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Abstract

In this article, a new meta-heuristic method is proposed by combining particle swarm optimization (PSO)

and gravitational search in a coherent way. The advantage of swarm intelligence and the idea of a force of

attraction between two particles are employed collectively to propose an improved meta-heuristic method for

constrained optimization problems. Excellent constraint handling is always required for the success of any

constrained optimizer. In view of this, an improved constraint-handling method is proposed which was de-

signed in alignment with the constitutional mechanism of the proposed algorithm. The design of the algorithm

is analyzed in many ways and the theoretical convergence of the algorithm is also established in the article.

The efficiency of the proposed technique was assessed by solving a set of 24 constrained problems and 15

unconstrained problems which have been proposed in IEEE-CEC sessions 2006 and 2015, respectively. The

results are compared with 11 state-of-the-art algorithms for constrained problems and 6 state-of-the-art algo-

rithms for unconstrained problems. A variety of ways are considered to examine the ability of the proposed

algorithm in terms of its converging ability, success, and statistical behavior. The performance of the pro-

posed constraint-handling method is judged by analyzing its ability to produce a feasible population. It was

concluded that the proposed algorithm performs efficiently with good results as a constrained optimizer.
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1. Introduction

Constrained optimization problems (COPs) are an important class of problems in the field of optimization,

because many real-life problems arising in engineering, computer science, finance, and business science can

be modeled as nonlinear constrained optimization problems. The formulation of any real-life problem into a

constrained optimization problem involves the use of many parameters. Determination of the optimal value of

each of these parameters is very important because together these values provide the solution to the problems.

Mathematically, a constrained optimization problem can be formulated in the form of an objective function,

which is constrained by some linear and nonlinear constraints. The following model provides the mathematical

description of a nonlinear constrained optimization problem:

Min. or Max. f (x), x = [x1, x2, x3, ..., xD], (1)

subject to a set of inequality constraints

gk(x) 6 0, k = 1, 2, 3, ...q, (2)

as well as equality constraints

hk(x) = 0, k = q + 1, q + 2, ...m, (3)

where objective function f is defined over subspace of a D dimensional real vector space S ⊆ Rn and x is a

member of D-dimensional vector space. A set of q inequality constraints and m−q equality constraints, define

the feasible region F ⊆ S . Li 6 xi 6 Ui are the lower and upper bounds of the decision variables in the domain

S , where i = 1 : 1 : D.

A class of optimization techniques is available in the literature for use with COPs. In principle, both de-

terministic and nondeterministic techniques are being used to solve COPs. Unfortunately, selected predefined

assumptions of deterministic techniques restrict their applicability to a specific class of problems. This re-

striction directed us to focus on nondeterministic techniques, among which differential-free, nature-inspired

optimization techniques have become very popular, because of their applicability to a wide range of opti-

mization problems. This article focuses on the development of a new meta-heuristic method for constrained

optimization problems.

In recent years, many nature-inspired optimization techniques have been developed to solve constrained op-
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timization problems. Initially, these techniques were only used to solve unconstrained optimization problems.

Particle Swarm Optimization (PSO) [7, 28, 44], Differential Evolution (DE) [5, 33, 8], and the Gravitational

Search Algorithm (GSA) [45] are known to deliver excellent performance for unconstrained optimization prob-

lems, but have been found to perform variedly with COPs. In particular, the performance is strongly affected

when problems have to be solved at a high level of complexity. The complexity in COPs mainly occurs when

the ratio of the search region to the feasible region is very small [29]. This level of complexity in problems

requires the combined use of different classes of algorithms to provide a more powerful constrained optimizer.

Many modifications and hybridizations intended to improve the efficiency and robustness of the algorithms

have appeared in the literature. Banks et al. [3] provide detailed information about the possible improvements

of the PSO algorithm by hybridization, and they exhaustively discussed the major benefits of this development.

Huang [23] improved the availability of the DE algorithm by evolving two subpopulation. Lwin and Qu [31]

proposed a hybrid algorithm by integrating population-based incremental learning and DE for the solution of

constrained portfolio selections.

The success of any constrained optimization algorithm mostly depends on the strength of the constraint-

handling technique, the design of which has to be customized for an individual optimization algorithm. A few

good constraint-handling mechanisms, that are capable of performing well, have been proposed. For example,

Deb [19] proposed an efficient constraint-handling approach for genetic algorithms, whereas Coello and Carlos

[14] published a comprehensive survey on constraint-handling approaches for a large number of optimization

algorithms. Mezura-Montes and Coello [35] also furnished a detailed report in which they presented the future

scope and trends of constraint-handling mechanisms. In [18] the design of a very good constraint-handling

method for multiple swarm-based cultural PSO is described. The constraint-handling method discussed in [1]

was successfully embedded within DE based on a penalty function. The FPBRM constraint-handling method

proposed by Mun and Cho [40] for a modified harmony search algorithm also produced good results for

optimization problems. The advantage of these algorithms lies in the fact that they were specifically designed

for the technique being used for the optimization. This kind of constraint-handling mechanism is naturally

compatible with the algorithms and enhances the performance of the optimizer. The overall message emerging

from these studies is that an effective constraint-handling method should be based on the individual algorithm

in which this constraint-handling method will be utilized. This inspired the authors of this article to propose

a new constraint-handling mechanism that is appropriate for and compatible with the proposed optimization

algorithm.
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This research extends the concept of the recently proposed shrinking hypersphere PSO (SHPSO) [51]

for unconstrained optimization and engineering design problems, as opposed to the method in [52], which

was extended for constrained optimization problems. The performance of the SHPSO approach was improved

using the GSA [45] and a global constrained optimizer was established with theoretical proof of its convergence

and stability.

The organization of the paper is as follows. Section 2 briefly provides the concept of the GSA, and in

sections 2.1 and section 2.2 the principles of PSO and SHPSO are discussed. Subsequently, in section 3, the

proposed SHPSO-GSA is presented and section 4 contains a detailed theoretical and experimental analysis

of the proposed algorithm. Section 5 discusses the proposed constraint-handling method and in section 6 the

experimental results are discussed followed by the conclusions. A flow chart of the article is depicted in Fig. 2.

2. Gravitational Search Algorithm

The GSA [45] is a recent meta-heuristic algorithm for solving nonlinear optimization problems. It is

inspired by Newton’s basic physical theory that states that a force of attraction works between every particle

in the universe and this force is directly proportional to the product of their masses and inversely proportional

to the square of the distance between their positions. In the GSA, each particle is equipped with four kinds

of properties: position, mass, active gravitational mass (Mai), and passive gravitational masses (Mpi) . The

position of the mass provides the solution of the problem. Gravitational mass and inertial mass can be evaluated

using a fitness function. Each kind of mass follows the basic laws of physics:

i. Law of gravity: Each particle attracts every other particle and the gravitational force between two particles

is directly proportional to the product of their respective mass and inversely proportional to the square of

the distance between them [42].

ii. Law of motion: The current velocity of any mass is equal to the sum of the fractions of its previous

velocities and the variations in the velocity. Variation in the velocity of any mass is equal to the force

exerted upon the system divided by the mass of inertia.

Inspired by the definitions above, we are able to define the physics of the GSA. Let the position of the ith

particle at any instant t in a D-dimensional search space be Xt
i(xt

i1, x
t
i2, ..., x

t
iD) for i = 1...n. The force of
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attraction (F t
i jD) on the ith particle to jth particle is defined as in the following equation

F t
i jD = Gt ×

Mt
pi × Mt

a j

Rt
i j

× (xt
id − xt

jd) (4)

where d = 1, 2, ...D, Mt
pi is the passive gravitational mass related to ith particle at time t, Mt

ai is the active

gravitational mass related to jth particle at time t, Gt is the gravitational constant at time t and Rt
i j is the

Euclidean distance between the two particles i and j.

Rt
i j = ‖Xt

i , X
t
j‖

2 (5)

The value of gravitational constant Gt can be calculated by Eq. 6

Gt = Gt0 × exp((−α
iter

itermax
)) (6)

where α and G0 are descending coefficient and initial value, respectively. iter is the current iteration and

itermax is the predefined maximum number of iterations.

The total force of attraction exerted by the ith particle at any instant t in a D-dimensional space is given by

Eq. 7

F t
id =

ps∑
i=1,i, j

rand()F t
i jd (7)

where d = 1, 2, ...D, rand() is the uniform random number generator in [0,1] and ps is the number of agents.

which is introduced to provide the stochastic nature to the algorithm. By using the law of motion the acceler-

ation of ith particle is given by the following equation:

act
id =

F t
id

Mt
ii

(8)

where Mt
ii is the inertial mass of the ith particle. The velocity and position of particles are calculated as follow:

V t+1
id = rand() × V t

id + act
id (9)

xt+1
id = xt

id + V t+1
id (10)

where rand() is uniform random number generator in [0,1]. The gravitational and inertial masses are simply
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calculated by the fitness evaluations. A greater mass can be treated as better particle and having higher force

of attraction so that it can influence other particles with high level of attraction. The gravitational and inertial

mass will be updated with the help of following equations:

Mai = Mpi = Mii for i = 1, 2...ps (11)

mt
i =

fitt
i − worstt

bestt
− worstt

(12)

Mt
i =

mt
i∑ps

i=1 mt
i

(13)

where fitt
i represents the fitness value of the ith particle at time t. bestt and worstt may be defined by the

following equations:

bestt = min(fitt
j), j ∈ {1, ...ps} (14)

worstt = max(fitt
j), j ∈ {1, ...ps} (15)

The exhaustive procedure of GSA is explained in Algorithm 1.

Algorithm 1 Pseudo code of Gravitational Search algorithm
Initialization
Randomly initialize (Xt

1, X
t
2, ..., X

t
ps) of size ps in search range [Xmin, Xmax]

Evaluate the fitness values ( f itt
1, f itt

2, ..., f itt
ps) of X(Agent)

Set iteration t=0
Reproduction and Updating
while Stopping Criterion is not satisfied do

Calculate Gt, bestt, worstt and Mt
i

Calculate the total force in each direction F t
i

Calculate the act
i and velocity

Calculate the degree of infeasibility of each particle
for i=1: ps do

V t+1
i = rand() × V t

i + act
i

Xt+1
i = Xt

i + V t+1
i

Evaluate the fitness values ( f itt
i) of X(Agent)

end for
end while

In recent times, the GSA has been improved in various ways such as the development of Binary GSA [53],

prototype classifier-based GSA [2], and improved GSA [27] for optimal shape design. These developments

and applications based on the GSA have inspired the continued investigation of this algorithm for the benefit

of the science and engineering community. The study of Rashedi et al. [45] shows that the performance of the
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GSA is very promising for unconstrained optimization problems; however, studies of the performance of the

GSA over constrained optimization problems have indicated that, in terms of memory-less functionality, the

performance of the algorithm is disappointing. This lack of intelligence provides the motivation to assemble

the memory in the GSA by hybridizing it with PSO. In the next section, PSO is briefly explained.

2.1. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a nature-inspired stochastic population-based optimization search

technique, inspired by the social behavior of fish and birds. PSO was first introduced by Kennedy and Eberhart

in 1995 [26]. It uses the learning, information sharing, and position-updating strategy of each solution. It is

very simple to implement on mathematical and computational platforms. The technique behaves analogously

with bird flocking in that the search space is analogous to the flocking area of the bird; hence, each bird may

be treated as a particle in the search space equipped with communicating abilities.

Let the position of the ith particle in a D-dimensional search space be Xt
i(xt

i1, x
t
i2, ..., x

t
iD) with a flag of

velocity V t
i (v

t
i1, v

t
i2, ..., v

t
id) at any moment t, where i = 1 to ps, where ps is the swarm size. Let Pbestt

i and

Gbestt
i denote the latest best position of the particle(personal best) and global best at the moment t. Initially

Pbestt
i and Xt

i are same. According to the theory of PSO, the position of the particle can be considered to have

changed when the linear combination of the aforementioned three influences has occurred. Mathematically,

this can be expressed as:

Influence of(V t
i ) + Influence of(Gbestt

i − Xt
i) + Influence of(Pbestt

i − Xt
i) (16)

The formulated Eq. (16) is the velocity update equation, which can be written as:

V t+1
i = ωV t

i + c1r1(Xt
i −Gbestt

i) + c2r2(Xt
i − Pbestt

i) (17)

ω is the inertia weight, r1 and r2 are the uniform random number generators between 0 to 1. c1 and c2 are the

PSO parameters their values are mentioned in Table 1.

Xt+1
i = Xt

i + V t+1
i (18)

Finally the velocity update equation in its formal expression is written in Eq. (17). The updated position of

particles may be obtained by applying V t+1
i on the position Xt

i (Eq. (18)). The exhaustive procedure of PSO is
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explained in Algorithm 2.

Algorithm 2 Pseudo code of Particle Swarm Optimization Algorithm
1: Initialization
2: Randomly initialize (Xt

1, X
t
2, ..., X

t
ps) of size ps in search range [Xmin, Xmax]

3: Initialize the velocity (V t
1,V

t
2, ,V

t
ps) in the range [Vmin,Vmax]

4: Set iteration t=0
5: Evaluate the fitness values ( f itt

1, f itt
2, ..., f itt

ps) of X
6: Set Xt

i to be Pbest = (Pbestt
1, Pbestt

2, ..., Pbestt
ps) for each particle

7: Set the particle with best fitness value Gbest
8: Reproduction and Updating
9: while Stopping Criterion is not satisfied do

10: for i=1: ps do
11: V t+1

i = ωV t
i + c1r1(Pbestt

i − Xt
i) + c2r2(Gbestt − Xt

i)
12: Xt+1

i = Xt
i + V t+1

i
13: Pbestt+1

i = Pbestt
i

14: Gbestt+1 = Gbestt

15: Evaluate fitness(Xt+1
i )

16: if (fitness(Pbestt+1
i ) <fitness(Xt+1

i )) then
17: Xt+1

i =Pbestt+1
i

18: end if
19: if (fitness(Gbestt+1) <fitness(Pbestt+1

i )) then
20: (Pbestt+1

i )= Gbestt+1

21: end if
22: end for
23: end while

Since it was initially proposed, the PSO technique has seen many modifications; for example, the first

version [26] was later improved [47] by incorporating the concept of inertia weight into PSO. Subsequently,

Eberhart and Shi [21] again proposed a method for tuning the parameters of the PSO algorithm. Clerc [9, 11,

10] introduced many major modifications to increase the usefulness of PSO. Many hybridized and modified

versions of PSO were also proposed, such as Compact PSO [41], ICA-PSO [24], teaching and peer-learning

PSO [30]. These hybridizations were implemented by incorporating the other heuristic techniques into PSO.

A detailed study of the trajectory of PSO particles was discussed by Van den Bergh and Engelbrecht [50],

and Zhang et al. [55] provided a theoretical analysis of PSO. Pluhacek et al. [43] designed a modified PSO

driven by a multi-chaotic number generator. A new method referred to as SHPSO was proposed by Yadav and

Deep [51, 52] based on the idea of the shrinking hypersphere versus particle generation. Additional noteworthy

optimization algorithms, such as two-swarm COPSO [48], DSS-MDE [54], COMDE [39], DECV [36], time

adaptive hybrid PSO [4], and A-DDE [37] were also presented in the literature.

These improvements to PSO inspired the design of a new hybrid PSO method in combination with the
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Table 1: Parameter selection for the SHPSO
ω c1 c2 c3

0.9 1.49618 1.49618 1.01

GSA. This involved the proposal of a new equation for updating the velocity of PSO by incorporating the

principles of GSA with the aim of improving the procedure for updating the positions of the particles. In the

section 2.2, the important aspects of SHPSO [51, 52] are discussed.

2.2. Shrinking Hypersphere based PSO (SHPSO)

SHPSO was recently proposed by Yadav and Deep [51, 52]. This algorithm uses the shrinking hypersphere

strategy in the search space to update the positions of the particles. SHPSO functions as follows

Let NGbest be the best (fittest) particle in the global hypershere [51] with the global best as the center.

Further, let NPbest be the best (fittest) particle in the hypersphere with Pbest as the center. Compare NGbest

& NPbest and select the fittest. Now apply both the velocity update and position update equations in such

a way that at each iteration, the radius of the hypersphere decreases from r to 0, which is proportional to

the total number of iterations as specified by the user. Thus, if a sufficiently large number of iterations are

performed, then the algorithm will converge to a point hypersphere. A description of the SHPSO is provided

in Algorithm 3. The fine tuned parameter values [51] is listed in Table 1. In the next section the proposed

SHPSO-GSA algorithms is discussed.

Recently, Hsing-Chih et al. [22] designed a hybrid algorithm by combining PSO with the GSA for un-

constrained nonlinear optimization problems, which they tested against a benchmark of 14 problems. The

difference between the proposed approach and that of Hsing-Chih et al. [22] is that theirs involved uncon-

strained optimization, whereas this paper focuses on constrained optimization. Secondly, Hsing-Chih et al.

[22] used standard PSO to hybridize GSA, in contrast to the SHPSO [51] used in this work. Finally, the

benchmark functions used by Hsing-Chih et al. [22] only had two categories, i.e., uni-modal and multi-modal,

whereas SHPSO [51] has already been tested over more complex functions proposed in IEEE CEC sessions. In

this work, the IEEE CEC 2006 benchmark set of constrained optimization problems was employed to test the

proposed SHPSO-GSA algorithm. In addition, the design of the mechanism of the proposed hybrid algorithm

is completely different from the version presented by Hsing-Chih et al. [22].

Another concept of hybridization of PSO and GSA is proposed by Mirjalili et. al. [38]. The major attrac-

tions of this hybridization was, it is designed with Standard PSO and original GSA. The idea of PSOGSA [38]

9



Algorithm 3 Pseudo code of the shrinking hypersphere based PSO
1: Initialization
2: Randomly initialize (Xt

1, X
t
2, ..., X

t
ps) of size ps in search range [Xmin, Xmax]

3: Initialize the velocity (V t
1,V

t
2, ...,V

t
ps) in the range [Vmin,Vmax]

4: Set iteration t=0
5: Evaluate the fitness values ( f itt

1, f itt
2, ..., f itt

ps) of X
6: Set Xt

i to be Pbest = (Pbestt
1, Pbestt

2, ..., Pbestt
ps) for each particle

7: Sort the Swarm based on the feasibility based rule [29]
8: i. The feasible solutions are listed in front of the infeasible solutions.
9: ii. The feasible solutions are sorted in ascending order of their objective function values.

10: iii. The infeasible solutions are sorted in ascending order of their degree of constrained violations.
11: Set the first particle in the second list to Gbest
12: Generation of Hypersphere
13: Generate a hypersphere of radius r centered at Gbest, generate ps particle inside the hypersphere
14: Evaluate the fitness value of each generated particle and choose the best feasible, name it NGbest
15: Again generate ps particles Hbest = (Hbestt

1,Hbestt
2, ...,Hbestt

ps) in the hypershpere of Pbest and com-
pute fitness of Hbest

16: Pbest = Best(Pbest,Hbest)
17: Reproduction and Updating
18: while Stopping Criterion is not satisfied do
19: for i do=1: ps
20: V t+1

i = ωV t
i + c1r1(Pbestt

i − Xt
i) + c2r2(Gbestt − Xt

i) + c3r3(NGbestt − Xt
i)

21:
22: Xt+1

i = Xt
i + V t+1

i
23: Pbestt+1

i = Pbestt
i

24: Gbestt+1 = Gbestt

25: Evaluate fitness(Xt+1
i );

26: if fitness(Pbestt+1
i ) <fitness(Xt+1

i ) then
27: Xt+1

i =Pbestt+1
i

28: end if
29: if fitness(Gbestt+1) <fitness(Pbestt+1

i ) then
30: (Pbestt+1

i )= Gbestt+1, Using feasibility based rule
31: end if
32: Again sort the swarm
33: Goto 12 Update Hbest and NGbest. Using feasibility based rule
34: end for
35: end while
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seems to similar to the proposed article (SHPSO-GSA) but on careful observation both the articles have sig-

nificant difference both in idea as well as content. Table 2 presents a crisp comparison and differences between

these two algorithms Overall, the major difference between these algorithms are the idea of implementation

Table 2: Comparison between SHPSO-GSA and PSOGSA
Sr. No. SHPSO-GSA PSOGSA [38]
1. Hybridized with SHPSO and GSA Hybridized with SPSO and GSA
2. Proper justification and need of hybridization is

discussed
Not provided in the paper

3. The reason for each kind of influence is dis-
cussed before proposing the algorithm

No discussion and justification is provided, the
authors have abruptly replaced the pbest with
acceleration term of GSA

5. A detailed theoretical analysis is provided for
the convergence and stability of the algorithm

Not discussed

6. The idea is justified with many experiments Only few unconstrained problems are solved
7. Constrained problems of CEC 2006 and uncon-

strained problems of CEC 2015 is solved
Only simple unconstrained problems are solved
with very less dimension

8. Compatible constraint handling mechanism is
proposed

Not applicable

and the current one is applicable for constrained as well as unconstrained problems while PSOGSA is applied

only for unconstrained problems. The results of original SHPSO [51] in comparison to PSOGSA, the results

are far better than PSOGSA. Therefore an outcome of the results of PSOGSA and SHPSO-GSA can be ana-

lyzed easily and a conclusion can be drawn that SHPSO-GSA is better than PSOGSA based on experimental

studies.

3. The Proposed Hybridized SHPSO-GSA Algorithm

3.1. Motivation of Hybridization

The fundamental motivation for designing the SHPSO-GSA algorithm was to utilize the memory-enabled

behavior of PSO in the memory-less approach of GSA; i.e., GSA does not keep track of the path of any

individual particle in its memory. The memory functionality was assembled into GSA by using it jointly with

the recently proposed SHPSO. The advantage of the GSA is the constitutional diversity in the algorithm, which

originates from the fundamental concept of defined acceleration of a particle. Because the acceleration of a

particle is a function of the force experienced by the existing gravitational field due to the other particles and

its mass. On the other hand, when processing COPs, the performance of the GSA is strongly affected by the

design of the constraints and the shape of the search region. The problems in which the intersection of the
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feasible and search regions is very small, the GSA does not behave well, because the mass values of particles

behave similarly, thereby diluting the effect of the gravitational field over the particles. This results in the

particles ceasing their movement at places of less importance. In contrast, the ability of PSO to memorize the

trajectory of a particle avoids the looping of the particles in some interval. This discussion is experimentally

justified as follows. Plots of the GSA and the proposed SHPSO-GSA (in the next section) have been applied

to solve the problems g01 and g02 [29], and the fitness value and infeasibility of the last population (for a

population size of 60), achieved after 4000 iterations, are compared. The results of the final population are

depicted in Fig 3. The red stars in the figure show the fitness value of each particle in the last iteration and for

each red star there is a corresponding blue circle vertically above the red star, to show the degree of infeasibility

of each particle. The degree of infeasibility is calculated with the following equation:

G(xi) =

m∑
j=1

G j(xi)

where G(xi) is the degree of infeasibility of the ith particle xi and j is the number of constraints. For

the function g01 the global fitness is ’-15’ [29] and the particles of the GSA are unable to reach the global

minimum even when the infeasibility of the particles is very high. However, when the same problem is solved

by the SHPSO-GSA the result is excellent, with every particle able to reach the global minima with zero degree

of infeasibility. Fig. 4 depicts the same analysis for the problem g02 and again the particles of the GSA are not

able to reach to the global minima, whereas the SHPSO-GSA again produces an excellent result with 100%

feasibility and optimum fitness. The major idea was to use exploitation capacity of the SHPSO and exploration

ability of GSA algorithm together. In further sections it has been discussed that the designed hybrid performs

in a good capacity in comparison to individual performances.

Apart from the above discussions the possible hybrid of SHPSO and GSA will increase the exploration

ability. This is due to the exponential behavior of the acceleration term (See Eq. 29 and the idea is to uti-

lize the exploratory nature of GSA. In order to measure the increased exploration ability the potential search

volume [28] of the SHPSO and SHPSO-GSA. The Potential search ranges for ith particle of SHPSO is given

by:

rd
1i = |Gbestd − Xd

i | + |Pbestd
i − Xd

i | + |NGbest − Xd
i | (19)

The potential search ranges of the proposed SHPSO-GSA is designed based on the velocity update equation
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proposed in Eq. 23. Which is presented in Eq. 20

rd
2i = act

i + |Gbestt − Xd
i | + |Pbestt

i − Xd
i | + |NGbestd − Xd

i | (20)

The potential search volumes for the ith particle, corresponding to SHPSO and SHPSO-GSA is given by

R1 and R2 respectively.

R1 =

d∏
i

r1i (21)

R2 =

d∏
i

r2i (22)

To understand the changed exploration ability of the proposed algorithm due to incorporation of the ac-

celeration, the potential search volume is plotted against iterations, the total explored potential search volume

of SHPSO and SHPSO-GSA are presented in Fig.5 and 6. These figures are plotted for sphere function over

[−100, 100]25. Multiple runs are performed for this experiment and median curve is presented in the article. It

can be observed from the figures that the proposed hybrid has a better exploration ability in comparison to the

original SHPSO algorithm.

3.2. Idea of Hybridization

The idea for implementing hybridization is to jointly influence the particles of the swarm by GSA as well

as by SHPSO. The implementation of hybridization requires the movement of the particles to be controlled

by the acceleration calculated from the gravitational search, i.e., the personal best (Pbest) of each particle and

NGbest. These three influences are employed collectively to obtain the new position of the particles. As

in SHPSO, the position of the particle is updated by the newly calculated velocity, which is a combination

of the global best, personal best,NGbest, and its previous velocity. The global best influence of the SHPSO

is replaced with the calculated acceleration of the particle. The removal of global best would not affect the

converging ability of the algorithm, due to the way NGbest is designed; hence, it will effectively fulfill the need

of global best. Therefore, the proposed velocity update equation would be the combination of acceleration,

personal best, and the value of NGbest .

Mathematically it can be formulated as: let Xt
i(xt

i1, x
t
i2, ..., x

t
iD) is the position of the ith particle in the pop-

ulation at any instant t. It is proposed that to update the position of the ithparticle four choices are sampled,
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these choices are:

i. To move towards its current direction. .

ii. To move towards the particles suggested acceleration by gravitational search.

iii. To move towards the personal best of the particles.

iv. To move towards the NGbest of the population.

A combined influence is used, instead of moving toward any one of the direction listed above. Mathematically

which can be expressed as

ω × V t
i + act

i + (Pbestt
i − Xt

i) + (NGbest − Xt
i)

with the help of Eq. 23, a new velocity and position update equation can be defined as:

V t+1
i = ω × V t

i + c′1 × r1 × act
i + c′2 × r2 × (Pbestt

i − Xt
i) + c′3 × r3 × (NGbest − Xt

i) (23)

where ω is the inertia weight, c′1, c′2 and c′3 are the parameters whereas, r1, r2 and r3 are uniform random

number in the interval [0,1]. Using Eq. 23, the position update equation may be written as:

Xt+1
i = Xt

i + V t+1
i (24)

An exhaustive procedure of SHPSO-GSA is presented in Algorithm 4. A logical flow chart of the proposed

algorithm is also depicted in Fig. 7.

4. A Detailed Analysis of the Proposed Algorithm

This section presents a rigorous analysis of the proposed SHPSO-GSA. The effect of the modified velocity

updated equation, theoretical convergence, and converging ability is discussed in detail.

4.1. Effect of Proposed Velocity Update Equation

The effect of the proposed velocity update equation was studied by comparing its behavior with that of

standard PSO by plotting the velocity of an individual particle against particle generation. The proposed

equation can be observed to provide improved exploration followed by excellent convergence. Fig. 8 shows

the behavior of the velocity update equation against the generation of particles. The velocity update equation

of the SHPSO-GSA algorithm was plotted under similar conditions and is shown in Fig. 9. The effect of
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Algorithm 4 Pseudo code of SHPSO-GSA
1: Initialization
2: Randomly initialize (Xt

1, X
t
2, ..., X

t
ps) of size ps in search range [Xmin, Xmax]

3: Set iteration t=0
4: Evaluate the fitness values ( f itt

1, f itt
2, ..., f itt

ps) of X
5: for i=1: ps
6: Set Xt

i to be Pbest = (Pbestt
1, Pbestt

2, ..., Pbestt
ps) for each particle

7: Calculate Gt, bestt, worstt and Mt
i for i = 1,2,. . .,ps

8: Calculate the total force in each direction F t
i

9: Calculate the acclt
i and velocity.

10: Calculate degree of infeasibility for G(Xt
i) each particle Xt

i
11: Generation of Hypersphere
12: Generate a hypersphere of radius r centered at Gbest
13: generate ps particle inside the hypersphere
14: Evaluate the fitness value of each generated particle
15: Choose NGbest as a best feasible particle
16: Generate ps particles Hbest = (Hbestt

1,Hbestt
2, ...,Hbestt

ps) in the hypershpere of Pbest
17: Evaluate fitness of Hbest
18: Pbest = Best(Pbest,Hbest)
19: Replace each infeasible Xt

i to each feasible in the hypersphere of Pbest or replace with less infeasibility
20: Reproduction and Updating
21: while Stopping Criterion is not satisfied
22: V t+1

i = ωV t
i + c′1r1act

i + c′2r2(Pbestt
i − Xt

i) + c′3r3(NGbestt − Xt
i)

23: Xt+1
i = Xt

i + V t+1
i

24: Evaluate the fitness values ( f itt
i) of X

25: Update Gt
i, bestt

i, worstt
i Mt

i
26: Calculate the total force in each direction F t

i
27: Calculate the act

i and velocity
28: Again sort the swarm
29: Go to Step(2) Update Hbest and NGbest, Using feasibility based rule
30: end while
31: end for
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the incorporation of acceleration in SHPSO-GSA is obvious when these two figures are compared. In Fig. 8

the velocity is seen to undergo damping at the end of the generations, which means the algorithm has good

exploration abilities, although convergence is not achieved; however, in Fig. 9 the influence of acceleration

on the velocity leads to enhanced exploration abilities as well as a good convergence for SHPSO-GSA. This

comparative analysis of velocities is able to explain the benefit of incorporation of acceleration in the velocity

update equation.

4.2. Convergence Condition for SHPSO-GSA

In this section, a theoretical analysis is performed for ensuring the convergence of the SHPSO-GSA algo-

rithm. Let X(t) be the position of any typical particle of the swarm at tth iteration. The velocity update and

position update equation are defined as:

V t+1
i = ωV t

i + c′1r1act
i + c′2r2(Pbestt

i − Xt
i) + c′3r3(NGbestt − Xt

i) (25)

Xt+1
i = Xt

i + V t+1
i (26)

Solving these two equations for a general particle

Xt+1 − X(t) = ω(Xt − Xt−1) + c′1r1 × act + c′2r2(Pbestt − Xt) + c′3r3(NGbestt − Xt) (27)

⇒ Xt+1 − (1 + ω − c′2r2 − c′3r3)Xt − ωXt−1 = c′1r1 × act + c′2r2Pbestt + c′3r3Gbestt (28)

Eq. 8 defines the acceleration of a particle which is a function for Gravitational Constant (Gt), Mass (M) and

unit direction of (Xt
i − Xt

j), the way all the entities are defined the acceleration (act) becomes a scalar multiple

of e−t,

i.e. act ≈ Ce−t (29)

where C is a constant. Replacing the value of act from Eq. 29 to Eq. 28, we have

Xt+1 − (1 + ω − c′2r2 − c′3r3)Xt − ωXt−1 = c′1r1Ce−t + c′2r2Pbestt + c′3r3Gbestt (30)
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The characteristic equation of Eq. 30 is given by

λ2 − (1 + ω − c′2r2 − c′3r3)λ + ω = 0 (31)

λ1 = ν +
√
ν2 − 4ω (32)

λ2 = ν −
√
ν2 − 4ω (33)

where ν = (1 +ω− c′2r2 − c′3r3), without loss of generality we may assume that at t = 0, X(t) = X0 and at t = 1,

X(t) = X1. Using these initial conditions, the complementary solution of Eq. 30 will be

Xt
∗ = Aλt

1 + Bλt
2 (34)

where A = X0λ2−X1
λ1−λ2

and B = λ1X0−X1
λ1−λ2

.

The particular solution will be

Xt
p =

c′1r1Ce−t

1 + ω + ν
+

c′2r2Pbestt − c′3r3NGbestt

c′2r2 + c′3r3
(35)

The general solution of the Eq. 30 will be

Xt = Xt
∗ + Xt

p (36)

Since

lim
t→∞

c′1r1Ce−t

1 + ω + ν
→ 0

, therefore Xt will converge to a limit point if and only if

lim
t→∞

Aλt
1 + Bλt

2 = 0 (37)

When ν2 − 4ω ≥ 0 then, λ1 and λ2 must be real. In this case a necessary and sufficient condition for the

convergence will be max‖ λ1 ‖, ‖ λ2 ‖ < 1. In other case when they are not real then λ1 = Reiθ and λ2 = Re−iθ,

where R =
√
ω and θ = arctan

√
4ω−ν2

ν
, ω is a constant and in this case the necessary and sufficient condition

for the convergence will be ‖ R ‖< 1, i.e. max‖ λ1 ‖, ‖ λ2 ‖ < 1.
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Hence in both the cases the presented algorithm converges with the above condition. Here r1, r2 and r3 are the

uniform random variables, therefore the expected values of the c′1r1, c′2r2 and c′3r3 may be calculated with the

help of the probability density function of uniform random variable.

therefore

E[c′1r1] = c′1

∫ 1

0

x
1 − 0

dx =
c′1
2

(38)

similarly,

E[c′2r2] =
c′2
2

(39)

E[c′3r3] =
c′3
2

(40)

Hence using the expected values the limit becomes

lim
t→∞

Xt =
c′2Pbest + c′3

c2 + c3
(41)

In general for arbitrary values of c′2 and c′3 any typical particle will converge to the following point

c′2Pbest + c′3NGbest
c2 + c3

This formally proves the trajectory of a particle of SHPSO-GSA will converge to a point which is a convex

combination of Pbest and NGbest.

4.3. Converging Ability

The converging ability of the proposed SHPSO-GSA algorithm was tested by applying it over the spherical

function for a thirty-dimensional environment and the positions of the particles were observed after 200, 500,

800 and 1200 iterations are observed. A three dimensional environment of the above experiment is depicted

in Fig. 10. Fig. 10(a) shows the initial population, In the Fig. 10(b) the position of the points are depicted

after 200 iterations and the position of the points reaches up to the order of 10−11. After 500 iterations the

position of the points converges to the order of 10−41, see Fig. 10(c). At the level of 800 iterations the position

converges to the order of 10−50 as shown by the positions indicated in Fig. 10(d). Finally, after 1200 iterations

the convergence of the positions approaches zero (10−76), see Fig. 10(e).
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5. A New Constraint Handling Method

A parameter-free constraint-handling approach is used to ensure the feasibility of the particles. The degree

of constrained violation is evaluated by using Eq. 42 and the total degree of violation of an individual x is

evaluated by taking the sum of violations at each constraint, i.e. G(x) =
∑m

j=1 G j(x). In each iteration the

swarm is sorted in the following three ways:

i. The feasible solutions are listed in front of the infeasible solutions.

ii. The feasible solutions are sorted in ascending order of their objective function values. The first particle of

the list will be the Gbest and the best feasible particle in the global hypersphere will be the NGbest.

iii. The infeasible solutions are sorted in ascending order of their degree of constrained violations.

A schematic diagram is presented in Fig. 11 to facilitate understanding of the sorting method applied to the

swarm. After sorting the swarm in the above manner, a new feasibility-based rule is added to process the

swarm in the next iteration.

1. If all the particles in the swarm are feasible then process them to the next iteration after sorting in

ascending order of their objective function value.

2. If there is an infeasible particle in the swarm, then the particles in the hypersphere of that individual will

considered for the replacement. For example, if at any iteration t the ith particle of the swarm is infeasible

then the particles of hypersphere of Pbestt
i will be sorted in ascending order of their feasibility, if any

feasible particle(s) is available in the hypersphere of Pbestt
i, it will replace the ith particle having the

least objective function value. In case there is no feasible particle inside the hypersphere of Pbestt
i, the

particle having the least constraint violation will be replaced with the ith particle.

The process will be repeated for all the particles in the main swarm for each constraint. Depending upon

the feasibility-based rule discussed above, the total degree of constraint violation for each particle will be

evaluated by using Eq. 42,

G(xi) =

m∑
j=1

G j(xi) (42)

where m is the number of constraints involved in the problem. In the next section, the results of the com-

puter simulation are discussed and a comparison with other methods is presented. A schematic diagram was

designed (Fig. 12) to aid the understanding of the working procedure for processing infeasible particles.

19



Table 3: Fine tuned parameter values for SHPSO-GSA
ω c′1 c′2 c′3 popsize

0.9 1.487 1.487 1.08 60

Table 4: State-of-the-art algorithms for comparison

Sr. No. Algorithm Sr. No. Algorithm
1 Basic PSO [47] 7 DSS-MDEa [54]
2 Trelea Type I [49] 8 COMDEb [39]
3 Trelea Type II; [49] 9 DECVc [36]
4 Clerc PSO [13] 10 A-DDEd [37]
5 Standard PSO (SPSO 2011) [12] 11 GSA [45]
6 SHPSO [51]

aMultimember DE with DSS
bConstrained optimization based on modified differential evolution algorithm
cDifferential Evolution Combined Variants
dAdaptive Diversity Differential Evolution

5.1. Parameter Setting

The parameter values involved in the SHPSO-GSA has been determined from a rigorous fine tuning. The

fine tuning of the parameters are inspired from the original SHPSO algorithm, but still since in the SHPSO-

GSA a different component of acceleration is added to the algorithm, therefore based on the current scenario

a rigorous fine tuning has been performed for each choice of set of parameter values. After fine tuning it has

been concluded that the ranges 1.47 ≤ c1 ≤ 1.49, 1.47 ≤ c2 ≤ 1.49 and 1.00 ≤ c3 ≤ 1.11 for c1, c2 and c3 are

suitable for most of the test problems. ω = 0.9 came out as a best choice. On the above ranges of parameter

values many experiments are done and the optimal value of the parameters are listed in Table 3.

In order to understand the SHPSO-GSA execution, a simulation process of an example is presented in

Fig. 13. This provides a clear understanding of the proposed algorithm.

6. Experimental Analysis and Results

The proposed SHPSO-GSA algorithm is tested on twenty four benchmark problems proposed in IEEE CEC

2006 [29]. The results are compared with eleven state of the algorithms, ; The experiments were performed by

using the following experimental setup
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Table 5: System Configuration
PC Configuration Software Platform
Windows 7 Professional Matlab 7.10.0.499
Intel(R), Xenon(R) CPU (R2010a)
X5660, 2.80 GHz License No. 301017

6.1. Experimental Setup

All the algorithms were coded on the MATLAB platform. The results were obtained after 100 runs of the

experiment were performed and analyzed. The results were evaluated for a maximum of 4000 iterations with

an error tolerance of 0.00001 and the MATLAB-based seed function was used to generate the same initial

population for each algorithm to justify the comparison. The experiments were conducted by using the system

configuration listed in Table 5.

6.2. Benchmark Criteria

The results of SHPSO-GSA were compared with the other algorithms by recording the best, worst, mean,

standard deviation, and feasibility index for each function, where the feasibility index is the ratio of the number

of feasible particles in the last population to the total number of particles. Detailed results for each independent

experiment are listed in Table 7. The feasibility rate, success rate, and success performance are calculated using

the following formulae.

i. Feasible Run: A run during which atleast one feasible solution is recorded.

Feasibility Rate = No. of Feasible Runs
Total Runs

ii. Successful Run(Sruns): A run during which atleast one feasible solution is recorded meeting with |fit(x)−

fit(x∗)| ≤ .0001 , where f (x) is the known global minima and f (x∗) is the obtained minima.

Success Rate = No. of Successful Runs
Total Runs

iii. Success Performance (SP) =
Avg. function evaluation of Sruns × Total runs

# Successful runs

To compare the results with other algorithms due care is taken as suggested by M. Črepinšek et. al. [16, 15,

20, 17].

6.3. Results and Discussion

The experiment was run 100 times for each problem and the results were recorded in the form of the best,

mean, worst, standard deviation (STDEV), and mean infeasibility values. The maximum number of iterations

21



was fixed at 4000 with an error tolerance of 0.00001. Table 8 presents the attempt that was made to solve

the 24 test problems taken from IEEE CEC 2006 [29] using the following approaches: basic PSO, Trelea

I, Trelea II, Clerc PSO, SPSO 2011, GSA, SHPSO, and SHPSO-GSA. Out of the 24 problems, none of the

three algorithms were able to successfully solve two of the problems, namely g20 and g22. Interestingly, the

infeasibility rate in these two cases was the lowest when SHPSO-GSA was used. For seven of the problems,

namely g05, g13, g14, g15, g17, g21 and g23, neither the GSA nor SHPSO were able to provide a feasible

solution; however, the SHPSO-GSA could provide an optimal solution with an infeasibility rate of 0. For

seven of the problems, namely g01, g06, g07, g10, g11, g16 and g18, the GSA was unable to reach a feasible

solution, whereas SHPSO and SHPSO-GSA provided an optimal solution with 0 mean infeasibility. For

the problemsg01, g04 to g16, g18, g19, g21, and g24 the SHPSO-GSA determined the best fitness value in

comparison with other algorithms. For the problems g14 and g21 the SHPSO-GSA was the only algorithm

capable of providing a feasible solution for the problem. Thus, for 19 out of the 24 problems, the SHPSO-GSA

produced a 100% feasible population in its last iteration, thereby confirming the effectiveness of the designed

constraint-handling approach. The standard deviation of the results provided by SHPSO-GSA is ’0’ for 17

of the problems, which justifies the converging ability of the algorithm. There are four problems in which

the SHPSO-GSA outperforms the COMDE, and it has an edge in 11 problems in comparison to A-DDE and

is significantly more successful than DSS-MDE and DECV. The average number of successful runs in the

function evaluation also exceeded those of COMDE, A-DDE, DSS-MDE, and DECV. Hence, we were able to

conclude that the behavior of SHPSO-GSA is superior to the other PSO variants and the GSA based on the

benchmark of selected problems.

6.4. Success

Table 9 presents the number of successful evaluations of the average function out of 100 runs. These results

show that the SHPSO-GSA successfully solved 14 of the problems with a 100% success rate, whereas the other

PSO variants were only able to solve one, five, six, five, five, three, and one of the problems, respectively, with

100% success. Table 8 shows the results of the successful runs out of 100 runs for each algorithm. Finally, in

Table 10, the successful performance of the SHPSO-GSA is compared with that of the other algorithms and it

is clear that, for most of the problems, the performance of SHPSO-GSA is superior.
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6.5. Convergence Plots

The convergence ability of SHPSO-GSA was compared with those of the other algorithms by plotting the

convergence graphs for the selected problems g01, g02, g04, g06, g07, g08, g09 and g10, as shown in Figs. 14

and 15. The convergence of the proposed SHPSO-GSA is shown to be more rapid and more accurate in

comparison to that of the SHPSO algorithm and the GSA.

6.6. Wilcoxon Signed Rank Test

In order to test the statistical validity of the results, pairwise Wilcoxon signed rank test [20] is used for

SHPSO-GSA Vs other algorithms. The test has been conducted with α = 0.05 significance level. The result

of the test is presented in Table 11. In the comparative table +, 0 and − shows the SHPSO-GSA has outper-

formed, equally performed and poorly in comparison to other algorithms respectively. The result justify that

for majority of the problems SHPSO-GSA has better ranking than others.

6.7. ECD Plot

The algorithms were ranked on the basis of their successful performance by plotting the empirical cumu-

lative distribution of S P/S Pbest listed in Table 10, where S P is the successful performance of the ith problem

and S Pbest is the best successful performance of the ith individual algorithm on the problem. The empirical

cumulative distribution (ECD) plots compare the ability of the algorithms to perform successfully, with the al-

gorithm that reaches the top of the plot quickly will be considered as a best performer. Fig. 16 shows the ECD

plots of all the algorithms, from which the available data representing successful performance, i.e., the prob-

lems none of the algorithms succeeded in solving, are excluded. From Fig. 16 it is clear that the SHPSO-GSA

performs excellently in comparison to the other algorithms because it reached the top of the graph quickly in

comparison to the others.

7. Performance of SHPSO-GSA on Unconstrained Problems

In order to study the performance of SHPSO-GSA over unconstrained optimization problems. It is applied

to solve CEC 2015 benchmark [6] expensive optimization test problems. All the 15 problems are solved and

the results are compared with the state-of-the-art algorithms listed in Table 6

The results are listed in a form of best, worst, mean and standard deviation (stdev) of the fitness values

of the corresponding problem in Table 12 and 13. The best result for each algorithm is presented in bold

faces. The results are recorded for 10D and 30D structure. For 10D results, the major observations are, for F1,
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Table 6: State of the art algorithms for comparing the results of the unconstrained optimization problems CEC 2015 [6]
Sr. No. Algorithm Sr. No. Algorithm
1. MVMO WOa [25] 4. MVMO WLb [25]
2. AncDEc [46] 5. iSRPSOd [32]
3. CMAES-Re [34] 6. CMAES-Df [34]

aMean-variance mapping optimization with out Local Search
bMean-variance mapping optimization with Local Search
cAn Ancestor based Extension to Differential Evolution
dImproved SRPSO Algorithm
eCovariance Matrix Adaptation Evolution Strategy with specialized parameters
fCovariance Matrix Adaptation Evolution Strategy with default parameters

F2,F3, F4, F5, F8,F9,F10, F11, F12, F13 and F15 all the recorded values of SHPSOGSA is better from other six

algorithms. For the functions F7 and F14, except standard deviation all other entries of SHPSOGSA is better

than others. In case of 30D category, for the functions F1,F4, F10, F12, F13, F14 and F15 all the recorded

values of SHPSOGSA is better than other six algorithms. For function F2, F3,F5,F7, F11 the SHPSOGSA

records best fitness value than others. There is only one function F6 for which the results of the SHPSOGSA

are competitive with other algorithms. Except this functions the output in all the streams starting form best

fitness to standard deviation the performance of SHPSOGSA is excellent in comparison to other algorithms.

8. Algorithm Complexity

The time complexity of SHPSO-GSA is studies based on the strategy defined in CEC 2015 benchmark [6].

To measure the complexity of the strategy employed is presented in Algorithm 5.
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Algorithm 5 Strategy for the calculation of algorithm complexity
1: Run the test program below:

2: for i=1:1000000 do

3: x = 0.55 + (double)i;

4: x = x + x; x = x/2; x = x ∗ x; x = sqrt(x); x = log(x); x = exp(x); x = x/(x + 2);

5: end for

6: Computing time for the above=T0;

7: The average complete computing time for the algorithm = T1

8: The complexity of the algorithm is measured by: T1
T0

9: The complete computing time for the algorithm with 200000 evaluations of the same

10: D dimensional Function is T2

11: Execute step c five times and get five T2 values. T2 = Mean(T2)

12: The complexity of the algorithm is reflected by: T2, T1, T0, and (T2−T1)
T0

The results of the algorithm complexity is listed in Table 14. The comparative analysis of the time com-

plexity of SHPSO-GSA with MVMO WO and MVMO WL is presented in Table 15. The results are compared

for 10D and 30D, it has been observed that the time complexity of SHPSOGSA is significantly less than other

two algorithms. For most of the problems the time complexity of SHPSOGSA is 10 times lesser than other

two algorithms. Therefore in terms of time complexity the proposed SHPSOGSA outperforms than other two

existing algorithms.

A similar Wilcoxon signed rank test with 0.05 significance lever is performed for CEC 2015 problems,

the outcome of the results are presented in Table 16 and 17. The test results suggests a good ranking of

SHPSO-GSA over other algorithms for CEC 2015 problems.

9. Conclusion

This paper presents a new algorithm named SHPSO-GSA, which was developed by hybridizing shrinking

hypersphere-based PSO with the GSA, to produce an optimizer capable of improved constraint. The need for

and design of the proposed algorithm is well established and justified in various respects. The validity of the

designed hybrid was tested in multiple ways with positive output. An effective constraint-handling technique,

which is compatible with the proposed algorithm, was defined to ensure the feasibility of the method. The
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proposed constraint-handling methods were shown to work efficiently by solving 24 state-of-the-art problems

and by comparing the results with other PSO variants known to deliver good results and the standard GSA.

15 state-of-the-art unconstrained optimization problems are solved. The presented results are explained and

discussed in a variety of ways. The converging ability and statistical significance of the SHPSO-GSA were

also established by conducting multiple experiments to prove that the proposed hybrid algorithm is an excellent

constrained optimizer as justified by the theoretical as well as experimental results. The optimization ability

of the SHPSO-GSA is expected to find application across a wide range of constrained optimization problems.
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Table 7: Comparative results of objective function values

Problem Algorithm Best Mean Worse STDEV Feas. Index

g01 Basic PSO -12.13134 -11.73167 -11.27491 0.29468 1

Trelea I -15 -15 -15 2.93E-08 1

Trelea II -14.97134 -14.94020 -14.88136 0.029358 1

Clerc PSO -15 -14.86231 -13.80655 0.35855 1

SPSO 2011 -12.93994 -11.30763 -9.15690 1.11479 1

GSA - - - - 0

SHPSO -14.9997 -14.9865 -14.6063 0.0718 1

SHPSO-GSA -15.0000 -15.0000 -15.0000 0.0000 1

COMDE -15.0000 -15.0000 -15.0000 1.97E-13 -

A-DDE -15.0000 -15.0000 -15.0000 7.00E-06 -

DSS-MDE -15.0000 -15.0000 -15.0000 1.30E-10 -

DECV -15.0000 -14.8550 -13.000 4.59E-01

g02 Basic PSO -0.38956 -0.34746 -0.30882 0.02347 1

Trelea I -0.71391 -0.50644 -0.40666 0.10567 1

Trelea II -0.46005 -0.40574 -0.36998 0.02962 1

Clerc PSO -0.78936 -0.73797 -0.61741 0.05469 1

SPSO 2011 -0.47152 -0.42630 -0.37556 0.02880 1

GSA -0.24230 -0.0983 -0.0465 0.0280 1

SHPSO -0.78630 -0.7595 -0.3089 0.0853 1

SHPSO-GSA -0.80369 -0.80315 -0.8024 1.3E-6 1

COMDE -0.80369 -0.80361 -0.80123 5.0E-03 -

A-DDE -0.80360 -0.771090 -0.60985 3.66E-02 -

DSS-MDE -0.80361 -0.78697 -0.72853 1.50E-02 -

DECV -0.70400 -0.56945 -0.23820 9.51E-02 -

g03 Basic PSO -0.53934 -0.24110 -0.06084 0.14432 0.077

Trelea I -0.59083 -0.34578 -0.11216 0.17087 0.13
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Trelea II -0.66021 -0.29456 -0.09025 0.17138 0.11

Clerc PSO -0.60807 -0.42095 -0.25371 0.11676 0.17

SPSO 2011 -0.79984 -0.59903 -0.43980 0.10907 0.28

GSA - - - - 0.2

SHPSO -0.59400 -0.17800 -0.00440 0.1877 0.6

SHPSO-GSA -1.00000 -1.00000 -0.99239 0.367E-10 0.95

COMDE -1.00000 -1.00000 -0.99999 0.302E-8 -

A-DDE -1.00000 -1.00000 -1.00000 9.30E-12 -

DSS-MDE -1.00000 -1.00000 -1.00000 1.90E-08 -

DECV -0.46100 -0.13400 -0.00200 1.17E-01 -

g04 Basic PSO -30647.57136 -30630.49048 -30619.48588 8.97067 1

Trelea I -30665.53900 -30665.53816 -30665.5378 0.000277 1

Trelea II -30665.53800 -30665.53444 -30665.52728 0.00303 1

Clerc PSO -30644.89244 -30576.40504 -30458.78388 55.85832 1

SPSO 2011 -30565.58060 -30424.19684 -30307.45752 83.34507 1

GSA -29510.0520 -27327.3890 -23560.6830 2109.8120 0.5

SHPSO -30665.5380 -30665.3600 -30660.1850 0.9773 1

SHPSO-GSA -30665.5390 -30665.5390 -30665.5390 0.0000 1

COMDE -30665.5390 -30665.5390 -30665.5390 0.0000 -

A-DDE -30665.5390 -30665.5390 -30665.5390 3.20E-13 -

DSS-MDE -30665.5390 -30665.5390 -30665.5390 2.70E-11 -

DECV -30665.5390 -30665.5390 -30665.5390 1.56E-06 -

g05 Basic PSO - - - - 0

Trelea I - - - - 0.06

Trelea II - - - - 0

Clerc PSO 5129.32261 5178.94962 5315.66708 63.49032 1

SPSO 2011 5127.74289 - 5435.07466 - 0.76
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GSA - - - - 0

SHPSO - - - - 0.5

SHPSO-GSA 5126.4967 5126.4967 5126.4967 0.0000 1

COMDE 5126.4981 5126.4981 5126.4981 0.0000 -

A-DDE 5126.4970 5126.4970 5126.4970 2.10E-11 -

DSS-MDE 5126.4970 5126.4970 5126.4970 0.000 -

DECV 5126.4970 5126.4970 5126.4970 0.000 -

g06 Basic PSO -6933.28680 -6897.26958 -6855.47497 29.82939 1

Trelea I -6961.80842 -6961.79465 -6961.76673 0.013544 1

Trelea II -6960.29072 -6956.66901 -6952.08561 2.523567 1

Clerc PSO -6883.87603 -6464.55368 -5784.23680 371.61882 1

SPSO 2011 -6891.97980 -5935.52414 -4666.83552 743.4924772 1

GSA -3744.2747 2.7931E+05 1.0208E+06 2.4217E+05 0

SHPSO -6961.8136 -6961.8132 -6961.8090 0.0008 1

SHPSO-GSA -6961.8139 -6961.8139 -6961.8139 0.0000 1

COMDE -6961.8138 -6961.8138 -6961.8138 0.0000 -

A-DDE -6961.8140 -6961.8140 -6961.8140 2.11E-12 -

DSS-MDE -6961.8140 -6961.8140 -6961.8140 0.0000 -

DECV -6961.8140 -6961.8140 -6961.8140 0.0000 -

g07 Basic PSO 82.04177 121.49313 173.21687 29.27512 0.97933

Trelea I 25.61511 26.216681 27.01475 0.44408 1

Trelea II 38.51871 41.405807 44.83348 1.95376 1

Clerc PSO 24.61889 25.193279 26.54658 0.59327 1

SPSO 2011 41.01492 108.01448 320.67014 96.72589 1

GSA 850.4374 2103.3302 4824.1543 1076.3890 0.2

SHPSO 24.9019 25.1638 27.9587 0.5415 1

SHPSO-GSA 24.3062 24.3062 24.3062 0.0000 1
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COMDE 24.3062 24.3062 24.3062 4.7E-07 -

A-DDE 24.3060 24.3060 24.3060 4.20E-05 -

DSS-MDE 24.3060 24.3060 24.3060 7.50E-07 -

DECV 24.3060 24.7940 29.5110 1.37E+00 -

g08 Basic PSO -0.09582 -0.09582 -0.09582 3.44E-14 1

Trelea I -0.09582 -0.09582 -0.09582 1.38E-17 1

Trelea II -0.09582 -0.09582 -0.09582 1.50E-17 1

Clerc PSO -0.09582 -0.09582 -0.09582 1.61E-17 1

SPSO 2011 -0.09582 -0.09582 -0.09582 1.60E-17 1

GSA -0.09580 0.5679 53.5663 6.4742 0.7

SHPSO -0.09580 -0.0958 -0.0958 0.0000 1

SHPSO-GSA -0.09580 -0.09580 -0.09580 0.0000 1

COMDE -0.09580 -0.0958 -0.0958 9.00E-18 -

A-DDE -0.09580 -0.0958 -0.0958 9.10E-10 -

DSS-MDE -0.09580 -0.0958 -0.0958 4.00E-17 -

DECV -0.09580 -0.0958 -0.0958 4.23E-17 -

g09 Basic PSO 711.16899 730.88847 747.02641 11.59183 1

Trelea I 680.74916 680.86869 680.99542 0.072776 1

Trelea II 684.51697 686.22695 688.10022 1.218367 1

Clerc PSO 680.67590 680.74817 680.83062 0.044645 1

SPSO 2011 680.87510 689.21798 732.40846 15.15200 1

GSA 836.16420 1.4309E+06 9.5128E+06 2.2672E+06 0.8

SHPSO 680.64850 680.69560 680.7703 0.0234 1

SHPSO-GSA 680.63000 680.63000 680.63000 0.0000 1

COMDE 680.63001 680.63001 680.63001 4.071E-13 -

A-DDE 680.63001 680.63001 680.63001 1.15E-10 -

DSS-MDE 680.63001 680.63001 680.63001 2.90E-13 -
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DECV 680.63001 680.63001 680.63001 3.45E-07 -

g10 Basic PSO 10785.19568 11901.53736 13316.83004 830.65975 0.8

Trelea I 7831.87690 8203.07587 8951.75208 318.29829 1

Trelea II 9184.23861 10081.46538 10707.05976 536.45609 0.9

Clerc PSO 7063.0057 7208.54728 7522.17599 151.91782 1

SPSO 2011 7702.34856 11559.18985 16060.10486 2948.23499 1

GSA - - - - 0.2

SHPSO 7331.9543 7590.6267 12288.9460 888.4462 1

SHPSO-GSA 7049.2480 7049.2480 7049.2480 0.0000 1

COMDE 7049.2480 7049.2480 7049.2480 1.5E-04 -

A-DDE 7049.2480 7049.2480 7049.2480 3.23E-04 -

DSS-MDE 7049.2480 7049.2490 7049.2550 1.40E-03 -

DECV 7049.2480 7103.5480 7808.9800 1.48E+02 -

g11 Basic PSO 0.75090 0.76917 0.82647 0.02183 0.1

Trelea I 0.75073 0.77771 0.82684 0.02708 0.37

Trelea II 0.75058 0.75904 0.78710 0.01103 0.21

Clerc PSO 0.75293 0.77908 0.82047 0.02635 0.59

SPSO 2011 0.75033 0.77466 0.88049 0.04422 0.68

GSA 0.84520 1.6221 4.5674 1.16550 0.9

SHPSO 0.75000 0.8220 0.9997 0.08270 1

SHPSO-GSA 0.74990 0.74990 0.74990 0.0000 1

COMDE 0.74991 0.74991 0.74991 0.0000 -

A-DDE 0.75000 0.75000 0.75000 5.35E-15 -

DSS-MDE 0.74991 0.74991 0.74991 0.0000 -

DECV 0.75000 0.75000 0.75000 1.12E-16 -

g12 Basic PSO -0.99999 -0.99998 -0.99996 1.15E-05 1

Trelea I -1.00000 -1.00000 -1.00000 0.00000 1
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Trelea II -1.00000 -1.00000 -1.00000 0.00000 1

Clerc PSO -1.00000 -1.00000 -1.00000 0.00000 1

SPSO 2011 -1.00000 -1.00000 -1.00000 0.00000 1

GSA -0.99990 -0.82040 -0.87030 0.00290 0.99

SHPSO -1.00000 -1.00000 -1.00000 0.00000 1

SHPSO-GSA -1.00000 -1.00000 -1.00000 0.00000 1

COMDE -1.00000 -1.00000 -1.00000 0.00000 -

A-DDE -1.00000 -1.00000 -1.00000 4.10E-09 -

DSS-MDE -1.00000 -1.00000 -1.00000 0.00000 -

DECV -1.00000 -1.00000 -1.00000 0.00000 -

g13 Basic PSO - - - - 0

Trelea I - - - - 0.07066

Trelea II - - - - 0

Clerc PSO 0.74535 - 0.99986 - 0.58

SPSO 2011 0.51468 - 1.76553 - 0.96

GSA - - - - 0.5

SHPSO - - - - 0.9

SHPSO-GSA 0.05390 0.05390 0.05390 0.00000 1

COMDE 0.05390 0.05390 0.05390 1.4E-17 -

A-DDE 0.05390 0.07620 0.43880 1.00E-13 -

DSS-MDE 0.05390 0.05390 0.05390 1.00E-13 -

DECV 0.05970 0.38240 0.99900 2.68E-01 -

g14 Basic PSO - - - - 0

Trelea I - - - - 0

Trelea II - - - - 0

Clerc PSO - - - - 0

SPSO 2011 - - - - 0.26
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GSA - - - - 0.2

SHPSO - - - - 0.029

SHPSO-GSA -47.7649 -47.7649 -47.7649 0.0000 1

COMDE -47.7648 -47.7648 -47.7648 0.0000 -

A-DDE -47.7648 -47.7641 -47.7640 9.0E-06 -

DSS-MDE - - - - -

DECV -47.7648 -47.7225 -47.0365 1.62E-01 -

g15 Basic PSO - - - - 0

Trelea I - - - - 0.00133

Trelea II - - - - 0

Clerc PSO 962.10129 963.84503 967.04043 1.57568 0.89133

SPSO 2011 961.82955 964.09145 969.87642 2.95027 1

GSA 963.95780 811.60760 983.46470 97.7669 0.1

SHPSO 967.09500 966.81230 969.91590 0.80730 0.3

SHPSO-GSA 961.71500 961.71500 961.71500 0.00000 1

COMDE 961.71500 961.71500 961.71500 0.00000 -

A-DDE 961.71500 961.71500 961.71500 0.00000 -

DSS-MDE - - - - -

DECV 961.71500 961.71500 961.7150 2.31E-01 -

g16 Basic PSO -1.89386 -1.88638 -1.87975 0.00379 1

Trelea I -1.90515 -1.90515 -1.90515 2.73E-09 1

Trelea II -1.90493 -1.90482 -1.90468 8.09E-05 1

Clerc PSO -1.90515 -1.88138 -1.79158 0.0397 1

SPSO 2011 -1.80035 -1.63310 -1.45734 0.1115 1

GSA - - - - 0.1

SHPSO -1.90520 -1.90520 -1.90520 0.00000 1

SHPSO-GSA -1.90520 -1.90520 -1.90520 0.00000 1
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COMDE -1.90510 -1.90510 -1.90510 0.00000 -

A-DDE -1.90510 -1.90510 -1.90510 0.00000 -

DSS-MDE - - - - -

DECV -1.9051 -1.9051 -1.9051 1.10E-06 -

g17 Basic PSO - - - - 0

Trelea I - - - - 0

Trelea II - - - - 0

Clerc PSO 8900.87142 8988.16628 9146.99254 87.12748 1

SPSO 2011 - - - - 0.28

GSA - - - - 0.1

SHPSO - - - - 0.5

SHPSO-GSA 8853.54019 8853.23453 8887.23422 0.0034 1

COMDE 8853.54002 8856.50010 8859.84000 1.35E-02 -

A-DDE 8853.54002 8854.66400 8858.87400 1.43E+00 -

DSS-MDE - - - - -

DECV 8853.5412 8919.9363 8938.5710 2.59E+01 -

g18 Basic PSO - - - - 0

Trelea I -0.78433 -0.64646 -0.55436 0.068323 1

Trelea II -0.55439 -0.45036 -0.38724 0.054303 0.55

Clerc PSO -0.86285 -0.70750 -0.53972 0.106072 1

SPSO 2011 - - - - 0.56

GSA -0.29280 0.5234 193.3305 58.4214 0.33

SHPSO -0.64890 -0.6080 -0.1744 0.0846 1

SHPSO-GSA -0.86600 -0.86600 -0.86600 0.00000 1

COMDE -0.86600 -0.86600 -0.86600 0.00000 -

A-DDE -0.86600 -0.86600 -0.86600 0.00000 -

DSS-MDE - - - - -
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DECV -0.86600 -0.85960 -0.67490 3.48E-02 -

g19 Basic PSO 116.34307 149.73991 178.53261 16.00399 1

Trelea I 52.327558 56.735485 64.54874 3.759886 1

Trelea II 75.831398 85.461093 94.23523 5.437420 1

Clerc PSO 39.222218 43.781070 46.80910 2.678964 1

SPSO 2011 98.088985 131.92794 221.03201 32.37753 1

GSA 954.23940 18959.77900 41292.36700 8886.98110 0.8

SHPSO 40.56930 45.12000 92.89390 9.18240 1

SHPSO-GSA 32.65550 32.65550 32.65550 0.00000 1

COMDE 32.65550 32.6555 32.6555 1.41E-19 -

A-DDE 32.65550 32.65800 32.66500 1.72E-03 -

DSS-MDE - - - - -

DECV 32.65550 32.66050 32.78530 2.37E-02 -

g21 Basic PSO - - - - 0

Trelea I - - - - 0

Trelea II - - - - 0

Clerc PSO - - - - 0

SPSO 2011 - - - - 0

GSA - - - - 0

SHPSO - - - - 0.2

SHPSO-GSA 193.7245 193.7245 193.7245 0.0000 1

COMDE 193.7245 193.7245 193.7245 1.39E-18 -

A-DDE 193.7245 193.7245 193.7260 2.60E-04 -

DSS-MDE - - - - -

DECV 193.7245 198.0905 324.7028 2.39E+01 -

g23 Basic PSO - - - - 0

Trelea I - - - - 0
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Trelea II - - - - 0

Clerc PSO - - - - 0

SPSO 2011 - - - - 0.04

GSA - - - - 0

SHPSO - - - - 0.1

SHPSO-GSA -400.0551 -400.0547 -400.0546 0.0000 1

COMDE -400.0551 -399.4551 396.2345 1.91E-01 -

A-DDE -400.0551 -391.4150 -367.4520 9.13E+00 -

DSS-MDE - - - - -

DECV -400.0550 -392.0296 -342.5245 1.23E+01 -

g24 Basic PSO -5.50801 -5.50800 -5.50799 5.27E-06 1

Trelea I -5.50801 -5.50801 -5.50801 7.02E-16 1

Trelea II -5.50801 -5.50801 -5.50801 7.02E-16 1

Clerc PSO -5.50801 -5.50801 -5.50801 7.02E-16 1

SPSO 2011 -5.50801 -5.50436 -5.48873 0.006172 1

GSA -5.42720 -3.70590 -1.20990 1.23290 0.8

SHPSO -5.50800 -5.50800 -5.50800 0.00000 1

SHPSO-GSA -5.50801 -5.50801 -5.50801 0.00100 1

COMDE -5.50801 -5.50801 -5.50801 0.0000 -

A-DDE -5.50801 -5.50801 -5.50801 3.12E-14 -

DSS-MDE - - - - -

DECV -5.50801 -5.50801 -5.50801 2.71E-15 -
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Table 11: Wilcoxon signed rank test results of single-problem analysis with a significance level of α = 0.05 for CEC 2006 problems

Pairwise Comparison of SHPSO-GSA Versus
Prob. Basic PSO Trelea I Trelea II Clerc PSO SPSO GSA SHPSO COMDE DSS-MDE DECV
g01 + + + + + + + 0 + 0
g02 + + + + + + + 0 + +

g03 + + + + + + + 0 + +

g04 + + + + + + + 0 + 0
g05 + + + 0 0 + 0 0 + +

g06 + + + + + + + 0 0 +

g07 + + + + − + + 0 0 +

g08 + + + + + + + 0 + +

g09 + + + + + + + 0 + +

g10 + + + + + + + 0 + 0
g11 − + − + + + + 0 + +

g12 + + + + + 0 0 + 0 ∗

g13 + + + + + 0 0 ∗ + ∗

g14 0 + 0 0 + 0 0 ∗ + ∗

g15 + + + 0 + 0 0 ∗ + ∗

g16 + + + + + 0 0 ∗ + ∗

g17 0 + 0 0 + 0 0 ∗ + ∗

g18 + + + + + 0 0 ∗ + ∗

g19 + + + + + 0 0 ∗ + ∗

g23 + + 0 0 + 0 0 ∗ + ∗

g24 + 0 + + + 0 0 ∗ ∗ ∗

∗ represents that there no comparison available
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Table 14: Time Complexity of SHPSO-GSA on each expensive problem for 10D and 30D

10D 30D
T0 T1 T2

T2−T1
T0

T1 T2
T2−T1

T0

F1 4.7500 2.9696 13.9176 2.3048 4.8073 59.0677 11.4232
F2 4.7500 2.9696 13.3056 2.1760 4.8073 55.7915 10.7335
F3 4.7500 2.9696 74.2582 15.0081 4.8073 404.1140 84.0646
F4 4.7500 2.9696 14.7977 2.4901 4.8073 57.7969 11.1557
F5 4.7500 2.9696 41.5659 8.1255 4.8073 438.6437 91.3340
F6 4.7500 2.9696 49.2907 9.7518 4.8073 55.7731 10.7296
F7 4.7500 2.9696 50.8997 10.0905 4.8073 56.2839 10.8372
F8 4.7500 2.9696 52.4701 10.4212 4.8073 58.8311 11.3734
F9 4.7500 2.9696 49.1310 9.7182 4.8073 59.3111 11.4745
F10 4.7500 2.9696 195.2342 40.4768 4.8073 61.9702 12.0343
F11 4.7500 2.9696 71.3128 14.3880 4.8073 126.5688 25.6340
F12 4.7500 2.9696 57.1012 11.3961 4.8073 80.7357 15.9849
F13 4.7500 2.9696 61.7599 12.3769 4.8073 103.0586 20.6845
F14 4.7500 2.9696 59.3629 11.8723 4.8073 94.5932 18.9023
F15 4.7500 2.9696 200.1465 41.5109 4.8073 451.5639 94.0540

Table 15: Comparison of Time Complexity (T2−T1)
T0

Func. MVMO WO MVMO WL SHPSOGSA MVMO WO MVMO WL SHPSOGSA
(10D) (10D) (10D) (30D) (30D) (30D)

F1 32.03 42.91 2.30 46.48 52.11 11.42
F2 38.48 52.29 2.18 65.03 74.9 10.73
F3 44.79 61.23 15.01 84.66 100.04 84.06
F4 51.14 69.17 2.49 105.53 122.76 11.16
F5 56.61 78.79 8.13 123.16 144.76 91.33
F6 62.64 87.32 9.75 140.92 169.29 10.73
F7 69.11 95.35 10.09 159.63 193.02 10.84
F8 74.56 102.92 10.42 184.37 215.07 11.37
F9 80.34 110.72 9.72 201.37 233.74 11.47
F10 86.09 118.12 40.48 224.29 251.32 12.03
F11 92.14 126.06 14.39 247.41 273.15 25.63
F12 97.69 135.37 11.4 268.59 296.29 15.98
F13 104.26 142.41 12.38 293.76 318.7 20.68
F14 111.64 149.99 11.87 319.77 338.19 18.9
F15 117.41 158.86 41.51 346.42 365.31 94.05
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Table 16: Wilcoxon signed rank test results of single-problem analysis with a significance level of α = 0.05 CEC 2015 10D problems
Function Pairwise Comparison of SHPSO-GSA Versus

Function MVMO WO MVMO WL AncDE iSRPSO CMAES-R CMAES-D
F1 + 0 + + + +

F2 + 0 + + + +

F3 + + + + + +

F4 + + + + + +

F5 0 0 + + + +

F6 0 − 0 0 + +

F7 0 0 0 0 0 +

F8 + + + + + +

F9 0 0 0 0 + +

F10 + 0 + 0 + +

F11 0 0 0 0 + +

F12 0 0 0 0 + +

F13 0 0 − + 0 0
F14 0 − 0 0 + +

F15 + + 0 + + +

+/0/− 7/8/0 4/9/2 7/7/1 8/7/0 13/2/0 14/1/0

Table 17: Wilcoxon signed rank test results of single-problem analysis with a significance level of α = 0.05 CEC 2015 30D problems

Pairwise Comparison of SHPSO-GSA Versus
Function MVMO WO MVMO WL AncDE iSRPSO CMAES-R CMAES-D

F1 + 0 + + + +

F2 + − + + + +

F3 0 0 0 0 + +

F4 + + + + + +

F5 0 0 0 0 + +

F6 0 0 0 0 + +

F7 0 0 0 0 + +

F8 0 0 0 + + +

F9 0 − 0 0 + +

F10 + − + + + +

F11 0 0 0 0 + +

F12 0 0 + 0 + +

F13 + + + + + +

F14 0 0 0 0 + +

F15 0 0 0 0 + +

+/0/− 5/10/0 2/10/3 6/9/0 6/9/0 15/0/0 15/0/0
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(a) Initial position of fitness and infeasibility of last population for the problem g01
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Figure 3: Comparison of fitness and infeasibility of the last population for 4000 iterations for the problem g01
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Figure 4: Comparison of fitness and infeasibility of the last population for 4000 iterations for the problem g02
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SHPSO

Figure 5: Potential Search Range of SHPSO against iterations
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SHPSO−GSA

Figure 6: Potential Search Range of SHPSO-GSA against iterations
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Figure 7: The flow chart of SHPSO-GSA
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Figure 10: Iteration wise position of the particles in the search space for the Sphere function
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Figure 11: Schematic diagram of Sorting of the swarm for the identification of Gbest
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A Numerical Example of
 SHPSO
-GSA Algorithm
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Figure 13: Numerical Example of SHPSO-GSA process
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Figure 14: Convergence behavior of the algorithms
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[16] Črepinšek, M., Liu, S.-H., Mernik, L., Mernik, M., 2016. Is a comparison of results meaningful from the inexact

replications of computational experiments? Soft Computing 20 (1), 223–235.
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