
Modelling and Analysis Mobile Systems
Using π-calculus (EFCP)

Victor Khomenko and Vasileios Germanos

Newcastle University, Newcastle upon Tyne NE1 7RU, UK
{Victor.Khomenko,V.Germanos}@ncl.ac.uk

Abstract. Reference passing systems, like mobile and reconfigurable
systems are common nowadays. The common feature of such systems
is the possibility to form dynamic logical connections between the in-
dividual modules. However, such systems are very difficult to verify, as
their logical structure is dynamic. Traditionally, decidable fragments of
π-calculus, e.g. the well-known Finite Control Processes (FCP), are used
for formal modelling of reference passing systems. Unfortunately, FCPs
allow only ‘global’ concurrency between processes, and thus cannot nat-
urally express scenarios involving ‘local’ concurrency inside a process,
such as multicast. In this paper we propose Extended Finite Control
Processes (EFCP), which are more convenient for practical modelling.
Moreover, an almost linear translation of EFCPs to FCPs is developed,
which enables efficient model checking of EFCPs.

Keywords: π-calculus, finite control process, extended finite control
process, reconfigurable systems, mobile systems, model checking.

1 Introduction

Many contemporary systems enjoy a number of features that significantly in-
crease their power, usability and flexibility:

- Dynamic reconfigurability : The overall structure of many existing systems
is flexible. Nodes in ad-hoc networks can dynamically appear or disappear;
individual cores in Networks-on-Chip can be temporarily shut down to save
power; resilient systems have to continue to deliver (reduced) functionality
even if some of their modules develop faults.

- Logical mobility : Mobile systems permeate our lives and are becoming ever
more important. Ad-hoc networks, where devices like mobile phones and
laptops form dynamic connections are common nowadays, and the vision of
pervasive (ubiquitous) computing [1], where several devices are simultane-
ously engaged in interaction with the user and each other, forming dynamic
links, is quickly becoming a reality.

- Dynamic allocation of resources: It is often the case that a system has several
instances of the same resource (e.g., network servers or processor cores in a
microchip) that have to be dynamically allocated to tasks depending on the
current workload, power mode, priorities of the clients, etc.

The common feature of such systems is the possibility to form dynamic logical
connections between the individual modules. It is implemented using reference

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Hope's Institutional Research Archive

https://core.ac.uk/display/46601508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Victor Khomenko and Vasileios Germanos

passing. A module can become aware of another module by receiving a reference
(e.g., in the form of a network address) to it, which enables subsequent communi-
cation between these modules. This can be thought of as a new (logical) channel
dynamically created between these modules. We will refer to such systems as
Reference Passing Systems (RPS).

As people are increasingly dependent on the correct functionality of RPSs,
the cost incurred by design errors in such systems can be extremely high. How-
ever, even the conventional concurrent systems are notoriously difficult to design
correctly because of the complexity of their behaviour, and reference passing adds
another layer of complexity due to the logical structure of the system becoming
dynamical. Hence, computer-aided formal verification has to be employed in the
design process to ensure the correct behaviour of RPSs. However, validation of
such systems is almost always limited to simulation/testing, as their formal ver-
ification is very difficult due to either the inability of the traditional verification
techniques to express reference passing1 (at least in a natural way) or by poor
scalability of the existing verification techniques for RPSs.

This is very unfortunate: As many safety-critical systems must be resilient
(and hence reconfigurable), they are often RPSs and thus have very complicated
behaviour. Hence, for such systems the design errors are both very likely and
very costly, and formal verification must be an essential design step. This paper
addresses this problem by developing a formalism that can specify RPSs and
make their formal verification feasible.

There is a number of formalisms that are suitable for specification of RPSs.
The main considerations and trade-offs in choosing an appropriate formalism are
its expressiveness and the tractability of the associated verification techniques.
Expressive formalisms (like π-calculus [2] and Ambient Calculus [3]) are Turing
powerful and so not decidable in general. Fortunately, the ability to pass refer-
ences per se does not lead to undecidability, and it is possible to put in place
some restrictions (e.g., finiteness of the control) that would guarantee decidabil-
ity, while still maintaining a reasonable modelling power.

Finite Control Processes (FCP) [4] are a fragment of π-calculus, where the
system is constructed as a parallel composition of sequential entities (threads).
Each sequential entity has a finite control, and the number of such entities is
bounded in advance. The entities communicate synchronously via channels, and
have the possibility to create new channels dynamically and to send channels
via channels.

As π-calculus is the most well-known formalism suitable for RPS specifica-
tion, we fix FCPs (as a natural decidable and reasonably expressive fragment
of π-calculus) as the primary RPS specification formalism, from which a new
extension will be derived.

One common feature of RPSs is multicast. That is, data can be transmitted
from one source to more than one destinations concurrently. Using FCPs to
model such systems is not inconvenient because local concurrency inside the

1 Some existing tools like SPIN allow to send channels via channels; however, they do
not allow dynamic creation of new channels, which is often essential in RPSs.

Modelling and Analysis Mobile Systems Using π-calculus (EFCP) 3

thread is forbidden. Thus, we propose a new subclass of π-calculus, the Extended
Finite Control Processes (EFCP), that allows to model multicast in natural way
and is still amenable to model checking.

The formal verification of RPSs expressed as EFCPs can be done in stepwise
manner. Firstly, a translation from EFCP to FCP is performed as explained in
this paper. The size of the resulting FCP is quadratic in the worst case, but often
linear in practice (see Section 4.4). Then, the resulting FCP can be translated
to a Petri net of polynomial size [5], and for the latter there are already efficient
verification techniques.

2 Basic notions

In π-calculus [6,7] and FCPs [4], threads communicate via synchronous message
exchange. The key idea of the formalism is that messages and the channels

they are sent on have the same type: they are just names from some set Φ
df
=

{a, b, x, y, i, f, r, . . .}, which are the simplest entities of the π-calculus. This means
a name that has been received as message in one communication may serve as
channel in a later interaction. To communicate, processes consume prefixes π of
the form

π ::= a〈b〉 p a(x) p τ.

The output prefix a〈b〉 sends name b along channel a. The input prefix a(i)
receives a name that replaces i on channel a. The input and output actions are
called visible actions and prefix τ stands for a silent action.

Threads, also called sequential processes, are constructed as follows. A choice
process

∑
i∈I πi.Si over a finite set of indices I executes a prefix πi and then

behaves like Si. The special case of choices over an empty index set I = ∅ is
denoted by 0 — such a process has no behaviour. Moreover, when |I| = 1 we
drop Σ. We use

⊙
to refer to iterated prefixing, e.g. a1〈b1〉.a2〈b2〉.a3〈b3〉.a4〈b4〉.0

can be written as
(⊙4

i=1 ai〈bi〉
)
.0. A restriction νr : S generates a name r

that is different from all other names in the system. We denote a sequence of
restrictions νr1 . . . νrk by νr̃ with r̃ = r1 . . . rk. To implement parameterised
recursion, we use calls to process identifiers Kbãc. We defer the explanation of
this construct for a moment. To sum up, FCP threads take the form

S ::= Kbãc p
∑

i∈I πi.Si p νr : S.

A finite control process (FCP) F is a parallel composition of a fixed number
of threads:

F ::= νã : (S1 | . . . | Sn).

Note that in FCPs the parallel composition operator | is allowed at the top
level, but inside the threads, whereas in general π-calculus there is no such

4 Victor Khomenko and Vasileios Germanos

restriction. We use Π to denote iterated parallel composition, e.g. the above
definition of an FCP can be re-written as F ::= νã :

∏n
i=1 Si.

Our presentation of parameterised recursion using calls Kbãc follows [7].

Process identifiers K are taken from some set Ψ
df
= {H,K,L, . . .} and have a

defining equation K(f̃) := S. Here S can be understood as the implementation
of identifier K. The process has a list of formal parameters f̃ = f1, . . . , fk that
are replaced by factual parameters ã = a1, . . . , ak when a call Kbãc is executed.
Note that both lists ã and f̃ have the same length. When we talk about an FCP
specification F , we mean process F with all its defining equations.

To implement the replacement of f̃ by ã in calls to process identifiers, we use
substitutions. A substitution is a function σ : Φ→ Φ that maps names to names.
If we make domain and codomain explicit, σ : A→ B with A,B ⊆ Φ, we require
σ(a) ∈ B for all a ∈ A and σ(x) = x for all x ∈ Φ \ A. We use {ã/f̃} to denote

the substitution σ : f̃ → ã with σ(fi)
df
= ai for i ∈ {1, . . . , k}. The application of

substitution σ to S is denoted by Sσ and defined in the standard way [7].
Input prefix a(i) and restriction νr bind the names i and r, respectively. The

set of bound names in a process P = S or P = F is bn (P). A name which is not
bound is free, and the set of free names in P is fn (P). We permit α-conversion
of bound names. Therefore, w.l.o.g., we make the following assumptions common
in π-calculus theory and collectively referred to as no clash (NOCLASH) [5]
henceforth. For every π-calculus specification, we require that:

– a name is bound at most once;
– a name is used at most once in formal parameter lists;
– the sets of bound names, free names and formal parameters are pairwise

disjoint;
– if a substitution σ = {ã/x̃} is applied to P then bn (P) and ã∪ x̃ are disjoint.

Assuming (NOCLASH), the names occurring in a π-calculus specification
F can be partitioned into the following sets:

P public names that are free in F ;
R names bound by restriction operators;
I names bound by input prefixes;
F names used as formal parameters in defining equations.

The size of a π-calculus specification is defined as the size of its initial term
plus the sizes of the defining equations. The corresponding function ‖·‖ measures
the number of channel names, process identifiers, the lengths of parameter lists,
and the number of operators in use:

‖0‖ df
= 1

‖Kbãc‖ df
= 1 + |ã|

‖νr : P‖ df
= 1 + ‖P‖

‖K(f̃) := S‖ df
= 1 + |f̃ |+ ‖S‖

Modelling and Analysis Mobile Systems Using π-calculus (EFCP) 5

‖
∑

i∈I πi.Si‖
df
= 3|I| − 1 +

∑
i∈I

‖Si‖

‖
n∏

i=1

Si‖
df
= n− 1 +

∑n
i=1 ‖Si‖

It is not so simple to define reduction on terms of π-calculus, because two
subterms of a process-term may interact despite the fact that they may not
be adjacent. To define the behaviour of a process and the reduction on process
terms, we rely on a relation called structural congruence ≡. It is the smallest
congruence where α-conversion of bound names is allowed, + and | are commu-
tative and associative with 0 as the neutral element, and the following laws for
restriction hold:

νx : 0 ≡ 0

νx : νy : P ≡ νy : νx : P

νx : (P |Q) ≡ P |(νx : Q) if x /∈ fn (P)

The behaviour of π-calculus processes is determined by the reaction relation →.
The reaction relations are defined by inference rules [6, 7]:

(Tau) τ.S +M → S (React) (x(y).S +M) |(x〈z〉.S′ +N)→ S{z/y} |S′

(Res)
P → P ′

νa : P → νa : P ′ (Struct)
P → P ′

Q→ Q′ if P ≡ Q and P ′ ≡ Q′

(Par)
P → P ′

P |Q→ P ′ |Q
(Const) Kbãc → S{ã/f̃} if K(f̃) := S

The rule (Tau) is an axiom for silent steps. (React) describes the communica-
tion of two parallel threads, consuming their send and receive actions respectively
and continuing as a process, where the name y is substituted by z in the receiv-
ing thread S. (Const) describes identifier calls, likewise using a substitution. The
remaining rules define→ to be closed under structural congruence, parallel com-
position and restriction. By R(F) we denote the set of all processes reachable
from F . The transition system of FCP F factorises the reachable processes along
structural congruence.

2.1 Normal form assumptions

We require that the sets of process identifiers called (both directly from F and
indirectly from defining equations) by different threads are disjoint. This re-
striction corresponds to the notion of a safe FCP [8] and can be achieved by
replicating some defining equations. The resulting specification is bisimilar with
F and has the size O(n‖F‖) = O(‖F‖2). We illustrate the construction on the
following example of an FCP specification (left) together with its replicated ver-
sion (right):

6 Victor Khomenko and Vasileios Germanos

K(f1, f2) := τ.L(f1, f2) K1(f11 , f
1
2) := τ.L1(f11 , f

1
2)

L(f3, f4) := τ.K(f3, f4) L1(f13 , f
1
4) := τ.K1(f13 , f

1
4)

K2(f21 , f
2
2) := τ.L2(f21 , f

2
2)

L2(f23 , f
2
4) := τ.K2(f23 , f

2
4)

K3(f31 , f
3
2) := τ.L3(f31 , f

3
2)

L3(f33 , f
3
4) := τ.K3(f33 , f

3
4)

Kba, bc |Kbb, cc |Lba, cc K1ba, bc |K2bb, cc |L3ba, cc

Intuitively, in the resulting FCP specification each thread has its own set of
defining equations. This normal form is applicable also to EFCPs introduced in
Section 4.2.

2.2 Match and mismatch operators

The match and mismatch operators are a common extension of π-calculus [5].
Intuitively, the process [x = y].P behaves as P if x and y refer to the same
channel, and as 0 otherwise, and the process [x 6= y].P behaves as P if x and y
refer to different channels, and as 0 otherwise.

2.3 Polyadic communication

Polyadic communication can be used to make modelling more convenient. Using
polyadic communication tuples of names can be exchanged in a single reaction.
More precisely, a sending prefix a〈x1. . .xm〉 (with m ≥ 0) and a receiving prefix
a(y1. . . yn) (with n ≥ 0 and all yi being different names) can synchronise iff m
= n, and after synchronisation each yi is replaced by xi, {yi/xi}. Formally,

(React) (a(ỹ) ; P1 +Q1) |(a〈x̃〉 ; P2 +Q2)→ P1{x̃/ỹ} |P2 if | ỹ |=| x̃ |

3 Extended finite control processes

This section introduces the Extended Finite Control Processes (EFCP), which
add new features to FCPs, in particular limited local concurrency within a
thread, while still allowing one to formally verify such systems. Thus, practi-
cal modelling of reconfigurable systems becomes more convenient.

The threads in an FCP can communicate synchronously via channels, and
are able to create new channels dynamically and send channels via channels.
However, FCP threads are sequential processes, without any ‘local’ concurrency
inside them. This makes FCPs too restrictive when one wants to model scenarios
involving local concurrency within a thread, for instance, in case of routing
protocols in multi-core processor systems. An essential feature of such protocols
is multicast, i.e. the ability of a core to send a datum to several destinations
concurrently.

Modelling and Analysis Mobile Systems Using π-calculus (EFCP) 7

EFCPs are sufficient for modelling many practical reconfigurable systems.
Moreover, since an efficient translation from FCPs to safe Petri nets exists [5],
it can be reused for EFCPs (via an intermediate translation to FCPs). Hence
efficient formal verification algorithms for Petri nets can be used to verify EFCPs.

For example, the following process is an FCP, which is a parallel composition
of three sequential processes (threads):

K1 := a(x) . x〈b〉 . 0

K2 := νu : a〈u〉 . w〈u〉 . 0

K3 := w(t) . t(v) . 0

K1 |K2 |K3

Note that in FCPs the parallel composition operator ‘|’ can be used only in the
initial term, i.e. the threads are fully sequential and their number is bounded in
advance.

To be able to model a wide range of RPSs, a higher degree of freedom in the
syntax is required to specify their various behavioural scenarios. To that end, an
extension of FCPs, the EFCP, is introduced, which allows local concurrency and
replaces the prefixing operator ‘.’ with a more powerful sequential composition
operator ‘;’. The full EFCP syntax is defined in Section 3.1, and an example is
given below.

K1 := νr :
(
(a〈r〉 | b〈r〉) ; (r(x) | r(y))

)
K2 := a(z) ; z〈c〉

K3 := b(w) ; w〈d〉

K1 |K2 |K3

3.1 The Syntax of Extended Finite Control Processes

To define the EFCP syntax the notion of finite processes is required. Such pro-
cesses have special syntax ensuring that the number of actions they can execute
is bounded in advance.

The arguments of the parallel composition operator, when used inside a
thread, are limited to finite processes only. Similarly, the left hand side of se-
quential composition must be a finite process, but the right hand side is not
required to be such.

This new subcalculus is defined by a context-free grammar consisting of two
sub-grammars, one for the finite executed processes and one for generic processes.

Definition 1 (Grammar for finite processes).

F ::= 0 p π p F + F p F |F p νr̃ : F p F ; F

8 Victor Khomenko and Vasileios Germanos

The syntax of generic processes includes that of finite processes, but also
allows for extra features like recursive definitions.

Definition 2 (EFCP grammar). Let F be a finite process defined above. The
syntax of an EFCP thread is then

P ::= Kbx̃c p F p P + P p νr̃ : P p F ; P

An EFCP specification is comprised of a set of defining equations of the form
K(f̃) := P and an initial term of the form νr̃ :

∏n
i=1 Pi, where P and all Pi are

EFCP threads.

Note that an EFCP thread cannot contain the construction P |P (only the initial
term can have it), but it can contain F |F .

3.2 Structural congruence and operational semantics

The structural congruence relation is used in the definition of the behaviour of
a process term. The choice ‘+’ and the parallel composition ‘|’ are commuta-
tive and associative with 0 as the neutral element. Sequential composition ‘;’ is
associative with 0 as the neutral element, but not commutative.

Definition 3 (Structural congruence). The structural congruence ≡ is the
smallest congruence that satisfies the following axioms:

Alpha-convertion:

νr : P ≡ νr′ : P{r′/r} if r′ /∈ fn (P).

a(x) ; P ≡ a(x′) ; P{x′/x} if x′ /∈ fn (P).

Laws for sequential composition:

0 ; P ≡ P

F ; 0 ≡ F

(F1 ; F2) ; P ≡ F1 ; (F2 ; P)

Laws for restriction:

νr : 0 ≡ 0

να : νβ : P ≡ νβ : να : P

Laws for parallel composition:

P1 |(P2 |P3) ≡ (P1 |P2) |P3

P1 |P2 ≡ P2 |P1

Modelling and Analysis Mobile Systems Using π-calculus (EFCP) 9

P |0 ≡ P

Laws for summation:

P1 + (P2 + P3) ≡ (P1 + P2) + P3

P1 + P2 ≡ P2 + P1

P + 0 ≡ P

Definition 4 (Structural operational semantics). The transition system of
EFCP is defined by the following rules:

(Seq)
F → F ′

F ;Q→ F ′ ;Q
(Tau) τ ; P +Q→ P

(Res)
P → P ′

νr : P → νr : P ′ (Struct)
P → P ′

Q→ Q′ if P ≡ Q and P ′ ≡ Q′

(Par)
P → P ′

P |Q→ P ′ |Q
(Const) Kbãc → P{ã/f̃} if K(f̃) := P

(React) (x(y) ; P1 +Q1) |(x〈z〉 ; P2 +Q2)→ P1{z/y} |P2

Note that these rules are similar to the π-calculus rules in Section 2 with
the exception of the (Seq) rule expressing the semantics of our more powerful
sequential composition operator ‘ ; ’.

4 Translation of EFCPs to FCPs

In this section, a formal description of the new formalism is presented, and
an almost linear translation from EFCP to FCP is introduced. The purpose of
translating EFCP to FCP is for the latter to be translated to safe low-level Petri
nets [8], for which efficient verification techniques can be applied.

4.1 Description

The translation has to eliminate the parallel composition operator inside threads
and the use of sequential composition. Since an FCP consists of sequential pro-
cesses (threads), any thread of an EFCP that is not sequential must be converted
to a sequential one. This can be done by shifting all the concurrency to the ini-
tial term. Moreover, sequential composition has to be replaced by prefixing. To
avoid blow up in size, new declarations are introduced during this process.

To ensure that the order of actions is preserved and that the context (bind-
ing of channel names) is correct, extra communication between threads may be

10 Victor Khomenko and Vasileios Germanos

required. New process definitions are introduced in two cases. The first is when
local concurrency exists within a thread, e.g.:

K[x] := νr : ((a〈x〉 | b〈r〉) ; τ)

Kbuc
The translation result is:

K[x] := νr : (begin1〈x〉 . begin2〈r〉 . end1() . end2() . τ . 0)

K1 := begin1(x) . a〈x〉 . end1〈〉 . K1

K2 := begin2(r) . b〈r〉 . end2〈〉 . K2

Kbuc |K1 |K2

Here K1 and K2 are fresh PIDs and begin1, begin2, end1, end2 are fresh public
names. Note that the necessary context is passed to the auxiliary FCP threads
K1 and K2 using communication on begin1 and begin2.

The second case is when there is a sequential composition with a non-trivial
left-hand side, e.g.:

K[x] := νr :
(

(a〈x〉+ b〈r〉)︸ ︷︷ ︸
l.h.s.

; (c〈x〉+ d〈r〉)︸ ︷︷ ︸
r.h.s.

)
Kbuc

This process is translated as follows:

K[x] := νr : (a〈x〉 . K1bx, rc+ b〈r〉 . K1bx, rc)

K1[x, r] := c〈x〉 . 0 + d〈r〉 . 0

Kbuc

Here K1 is a fresh PID. Note that the initial term did not change and that the
context is passed via parameters of a call.

4.2 Formal Definition of EFCP to FCP Translation

In this section, the translation is defined in a formal way. EFCP has the form

K1[x̃1] := P1

...

Kn[x̃n] := Pn

νr̃ : (Q1 | . . . |Qk)

where the syntax of each Pi is given by Definitions 1 and 2, and we assume that
no Qi in the initial term uses ‘|’ or ‘;’. Note that the EFCP is assumed to be safe

Modelling and Analysis Mobile Systems Using π-calculus (EFCP) 11

and to satisfy (NOCLASH). Safe EFCPs are defined similarly to safe FCPs,
see Sect. 2.1.

Definition 5 (Translation). The translation J·KB from EFCP to FCP is de-
fined inductively on the syntactical structure of the EFCP. Here B is the param-
eter of the translation. It defines the context, i.e. the set of names that were
bound prior to the occurrence of the term to be translated. The translation is
applied to each process declaration separately:

JK[x̃] := P K∅
df
= K[x̃] := JP Kx̃∩fn(P) (Decl)

Base cases:

J0KB
df
= 0 (Stop)

JπKB
df
= π . 0 (Pref)

JKbx̃cKB
df
= Kbx̃c (Call)

Parallel composition:

t
k∏

i=1

Pi

|

B

df
=

(
n⊙

i=1

begini〈B ∩ fn (Pi)〉

)
.

n⊙
i=1

endi() (Par)

where begini and endi are fresh public names and Ki are fresh PIDs
Ki := begini(B ∩ fn (Pi)).

q
Pi ; endi〈〉 ; Ki

y
B∩fn(Pi)

, i = 1 . . . k

k∏
i=1

Ki is added concurrently to the initial term.

Restriction:
Jνr̃ : P KB

df
= νr̃ : JP K(B∪r̃)∩fn(P) (Restr)

Choice composition:

t
k∑

i=1

Pi

|

B

df
=

k∑
i=1

JPiKB∩fn(Pi)
(Choice)

Match and mismatch:

J[a = x] . P KB
df
= [a = x] . JP KB∩fn(P) (Match)

J[a 6= x] . P KB
df
= [a 6= x] . JP KB∩fn(P) (Mismatch)

Sequential composition base cases:

J0 ; P KB
df
= JP KB (SeqStop)

Jτ ; P KB
df
= τ . JP KB (SeqTau)

12 Victor Khomenko and Vasileios Germanos

r
a〈b̃〉 ; P

z

B

df
= a〈b̃〉.JP KB∩fn(P) (SeqSend)

r
a(b̃) ; P

z

B

df
= a(b̃).JP K(B∪b̃)∩fn(P) (SeqRec)

Sequential composition inductive cases:

t(
k∑

i=1

Pi

)
; P

|

B

df
=

t
k∑

i=1

(
Pi ; K[B ∩ fn (P)]

)|
B

(SeqChoice)

where K is a fresh PID (not added to the initial process)
K[B ∩ fn (P)] := JP KB∩fn(P)

t(
k∏

i=1

Pi

)
; P

|

B

df
=

t
k∏

i=1

Pi

|

B∩
⋃k

i=1 fn(Pi)

. JP KB∩fn(P) (SeqPar)

J(νr̃ : P) ; P ′KB
df
= Jνr̃ : (P ; P ′)KB (SeqRestr)

4.3 An Example of translation from EFCP to FCP

The following EFCP process models a client that communicates with a server.

Cburl, ipc := νq : (url〈ip, q〉 ; ip(a) ; Cburl, ipc)

Sburl′c := url′(ip′, q′) ; νx : ((νr : x〈r〉 ; τ ; r(a) ; ip′〈a〉) |

x(v) ; (τ + τ) ; v〈a′〉) ; Sburl′c

νurl′′, ip′′ : (Sburl′′c |Cburl′′, ip′′c)

The server is located at some URL, Sburl′c. A client can contact it by sending
its IP address ip on the channel url. At the same time it sends a question, q, to the
server, url〈ip, q〉. The client generates and sends a different question each time,
thus q is a restricted name. The client’s IP address and the question are received
by the server and are stored as ip′ and q′, url′(ip′, q′). The server runs two
computational threads, which communicate with one another via a temporary
internal channel x and produce an answer, and one of them sends the answer
to the client on ip′, νx : ((νr : x〈r〉 ; τ ; r(a) ; ip′〈a〉) |x(v) ; (τ + τ) ; v〈a′〉),
at which point the server repeats its behaviour by calling Sburl′c. The client
receives the answer, ip(a), and is able to contact the server again, Cburl, ipc.

Modelling and Analysis Mobile Systems Using π-calculus (EFCP) 13

This specification is a safe EFCP satisfying (NOCLASH). Now, we trans-
late it to FCP in a stepwise manner. First, the declaration of C is translated
according to the rules of Definition 5:

q
Cburl, ipc := νq : (url〈ip, q〉 ; ip(a) ; Cburl, ipc)

y
∅ = by Decl

C[url, ip] :=
q
νq : (url〈ip, q〉 ; ip(a) ; Cburl, ipc)

y
{url,ip} = by Restr

C[url, ip] := νq : (
q
url〈ip, q〉 ; ip(a) ; Cburl, ipc

y
{url,ip,q}) = by SeqSend

C[url, ip] := νq : (url〈ip, q〉 . Jip(a) ; Cburl, ipcK{url,ip}) = by SeqRec

C[url, ip] := νq : (url〈ip, q〉 . ip(a) . JCburl, ipcK{url,ip}) = by Call

C[url, ip] := νq : url〈ip, q〉 . ip(a) . Cburl, ipc

Finally, client process has been converted to FCP. It is now the server’s turn
to be translated to FCP. Again, the same procedure is followed.

JSburl′c := url′(ip′, q′) ; νx :
(
(νr : x〈r〉 ; τ ; r(a) ; ip′〈a〉) |

x(v) ; (τ + τ) ; v〈a′〉
)

; Sburl′cK∅ = by Decl

S[url′] := Jurl′(ip′, q′) ; νx :
(
(νr : x〈r〉 ; τ ; r(a) ; ip′〈a〉) |

x(v) ; (τ + τ) ; v〈a′〉
)

; Sburl′cK{url′} = by SeqRec

S[url′] := url′(ip′, q′) . Jνx :
(
(νr : x〈r〉 ; τ ; r(a) ; ip′〈a〉) |

x(v) ; (τ + τ) ; v〈a′〉
)

; Sburl′cK{ip′} = by SeqRestr

S[url′] := url′(ip′, q′) . Jνx :
(
(νr : x〈r〉 ; τ ; r(a) ; ip′〈a〉) |

x(v) ; (τ + τ) ; v〈a′〉 ; Sburl′c
)
K{ip′} = by Restr

S[url′] := url′(ip′, q′) . νx : J(νr : x〈r〉 ; τ ; r(a) ; ip′〈a〉) |

x(v) ; (τ + τ) ; v〈a′〉 ; Sburl′cK{ip′,x} = by SeqPar

S[url′] := url′(ip′, q′) . νx :
(
J(νr : x〈r〉 ; τ ; r(a) ; ip′〈a〉) |

x(v) ; (τ + τ) ; v〈a′〉K{ip′,x} . JSburl′cK∅
)

= by Call

S[url′] := url′(ip′, q′) . νx :
(
J(νr : x〈r〉 ; τ ; r(a) ; ip′〈a〉) |

x(v) ; (τ + τ) ; v〈a′〉K{ip′,x} . Sburl′c
)

= by Par

S[url′] := url′(ip′, q′) . νx : begin1〈x, ip′〉 . begin2〈x〉 .

end1() . end2() . Sburl′c

14 Victor Khomenko and Vasileios Germanos

Here begin1, begin2, end1, end2 are fresh public names, K1 and K2 are fresh
PIDs, and (K1 |K2) is added to the initial process.

K1 := begin1(x, ip′) . Jνr :x〈r〉 ; τ ; r(a) ; ip′〈a〉 ; end1〈〉 ;K1K{ip′,x} = by Restr

K1 := begin1(x, ip′) . νr : Jx〈r〉 ; τ ; r(a) ; ip′〈a〉 ; end1〈〉 ;K1K{ip′,x,r} = by SeqSend

K1 := begin1(x, ip′) . νr :x〈r〉 . Jτ ; r(a) ; ip′〈a〉 ; end1〈〉 ;K1K{ip′,r} = by SeqTau

K1 := begin1(x, ip′) . νr :x〈r〉 . τ . Jr(a) ; ip′〈a〉 ; end1〈〉 ;K1K{ip′,r} = by SeqRec

K1 := begin1(x, ip′) . νr :x〈r〉 . τ . r(a) . Jip′〈a〉 ; end1〈〉 ;K1K{ip′,a} = by SeqSend

K1 := begin1(x, ip′) . νr :x〈r〉 . τ . r(a) . ip′〈a〉 . Jend1〈〉 ;K1K∅ = by SeqSend

K1 := begin1(x, ip′) . νr :x〈r〉 . τ . r(a) . ip′〈a〉 . end1〈〉 . JK1K∅ = by Call

K1 := begin1(x, ip′) . νr :x〈r〉 . τ . r(a) . ip′〈a〉 . end1〈〉 .K1

K2 := begin2(x) . Jx(v) ; (τ + τ) ; v〈a′〉 ; end2〈〉 ;K2K{x} = by SeqRec

K2 := begin2(x) . x(v) . J(τ + τ) ; v〈a′〉 ; end2〈〉 ;K2K{v} = by SeqChoice

K2 := begin2(x) . x(v) . J(τ ;K3bvc + τ ;K3bvc)K{v} = by Choice

Here K3 is a fresh PID (not added to the initial process).

K2 := begin2(x) . x(v) . (Jτ ;K3bvcK{v} + Jτ ;K3bvcK{v}) = by SeqTau

K2 := begin2(x) . x(v) . (τ . JK3bvcK{v} + τ . JK3bvcK{v}) = by Call

K2 := begin2(x) . x(v) . (τ . K3bvc + τ . K3bvc)

K3[v] :=
q
v〈a′〉 ; end2〈〉 ;K2

y
{v} = by SeqSend

K3[v] := v〈a′〉 .
q
end2〈〉 ;K2

y
∅ = by SeqSend

K3[v] := v〈a′〉 . end2〈〉 . JK2K∅ = by Call

K3[v] := v〈a′〉 . end2〈〉 . K2

Finally, the resulting FCP is:

C[url, ip] := νq : url〈ip, q〉 . ip(a) . Cburl, ipc

S[url′] := url′(ip′, q′) . νx : begin1〈x, ip′〉 . begin2〈x〉 . end1() . end2() . Sburl′c

K1 := begin1(x, ip′) . νr : x〈r〉 . τ . r(a) . ip′〈a〉 . end1〈〉 . K1

K2 := begin2(x) . x(v) . (τ . K3bvc + τ . K3bvc)

Modelling and Analysis Mobile Systems Using π-calculus (EFCP) 15

K3[v] := v〈a′〉 . end2〈〉 . K2

νurl′′, ip′′ : (Sburl′′c |Cburl′′, ip′′c |K1 |K2)

4.4 Size of the translation

One can easily check that every translation rule except (SeqChoice) yields a
linear size result, and that (SeqChoice) yields at most quadratic result. This
quadratic blow-up happens when it is necessary to pass a large number of bound
names as parameters of a call, as shown in the following example.

K := a(x̃) ;

(
N∑
i=1

τ

)
; b〈x̃〉

K

The translated process is:

K := a(x̃).

(
N∑
i=1

τ.K1bx̃c

)
K1[x̃] := b〈x̃〉 . 0

K

If |x̃| = N then the size of the translated specification is quadratic, as N calls
with N parameters each are created.

Note that this quadratic blow-up in (SeqChoice) is isolated, and the sub-
sequent translation of these calls by the (Call) rule cannot create any further
blow-up, and so the overall size of the translated process is at most quadratic.
Furthermore, one needs a rather artificial process for this quadratic blow-up to
occur, and we conjecture that for practical EFCP models the translation will
usually be linear.

5 Case Study

In this section, the applicability of the proposed formalism and its translation
to safe FCP is demonstrated using SpiNNaker [9] as a case study.

5.1 SpiNNaker architecture

SpiNNaker is a massively parallel architecture designed to model large-scale spik-
ing neural networks in real-time [10]. Its design is based around ad-hoc multi-core
System-on-Chips, which are interconnected using a two-dimensional toroidal tri-
angular mesh [10,11]. Neurons are modelled in software and their spikes generate
packets that propagate through the on- and inter-chip communication fabric re-
lying on custom-made on-chip multicast routers [12,13]. The aim of SpiNNaker

16 Victor Khomenko and Vasileios Germanos

Fig. 1. The SpiNNaker architecture [17].

project is to simulate a billion spiking neurons in real time [14–16]. The SpiN-
Naker architecture is illustrated in Figure 1.

Every node of the network consists of a SpiNNaker Chip multiprocessor
(CMP), which constitutes the basis of the system [18, 19]. It comprises 20 pro-
cessing cores and SDRAM memory. For the cores, synchronous ARM9 processors
were used because of their high power efficiency [14]. One of the processors is
called monitor processor and its role is to perform system management tasks
and to allow the user to track the on-chip activity. The other processors run
independent event-driven neural processes and each of them simulates a group
of neurons. Each processor core models up to around one thousand individual
neurons.

The communication network-on-chip (NoC) provides an on- and off- chip
packet switching infrastructure [20], see Figure 2. Its main task is to carry neural-
event packets between the processors that can be located on the same or different
chips. Also, it transports system configurations and monitoring information [18,
20]. The receiver of the data must be able to manage how long the sender keeps
the data stable in order to complete a Delay-Insensitive communication. This is
achieved by handshaking. The receiver uses an acknowledgement to show that
data has been accepted. The acknowledgement follows a return-to-zero protocol
[18,20].

Figure 3 illustrates a SpiNNaker system composed of 25 SpiNNaker chips
at a high level of abstraction. They are linked with each other by channels
(e.g., c1, c2, . . .). According to the routing protocol [20] of SpiNNaker’s system,
every chip can generate and propagate a datum. Every chip is connected to six
other chips by bidirectional links as shown in Figure 3. This structure forms a

Modelling and Analysis Mobile Systems Using π-calculus (EFCP) 17

Fig. 2. The SpiNNaker chip organisation [20].

Cartesian coordinate system. For instance, P0 can communicate only with P1,
P6, P5, P4, P24 and P20. Thus, the communication happens in the first and third
quadrant. Every chip has a pair of coordinates. These coordinates are needed
for the routing plan of the system. It is possible for some chips to be faulty or
congested. In such a case, an emergency routing plan is followed to bypass this
kind of issues [21, 22]. Thus, the redundancy of the SpiNNaker chips enhances
the fault tolerance of the system [23].

5.2 Modelling SpiNNaker Interconnection Network

The flow-control mechanism of the interconnection network (IN) of SpiNNaker is
as follows. When a packet arrives to an input port, one or more output ports are
selected, and the router tries to transmit the packet through them. If the packet
cannot be forwarded, the router will keep trying, and after a given period of
time it will also test the clockwise emergency route. It will try both the regular
and the emergency route. Finally, if a packet stays in the router for longer than
a given threshold (waiting time), the packet will be dropped to avoid deadlocks.
To avoid livelocks, packets have an age field in their header. When two ages pass
and the packet is still in the IN, it is considered outdated and dropped [10].

The following EFCP models a 5 × 5 SpiNNaker configuration. A healthy
processor, HP, can execute either of the following scenarios:

– It can generate a new message, m, and process it by calling an auxiliary
declaration MSEND.

18 Victor Khomenko and Vasileios Germanos

Fig. 3. SpiNNaker network topology [20].

– It can receive a message on any of its channels and process it using an
auxiliary declaration REC MSEND.

– It can become permanently faulty by calling an auxiliary declaration FP.

The definition of HP has six formal parameters corresponding to the six channels
connecting it to the neighbours, see Fig. 3. These parameters are named after
points of the compass, e.g. ‘n’ stands for ‘north’, ‘ne’ stands for ‘north-east’, etc.

HP [n, ne, e, s, sw,w] := νm : MSENDbm,n, ne, e, s, sw,wc +

REC MSENDbn, n, ne, e, s, sw,wc +

REC MSENDbne, n, ne, e, s, sw,wc +

REC MSENDbe, n, ne, e, s, sw,wc +

REC MSENDbs, n, ne, e, s, sw,wc +

REC MSENDbsw, n, ne, e, s, sw,wc +

REC MSENDbw, n, ne, e, s, sw,wc +

FP bn, ne, e, s, sw,wc

The auxiliary declarations are as follows:

Modelling and Analysis Mobile Systems Using π-calculus (EFCP) 19

MSEND [m,n, ne, e, s, sw,w] sends message m on 0 or more of the channels and
becomes HP [n, ne, e, s, sw,w]. In particular, the message can be consumed,
forwarded or multicast. Clockwise emergency routes are used in case of neg-
ative acknowledgement nack.

MSEND[m,n, ne, e, s, sw,w] :=

(
(
τ + n〈m〉 ; n(a) ;

(
[a = ack] ; τ + [a = nack] ; ne〈m〉 ; ne(a)

))
|(

τ + ne〈m〉 ; ne(a) ;
(
[a = ack] ; τ + [a = nack] ; e〈m〉 ; e(a)

))
|(

τ + e〈m〉 ; e(a) ;
(
[a = ack] ; τ + [a = nack] ; s〈m〉 ; s(a)

))
|(

τ + s〈m〉 ; s(a) ;
(
[a = ack] ; τ + [a = nack] ; sw〈m〉 ; sw(a)

))
|(

τ + sw〈m〉 ; sw(a) ;
(
[a = ack] ; τ + [a = nack] ; w〈m〉 ; w(a)

))
|(

τ + w〈m〉 ; w(a) ;
(
[a = ack] ; τ + [a = nack] ; n〈m〉 ; n(a)

))
)

;HP bn, ne, e, s, sw,wc

REC MSEND [c, n, ne, e, s, sw,w] receives a message on channel c and either
negatively acknowledges (nack) it to simulate congestion or positively ac-
knowledges (ack) it and then consumes, forwards or multicasts it by calling
MSEND.

REC MSEND[c, n, ne, e, s, sw,w] := c(m) ; (

c〈nack〉 ;HP bn, ne, e, s, sw,wc+ c〈ack〉 ;MSENDbm,n, ne, e, s, sw,wc

)

FP [n, ne, e, s, sw,w] models a faulty process that does not send any messages
and negatively acknowledges (nack) all the received messages.

FP [n, ne, e, s, sw,w] := (

n(m) ; n〈nack〉+ ne(m) ; ne〈nack〉+ e(m) ; e〈nack〉+

s(m) ; s〈nack〉+ sw(m) ; sw〈nack〉+ w(m) ; w〈nack〉

) ; FP bn, ne, e, s, sw,wc

The initial term creates 25 concurrent instances of HP,
∏25

i=1HP b. . .c, and
connects them by channels as shown in Figure 3:

HP bc22, c23, c29, c35, c34, c28c | HP bc9, c10, c16, c22, c21, c15c |

20 Victor Khomenko and Vasileios Germanos

HP bc59, c73, c3, c9, c8, c2c | HP bc48, c49, c55, c59, c72, c54c |

HP bc35, c36, c42, c48, c47, c41c | HP bc24, c25, c30, c37, c36, c29c |

HP bc11, c12, c17, c24, c23, c16c | HP bc60, c74, c4, c11, c10, c3c |

HP bc50, c51, c56, c60, c73, c55c | HP bc37, c38, c43, c50, c49, c42c |

HP bc26, c68, c64, c39, c38, c30c | HP bc13, c67, c63, c26, c25, c17c |

HP bc61, c75, c62, c13, c12, c4c | HP bc52, c70, c66, c61, c74, c56c |

HP bc39, c69, c65, c52, c51, c43c | HP bc18, c19, c27, c31, c69, c64c |

HP bc5, c6, c14, c18, c68, c63c | HP bc57, c71, c1, c5, c67, c62c |

HP bc44, c45, c53, c57, c75, c66c | HP bc31, c32, c40, c44, c70, c65c |

HP bc20, c21, c28, c33, c32, c27c | HP bc7, c8, c15, c20, c19, c14c |

HP bc58, c72, c2, c7, c6, c1c | HP bc46, c47, c54, c58, c71, c53c |

HP bc33, c34, c41, c46, c45, c40c

The above specification is an EFCP and below its translation to FCP is given.
It has been obtained with the help of the developed tool Efcp2Fcp. First of all,
this EFCP must be translated to a safe EFCP. This is done automatically by
the tool by replicating the process declarations,HP ,MSEND,REC MSEND,
and FP , so that each of the 25 threads has its own copies of these declarations:
HP i, MSENDi, REC MSENDi, FP i, i = 1 . . . 25. Also, the tool enforces
the (NOCLASH) assumptions by renaming the formal parameters and bound
names. However, below we disregard this renaming for the sake of clarity.

The translation of HP and REC MSEND is straightforward as they do not
use any special features of EFCP:

HP i[n, ne, e, s, sw,w] := νm : MSENDibm,n, ne, e, s, sw,wc +

REC MSENDibn, n, ne, e, s, sw,wc +

REC MSENDibne, n, ne, e, s, sw,wc +

REC MSENDibe, n, ne, e, s, sw,wc +

REC MSENDibs, n, ne, e, s, sw,wc +

REC MSENDibsw, n, ne, e, s, sw,wc +

REC MSENDibw, n, ne, e, s, sw,wc +

FP ibn, ne, e, s, sw,wc

Modelling and Analysis Mobile Systems Using π-calculus (EFCP) 21

REC MSENDi[c, n, ne, e, s, sw,w] := c(m) . (

c〈nack〉 . HP ibn, ne, e, s, sw,wc+ c〈ack〉 . MSENDibm,n, ne, e, s, sw,wc

)

The translation of FP can be obtained by applying the (SeqChoice) rule:

FP i[n, ne, e, s, sw,w] :=

n(m).n〈nack〉.KFP ibn, ne, e, s, sw,wc+ ne(m).ne〈nack〉.KFP ibn, ne, e, s, sw,wc+

e(m).e〈nack〉.KFP ibn, ne, e, s, sw,wc+ s(m).s〈nack〉.KFP ibn, ne, e, s, sw,wc+

sw(m).sw〈nack〉.KFP ibn, ne, e, s, sw,wc+ w(m).w〈nack〉.KFP ibn, ne, e, s, sw,wc

KFP i [n, ne, e, s, sw,w] := FP ibn, ne, e, s, sw,wc

Here KFP i is a fresh PID.
The translation of MSEND is the most interesting one as it contains some

local concurrency that is not allowed in FCPs (below Ki
j , L

i
j and M i

j are fresh

PIDs and beginij and endij are fresh public names):

MSENDi[m,n, ne, e, s, sw,w] :=

begini1〈m,n, ne〉.begini2〈m,ne, e〉.begini3〈m, e, s〉.

begini4〈m, s, sw〉.begini5〈m, sw,w〉.begini6〈m,w, n〉.

endi1().endi2().endi3().endi4().endi5().endi6().HP ibn, ne, e, s, sw,wc

Ki
1 := begini1(m,n, ne).

(
τ.Li

1 + n〈m〉.n(a).([a = ack].τ.M i
1 + [a = nack].ne〈m〉.ne(a).M i

1))
Li
1 := endi1〈〉 . Ki

1

M i
1 := Li

1

Ki
2 := begini2(m,ne, e).

(
τ.Li

2 + ne〈m〉.ne(a).([a = ack].τ.M i
2 + [a = nack].e〈m〉.e(a).M i

2))
Li
2 := endi2〈〉 . Ki

2

M i
2 := Li

2

Ki
3 := begini3(m, e, s).

(

22 Victor Khomenko and Vasileios Germanos

τ.Li
3 + e〈m〉.e(a).([a = ack].τ.M i

3 + [a = nack].s〈m〉.s(a).M i
3))

Li
3 := endi3〈〉 . Ki

3

M i
3 := Li

3

Ki
4 := begini4(m, s, sw).

(
τ.Li

4 + s〈m〉.s(a).([a = ack].τ.M i
4 + [a = nack].sw〈m〉.sw(a).M i

4))
Li
4 := endi4〈〉 . Ki

4

M i
4 := Li

4

Ki
5 := begini5(m, sw,w).

(
τ.Li

5 + sw〈m〉.sw(a).([a = ack].τ.M i
5 + [a = nack].w〈m〉.w(a).M i

5))
Li
5 := endi5〈〉 . Ki

5

M i
5 := Li

5

Ki
6 := begini6(m,w, n).

(
τ.Li

6 + w〈m〉.w(a).([a = ack].τ.M i
6 + [a = nack].n〈m〉.n(a).M i

6))
Li
6 := endi6〈〉 . Ki

6

M i
6 := Li

6

The initial process is now as follows:

25∏
i=1

HP ib. . .c |
25∏
i=1

6∏
j=1

Ki
j

5.3 Formal verification

As outlined in the introduction, formal verification is an important motivation
of this paper. It was performed as follows. First, the EFCP model of the 2x2
SpiNNaker network was automatically translated into an FCP model by the
Efcp2Fcp tool. Then the resulting FCP was then translated into a safe low-
level Petri net using the fcp2pn tool [5]. Some small adaptations had to be done
for the latter: fcp2pn requires choices to be guarded, i.e. each summand must

Modelling and Analysis Mobile Systems Using π-calculus (EFCP) 23

start with a prefix, match or mismatch. This was achieved by inlining the calls
to REC MSENDi and prefixing the first and last summands in the body of
HP i with τ . We also inlined the calls to Li

j and M i
j as an optimisation – the

same effect could have been achieved automatically during the translation if rule
(SeqChoice) were avoiding the creation of a new PID whenever the size of P does
not exceed some pre-defined constant. The translation runtimes were negligible
(<2sec) in both cases, and the resulting Petri net contained 14844 places, 38864
transitions and 292336 arcs.

Then deadlock checking was performed with the LoLA tool,2 configured
to assume safeness of the Petri net (CAPACITY 1), use the stubborn sets and
symmetry reductions (STUBBORN, SYMMETRY), compress states using P-invariants
(PREDUCTION), use a light-weight data structure for states (SMALLSTATE), and
check for deadlocks (DEADLOCK).

The verification runtime was 3223sec, and LoLA reported that the model
had a deadlock. In hindsight, this is quite obvious, as the model allows all the
processors to become faulty, after which they stop generating new messages and
the system quickly reaches a deadlock state.

6 Conclusion

The initial motivation of this research was the development of a formalism allow-
ing for convenient modelling and formal verification of Reference Passing Sys-
tems. To that end, a new fragment of π-calculus, the Extended Finite Control
Processes, is presented in this paper. EFCPs is an extension of the well-known
fragment of π-calculus, the Finite Control Processes. FCPs were used for formal
modelling of reference passing systems; however, they cannot express scenarios
involving ‘local’ concurrency inside a process. EFCPs remove this limitation.
As a result, practical modelling of mobile systems becomes more convenient,
e.g. multicast can be naturally expressed. To this end, also a more powerful se-
quential composition operator ‘ ; ’ is used instead of prefixing. The SpiNNaker
case study demonstrates that EFCPs allow for a concise expression of multicast
communication, and is suitable for practical modelling. Furthermore, an almost
linear translation from safe EFCP to safe FCP has been developed, which forms
the basis of formal verification of RPSs.

In our future work we intend to investigate the relationship between the tran-
sition systems generated by EFCPs and those generated by the corresponding
FCPs, with the view to prove the correctness of the proposed translation. We
would also like to evaluate the scalability of the proposed approach on a range of
models and optimise the translation, e.g. by reducing the number of generated
defining equations and by lifting it to non-safe processes.

2 Available from http://service-technology.org/tools/lola.

24 Victor Khomenko and Vasileios Germanos

References

1. Kwiatkowska, M.Z., Rodden, T., (Editors), V.S.: From computers to ubiquitous
computing by 2020. In: Proc. of Philosophical Transactions of the Royal Society.
Volume 366. (2008)

2. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part I. Inf.
Comp. 100 (1992) 1–40

3. Cardelli, L., Gordon, A.: Mobile ambients. In Nivat, M., ed.: Foundations of
Software Science and Computation Structures. Volume 1378 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg (1998) 140–155

4. Dam, M.: Model checking mobile processes. Inf. Comp. 129 (1996) 35–51

5. Meyer, R., Khomenko, V., Hüchting, R.: A polynomial translation of π-calculus
(FCP) to safe Petri nets. Logical Methods in Computer Science 9 (2013) 1–36

6. Milner, R.: Communicating and Mobile Systems: the π-Calculus. CUP (1999)

7. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. CUP
(2001)

8. Meyer, R., Khomenko, V., Strazny, T.: A practical approach to verification of
mobile systems using net unfoldings. Fundam. Inf. 94 (2009) 439–471

9. Furber, S., Temple, S.: Neural systems engineering. In Fulcher, J., Jain, L., eds.:
Computational Intelligence: A Compendium. Volume 115 of Studies in Computa-
tional Intelligence. Springer Berlin Heidelberg (2008) 763–796

10. Navaridas, J., Luján, M., Miguel-Alonso, J., A.Plana, L., Furber, S.: Understanding
the interconnection network of SpiNNaker. In: Proceedings of the 23rd Interna-
tional Conference on Supercomputing. ICS ’09, ACM (2009) 286–295

11. Camara, J., Moreto, M., Vallejo, E., Beivide, R., Miguel-Alonso, J., Martinez, C.,
J.Navaridas: Mixed-radix twisted torus interconnection networks. In: Parallel and
Distributed Processing Symposium IPDPS, IEEE (2007) 1–10

12. Plana, L., Bainbridge, J., Furber, S., Salisbury, S., Yebin, S., Jian, W.: An on-
chip and inter-chip communications network for the SpiNNaker massively-parallel
neural net simulator. In: Networks-on-Chip, 2008. NoCS 2008. Second ACM IEEE
International Symposium on, IEEE Computer Society (2008) 215–216

13. Furber, S., Temple, S., Brown, A.: On-chip and inter-chip networks for modeling
large-scale neural systems. In: Circuits and Systems. ISCAS Proceedings, IEEE
(2006) 21–24

14. Rast, A., Yang, S., Khan, M., Furber, S.: Virtual synaptic interconnect using an
asynchronous network-on-chip. In: Proceedings of Intelligence Joint Conference on
Neural Networks (IJCNN2008), IEEE (2008) 2727–2734

15. Jin, X., Furber, S., Woods, J.: Efficient modelling of spiking neural networks on
a scalable chip multiprocessor. In: Neural Networks, IJCNN World Congress on
Computational Intelligence, IEEE (2008) 2812–2819

16. Asanovic, K., Beck, J., Feldman, J., Morgan, N., Wawrzynek, J.: A supercomputer
for neural computation. In: Neural Networks, World Congress on Computational
Intelligence. Volume 1., IEEE (1994) 5–9

17. Furber, S., Brown, A.: Biologically inspired massively parallel architectures com-
puting beyond a million processors. In: Application of Concurrency to System
Design, 2009. ACSD’09, IEEE (2009) 3–12

18. Plana, L., Furber, S., Temple, S., Khan, M., Shi, Y., Wu, J., Yang, S.: A GALS
infrastructure for a massively parallel multiprocessor. Design Test of Computers,
IEEE 24 (2007) 454–463

Modelling and Analysis Mobile Systems Using π-calculus (EFCP) 25

19. Farber, P., Asanovic, K.: Parallel neural network training on multi-spert. In:
Algorithms and Architectures for Parallel Processing, ICAPP, 3rd International
Conference on, IEEE (1997) 659–666

20. Wu, J., Furber, S.: A multicast routing scheme for a universal spiking neural
network architecture. Comput. J. 53 (2010) 280–288

21. Puente, V., Gregorio, J.: Immucube: scalable fault-tolerant routing for k-ary n-
cube networks. Parallel and Distributed Systems, IEEE Transactions on 18 (2007)
776–788

22. Puente, V., Izu, C., Beivide, R., Gregorio, J.A., Vallejo, F., M.Prellezo, J.: The
adaptive bubble router. J. Parallel Distrib. Comput. 61 (2001) 1180–1208

23. Gomez, M., Nordbotten, N., Flich, J., Lopez, P., Robles, A., Duato, J., Skeie, T.,
Lysne, O.: A routing methodology for achieving fault tolerance in direct networks.
Computers, IEEE Transactions on 55 (2006) 400–415

