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Abstract 

It has previously been shown that cyclists are unable to maintain a constant power output during 

cycle time-trials on hilly courses.  The purpose of the present study is therefore to quantify 

these effects of power variation using a mathematical model of cycling performance.  A 

hypothetical cyclist (body mass: 70 kg, bicycle mass: 10 kg) was studied using a mathematical 

model of cycling, which included the effects of acceleration.  Performance was modelled over 

three hypothetical 40-km courses, comprising repeated 2.5-km sections of uphill and downhill 

with gradients of 1, 3, & 6% respectively.  Amplitude (5-15%) and distance (0.31-20.00 km) 

of variation were modeled over a range of mean power outputs (200-600 W) and compared to 

sustaining a constant power. Power variation was typically detrimental to performance; these 

effects were augmented as the amplitude of variation and severity of gradient increased.  

Varying power every 1.25 km was most detrimental to performance; at a mean power of 200 

W, performance was impaired by 43.90 s (± 15% variation, 6% gradient).  However at the 

steepest gradients, the effect of power variation was relatively independent of the distance of 

variation. In contrast, varying power in parallel with changes in gradient improved performance 

by 188.89 s (± 15% variation, 6% gradient) at 200 W.  The present data demonstrate that during 

hilly time-trials, power variation that does not occur in parallel with changes in gradient is 

detrimental to performance, especially at steeper gradients.  These adverse effects are 

substantially larger than those previously observed during flat, windless time-trials.   

 

 

Keywords: Pacing, cycling, hilly, mathematical model, modelling.  
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Introduction 

Mathematical modelling of cycling performance has demonstrated that varying external 

power output during a flat, windless, 40-km time-trial can be detrimental to performance 

(Atkinson, Peacock, & Passfield, 2007; Swain, 1997; Wells, Atkinson, & Marwood, 2013). In 

contrast, varying power output in parallel with changes in gradient can improve time-trial 

performance (Atkinson, Peacock, & Passfield, 2007; Boswell, 2012; Swain, 1997).  The 

greatest improvements to performance time occur when the magnitude of power and gradient 

variation is maximised (Atkinson, Peacock, & Passfield, 2007; Boswell, 2012; Swain, 1997). 

 

The studies of Swain (1997), Atkinson, Peacock, and Passfield (2007) and Boswell (2012) 

demonstrated that the performance benefits due to adopting a variable pacing strategy were 

based upon the increases and decreases in power output being maintained for the complete 

duration of the uphill and downhill, respectively. However, cyclists appear to have difficulty 

maintaining such pacing strategies due to both mechanical and / or skill limitations   (Cangley, 

Passfield, Carter, & Bailey, 2011) and being physiologically unable to sustain the required 

power output (Atkinson, Peacock, & Passfield, 2007). Consequently it is important to evaluate 

the potentially detrimental effects on time-trial performance when power is varied more 

frequently than changes in course gradient dictate. 

 

The modelling approach adopted by Swain (1997) and Atkinson, Peacock, and Passfield 

(2007) assumed instantaneous changes in speed at the point of power variation, thereby not 

taking into account the lag between change in power and change in bicycle speed. Although 

this approach does not greatly influence simulated performance during longer time-trials with 

a low frequency of variation (Boswell, 2012), the difference between performances assuming 

instantaneous changes in speed and those accounting for acceleration widen as the frequency 



 4 

of variation increases and the time trial distance decreases (Boswell, 2012).  The assumption 

that changes in speed are instantaneous also appears to exaggerate the time saving associated 

with varying power in parallel with changes in course gradient (Atkinson, Peacock, & 

Passfield, 2007; Boswell, 2012; Swain, 1997). Therefore, when utilizing mathematical models 

of cycling performance to accurately quantify performance time when power is varied, it is 

important to account for the impact of acceleration. 

 

Therefore, the aim of the current study was to quantify the effects of variations in external 

power output during simulated hilly time-trials, when the distance of power variation does not 

match the changes in course gradient, while also accounting for the effects of acceleration. 

Methods 

A hypothetical rider (body mass 70 kg, bicycle mass 10 kg) was studied over 3 separate 

undulating 40-km courses comprising 8 hills starting with 2.5 km of uphill and followed by 2.5 

km downhill, with course gradients of 1%, 3%, and 6%, resulting in no net elevation change.  

A range of mean power outputs 200-600 W (in 100 W increments) were considered and power 

output was systematically varied by ± 5%, ± 10%, ± 15% from this mean baseline; a “fast start” 

strategy was employed whereby each trial started with power output greater than the trial mean. 

For each combination of power output and gradient, there was a frequency of variation in power 

output of 2, 4, 8, 16, 32, 64, and 128 per time-trial; distance of variation (in km) were thus 

calculated as event distance divided by the frequency of variation (20, 10, 5, 2.5, 1.25, 0.625, 

and 0.3125 km respectively).  A total of 3 (gradients) x 5 (mean power outputs) x 3 (amplitudes 

of variation) x 7 (distances of variation) were examined, therefore a total of 315 simulations 

were undertaken. The length of course, range of values for gradient, mean power output and 

distance of variation were based upon previous studies utilising the model of Martin, Milliken, 

Cobb, McFadden, and Coggan (1998) (Atkinson, Peacock, & Passfield, 2007; Wells et al., 
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2013) and to encompass the range of values that might reasonably be expected during a hilly 

cycle time-trial of a range of physical capabilities (Nimmerichter, Eston, Bachl, & Williams, 

2012; Padilla, Mujika, Orbananos, & Angulo, 2000; Vogt et al., 2008).  The frequency, and 

thus duration, of each hill was chosen to maximise the number of changes in gradient, whilst 

providing sufficient distance for the effects of power variation on changes in speed to be 

demonstrated.  The study was approved by an institutional research ethic committee. 

 

Model assumptions 

It was assumed that the time-trial would be completed in windless conditions with an air 

density of 1.2234 kg·m3, road surface would remain constant with a rolling coefficient of 

0.0032 a∙M-1∙g-1 (reflecting typical values for tyre construction, pressure, and smooth asphalt; 

Martin et al., 1998).  It was also assumed that the cyclist would maintain the same position 

throughout the time-trial, with a drag area (drag coefficient * frontal area (Martin et al., 1998) 

of 3,070 cm2, reflecting riding using the handlebar drops (Martin & Cobb, 2002).  Although it 

is acknowledged that it is likely this position would, in reality, change to a more aerodynamic 

‘tuck’ position on shallower gradients, the ‘drops’ position allows control of the bike to be 

maintained at all times while also allowing direct comparisons to be made across gradients 

without the need to account for differing rider positions.  Rider mass (70 kg) is similar to that 

reported for elite cyclists, 68.8 kg (Padilla et al., 2000) and 69.6 kg (Vogt et al., 2008); bike 

mass was in line with other applications of the model of Martin et al (1998), (Atkinson, 

Peacock, & Passfield, 2007; Jeukendrup & Martin, 2001; Wells et al., 2013).    

 

Power output was defined as the external power output at the crank.  Power is the rate of 

doing work; external work was defined as torque *  (where torque is equal to force * crank 

length (Nm) and is the displacement of the crank in radians).  Therefore power output was 
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defined as external work divided by Δ time (seconds) taken to displace the crank (Broker & 

Gregor, 1994; Winter, 1990). Performance was defined as the time required to complete the 

time-trial (Tucker et al., 2007). 

 

Cycling speed was calculated using a previously validated equation of motion (Martin et al., 

1998) and forward integration (2 Hz) was used to account for the effects of acceleration 

(Martin, Gardner, Barras, & Martin, 2006).  The model validated by Martin et al. (1998) 

expresses power output as a function of the mechanical influences normally experienced during 

cycling i.e. air resistance, rolling resistance, wheel bearing resistance, kinetic and potential 

energy. A given speed is therefore associated with an exact power output in the steady state.  

Martin et al. (2006) validated the modelling of acceleration components during cycle 

performance using forward integration; this process requires initial conditions of both power 

output (P1) and speed (S1) for data point 1. The power required to maintain S1 in the steady 

state (Pss) is then calculated using the equation given by Martin et al. (1998).  Acceleration (a, 

in either direction) occurs when Pss ≠ P1: a = (P1 – Pss) / (mass * S1).  Speed at the next time 

point (S2) is then a function of the initial speed, acceleration and the sampling frequency (f); 

S2 = S1 + a/f.  From point 2 forward, speed is predicted using power data only.  The above 

equation of motion (Martin et al., 2006; Martin et al., 1998) was applied using customised 

software written to match the pacing strategies described above (Matlab, 2009a, Mathworks, 

U.S.A). Each trial assumed a starting speed of 1 m·s-1 and all trials started with the higher 

power of the imposed pacing strategy (“fast start”).  In time-trial 1, the baseline power (200-

600 W) was used to define the imposed constant power strategy.  The baseline power from 

time-trial 1 was multiplied by the amplitude of variation (± 5%, ± 10%, ± 15%) to identify the 

peak to peak amplitude of power variation, which was maintained for the variation distance.  

These data formed the variable pacing strategy and were used to define the variable power 
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strategy, time-trial 2.  Time-trial 3 was defined as a constant power output trial with a mean 

power output equivalent to that of time-trial 2; a slight difference in mean power exists between 

time-trial 1 and time-trial 2 because the harmonic mean is different to the arithmetic mean. The 

use of a harmonic mean is appropriate when the average rate (i.e power output) is required, 

determining a distance based mean rather than a time based mean.  For example, cycling at 40 

km·h-1 for 20 km and 20 km at 35 km·h-1 gives an average speed of 37.333 km·h-1 rather than 

37.5 km·h-1 which is the arithmetic mean.  The effect of the power variations was then 

determined as the difference in the time to complete time-trial 2 vs. time-trial 3. 

 

Results 

Distance of variation ≤ 1.25 km 

When power was varied with a distance of variation of ≤ 1.25 km (i.e. more rapidly, and thus 

not in parallel, with changes in gradient), time trial performance was typically impaired as 

compared to a constant power. These detrimental effects of power variation were augmented 

as course gradient and / or amplitude of variation increased, but were mitigated by increasing 

baseline power or reducing the distance of variation (figure 1).  Performance was most 

adversely affected by a distance of variation of 1.25 km.  However, at the steepest gradient 

(6%), performance impairment was similar for a given power output regardless of the distance 

of variation.  At this gradient, performance impairment due to power variation was up to 43.90 

s, (200 W, 15% amplitude of variation).  
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2.5 km distance of variation  

Performance was improved for all strategies that maintained an increase in external power 

for the entire 2.5 km uphill sections of the course, i.e. power being varied in parallel with 

changes in gradient. Increasing the gradient, amplitude of variation, and reducing baseline 

power augmented this effect (figure 2).   For example, with a baseline power of 200 W and 5% 

amplitude of variation, performance was improved by 16.36 and 78.42 s for a 1% and 6% 

gradient respectively.  Moreover, increasing the amplitude of variation to 15% led to 

performance being improved by 43.38 and 188.89 s respectively.  

 

Distance of variation ≥ 5 km 

When power was varied with a distance of variation of ≥ 5 km (i.e. not in parallel, with 

changes in gradient), time trial performance was typically impaired as compared to a constant 

power (figure 3).  When the amplitude of variation was 5%, the detrimental effects on 

performance were small (≤ 6.92 s) (figure 3).  However, increasing the amplitude of variation 

and / or increasing course gradient increased the magnitude of performance impairment by up 

to 27.20 s at 200 W (figure 3, panel c), though these effects were mitigated by higher power 

outputs.  For a given mean power output and amplitude of variation, increasing the distance of 

variation above 5 km had little additional effect (0.45-3.45 s) on performance.  Taken together 

therefore, the adverse effects of power variation on hilly time-trial performance were smaller 

when the distance of variation was ≥ 5 km (i.e. greater than the length of each hill) as compared 

to ≤ 1.25 km (i.e. less than the length of each hill).  

 

Discussion 

The purpose of the present study was to quantify, by use of a mathematical model of cycling 

performance, the effect of power variation during a hilly time-trial.  The design of the current 
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study allowed the effects of frequent, controlled, systematic changes in power output to be 

examined while travelling uphill and downhill, taking into account the effect of acceleration. 

Previous studies have assessed the impact of power variation on cycling performance when 

power was varied in parallel with changes in gradient (Atkinson, Peacock, & Passfield, 2007; 

Boswell, 2012; Swain, 1997). However, Cangley et al. (2011) showed that a prescribed pacing 

strategy was difficult for cyclists to maintain, with variable and constant power strategies 

characterised by oscillations around prescribed power outputs.  By considering distances of 

variation both shorter and longer than the length of each hill, the present study therefore extends 

and improves upon previous studies (Atkinson, Peacock, & Passfield, 2007; Swain, 1997; 

Wells et al., 2013) by quantifying the effect of power variation upon cycling performance 

during hilly cycling time trials.  

 

With the exception of pacing strategies with a 2.5 km distance of variation, varying power 

output during a hilly time-trial was typically detrimental to performance when compared to 

maintaining a constant power. The few exceptions to this rule were restricted to the lowest 

amplitude of variation and either the lowest distance of variation (1% gradient) or for distance 

of variations ≥ 5 km (6% gradient). These effects are likely to be an artifact of the “fast start” 

assumed in the present study which minimizes the time taken to overcome the inertia of the 

bike and rider from the initial starting speed.  A “fast start” strategy mirrors the self-selected 

strategy during flat time-trials (Atkinson & Brunskill, 2000; Thomas, Stone, Thompson, 

Gibson, & Ansley, 2012) and has previously been shown to minimise the effects of power 

variation on simulated cycle time-trial performance, at least during flat, windless time-trials 

(Wells et al., 2013).  These exceptions aside, the present data are qualitatively similar to the 

previously reported effect of varying power output on flat, windless time-trial courses 

(Atkinson, Peacock, & Passfield, 2007; Swain, 1997; Wells et al., 2013). However, in our 
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previous study investigating the effects of power variation during flat, windless cycle time-

trials, when power was varied every 1.25 km during a 40-km time-trial, performance was 

impaired by 7.97 s at 200 W with 15% amplitude of variation.  Comparison of these same 

criteria during a hilly time-trial show that performance was impaired by 10.76 s and 43.90 s at 

1% and 6% gradient respectively.  The adverse effect of power variation on cycle time-trial 

performance is therefore quantitatively much more important during steep, hilly time-trials 

than in flat, windless conditions.  The present data therefore demonstrate that for time-trials 

that include frequent and severe changes in gradient, competitive cyclists should be encouraged 

to minimise the frequency and amplitude of power variation, especially on uphill sections, as 

the adverse effects of power variation are much greater than for flat, windless time-trials.  

 

In the present study, at the most severe gradients the greatest detrimental effect of power 

variation on performance was when the distance of variation was 1.25 km (figures 1 & 3).  This 

is in contrast to previous simulations of flat, windless courses where progressively increasing 

the distance of variation was shown to augment the detrimental effect on performance (Wells 

et al., 2013).  These effects are however both likely due to the pacing profiled resulting in the 

poorest adherence to a constant speed.  Hence in the present study, a distance of variation of 

1.25 km results in a complete cycle of power variation above and below the baseline power 

being undertaken between the top and bottom of each hill.  This provides sufficient distance to 

approach the steady state speed associated with the power output during each variation, thus 

resulting in poorest adherence to a constant speed.   

 

Since the combination of a single variation in power while riding uphill (when also 

combined with a single variation on the downhill) was most detrimental to performance, it 

could therefore be argued that the typically rapid alterations in power output that cyclists carry 
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out (Cangley et al., 2011; Jobson, Passfield, Atkinson, Barton, & Scarf, 2009) mean that power 

variation are of little consequence to hilly time-trial performance.  However, underlying these 

rapid power variations, or “noise”, regular variations in power output remain (Tucker et al., 

2006). Furthermore at the most severe gradient in the present study, the detrimental effects of 

power variation on performance were relatively independent of the distance and thus frequency 

of variation.  This demonstrates that even rapid variations in power output result in a 

considerable impairment to performance (up to 43.90 s in the present simulation) during hilly 

time-trials with more severe gradients.    

 

In agreement with previous research (Atkinson, Peacock, & Passfield, 2007; Cangley et al., 

2011; Swain, 1997), the present data also demonstrate that on a hilly time-trial course, it is 

beneficial for a cyclist to vary power output in parallel with changes in gradient (2.5 km 

distance of variation). These improvements in performance were augmented with increases in 

the amplitude of variation and severity of gradient (figure 2), but mitigated by higher power 

outputs.  However, in the field such pacing strategies are likely to result in additional 

physiological stress being placed upon a cyclist who is already working at or close to their 

sustainable limit.   The effect of power variation on indicators of fatigue such as ratings of 

perceived exertion (RPE), lactate, and maximal voluntary contraction has, though, proved 

equivocal. There is a similarity in the physiological responses to constant exercise (~75% 2VO

max) when the power variation is modest (≤± 15%) (Lepers, Theurel, Hausswirth, & Bernard, 

2008; Liedl, Swain, & Branch, 1999). However, brief periods of large variation (≥±  30%) 

when combined with brief recovery periods (≤ 60 s) augment the physiological response to 

variable intensity exercise when compared to constant intensity exercise (Theurel & Lepers, 

2008; Thomas et al., 2012).  These increased physiological perturbations can however be 

mitigated by increasing the recovery periods (~2 minutes) (Brickley et al., 2007). 
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However, the regular periods of variation adopted by some of these previous studies are not 

representative of hilly cycle time-trials where more time is spent ascending than descending.  

Consequently, Atkinson, Peacock, and Law (2007) have shown that cyclists were not always 

able to maintain an imposed variable power strategy designed to enhance hilly cycle time-trial 

performance, when power was varied by 5% relative to the mean power recorded during a self-

paced flat time-trial.  The participants recruited by Atkinson, Peacock, and Law (2007) were 

trained cyclists exercising at a mean power output that approximates critical power in this 

population (Black, Durant, Jones, & Vanhatalo, 2013; Burnley, Doust, & Vanhatalo, 2006).  It 

is therefore likely that the participants recruited by Atkinson, Peacock, and Law (2007) were 

exercising above critical power during the uphill sections, with the inability to maintain the 

required pacing strategy indicating that they exhausted their W’ (the volume of work available 

above critical power) at some point on an uphill section.  In such cases, a cyclist may be advised 

to reduce their power output to the highest constant power that they can maintain for the 

remainder of the uphill.  Indeed, Atkinson, Peacock, and Law (2007) showed that even when 

it is not possible to maintain an increase in power output when travelling uphill, performance 

will be improved so long as the pacing strategy had been maintained for at least half of the 

event distance.  Further research is warranted to determine the physiological limits of variable 

power pacing strategies during hilly cycle time-trials. 
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Conclusion 

The present data demonstrate that varying power during hilly time-trials is detrimental to 

performance unless power is varied in parallel with the change in gradient, in which case 

performance is improved. Performance was most adversely affected when the distance of 

power variation was half that of the hill length (1.25 km).  However, at the most severe gradient 

examined in the present study (6%), the effect of power variation was relatively independent 

of the distance (and thus frequency) of power variation.  Therefore at severe gradients, even 

frequent variations in power output are severely detrimental to performance compared to 

maintaining a constant power output.   These effects on performance are markedly greater than 

previously demonstrated during flat, windless time-trials.  
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Figure 3A 



 21 

 

Figure 3B 
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Figure 3C 
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Figure captions 

 

Figure 1 (A, B, C) 

Increase in completion time (s) for a 40-km time-trial using variable-power pacing strategies.  

Distance of variation < 1.25 km, gradient 1% (A), 3% (B), 6% (C), amplitude of variation 5% (A), 

10% (B), 15% (C).  

 

Figure 2 

Decrease in completion time (s) for a 40-km time-trial using variable-power pacing strategies 

for the entire uphill / downhill, 2.5 km distance of variation. 

 

Figure 3 (A, B, C) 

Increase in completion time (s) for a 40-km time-trial using variable-power pacing strategies. 

Distance of variation ≥ 5 km , although 1.25 km included to allow ease of comparison, gradient 

1% (A), 3% (B), 6% (C), amplitude of variation 5% (A), 10% (B), 15% (C). 

 

 

 


