Distance-related Properties of Corona of Certain Graphs

S. Sriram, Atulya K. Nagar, and K.G. Subramanian
Department of Mathematics, VELS University, Pallavaram, Chennai 600042 India
e-mail:sriram.discrete@gmail.com
Department of Mathematics and Computer Science, Liverpool Hope University, Liverpool L16 9JD UK e-mail:nagara@hope.ac.uk School of Computer Sciences, Universiti Sains Malaysia 11800 Penang, Malaysia e-mail:kgsmani1948@gmail.com

Abstract

A graph G is called a m-eccentric point graph if each point of G has exactly $m \geq 1$ eccentric points. When $m=1, G$ is called a unique eccentric point (u.e.p) graph. Using the notion of corona of graphs, we show that there exists a m-eccentric point graph for every $m \geq 1$. Also, the eccentric graph G_{e} of a graph G is a graph with the same points as those of G and in which two points u and v are adjacent if and only if either u is an eccentric point of v or v is an eccentric point of u in G. We obtain the structure of the eccentric graph of corona $G \circ H$ of self-centered or non-self-centered u.e.p graph G with any other graph H and obtain its domination number.

Keywords: Domination, Eccentricity, Eccentric Graph

1 Introduction

The notion of distance [2] in graphs has been studied in the context of many applications such as communication networks. The distance related parameter, known as eccentricity of a point in a graph and the associated notions of
eccentric points, m-eccentric point graphs $[1,3,6]$ and in particular, unique eccentric point (u.e.p) graphs [4], have also been well investigated. Another kind of graph known as corona [6] $G \circ H$ of two graphs G and H has also been well-studied. Also, the concept of eccentric graph G_{e} of a graph G was introduced in [5], based on the notion of distance among points in G. Here we show, using the notion of corona of graphs, that there exists a m-eccentric point graph for every $m \geq 1$. We also obtain the eccentric graph of corona $G \circ H$ where H is any graph and G is either self-centered u.e.p graph or non-self-centered u.e.p graph and and obtain its domination number.

We recall here certain basic definitions $[1,3,6]$ related to graphs. A graph $G=(V, E)$ consists of a finite non-empty set V (also denoted by $V(G))$ whose elements are called points or vertices and another set E (or $E(G)$) of unordered pairs of distinct elements of V, called edges. In a graph G, the distance $d_{G}(u, v)$ or $d(u, v)$, when G is understood, between two points u and v is the length of the shortest path between u and v. The eccentricity $e_{G}(u)$ or simply, $e(u)$ of a point u in G is defined as $e(u)=\max _{v \in V(G)} d(u, v)$. For two points u, v in G, the point v is an eccentric point of u if $d(u, v)=e(u)$. We denote by $E(v)$, the set of all eccentric points of a point v in G. A graph G is called a m-eccentric point graph if $|E(u)|$, the number of elements of $E(u)$ equals m, for all u in $V(G)$. When $m=1, G$ is called a unique eccentric point (u.e.p) graph. The radius $r(G)$ and the diameter $\operatorname{diam}(G)$ of a graph G are respectively defined as $r(G)=\min \{e(u) \mid$ for all $u \in V(G)\}$ and $\operatorname{diam}(G)=\max \{e(u) \mid$ for all $u \in V(G)\}$. A graph G is called a self-centered graph if $r(G)=\operatorname{diam}(G)$.

The eccentric graph [5] G_{e} of a graph G is a graph with the same points as those of G and in which two points u and v are adjacent if and only if either u is an eccentric point of v or v is an eccentric point of u in G. A graph G and its eccentric graph G_{e} are shown in Fig. ??. The corona [6] $G \circ H$ of two graphs G and H is a graph made of one copy of G with points $v_{1}, \cdots v_{n}, n \geq 1$, and n copies of another graph H such that for every $i, 1 \leq i \leq n$, the point v_{i} is joined with all the points of the $i^{\text {th }}$ copy of H.

We also need the following well-known notions. A complete graph K_{n} on n points, is a graph in which there is an edge between every pair of distinct points. The complement \bar{G} of a graph G is a graph having the same points as those of G and such that two points x and y are adjacent in \bar{G} if and
only if x and y are not adjacent in G. The union $G_{1} \cup G_{2}$ of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the graph $G_{1} \cup G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$ and the join $G_{1}+G_{2}$ of G_{1} and G_{2} is a graph obtained from $G_{1} \cup G_{2}$ by joining every point of G_{1} with every other point of G_{2}. For three or more graphs $G_{1}, G_{2}, \cdots, G_{n}$ the sequential join $G_{1}+G_{2}+\cdots+G_{n}$ is the graph $\left(G_{1}+G_{2}\right) \cup\left(G_{2}+G_{3}\right) \cup \cdots \cup\left(G_{n-1}+G_{n}\right)$. In a graph $G=(V, E)$ a subset $S \subset V$ is called a dominating set if each point u in $V-S$ has a neighbour in S i.e u is adjacent to some point in S. The cardinality of a minimum dominating set of a graph G is called its domination number and it is denoted by $\gamma(G)$.

2 Eccentric Point Graphs

In this section we make use of the notions of corona and u.e.p graphs to show that there exists, for every $m \geq 1$, an m-eccentric point graph.

Lemma 2.1 Let G be a graph whose eccentric points are p_{1}, \cdots, p_{l}, for some $l \geq 1$. Let H be any other graph. In the corona $G \circ H$, all the points of $G \circ H$ each of which is joined with p_{i}, for some $i, 1 \leq i \leq l$, are the only eccentric points of $G \circ H$.

Proof. Let $V(G)=\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{n-l}, p_{1}, p_{2}, \cdots, p_{l}\right\}$ such that $p_{i}^{\prime} s$ are eccentric points of G. Let H be any graph on m points. Let

$$
V(G \circ H)=\left\{v_{i}, p_{k}, u_{j}^{t} \mid 1 \leq i \leq n-l, 1 \leq k \leq l, 1 \leq t \leq n \text { and } 1 \leq j \leq m\right\}
$$

such that for a fixed i with $1 \leq i \leq n-l$, the points u_{j}^{i} for all $1 \leq j \leq m$, are joined with v_{i} while for a fixed i, with $n-l+1 \leq i \leq n$, the points u_{j}^{i} for all $1 \leq j \leq m$, are joined with p_{i}.

Then, let us prove that every point u_{j}^{i} for all $n-l+1 \leq i \leq n$ and $1 \leq j \leq m$ is an eccentric point. Suppose that for some $n-l+1 \leq i \leq n$ and $1 \leq j \leq m$, u_{j}^{i} is not an eccentric point. Then consider the point $v \in V(G)$ whose eccentric point in G is p_{i} to which the point u_{j}^{i} is attached in $G \circ H$. Let for some $n-l+1 \leq k \leq n$ and $1 \leq j \leq m, u_{j}^{k}$ be the eccentric point of v in $G \circ H$. Then $e_{G \circ H}(v)=d_{G \circ H}\left(v, u_{j}^{k}\right)=d_{G}\left(v, p_{k}\right)+1<d_{G}\left(v, P_{i}\right)+1=d_{G \circ H}\left(v, u_{j}^{i}\right)$. That is $e_{G \circ H}(v)<d_{G \circ H}\left(v, u_{j}^{i}\right)$, which is a contradiction and hence every point u_{j}^{i}, $n-l+1 \leq i \leq n$ and $1 \leq j \leq m$ is an eccentric point. Now, it remains

Figure 1: a) Graph G b) Graph H c) Corona $G \circ H$
to prove that (1) no point of G as a point of $G \circ H$ is an eccentric point in $G \circ H$ and (2) no point of u_{j}^{i} for $1 \leq i \leq n-l$ and $1 \leq j \leq m$ is an eccentric point in $G \circ H$.

In order to prove (1), suppose that u is an eccentric point of $G \circ H$. Then there exists a point $v \in G \circ H$ for which u is the eccentric point. Then u cannot be any $v_{i}, 1 \leq i \leq n-l$ or any $p_{i}, n-l+1 \leq i \leq n$ for otherwise $e_{G \circ H}(v)=d_{G \circ H}(u, v)<d_{G \circ H}(u, v)+1=d_{G \circ H}\left(v, u_{j}^{i}\right)$ which is a contradiction, due to the fact that any path between v and u_{j}^{i} passes through either v_{i} or p_{i}. Thus no point of G as a point of $G \circ H$, can be an eccentric point of $G \circ H$.

For proving (2), suppose that u_{j}^{i} for some $1 \leq i \leq n-l, 1 \leq j \leq m$ is an eccentric point of some point v in $G \circ H$, then $e_{G \circ H}(v)=d_{G \circ H}\left(v, u_{j}^{i}\right)=$ $d_{G \circ H}\left(v, v_{i}\right)+1<d_{G \circ H}\left(v, u_{j}^{k}\right)$. That is $e_{G \circ H}(v)<d_{G \circ H}\left(v, u_{j}^{k}\right)$ for some $n-l+1 \leq k \leq n$, which is a contradiction.

Remark 2.2 With the graphs G and H as shown in Fig. 1, the eccentric points of $G \circ H$ are $u_{1}^{1}, u_{1}^{2}, u_{4}^{1}, u_{4}^{2}$. It can be noticed that no point $v_{i}, 1 \leq i \leq 4$, of G is an eccentric point of $G \circ H$ and all the points of $G \circ H$ that are joined with the points that are eccentric points of G are the only eccentric points of $G \circ H$.

Theorem 2.3 Let G be a u.e.p graph on n points and H be any graph on m points. Then the corona of G and $H, G \circ H$ is a m - eccentric point graph.

Proof. Let G be a u.e.p graph with n points $v_{1}, v_{2}, \cdots, v_{n}$ and H be any graph on m points. Let the points of $G \circ H$ that are points in the $k^{t h}$ copy of H, be $u_{j}^{k}, 1 \leq j \leq m$. For any two points v_{i}, v_{k} of G such that v_{k} is the only eccentric point in G of v_{i}, by Lemma 2.1, the points $u_{j}^{k}, 1 \leq k \leq m$, are the eccentric points in $G \circ H$ of v_{i} as well as of $u_{j}^{i}, 1 \leq j \leq m$. No other point u_{j}^{r}, for some $r \neq k, 1 \leq r \leq n$, can be an eccentric point in $G \circ H$ of v_{i} or $u_{j}^{i}, 1 \leq$ $j \leq m$, since $d_{G \circ H}\left(v_{i}, u_{j}^{r}\right)=d_{G}\left(v_{i}, v_{r}\right)+1<d_{G}\left(v_{i}, v_{k}\right)+1=d_{G \circ H}\left(v_{i}, u_{j}^{k}\right)$ and $d_{G \circ H}\left(u_{j}^{i}, u_{j}^{r}\right)=d_{G \circ H}\left(v_{i}, u_{j}^{r}\right)+1<d_{G \circ H}\left(v_{i}, u_{j}^{k}\right)+1=d_{G \circ H}\left(u_{j}^{i}, u_{j}^{k}\right)$. This implies that $E\left(v_{i}\right)=\left\{u_{1}^{k}, u_{2}^{k}, \cdots, u_{m}^{k}\right\}$ if v_{k} is an eccentric point of v_{i} in G and $E\left(u_{j}^{p}\right)=\left\{u_{1}^{q}, u_{2}^{q}, \cdots, u_{m}^{q}\right\}$ if v_{q} is an eccentric point of v_{p} in G. Therefore, $|E(u)|=m$, for all points u in $G \circ H$ and so $G \circ H$ is a m - eccentric point graph.

As a consequence of the Theorem 2.3, we obtain the following corollary.
Corollary 2.4 For every $m \geq 1$ there exists a m - eccentric point graph.

3 Eccentric graph of corona of u.e.p graph with any other graph

In this section we obtain the eccentric graph of corona of a u.e.p graph with any other graph.

Theorem 3.1 Let G be a self-centered u.e.p. graph on $2 n$ points and H be a graph on m points. Then the eccentric graph $(G \circ H)_{e}$ is the union of n copies of $K_{1}+\overline{K_{m}}+\overline{K_{m}}+K_{1}$.

Proof. Let G be a self-centered u.e.p. graph on $2 n$ points and H be a graph on m points. Let $V(G)=\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{2 n}\right\}$ such that v_{i} and $v_{i+n}(1 \leq i \leq n)$ are eccentric points of each other, in the graph G. Then by lemma 2.1, all the points $u_{j}^{i}(1 \leq i \leq 2 n ; 1 \leq j \leq m)$ are eccentric points in $G \circ H$ because all the points of G are eccentric points in G. This implies that the eccentric points of u_{j}^{i} and v_{i} are $u_{j}^{i+n}(1 \leq i \leq n, 1 \leq i \leq m)$ and the eccentric points of u_{j}^{i+n} and v_{i+n} are $u_{j}^{i}(1 \leq i \leq n, 1 \leq j \leq m)$. Now, in $(G \circ H)_{e}$, which has the same point set as $G \circ H$, the point v_{i} is adjacent with all the points u_{j}^{i+n}, each of the points u_{j}^{i+n} is adjacent with every point u_{j}^{i} and all the points u_{j}^{i}

Figure 2: a) A non-self centered u.e.p Graph G b) Graph H
are adjacent with $v_{i+n}(1 \leq i \leq n, 1 \leq j \leq m)$. Therefore, $(G \circ H)_{e}$ is the union of n copies of $K_{1}+\overline{K_{m}}+\overline{K_{m}}+K_{1}$.

Theorem 3.2 Let H be a graph on m points and G be a non-self-centered u.e.p graph on n points having the properties $(i) P(G)=E P(G),(i i)|P(G)|=$ $2 t, t>1$, (iii) for every u in $P(G)$ there is at least one v in $V(G)-P(G)$ such that $E(v)=\{u\}$, then $(G \circ H)_{e}$ is a union of t copies of $\overline{K_{t_{i}}}+\overline{K_{m}}+\overline{K_{m}}+\overline{K_{t_{j}}}$, for some $t_{i} \geq 1$ and $t_{j} \geq 1, t_{i}$ and t_{j} depending on G and H.

Proof. Let H be a graph on m points and G be a non-self-centered u.e.p graph on n points having the properties $(i) P(G)=E P(G),(i i)|P(G)|=2 t, t>1$, (iii) for every u in $P(G)$ there is at least one v in $V(G)-P(G)$ such that $E(v)=\{u\}$. Let $V(G)=\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{n}\right\}$. Let $v_{1}, v_{2}, \cdots, v_{2 t}$ for some $t \geq 1$ be the peripheral vertices of G, so that $|P(G)|=2 t$. For $1 \leq i \leq t$, let v_{i} and v_{i+t} be the eccentric points of each other. Let $V(G \circ H)=V(G) \cup\left\{u_{j}^{i} 1 \leq\right.$ $j \leq m, 1 \leq i \leq n\}$. Then by Lemma 2.1, all the points $u_{j}^{i}, 1 \leq i \leq 2 t$, $1 \leq j \leq m$ are the eccentric points of $G \circ H$ because $v_{1}, v_{2}, v_{3}, \cdots, v_{2 t}$ are the eccentric points in G. This implies that for $1 \leq i \leq t, 1 \leq j \leq m, u_{j}^{i+t}$ is the

Figure 3: Corona of G and $H, G \circ H$
eccentric point of u_{j}^{i}, v_{i}, v_{k} as well as u_{j}^{k} with $E\left(v_{k}\right)=\left\{v_{i}\right\}$ for $v_{k} \in V(G)$. Also, $1 \leq i \leq t, 1 \leq j \leq m, u_{j}^{i}$ is the eccentric point of $u_{j}^{i+t}, v_{i+t}, v_{k}$ as well as u_{j}^{k}. Since an eccentric graph G_{e}, of any graph G, is constructed with the same points as those of G and each edge of G_{e} joins a point x with the eccentric points of x treated as a point of G. Thus, the structure of $(G \circ H)_{e}$ is clearly, union of t copies of $\overline{K_{t_{i}}}+\overline{K_{m}}+\overline{K_{m}}+\overline{K_{t_{j}}}$, where for some $t_{i} \geq 1$ and $t_{j} \geq 1$. Note that t_{i} and t_{j} depend on G and H.

Example 3.3 A non-self-centered u.e.p graph G and a graph H on $m=2$ points are shown in Fig. 2. It is clear that in G, the eccentric points are v_{1}, v_{2}, v_{3} and v_{4} and $E\left(v_{4}\right)=E\left(v_{10}\right)=E\left(v_{12}\right)=\left\{v_{1}\right\} ; E\left(v_{1}\right)=E\left(v_{5}\right)=$ $E\left(v_{7}\right)=\left\{v_{4}\right\} ; E\left(v_{2}\right)=E\left(v_{6}\right)=E\left(v_{8}\right)=\left\{v_{3}\right\} ; E\left(v_{3}\right)=E\left(v_{9}\right)=E\left(v_{11}\right)=$ $\left\{v_{2}\right\}$. The corona of G and H is shown in Fig.3. Note that $v_{1}^{1}, v_{2}^{1}, v_{1}^{2}, v_{2}^{2}, v_{1}^{3}, v_{2}^{3}, v_{1}^{4}, v_{2}^{4}$ are the eccentric vertices of $(G \circ H)_{e}$. The eccentric graph, $(G \circ H)_{e}$ is union of 2 copies of $\overline{K_{t_{i}}}+\overline{K_{m}}+\overline{K_{m}}+\overline{K_{t_{j}}}$, where $m=2$; $t_{i}=7$ and $t_{j}=7$ and it is shown in the Fig.4.

Figure 4: Eccentric Graph of $G \circ H,(G \circ H)_{e}$
Theorem 3.4 Let G be a self-centered u.e.p. graph on $2 n$ points and H be a graph on m points. Then the domination number $\gamma(G \circ H)_{e}=2 n$.

Proof. Let G be a self-centered u.e.p. graph on $2 n$ points and H be a graph on m points. Now, by Theorem $3.1(G \circ H)_{e}$ is union of n copies of $K_{1}+$ $\overline{K_{m}}+\overline{K_{m}}+K_{1}$. In each copy, there are two $v_{i}^{\prime} s$ dominating the remaining points in that copy. Therefore, $\gamma(G \circ H)_{e}=2 n$.

Theorem 3.5 Let H be a graph on m points and G be a non-self-centered u.e.p graph on n points having the properties $(i) P(G)=E P(G),(i i)|P(G)|=$ $2 t, t>1$, (iii) for every u in $P(G)$ there is at least one v in $V(G)-P(G)$ such that $E(v)=\{u\}$, then the domination number $\gamma(G \circ H)_{e}=2 t$.

Proof. Let H be a graph on m points and G be a non-self-centered u.e.p graph on n points having the properties $(i) P(G)=E P(G),(i i)|P(G)|=2 t, t>1$, (iii) for every u in $P(G)$ there is at least one v in $V(G)-P(G)$ such that $E(v)=\{u\}$. Then by Theorem 3.2, $(G \circ H)_{e}$ is a union of t copies of $\overline{K_{t_{i}}}+\overline{K_{m}}+\overline{K_{m}}+\overline{K_{t_{j}}}$, for some $t_{i} \geq 1$ and $t_{j} \geq 1, t_{i}$ and t_{j} depending on G and H. In each copy, there are two points dominating the remaining points in that copy. Therefore, $\gamma(G \circ H)_{e}=2 t$.

4 Conclusion

The structure of eccentric graph of m - eccentric point graph can be investigated. Also the problem of finding a graph whose eccentric graph is a $m-$ eccentric point graph remains open.

References

[1] J. A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan Press Ltd., 1976
[2] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood city CA, 1990.
[3] D. B. West, Introduction to Graph Theory, Prentice Hall, 2001.
[4] K. R. Parthasarathy and R. Nandakumar, Unique Eccentric Point Graphs, Discrete Math., 46 (1983) 69-74.
[5] J. Akiyama, K. Ando and D. Avis, Eccentric graphs Discrete Math. 56 (1985)1-6.
[6] F. Harary, Graph Theory, Addison Wesley Publishing Company, 1972.

