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ABSTRACT  

Genome-wide association studies have identified multiple risk loci for childhood acute 

lymphoblastic leukemia (ALL), but mostly in European/White populations despite Hispanics 

having a greater risk. We re-examined SNPs of known associations with childhood ALL and 

known HLA region lymphoma risk markers in a multi-ethnic population. Significant associations 

were found in two ARID5B variants (rs7089424 and rs10821936). We replicated a strong risk 

association in non-Hispanic White males with rs2395185, a protective marker for lymphoma. 

Another HLA region marker, rs2647012, showed a risk association among Hispanics only, while 

a strong protective association was found with rs1048456, a follicular lymphoma risk marker. 

Our study validated this new case-control sample by confirming genetic markers associated with 

childhood ALL, and yielded new associations with lymphoma markers. Despite positive results, 

our study did not provide any clues to why Hispanics have a higher susceptibility to childhood 

leukemia, suggesting that environmental factors may have a strong contribution.  



INTRODUCTION 

 Over a third of cancers in children are leukemias [1], with acute lymphoblastic leukemia 

(ALL) being the most common [2-4]. Approximately 3.8 individuals (less than 14 years of age) 

per 1,000,000 are diagnosed with childhood ALL per year in the United States [5].  The racial 

disparity in the incidence of childhood ALL has been well established [6,7]. In the United States, 

incidence of ALL is greatest in Hispanic children, followed by non-Hispanic Whites, Asians, and 

then Blacks [7-9]. 

Research continually tries to determine the etiology of childhood leukemias. While there 

are a few known risk factors associated with childhood ALL [10-15], more than 90% are of 

unknown etiology [11].Increased birth weight is an established risk factor shown to increase risk 

of childhood ALL [16-18]. Environmental factors are also involved, and may work in 

conjunction with genetic factors to cause many cancers [10]. 

Genome-wide association studies (GWAS) [19-22] have identified multiple risk loci 

showing significant associations with childhood ALL. Most significantly, variants located within 

the ARID5B, IKZF1, and CEBPE genes have robust risk associations. Most of these studies, 

however, have only evaluated risk among those of European ancestry. Two multiethnic studies 

conducted by Xu et al. looked at various risk loci in both African American and Hispanic 

American populations [8,22], discovering that some markers are universal across 

races/ethnicities, while others are race/ethnic-specific.  

We hypothesized that the variation in ethnic/racial susceptibility to childhood ALL has a 

genetic basis. We re-examined five previously discovered single nucleotide polymorphisms 

(SNPs) of known associations to leukemia (rs7089424, rs10821936, rs10994982, rs4132601, and 

rs2239633), along with three HLA region susceptibility markers for lymphomas, since 



lymphoma and ALL both stem from lymphoid cells. These included rs2395185, a marker of 

HLA DRB4 lineage [23] which has previously shown associations with major leukemias 

including childhood ALL [24,25] and other diseases including Hodgkin lymphoma [26], lung 

cancer [27], rheumatoid arthritis [28], asthma [29], and ulcerative colitis [30-32]; rs10484561, 

which has been shown to be a strong risk marker in follicular lymphoma (FL) [33]; and 

rs2647012, which is a protective marker for FL [34]. These SNPs were examined in a multi-

ethnic sample (non-Hispanic Whites, Hispanic Whites, and Blacks) from Houston, Texas to 

assess their association with ALL.  

SUBJECTS AND METHODS 

Study population 

Institutional Review Board (IRB) approval was obtained at both the Baylor College of 

Medicine (BCM) and Florida International University prior to the start of the study. The case-

control study was comprised of 161 incident childhood ALL cases and 231 healthy frequency-

matched controls for gender, contemporaneously recruited at the Texas Children’s Cancer Center 

in Houston, TX from 2007 to 2012. The children were less than 18 years of age at diagnosis, and 

exclusion criteria for both cases and controls were refusal to participate in the study and the 

diagnosis of any other disease or cancer. Subjects or their parents provided informed consent for 

provision of epidemiological data with a questionnaire and a biological sample. The DNA 

samples were extracted from saliva or peripheral blood samples at BCM. Race/ethnicity was 

determined by the responses provided on the questionnaire. Parents were requested to state the 

race (White, Black/African American, Asian, American Indian/Alaska Native, or Native 

Hawaiian/Other Pacific Islander) and ethnicity (Hispanic/Latino or non-Hispanic/Latino) of the 



child. The questionnaire also collected the race/ethnicity of the parents, which was used to verify 

the response. Information on clinical subtype of ALL was collected from medical records.  

Genotyping 

The main features for the SNPs genotyped are shown in Table I. Pre-developed 

TaqMan® SNP Genotyping Assays (LifeTech, Foster City, CA) were used for all of the SNPs 

we examined. Genotyping was achieved using the Bio-Rad CFX96 real-time PCR machine 

(Hercules, CA). The TaqMan assays consist of singleplex reactions carried out in ninety-six well 

plates. Each plate contained two no template controls (NTCs), a positive control, and random 

replicate samples. Bio-Rad SsoFast™ Probes Supermix, a 2x reaction buffer which contains the 

necessary components for running the PCR; Sso7d-fusion polymerase, dNTPs, MgCI2, and 

stabilizers, was used with the TaqMan Assay.  PCR amplifications were performed using the 

manufacturer’s suggestion of 20 μL total volume and with the following PCR thermal cycling 

conditions: enzyme activation at 95
o
C for two minutes, and 49 cycles of denaturation at 95

o
C for 

5 seconds followed by annealing and extension at 61
o
C for 5 seconds. Bio-Rad CFX Manager 

software (version 3.0) was used for data acquisition and genotype assignment. 

To adjust for heterogeneity in our sample, especially in Hispanics, we used two ancestry-

informative markers, AIMs, to control for potential confounding caused by population 

stratification and to avoid spurious associations [35]. The two AIMs we used, rs285 and rs2891, 

have been previously used in Hispanic populations to account for the differences in genetic 

ancestry [36,37]. The risk associations were adjusted by each of the AIMs besides adjustment by 

self-declared race/ethnicity. 

Statistical analysis 



 Statistical analyses were performed using Stata v.11 (StataCorp, College Station, TX).  

Pearson’s Χ
2
, Student's t-test (for means) or median test (for medians) were used to compare 

characteristics between the cases and controls. Logistic regression methods were used to 

calculate crude and adjusted odds ratios (OR) and 95% confidence intervals (CIs). All statistical 

tests were two-tailed, and the threshold for statistical significance was set at P≤0.05. The ORs, 

with 95% CIs, were used as a measure of effect size. Genotype counts were tested for Hardy–

Weinberg equilibrium (HWE) in controls for each SNP. By default, we used the additive genetic 

model to assess associations by Cochrane-Armitage trend test. Due to its previous association 

being in the recessive model, rs2395185 was analyzed also for the recessive model association. 

Ethnic- and gender-specific associations were calculated through stratified analyses after 

grouping subjects as non-Hispanic White, Hispanic White, Blacks, and Others. Associations in 

the overall sample were assessed by adjustment for race/ethnicity as well as by Mantel-Haenszel 

analysis after stratification. None of the SNPs were located in coding regions, therefore we used 

RegulomeDB (Stanford University, Palo Alto, CA) to determine their scores for regulatory 

effects. 

RESULTS 

 All cases and controls were genotyped for the eight candidate SNPs and two ancestry-

informative markers (AIMs). Genotype call rates were greater than 95% for both cases and 

controls.  Table II shows characteristics of the case-control sample. The case samples included 

86 males (53%) and 75 females (47%). Out of these cases, 66 identified themselves as non-

Hispanic White, 72 as Hispanic White, 17 as Black, and 6 as “other.” The group labeled “other” 

included those identifying themselves as Asian, Native American, or other. The healthy controls 

included 130 males (56%) and 101 females (44%), who had visited a pediatric clinic at Texas 



Children's Hospital for a non-disease related reason. Forty-nine were classified as non-Hispanic 

White, 98 as Hispanic White, and 78 as Black. The distribution of ethnic background was 

different between cases and controls mainly due to the infrequency of childhood ALL in Blacks. 

Because of this difference, results were adjusted for ethnic background or stratified analyses 

were performed when necessary. Mean birth weight was not different between cases and 

controls. Eighty-eight percent of the cases were diagnosed with early precursor B (early pre-B) 

ALL subtype, and associations did not change in effect size depending on the molecular subtype. 

There were no significant genotype associations found within the Black subpopulation of the 

sample and each of the SNPs genotyped (results not shown), possibly due to the small number of 

cases in the population sample.  

GWAS risk markers 

Results including genotype frequencies and ORs are described in Tables III-IV. Analyses 

yielded significant associations with some of the genetic markers similar to previous reports. In 

total, three ARID5B SNPs were examined for associations. Two of the ARID5B SNPs, rs7089424 

and rs10821936, showed expected risk associations, while rs10994982 did not show an 

association (Table III). The SNP rs7089424 had an overall OR per allele (ORallele) of 1.69 

(P>0.001). The association showed a somewhat stronger risk in the non-Hispanic subgroup 

(ORallele=2.11, P=0.01), compared with Hispanics (ORallele=1.61, P=0.02). Similarly, rs10821936 

had an overall ORallele=1.48 (P=0.05). Adjustments of the analyses for race/ethnicity did not 

change the observed results. Adjustment for AIMs did not appreciably alter the results either. 

Hardy-Weinberg equilibrium was violated in controls for IKZF1 rs4132601, which could 

lead to spurious results, and was therefore excluded. There was no significant association found 

for IKZF1 rs4132601 or for CEBPE rs2239633.  



HLA region lymphoma risk markers 

 The SNP located in the HLA-DR region, rs2395185, showed a weak, non-significant risk 

overall (Table IV). This SNP is an exclusive marker for the HLA-DRB4 (DR53) lineage [23]. 

Since this lineage was shown to be a risk marker for childhood ALL in European samples, but 

only in males [24], we examined rs2395185 association in males. The non-Hispanic White male 

group had an ORallele of 2.79 (P=0.016). The OR reached 6.21 (95% CI=0.70-54.96) for 

homoyzgosity for the variant allele, which corresponds to the original association [24]. The 

known protective marker for follicular lymphoma, rs2647012, showed a statistically significant 

association in Hispanics ORallele =2.21 (P=0.007), but not in non-Hispanics (Pinteraction= 0.003 for 

ethnicity). The significance remained after adjusting for both rs23951885 and rs10484561. The 

variant rs10484561 was shown to be a strong protective marker in this study, opposite of what 

was found in follicular lymphoma [33]. Using the recessive model, the variant allele showed a 

strong association, in the overall sample with ORrec=0.19 (P=0.009) after adjustment for 

race/ethnicity, and ORrec=0.17 (P=0.004) in Mantel-Haenszel analysis.  

DISCUSSION 

 Despite being well established, the racial disparity in the incidence of childhood ALL is 

not always addressed in genetic association studies. Most GWAS, until recently, have identified 

risk loci using only European-origin populations. Variant polymorphisms located within the 

ARID5B, IKZF1, and CEBPE genes have reported strong risk associations in multiple studies 

[19-22, 38-40]. Our study provides some confirmation of previously discovered genetic markers 

associated with childhood ALL, which also validated our case-control set for further exploration. 

Of the three ARID5B SNPs, rs7089424 and rs10821936 showed significant risk 

associations. The ARID5B gene is involved in transcriptional regulation during embryonic 



development [38]. Overexpression of the gene in particular leukemias have led some to speculate 

that variations within the gene may affect B-lineage development, and increase susceptibility to 

B-lineage leukemia [20]. The marker rs7089424 was associated with a stronger risk of leukemia 

in the non-Hispanic subgroup compared with Hispanics, replicating recent findings from case-

control studies using Hispanic populations [8,22]. 

In the recent multi-ethnic GWAS by Xu et al., rs10821936 was found to be a significant 

risk marker across all ethnicities. Xu et al. noted that the risk allele frequencies for rs10821936 

increased in order by race incident rates: Black/African Americans, non-Hispanic/European 

American, and Hispanic Americans [22].  Our results showed a similar trend with an increasing 

risk allele frequency in cases of Blacks, non-Hispanic Whites and Hispanics. The multi-ethnic 

GWAS reported that rs10821936 was highly correlated with Native American genetic ancestry 

[22], substantiating their previous observations that Native American ancestry correlates with 

higher risk of relapse in Hispanics, and leading to speculation that this may be a factor with the 

increased risk of childhood ALL for Hispanic children who have a high proportion of Native 

American ancestry [41]. 

The SNP rs4132601, located in the Ikaros family zinc finger 1 (IKZF1) gene, is 

associated with increased risk of childhood ALL in multiple studies [19,21,39,40,42]. The Ikaros 

proteins are known to be involved with lymphocyte development and differentiation [19], and 

deletions are frequent and associated with unfavorable prognosis in B-cell precursor ALL 

[19,43]. One study found this variant to be a significant risk marker amongst non-Hispanic 

Whites, but not in Hispanics, despite similar allele frequencies [40]. Chokkalingamet al. 

hypothesized that that this marker’s association may be due to linkage disequilibrium with a 

functional variant, and because of admixture in Hispanic populations the linkage disequilibrium 



may vary [40]. Our study was unable to examine this SNP, due to Hardy-Weinberg 

disequilibrium found in controls after stratification for race/ethnicity.  

The present study confirmed some, but not all previous findings of GWAS. With the 

ARID5B risk SNPs, there was heterogeneity even between the first two GWAS reports [19,20]. 

The modest sample size we had also reduced the statistical power of our study. Nevertheless, 

confirmed results validated the present case-control sample for further genetic association 

studies. 

The relevance of lymphoma-associated polymorphisms in childhood ALL was assessed 

by genotyping rs2395185, rs10484561, and rs2647012. The SNP near the HLA-DRA gene, 

rs2395185, is a marker for the HLA-DRB4 (DR53) lineage [23].  The HLA-DRB4 lineage or its 

marker SNP have been previously shown as a risk marker in lung cancer [27], asthma [29], 

rheumatoid arthritis [28], type I diabetes [44], adult acute myeloblastic leukemia [45], chronic 

myeloid leukemia [46], chronic lymphoid leukemia [47-49] and in childhood ALL (males 

only)[24,50,51], and as a protective marker for non-Hodgkin lymphoma [26], and ulcerative 

colitis [30-32,52]. The DRB4/DR53 lineage has been shown previously to have a risk association 

with childhood ALL, with male specificity, within a European sample via HLA typing [24]. The 

first GWAS association of rs2395185 was with ulcerative colitis [30,32]. The variant allele, T, 

was later found to be a protective marker in a GWAS examining risk factors for classical 

Hodgkin lymphoma [26], and most recently a risk marker factor in Asian females for lung cancer 

[27]. Our results replicated the strong male specificity of the risk for childhood ALL, specifically 

in non-Hispanic White males, with no association in Hispanics. The DRB4 lineage has unique 

features, such as lower expression levels of HLA-DR molecules, poor interaction with CD4, 

disrupted intracellular transport, and possibly contains extra amount of DNA in the DR/DQ 



region which may contribute to this risk association in childhood ALL [25]. One important 

finding of the present study is that the risk modifiers of lymphoma showed associations in 

opposite directions in childhood ALL. 

 The variant rs2647012, a marker for DRB3/DRB5 lineages [53] and a protective marker 

for lymphoma [34], showed a statistically significant risk association among Hispanics, but not 

in non-Hispanics (Pinteraction = 0.003 for ethnicity). Our study appears to be the first looking at a 

Hispanic population with this SNP, and further studies are warranted to determine if this inverse 

relationship of risk exists in non-Hispanic and Hispanic Whites. Variant rs10484561 showed 

signs of being a protective marker for childhood ALL, opposite to the follicular lymphoma 

findings [33].  

It is now customary that the additive model is used to assess statistical associations of 

SNPs. While the additive model has sufficient power to detect associations in most situations, 

there are certain scenarios that it may not show statistical significance when in fact, there is an 

association. An association conforming to the strictly recessive model when allele frequency is 

low is one example [54-56]. For this reason, and also because the original rs2395185 association 

was a recessive model association, we also assessed this genetic model in HLA region 

associations. This approach consistently yielded larger effect sizes for HLA region SNPs, 

especially for rs2395185 as in previous studies. We are in favor of routine use of the recessive 

model analysis in exploration of associations in the HLA region. 

Our study had a number of limitations. With childhood ALL being a rare disease, the 

sample size for our study was small, resulting in limited statistical power. The issue of self-

reported ethnicity may be of concern. This method is common with population-based association 

studies, and residual confounding is often suspected. Even though it has been described that self-



reported ethnicity may be reliable [57], the heterogeneity within the Hispanic population is still a 

concern. A recent study conducted in a Spanish population was unable to replicate original risk 

associations found in Hispanic Americans, demonstrating the large heterogeneity in this high risk 

group [22,58].To adjust for heterogeneity in our sample, especially in Hispanics, we used two 

ancestry-informative markers, AIMs, to control for confounding caused by population 

stratification and to avoid spurious associations [35]. The AIMs have widely different allele 

frequencies in major human continental groups. The two AIMs we used, rs285 and rs2891, have 

been previously used in Hispanic populations to account for the differences in genetic ancestry 

[36,37]. Adjusting the risk associations by AIMs did not alter the results.  

 Our study did have a well-defined phenotype, with molecular ALL types determined. The 

use of a multi-ethnic sample population was a strength, especially for the ethnic disparity that 

exists in childhood ALL susceptibility. Another strength is the use of multiple genetic models, 

where appropriate, to determine associations that may remain undetectable by the exclusive use 

of the additive model association. The replication of known leukemia markers validated our 

sample set for further studies. This pilot study is part of an ongoing effort at BCM. Recruitment 

for the second phase is continuing together with clinical follow-up.  

In summary, we validated a new multi-ethnic case-control set and also examined some 

new markers with their association with childhood ALL. The examination of lymphoma risk 

markers yielded associations in opposite directions for childhood ALL, and also confirmed a 

previously identified childhood ALL risk marker. Two HLA region associations were ethnicity-

specific. Still, our study did not provide clues as to why Hispanics have a higher susceptibility to 

childhood ALL, suggesting that environmental factors may have to be incorporated in future 

studies to examine their role in this differential. Studies with information on environmental 



exposures may help explain how gene-environment interactions contribute to childhood ALL 

susceptibility and its variation among different populations. 
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Table I.  Main features of SNPs analyzed 

 

Gene SNP 
Chromosome 

nucleotide position
*
 

Inclusion criteria PMID
**

 
Minor allele 

and frequency
†
 

Location 
RegulomeDB 

score
††

 

ARID5B rs7089424 chr10: 63752159 
GWAS identified risk 

loci for childhood ALL 

19684604, 22660188, 

20042726 
(G) 0.314 Intronic 3a 

ARID5B rs10821936 chr10: 63723577 
GWAS identified risk 

loci for childhood ALL 

19684603, 20054350, 

22660188, 23512250, 

22291082 

(C) 0.318 Intronic 5 

ARID5B rs10994982 chr10: 63710104 
GWAS identified risk 

loci for childhood ALL 
19684603, 22660188 (A) 0.457 Intronic NA 

IKZF1 rs4132601 chr7: 50470604 
GWAS identified risk 

loci for childhood ALL 

19684604, 22660188, 

20054350 
(G) 0.306 3'-UTR 5 

CEBPE rs2239633 chr14: 23589057 
GWAS identified risk 

loci for childhood ALL 
19684604, 22660188 (A) 0.466 

5'-

upstream 
4 

HLA-DR 

region 
rs2395185 chr6: 32433167 

HLA-DRB4/DR53 

lineage; ALL risk 

marker (in European 

males); Hodgkin 

lymphoma risk marker 

10397736, 12008082, 

22286212, 7909466  
(T) 0.423 Intronic 6 

HLA-DQB1 

region 
rs2647012 chr6: 32664458 

HLA-DRB3/DRB5 

lineage, protective 

marker for non-Hodgkin 

(follicular) lymphoma 

21533074, 22911334, 

23455380 
(T) 0.381 Intergenic 6 

HLA-DQA1 

region 
rs10484561 chr6: 32665420 

HLA-DR1/DR10 

lineage, risk marker in 

follicular lymphoma 

20639881, 21533074, 

23025665 
(G) 0.084 Intergenic 6 

 

*Genome Reference Consortium Human Build 37 patch release 10 (GRCh37.p10) used for nucleotide position (http://www.ncbi.nlm.nih.gov/SNP/) 

**PubMed identifier number 

†Minor allele frequencies are from a reference Caucasian population (U.S. residents of northern and western European ancestry) genotyped in HapMap project 

††RegulomeDB scores range from 1 (most functional) to 5 (least functional) (6=other). Not all SNPs have a RegulomeDB score (http://regulome.stanford.edu/) 

http://www.ncbi.nlm.nih.gov/SNP/


 

Table II. Characteristics of cases and controls 

  
Cases  

n=161 

Controls 

n=231 
P value 

Ethnic background  

  Non-Hispanic White 

  Hispanic White 

  Black 

  Other
*
 

 

66 

72 

17 

6 

 

49 

98 

78 

6 

<0.001 

Gender 

Male 

  Female 

Ratio 

 

86 

75 

1.15 

 

130 

101 

1.29 

0.58 

Birth weight (grams) 

  Mean (SD) 

  Median (IQR) 

 

3349.3 (584) 

3400 (760) 

 

3263.3 (684) 

3311.5 (850) 

 

0.23 

0.48 

 

*Other includes Asian, Native American, or any other ethnicities



 

Table III. SNP associations previously shown as ALL risk markers in GWAS (overall
*
) 

  Cases Controls Minor allele frequency   

Gene SNP 
Minor 

Allele 
A/A A/B B/B A/A A/B B/B Cases Controls ORallele

**
(95% CI) P value 

ARID5B rs7089424 G 37 80 43 113 68 46 0.52 0.35 1.69 (1.28-2.24) <0.001 

ARID5B rs10821936 C 39 72 44 104 69 50 0.52 0.38 1.48 (1.12-1.95) 0.005 

ARID5B rs10994982 A 55 78 25 90 78 43 0.41 0.39 1.00 (0.75-1.34) 0.992 

 IKZF1 rs4132601 G 76 68 16 141 56 29 0.31 0.25 1.19 (0.88-1.60) 0.269
†
 

CEBPE rs2239633 A 68 68 23 118 74 36 0.36 0.32 1.02 (0.76-1.36) 0.881 

 

*ORs adjusted for self-reported race/ethnicity 

**OR per allele (ORallele) for the additive model 

†Hardy-Weinberg disequilibrium in controls  

 



 

Table IV. Association of HLAregion lymphoma susceptibility markers (overall
*
) 

  Cases  Controls  
Minor allele 

frequency 
        

SNP Gene 
Minor 

allele 
A/A A/B B/B A/A A/B B/B Cases Controls 

ORallele
** 

(95% CI) 
P value 

ORrec
†
 

(95% CI) 
P value 

rs2395185 
HLA-DR 

region 
T 69 68 22 120 72 25 0.35 0.28 

1.27 

(0.94-1.71) 
0.127 

 1.1  

(0.65-2.26)†† 
0.553 

rs2647012 
HLA-DQB1 

region 
A 78 64 16 116 47 30 0.3 0.28 

1.09  

(0.80-1.47) 
0.595 

0.57  

(0.30-1.12) 
0.103 

rs10484561 
HLA-DQA1 

region 
G 128 23 3 149 21 18 0.09 0.15 

0.70  

(0.46-1.06) 
0.094 

0.19  

(0.05-0.66) 
0.009 

 

*ORs adjusted for self-reported ethnicity and race           

**OR per allele (ORallele) for the additive model 

†OR recessive (ORrec) for the variant homozygous genotype  

††ORallele=1.88 (P=0.003) in males; ORallele=2.79 (P=0.016) in non-Hispanic White males  

 

 



 

 


