lung function and serum scuPAR levels, 
suggesting a link between the soluble molecule and 

respiratory disease. A better understanding of the 

regulatory mechanism of scuPAR would therefore 
theoretically allow for a more complete understanding of 

how this molecule regulates and is associated with 

disease. Also further determination of scuPAR 

regulation would provide potential novel therapeutic 
targets for scuPAR regulation. Using a hypothesis-free 

approach, i.e. a GWA study, we investigated eQTLs 

driving scuPAR levels in the serum of asthma patients 
and non-respiratory disease controls investigating a total 

of 295,196 SNPs.11 This study identified a locus of 

interest at location 4q35 containing associations for 

SNPs rs4253238 and rs1912826 in a combined dataset 
of the control and asthma patient serum samples (n=584, 

λ=1.009), which achieved genome-wide significance as 

defined by the Bonferroni method (p<1.69x10-7).11 
These SNPs were found to be in near complete linkage 

disequilibrium (LD) (D´=0.99; R2=0.94) in the study 

population and so were considered as a single region of 

variation. The location of this region of association was 

identified to lie in the promoter/5’ coding region of the 
gene for human plasma kallikrein (KLKB1; previously 

known as KLK3). Confirmation of the association in a 

secondary genotyped in a COPD cohort (n=219), further 
defined this region as an eQTL for serum scuPAR levels 

(p=5.34x10-7; B=0.16812 for log10-transformed uPAR 

levels and additive allele coding)11, as did a meta-
analysis including all three populations (n=803) 

(p=5.037x10-12; B=0.0879).11  

 

Molecular Biology techniques confirm a GWA 

identified eQTL 

Although multiple GWA studies have been 

published over the past few years since the first 
publication identified in a PubMed search using the 

target word ‘GWAS’28, with a large number of 

publications with the target word ‘GWAS’ being 

identified in the past few years (Fig. 3), very few studies 
have investigated in detail the mechanism driving the 

genetic association(s) described.  

 

 

Figure 3: Publications listed on Pubmed returning when queried with the word ‘GWAS’. Results identify the 
first publication originating in 1994, with a year on year increase culminating with over 3000 publications 

per year after 2011. 
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In our scuPAR GWA study, carried out to 

determine the regulation of serum scuPAR levels, we 

utilise a number of molecular and cell biology 

techniques to dissect the mechanism driving the eQTL 
highlighted by SNP rs4253238.11 Investigation of 

KLKB1 activity in the same population of serum 

samples confirmed differences in KLKB1 activity based 
on rs4253238 genotype. However interestingly, analyses 

of uPAR mRNA levels by Taqman qPCR identified no 

change in uPAR mRNA expression in primary HBECs 
on stimulation with KLKB1.11 With this, we highlight 

the importance of protein eQTLs. GWA studies have, to 

date, mainly considered changes in mRNA levels as 

outcomes for eQTL association. Our study suggests that 
analyses exclusively based on mRNA will not cover all 

mechanisms important in determining expression levels, 

including post-translational mechanisms. Indeed an in 
silico GWA study/mRNA eQTL carried out in parallel 

and the analyses of HBEC mRNA levels via Taqman 

qPCR11 did not identify the locus at 4q35 as being 

associated with uPAR mRNA expression levels.11  
Further investigations using cleavage of 

recombinant uPAR protein, and recombinant over-

expression models using the pcDNA3 plasmid vector, 
allowed us to define with confidence the mechanism 

behind our protein eQTL result. We identified that the 

association between KLKB1 and scuPAR stemmed from 
a cleavage interaction between KLKB1 and scuPAR, 

cleaving the scuPAR molecule into multiple fragments. 

This would therefore inhibit scuPAR driven effects on 

the bronchial epithelium, such as proliferation.11 
 

Summary 

In summary, in our study we have identified a novel 
regulatory mechanism for the asthma and COPD 

associated molecule scuPAR, through an in depth 

analyses of a protein eQTL study. We are among the 
first to have shown that an eQTL derived association 

defined through a GWA study can be followed through, 

through molecular and cell-based techniques, to define a 

mechanism to which the eQTL can be attributed to. 
Defining such mechanisms confirms that eQTL analysis 

provides us with the opportunity of determining novel 

regulatory and association pathways. This of course has 
important implications for those associations connected 

to a variety of disease states, allowing for a better 

understanding of disease processes and providing 

potential novel targets for future therapeutics.  
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