
International Journal of Computer Information Systems and Industrial Management Applications.
www.mirlabs.net/ijcisim/index.html

Flat Splicing Array Grammar Systems Generating
Picture Arrays

G. Samdanielthompson1, N. Gnanamalar David1, Atulya K. Nagar2 and K.G. Subramanian2

1Department of Mathematics, Madras Christian College,
Tambaram, Chennai 600059 India

{samdanielthompson,ngdmcc}@gmail.com

2Department of Mathematics and Computer Science, Faculty of Science,
Liverpool Hope University, Liverpool, L16 9JD, UK

nagara@hope.ac.uk, kgsmani1948@yahoo.com

Abstract: While studying the recombinant behaviour of DNA
molecules, Head (1987) introduced a new operation, called
splicing on words or strings, which are finite sequences of sym-
bols. There has been intensive research using the concept of
splicing on strings in the context of DNA computing, establish-
ing important theoretical results on computational universality.
A particular class of splicing, known as flat splicing on strings
was recently considered and this operation was extended to pro-
vide picture array generating two-dimensional models. Making
use of the operation of flat splicing on arrays, we propose here
a grammar system, called flat splicing regular array grammar
system (FSRAGS), as a new model of picture generation. The
components of a FSRAGS generate picture arrays working in
parallel using the rules of a two-phase grammar called 2RLG
and with two different components of the FSRAGS communi-
cating using the array flat splicing operations on columns and
rows of the arrays. We establish some comparison results bring-
ing out the generative power of FSRAGS and also exhibit the
power of FSRAGS in generating certain “floor designs”.
Keywords: Flat splicing, Picture array, Picture language, Formal
languages, Grammars, Grammar systems

I. Introduction

In the quest for creating alternatives for the classical silicon-
based computing, the field of DNA computing [13, 14],
besides others, was born with Adleman solving a small
instance of Hamilton path problem [1] based on the use
of DNA molecules and operations on DNA sequences. In
the study of modelling the DNA recombination process
under the action of restriction enzymes and a ligase, Head
[8] abstracted this phenomenon in his seminal paper on
a formal model of the recombinant behaviour of DNA
molecules and defined the operation of splicing of words,
which are strings of symbols. This operation of splicing of
two words u = u1u2 and v = v1v2 involves “cutting” u,
between u1 and u2 and v, between v1 and v2, as dictated
by certain rules known as “splicing rules” and “pasting” the
prefix u1 of u with the suffix v2 of v yielding a new word
w = u1v2. Subsequently, this opened up several theoretical
investigations [6, 10, 11] giving rise to important and deep

language-theoretic results in the area of formal language
theory, which is widely accepted to be the backbone [5, 12]
of theoretical computer science.

Based on the fact that DNA occur in circular form,
Head [9, 10] introduced the operation of splicing on circular
words. Motivated by a specific form of splicing on circular
words, recently, a different form of splicing, called flat
splicing on words has been introduced in [2]. The operation
of flat splicing on a pair of words (α, β) involves “cutting”
α and “inserting” β into it, as directed by a rule, called flat
splicing rule.

Inspired by problems in image processing, several gen-
erative models of two-dimensional picture arrays based on
language theory, have been proposed and studied (see, for
example, [7, 15, 16, 21, 24]). Recently, the operation of flat
splicing on words has been extended to picture arrays [23]
and an array flat splicing system (AFS) has been defined to
describe picture array languages.

On the other hand, the notion of a grammar system
consisting of several grammars or other language identifying
mechanisms cooperating according to some well-defined
protocol, was introduced as a formal framework for mod-
elling distributed complex systems [3]. Based on different
motivations, a variety of grammar system models have been
proposed and intensively investigated. A different type of
grammar system, called Splicing Grammar System was
introduced in [4] with the component grammars working
in parallel and communication between components being
done by the bio-inspired operation of splicing on strings of
symbols introduced by Head [8]. This system was extended
to arrays in [22] by introducing splicing array grammar
system.

Here we make use of the array flat splicing operation
and introduce a grammar system called flat splicing regular
array grammar system (FSRAGS) and examine the power
of this system in generating picture array languages. The
components of the FSRAGS involve the rules of the two-

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hope's Institutional Research Archive

https://core.ac.uk/display/46601383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

phase grammar 2RLG [7, 19] working in parallel and the
array flat splicing operation [23] is used for communication
among two different components in terms of “insertion” of
an array generated in a component into an array generated
in a different component. We establish some comparison
results bringing out the power of (FSRAGS). We also
exhibit the use of (FSRAGS) in generating certain “floor
designs”. A preliminary version of this paper appears in
[18].

II. Preliminaries

For notions and results related to formal string languages
and array languages, we refer to [7, 17].

A linear word or simply, a word w = a1a2 · · · an is a
finite sequence of symbols ai, 1 ≤ i ≤ n, taken from a finite
alphabet Σ. The empty word with no symbols, is denoted
by λ. The set of all words over Σ is denoted by Σ∗. The
length |w| of a word w is the number of symbols in the word,
including repetitions of symbols. For example,the length of
the word abaab is 5. For any word w, we denote by tw the
word w written vertically. For example, if w = abbab over
{a, b}, then

tw =

a
b
b
a
b

.

A picture array or simply, an array M of size m× n over an
alphabet Σ is a rectangular array withm rows and n columns
and is of the form

M =

a11 · · · a1n
...

. . .
...

am1 · · · amn

where each symbol aij ∈ Σ, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
We denote by |M |r and |M |c, the number of rows and the
number of columns of M respectively. The set of all rectan-
gular arrays over Σ is denoted by Σ∗∗, which includes also
the empty array λ with no symbols. Σ++ = Σ∗∗ − {λ}.
A picture language is a subset of Σ∗∗. The column catena-
tion X ◦ Y of an array X of size p × q and an array Y of
r × s is defined only when p = r and likewise the row cate-
nation X � Y is defined only when q = s. In other words,
in column catenation X ◦ Y , Y is attached to the right of X
while in row catenation X � Y , Y is attached below X . Also
X ◦ λ = λ ◦X = X � λ = λ �X = X , for every array X .
For example, if

X =
a a b b

a b a b

b a b a

, Y =
a b b

a b a

b a b

, Z =
b b a

a a b

then

X◦Y =
a a b b a b b

a b a b a b a

b a b a b a b

, Y �Z =

a b b

a b a

b a b

b b a

a a b

,

An array grammar model of the non-isometric variety gen-
erating rectangular arrays of symbols is the two-dimensional
right-linear grammar (originally called 2D matrix grammar
[19]), which we call here as a two-dimensional right-linear
grammar, consistent with the terminology used in [7].

Definition 1 A two-dimensional right-linear grammar
(2RLG) [7, 19] is
G = (Vh, Vv, Vi, T, S,Rh, Rv) where Vh, Vv, Vi are finite
sets of symbols, respectively called as horizontal nonter-
minals, vertical nonterminals and intermediate symbols;
Vi ⊂ Vv; T is a finite set of terminals; S ∈ Vh is the start
symbol; Rh is a finite set of horizontal rules of the form
X → AY,X → A X,Y ∈ Vh, A ∈ Vi; Rv is a finite
set of vertical rules of the form X → aY or X → a,
X, Y ∈ Vi, a ∈ T ∪ λ.

There are two phases of derivation in a 2RLG. In the first
horizontal phase, starting with S the horizontal rules are
applied (as in a regular grammar) generating strings over
intermediates, which act as terminals of this phase. In the
second vertical phase each intermediate in such a string
serves as the start symbol for the second phase. The vertical
rules are applied in parallel in this phase for generating
the columns of the rectangular arrays over terminals. In
this phase at a derivation step, either all the rules applied
are of the form X → aY, a ∈ T or all the rules are
of the form X → Y or all the rules are the terminating
vertical rules of the form X → a, a ∈ T or all of the
form X → λ. When the vertical generation halts, the
array obtained over T, is collected in the picture language
generated by the 2RLG. Note that the picture language
generated by a 2RLG consists of rectangular arrays of
symbols. We denote by L(2RLG) the family of array lan-
guages generated by two-dimensional right-linear grammars.

We illustrate the working of 2RLG with an example.

Example 1 Consider the 2RLG GL with regular horizontal
rules S → AX,X → BX,X → B where A,B are the
intermediate symbols and the vertical rules A → aA,A →
a,B → bB,B → a where a, b are the terminal symbols. In
the first phase, as in a string grammar, the horizontal rules
generate words of the form ABn, n ≥ 1. For example, the
generation of AB3 is as given below:

S ⇒ AX ⇒ ABX ⇒ ABBX ⇒ ABBB = AB3

on applying the three horizontal rules one after another, with
the rule X → BX applied twice. In the second phase
every symbol in such a word ABn is rewritten in paral-
lel either by using the rules A → aA,B → bB in which
case the derivation can be likewise continued adding rows
of the form ab · · · b or by using the rules A → a,B → a
in which case the derivation terminates adding a row of the
form aa · · · a, thus generating picture arrays, one member of
which is shown in Fig. 1. In fact, for this picture array, the
derivation in the second phase is as follows:

A B B B ⇒ a b b b

A B B B
⇒

a b b b

a b b b

A B B B

⇒

a b b b

a b b b

a b b b

A B B B

on applying the nonterminal rules A→ aA,B → bB. When
the terminal rules A → a,B → bB,B → a are applied
together, derivation terminates yielding the array in Fig. 1.

a b b b

a b b b

a b b b

a a a a

Figure. 1: A picture array generated in Example 1

An extension of the 2RLG, which we call here as
two-dimensional tabled right-linear grammar (2TRLG)
(originally referred to as 2D tabled matrix grammar in
[20]) was introduced in [20] to generate picture languages
that cannot be generated by any 2RLG. A 2TRLG is
defined similar to a 2RLG with the following difference:
In the second phase, the right-linear rules are grouped into
different sets, called tables such that i) all the rules in a
table are nonterminal rules of the form either A → aB only
or A → B only or ii) all are terminal rules of the form
either A → a only or A → λ only and at a time rules from
only one table are used in the second phase. We denote
by L(2TRLG) the family of array languages generated by
two-dimensional tabled right-linear grammars.

As an illustration, we give an example of a 2TRLG.

Example 2 Consider the 2TRLGGH with regular horizon-
tal rules S → AX,X → BX,X → BY, Y → A where
A,B are the intermediate symbols and the tables of vertical
rules are t1 = {A → aA,B → bB}, t2 = {A → aC,B →
cD}, t3 = {C → aC,D → bD}, t4 = {C → a,D → b}
where a, b, c are the terminal symbols. In the first phase, the
horizontal rules generate words of the form ABnA, n ≥ 1.
In the second phase every symbol in such a word ABnA is
rewritten in parallel by using the tables of rules. Application
of the table t1 certain number of times, followed by t2 once
which is then followed by t3 again certain number of times
and finally terminating the derivation in this second phase,
generates picture arrays, one member of which is shown in
Fig. 2.

a b b b b a

a b b b b a

a b b b b a

a c c c c a

a b b b b a

a b b b b a

Figure. 2: A picture array generated in Example 2

An operation, called flat splicing on linear words, is consid-
ered by Berstel et al. [2]. A flat splicing rule r is of the form
(α|γ−δ|β), where α, β, γ, δ are words over a given alphabet
Σ. For two words u = xαβy, v = γzδ, an application of
the flat splicing rule r = (α|γ− δ|β) to the pair (u, v) yields

the word w = xαγzδβy. In other words, the second word v
is inserted between α and β in the first word u as a result of
applying the rule r.

The notion of flat splicing on words [2] has been ex-
tended to arrays in [23], by introducing two kinds of
flat splicing rules, called column flat splicing rule and
row flat splicing rule and thus a new model of picture gen-
eration, called array flat splicing system is introduced in [23].

Definition 2 [23] Let V be an alphabet.

(i) A column flat splicing rule is of the form
(t(a1a2)|t(x1x2) − t(y1y2)|t(b1b2)) where
a1, a2, b1, b2 ∈ Σ ∪ {λ} with |a1| = |a2| and
|b1| = |b2|, x1, x2, y1, y2 ∈ Σ ∪ {λ} with |x1| = |x2|
and |y1| = |y2|.

(ii) A row flat splicing rule is of the form
(c1c2|u1u2 − v1v2|d1d2) where
c1, c2, d1, d2 ∈ Σ ∪ {λ} with |c1| = |c2| and
|d1| = |d2|, u1, u2, v1, v2 ∈ Σ ∪ {λ} with |u1| = |u2|
and |v1| = |v2|.

(iii) Let r1, r2, · · · , rm−1 be a sequence of (m− 1) column
flat splicing rules given by

ri = (t(αiαi+1)|t(γiγi+1)− t(δiδi+1)|t(βiβi+1)),

for 1 ≤ i ≤ (m − 1). Let X,Y be two picture arrays,
each with m rows, for some m ≥ 1, and given by

X = X1 ◦ t(α1α2 · · ·αm) ◦ t(β1β2 · · ·βm) ◦X2,

Y = t(γ1γ2 · · · γm) ◦ Y ′ ◦ t(δ1δ2 · · · δm),

where X1, X2, Y
′ are arrays over Σ with m rows,

αi, βi, ∈ Σ ∪ {λ} (1 ≤ i ≤ m), with |α1| = |α2| =
· · · = |αm|, |β1| = |β2| = · · · = |βm|, γi, δi, (1 ≤
i ≤ m), ∈ Σ ∪ {λ} with |γ1| = |γ2| = · · · = |γm|,
|δ1| = |δ2| = · · · = |δm|. An application of the column
flat splicing rules r1, r2, · · · , rm−1 to the pair of arrays
(X,Y) yields the array Z

= X1 ◦ t(α1α2 · · ·αm) ◦ t(γ1γ2 · · · γm)◦

Y ′ ◦ t(δ1δ2 · · · δm) ◦ t(β1β2 · · ·βm) ◦X2.

The pair (X,Y) yielding Z is then denoted by
(X,Y) `c Z.

(iv) Let s1, s2, · · · , sn−1 be a sequence of (n − 1) row flat
splicing rules given by

sj = (ηjηj+1|(µjµj+1)− (νjνj+1)|θjθj+1),

for 1 ≤ j ≤ (n − 1). Let U, V be two picture arrays,
each with n columns, for some n ≥ 1, and given by

U = U1 � (η1η2 · · · ηn) � (θ1θ2 · · · θn) � U2,

V = (µ1µ2 · · ·µn) � V ′ � (δ1δ2 · · · δn)

where U1, U2, V
′ are arrays over Σ with n columns,

ηj , θj , (1 ≤ j ≤ n), ∈ Σ ∪ {λ} with |η1| = |η2| =
· · · = |ηn|, |θ1| = |θ2| = · · · = |θn|, µj , νj , (1 ≤
j ≤ n), ∈ Σ ∪ {λ} with |µ1| = |µ2| = · · · = |µn|,
|ν1| = |ν2| = · · · = |νn|. An application of the row
flat splicing rules s1, s2, · · · , sn−1 to the pair of arrays
(U, V) yields the array W

= U1 � (η1η2 · · · ηn) � (µ1µ2 · · ·µn) � V ′

�(δ1δ2 · · · δn) � (θ1θ2 · · · θn) � U2.

The pair (U, V) yielding W is then denoted by
(U, V) `r W.

(v) An array flat splicing rule is either a column flat splic-
ing rule or a row flat splicing rule. The notation ` de-
notes either `c or `r.

(vi) For a picture language L ⊆ Σ∗∗ and a set R of array
flat splicing rules, we define

f(L) = {M ∈ Σ∗∗ | (X,Y) `M, forX,Y ∈ L,

and some rule in R}.

(vii) An array flat splicing system (AFS) is A =
(Σ,M,Rc, Rr) where Σ is an alphabet, M is a finite
set of arrays over Σ, called initial set, Rc is a finite
set of column flat splicing rules and Rr is a finite set
of row flat splicing rules. The picture language L(A)
generated by A is iteratively defined as follows:

f0(M) = M ; For i ≥ 0,

f i+1(M) = f i(M) ∪ f(f i(M));

L(A) = f∗(M) = ∪i≥0f i(M).

The family of picture languages generated by array flat
splicing systems is denoted by L(AFS).

An illustration of the application of column and row flat
splicing rules as well as the working of an array flat splicing
system is given in the following example.

Example 3 Consider the array flat splicing system AR

with alphabet {a, b} and the initial set consisting of the

array M = { a b
a b

}. The column flat splicing rule is

c where c = (
a
a
| a
a
− b

b
| b
b

). The row flat splicing

rules are r1, r2, r3 where r1 = (aa|aa − aa|aa), r2 =
(ab|ab− ab|ab), r3 = (bb|bb− bb|bb).

The column flat splicing rule c is applicable to the
pair (M,M). Note that both the components in the pair
being the same initial array M, the requirement of equal
number of rows for the application of column flat splicing
rule c is satisfied. Also the second array in the pair begins

with the column
a
a

and ends with the column
b
b
, as

required in the rule c. The first array is “cut” between the

columns
a
a

and
b
b

while the second array is “inserted”

between them, yielding the array
a a b b
a a b b

. On the

other hand, the row flat splicing rules r1, r2 can be used to
expand the array rowwise. For example, the sequence of
rules r1, r2, r3 could be applied to the pair of arrays with

both components having the same array
a a b b
a a b b

.

Again note that both the components in the pair being the
same array, the requirement of equal number of columns
for the application of a sequence of row flat splicing rules,
is satisfied. In fact, the first array is “cut” between the
first row a a b b and the second row which is also
a a b b . The second array satisfies the require-

ments of the sequence of rules r1, r2, r3. The second array
therefore can be “inserted” into the first array to yield the

array

a a b b
a a b b
a a b b
a a b b

. Proceeding like this, we compute the

successive terms f0(M), f1(M), · · · . In fact

f0(M) = M = { a b
a b

},

f1(M) = M∪f(M) = { a b
a b

,
a a b b
a a b b

,

a b
a b
a b
a b

, },

· · · .

Thus the picture language L(AR) = f∗(M) consists of rect-
angular arrays of even side length over the symbols a, b. Also
if the number of columns in such an array is 2n, then the first
n columns are over a while the next n columns are over b.

a a a b b b

a a a b b b

a a a b b b

a a a b b b

Figure. 3: A member of the language of AR

One such picture array is shown in Fig. 3.

III. Flat Splicing Regular Array Grammar
System

We now introduce a new model of picture generation, called
flat splicing array gramnmar system.

Definition 3 A flat splicing regular array grammar system
(FSAGS) is a construct
Gas = (Vh, Vv, Vi, T, (S1, R

h
1 , R

v
1), ..., (Sn, R

h
n, R

v
n), F)

where Vh, Vv, Vi are respectively, the finite sets of horizontal,
vertical and intermediate nonterminals; Vi ⊆ Vv; T is the
terminal alphabet; Si, 1 ≤ i ≤ n is the start symbol of
the corresponding component; Rh

i , 1 ≤ i ≤ n is a finite
set of horizontal rules, which are regular of the forms
X → AY,X → A, X, Y ∈ Vh, A ∈ Vi; R

v
i , 1 ≤ i ≤ n

is a finite set of right-linear vertical rules of the forms
A → aB,A → B,A → a, A,B ∈ Vv, a ∈ T ; F is a finite
set of array flat splicing rules The derivations take place in

two phases as follows :

Each component grammar generates a word called in-
termediate word, over intermediates starting from its own
start symbol and using its horizontal rules ; the derivations
in this phase are done with the component grammars
working in parallel.

In the second phase any of the following steps can
take place:

(i) each component grammar can rewrite as in a two di-
mensional matrix grammar using the vertical rules,
starting from its own intermediate word generated in the
first phase. (The component grammars rewrite in par-
allel and the rules are applied together). Note that the
component grammars together terminate with all rules
used in the form A → a or together continue rewriting
in the vertical direction with all rules used either in the
form A→ aB or in the form A→ B.

(ii) At any instant the picture array X generated in the
ith component for some i, 1 ≤ i ≤ n and the pic-
ture array Y generated in the jth component for some
j, 1 ≤ j ≤ n can be flat spliced using array flat splicing
rules, either column or row flat splicing rules as in defi-
nition 2, thus yielding picture array Z in ith component.
In any other component (other than ith component), the
arrays generated at this instant will remain unchanged
during this flat splicing process.

There is no priority between steps (i) and (ii).

The language Li(Gas) generated by the ith compo-
nent of Gas consists of all picture arrays, generated over T ,
by the derivations described above. This language will be
called the individual picture array language of the system
and we may choose this to be the language of the first com-
ponent. The family of individual picture array languages
generated by FSRAGS with at most n components is
denoted by Ln(FSRAGS).
We illustrate the working of FSRAGS with an example.

Example 4 Consider the FSAGS G1 with two components
given by

({S1, S2, X, Y }, {A,C,D}, {A,C,D}, {a, c, d},

(S1, R
h
1 , R

v
1), (S2, R

h
2 , R

v
2), F)

where

Rh
1 = {S1 → AX,X → CX,X → A, },

Rh
2 = {S2 → Z,Z → DZ,Z → D},

Rv
1 = {A→ aA,C → cC,A→ a,C → c},

Rv
2 = {A→ aA,D → dD,A→ a,D → d}

and F consists of the column flat splicing rule

c1 = (
a
a
| d
d
− d

d
| c
c

).

a c c c a

a c c c a

a c c c a

a c c c a

(a)

d d d d

d d d d

d d d d

d d d d

(b)

Figure. 4: (a) Picture array generated in the first component
of G1 (b) Picture array generated in the second component

of G1

a d d d d c c c a

a d d d d c c c a

a d d d d c c c a

a d d d d c c c a

Figure. 5: A picture array generated by G1

Starting from S1, the horizontal regular rules in the first
component generate a word of the form ACn−1A on apply-
ing the rule S1 → AX once followed by the application of
the rule X → CX (n− 1) times and finally the rule X → A
once, terminating the derivation in the first component
in the horizontal phase. At the same time in the second
component derivations in the horizontal phase take place in
parallel starting from S2 and applying the rule S2 → Z once
followed by the application of the rule Z → DZ (n − 1)
times and finally the rule Z → D once, yielding the word
Dn for the same n.

In the second phase vertical derivations in both the
components take place in parallel. In the first component
an m × (n + 1) picture array as in Fig. 4(a) is generated
while in the second component an m × n picture array as
in Fig. 4(b) is generated. At this point, using the column
flat splicing rule c1 as many times as needed, the array in
Fig. 4(b) is inserted in the array in Fig. 4(a) between the
first column of a′s and the second column of c′s to yield a
picture array of the form as in Fig. 5.

Theorem 1

L2(FSRAGS) \ L(AFS) 6= ∅.

Proof 1 The picture array language L generated by the
FSRAGS G1 in Example 4 consists of picture arrays M
each of which has the following property P : M has exactly
two columns of a′s with one, the leftmost column and the
other, the rightmost column, besides other columns made of
either c′s or d′s. But L cannot be generated by any AFS
since the flat splicing rules will “insert” one array of L into
another, thereby yielding picture arrays which will violate
the property mentioned above.
Theorem 2

L(2RLG) = L1(FSRAGS) ⊂ L2(FSRAGS).

Proof 2 The equality L(2RLG) = L1(FSRAGS) follows
by noting that the FSRAGS with one component will have
rewriting rules as in a 2RLG and the set of array flat splic-
ing rules can be taken to be an empty set as these rules

can be applied only when there are at least two compo-
nents. The picture array language L of Example 4, is gen-
erated by a FSRAGS with two components. An array
of L has the property that there are (n + 1) consecutive
columns of d′s (starting from the second column) followed
by n columns of c′s. But this property which involves a pro-
portion in the number of columns of c′s and the number of
columns of d′s (analogous to the context-free string language
{d(n+1)cn|n ≥ 1}) cannot be maintained by regular hori-
zontal rules of a 2RLG and hence L cannot be generated by
any 2RLG. Since L(2RLG) = L1(FSRAGS) it follows
that any FSRAGS with only one component cannot gen-
erate the picture array language L. This proves the proper
inclusion L1(FSRAGS) ⊂ L2(FSRAGS).
Theorem 3 L2(FSRAGS) \ L(2TRLG) 6= ∅
Proof 3 As noted in the proof of Theorem 2, the picture
array language L of Example 4, which is generated by a
FSRAGS with two components, has the feature that an ar-
ray of L involves a proportion in the number of columns of
c′s and the number of columns of d′s. This property cannot
be handled by any 2TRLG as the rules in the first phase of a
2TRLG are only regular rules. Thus L cannot be generated
by any 2TRLG.
In [20], analogous to 2TRLG, a two-dimensional grammar,
here called two-dimensional tabled context-free grammar
2TCFG (originally called 2D tabled CF matrix grammar)
was considered in [20] and this 2D grammar has context-free
grammar kind of rules in the first phase while the second
phase has tables of right-linear rules as in a 2TRLG. Deriva-
tions are done as in a 2TRLG. We denote by L(2TCFG),
the family of picture array languages generated by 2TCFG.
Also, when there are exactly two tables in the second phase
of a 2TCFG, with one table consisting of all right-linear
rules of the form A → aB and another table consisting of
all terminal rules of the form A → a, where A,B are non-
terminals and a is a terminal symbol, the 2TRLG is indeed
a 2RLG. We now show that the family L3(FSRAGS) of
picture languages generated by flat splicing regular array
grammar systems with three components,contains picture
languages that cannot be generated by any 2TCFG.

Theorem 4 L3(FSRAGS) \ L(2TCFG) 6= ∅
Proof 4 Consider the picture array language L2 whose ele-
ments are picture arrays with two rows of the forms

M1 =
a · · · a b · · · b e d
a · · · a b · · · b e d

or

M2 =
a · · · a b · · · b c · · · c e d
a · · · a b · · · b c · · · c e d

with the columns of a′s being equal in number to the columns
of b′s in the former array while this number also equals the
number of columns of c′s in the latter array. This kind of
picture language cannot be generated by any 2TCFG as the
feature present in the arrays of the form M2, namely, equal
number of columns of a′s, b′s and c′s is analogous to the
context-sensitive string language {anbncn|n ≥ 1} cannot be
handled by the context-free kind of rules in the first phase of
a 2TCFG.

But the languageL2 is generated by the followingFSRAGS
G2 with three components: Define

G2 = (Vh, Vv, Vi, T, (S1, R
h
1 , R

v
1),

(S2, R
h
2 , R

v
2), (S3, R

h
3 , R

v
3), F)

where

T = {a, b, c, d, e, f}, Vh = {S1, S2, S3, X, Y, Z},

Vi = {A,D,B,E,C, F},

Vv = {A,D,B,E,C, F,A′, D′, B′, E′, C ′, F ′,

A′′, D′′, B′′, E′′, C ′′, F ′′}.

Rh
1 = {S1 → AS1, S1 → AX,X → D},

Rh
2 = {S2 → BS2, S2 → BY, Y → E},

Rh
3 = {S3 → CS3, S3 → CZ,Z → F},

Rv
1 = {A→ a

A′
, D → d

D′
, A′ → A′′, B′ → B′′,

D′ → D′′, E′ → E′′, A′′ → a,B′′ → b,D′′ → d,

E′′ → e, C ′′ → c, F ′′ → f}

Rv
2 = {B → b

B′
, E → e

E′
,

B′ → B′′, E′ → E′′, B′′ → b, E′′ → e}

Rv
3 = {C → c

C ′
, F → f

F ′
,

C ′ → C ′′, F ′ → F ′′, C ′′ → c, F ′′ → f}

F consists of the following column flat splicing rules:

(
a
A′
| b
B′
− e

E′
| d
D′

), (
b
B′′
| c
C ′′

− f
F ′′
| e
E′′

)

Derivations in the three components take place in parallel
with the application of the horizontal rules S1 → AS1, S1 →
AX,X → D in the first component yielding the word
AnD for some n ≥ 1, while, likewise, in the second and
third components, the horizontal rules yield respectively the
words BnE and CnF. At a time all three words derived in-

volve the same n. If the vertical rules A → a
A′

, D →

d
D′

in the first component are applied, an array of the

form
a
A′
· · · a

A′
d
D′

is generated in the first compo-

nent while, likewise, application of similar rules in the sec-
ond and third components genrate the arrays respectively

of the forms
b
B′
· · · b

B′
e
E′

and
c
C ′
· · · c

C ′
f
F ′

. If

at this stage, the column flat splicing rule (
a
A′
| b
B′
−

e
E′
| d
D′

) is applied, then the array obtained is of the

form
a
A′
· · · a

A′
b
B′
· · · b

B′
e
E′

d
D′

If now the ver-

tical rules such as A′ → A′′ that change the primed symbols

Figure. 6: A floor design

Figure. 7: Primitive Patterns

into double primed symbols are applied followed by the ap-
plication of terminal rules, then picture arrays of the form

a
a
· · · a

a
b
b
· · · b

b
e
e

d
d

are generated which are collected in the picture language of
G2. On the otherhand, prior to the application of the ter-

minal rules, if the column flat splicing rule (
b
B′′
| c
C ′′

−

f
F ′′
| e
E′′

) is applied and the double primed symbols are

changed into terminals by the application of terminal rules,
then arrays of the form

a
a
· · · a

a
b
b
· · · b

b
c
c
· · · c

c
f
f

e
e

d
d

are generated and are also collected in the picture language
of G2.

IV. Application to Generation of Floor Designs

Generation of certain picture patterns, such as “floor de-
signs” (see, for example, Fig. 6), using array generating
grammar models has been done [19]. The idea is to consider
the picture pattern as an array over certain terminal symbols
and generate the array with an array grammar. Then
substitute for each symbol some relevant primitive pattern
of the picture to be generated, yielding the pattern. Here we
explain how to construct a FSRAGS with two components
to generate the collection of floor designs, one member of
which is shown in Fig. 6. The primitive patterns involved
in this floor design are shown in Fig. 7. The picture array
encoding the floor design is given in Fig. 8. The picture
array language consisting of picture arrays such as the one
given in Fig. 8, along with picture arrays as the one given

b du du du du b du du du du b
dl d d d d eh d d d d dr
b eu eu eu eu b eu eu eu eu b
dl d d d d eh d d d d dr
b db db db db b db db db db b

Figure. 8: A picture array generated by GF using array flat
splicing

b du du du du b
dl d d d d eh
b eu eu eu eu b
dl d d d d eh
b db db db db b

Figure. 9: A picture array generated by GF

in Fig. 9, can be generated by a FSRAGS GF with two
components. We do not give the formal details of GF but
informally describe the idea.

The idea is to allow the first component generate the
left half of the picture array (with the rightmost column
made of only eh) while the second component generates
the second half and array flat splicing rules are created
to concatenate the “right half” to the right of the “left
half”, yielding the picture array of the form in Fig. 8.
When the relevant primitive patterns are substituted for the
corresponding symbols, this yields the floor design patterns
as in Fig. 6.

V. Conclusion and Discussion

We have considered here a grammar system that involves
regular rules as defined in the two-phase 2RLG and array
flat splicing rules introduced in [23]. One could also con-
sider in the flat splicing array grammar system, CF horizon-
tal rules as in the two-phase two-dimensional grammar called
context-free matrix grammar considered in [19], and exam-
ine the generative power of the resulting system, which might
help describe more complex floor designs. In fact it will be
of interest to explore the theoretical model proposed here for
other possible applications in terms of experimental studies.

Acknowledgments

The authors are grateful to the reviewers for their very useful
comments.

References

[1] Adleman, L.M.: Molecular Computation of Solu-
tions to Combinatorial Problems, Science New Series,
266(5187) (1994) 1021-1024.

[2] Berstel, J., Boasson, L., Fagnot, I. : Splicing systems
and the Chomsky hierarchy. Theoret. Comput. Sci. 436,
2 -22 (2012).

[3] Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, Gh.:
Grammar systems: A grammatical approach to distri-

bution and cooperation. Gordon and Breach Science
Publishers, 1994.

[4] Dassow, J., Mitrana, V.: Splicing grammar systems.
Computers and Artificial Intell. 15, 109-122 (1996).

[5] Esik, Z., Martin-Vide, C., Mitrana, V. (Eds.): Re-
cent Advances in Formal Languages and Applica-
tions, Studies in Computatioinal Intelligence, Springer-
Verlag, 2006.

[6] Freund, R., Kari, L., Păun, Gh.,: DNA Computing
Based on Splicing: The Existence of Universal Com-
puters. Theory Comput. Syst. 32(1): 69-112 (1999)

[7] Giammarresi, D., Restivo, A.: Two-dimensional lan-
guages. In: [7], Vol. 3, pp. 215-267 (1997).

[8] Head, T.: Formal language theory and DNA: an anal-
ysis of the generative capacity of specific recombinant
behaviours. Bull. Math. Biol. 49, 735-759 (1987).

[9] Head, T., Circular suggestions for DNA Computing,
In: Pattern Formation in Biology, Vision and Dynam-
ics(Ed. Carbone, A. et al.), World Scientific, (2000)
325-335.

[10] Head, T., Păun, Gh., Pixton, D. : Language theory and
molecular genetics: generative mechanisms suggested
by DNA recombination, In: [7], Vol. 2, pp. 295-358,
1997.

[11] Head, T., Pixton, D.: Splicing and Regularity. Recent
Advances in Formal Languages and Applications 2006:
119-147

[12] Martin-Vide, C., Mitrana, V., Păun, Gh. (Eds.): Formal
Languages and Applications. Springer-Verlag, 2004

[13] Păun, Gh.: DNA computing based on splicing: uni-
versality results. Theor. Comput. Sci. 231(2): 275-296
(2000)

[14] Păun, Gh., Rozenberg, G., Salomaa, A. : DNA Com-
puting - New Computing Paradigms. Texts in Theo-
retical Computer Science. An EATCS Series, Springer
1998.

[15] A. Rosenfeld, Picture Languages. Academic Press,
Reading, MA, 1979.

[16] A. Rosenfeld, R. Siromoney, Picture languages – a sur-
vey, Languages of Design, 1 (1993) 229-245.

[17] Rozenberg, G., Salomaa, A. (Eds.): Handbook of For-
mal Languages Vol. 1–3, Springer, Berlin, (1997).

[18] Subramanian, K.G., Samdanielthompson, G., David,
N.G., Nagar, A.K. : Generating Picture Arrays Based
on Grammar Systems with Flat Splicing Operation,In:
V. Snel et al. (eds.), Innovations in Bio-Inspired Com-
puting and Applications, Advances in Intelligent Sys-
tems and Computing 424,Springer International Pub-
lishing Switzerland 2016, 251-261.

[19] Siromoney, G., Siromoney, R., Krithivasan, K. : Ab-
stract families of matrices and picture languages. Com-
put. Graph. Imag. Process. 1, 284-307 (1972).

[20] Siromoney, R., Subramanian, K.G., Rangarajan, K. :
Parallel/Sequential rectangular arrays with tables. Int.
J. Comput. Math., 6A, 143-158 (1977)

[21] Subramanian, K.G., Ali, R.M., Geethalakshmi, M., Na-
gar, A.K. : Pure 2D picture grammars and languages.
Discrete Appl. Math. 157 (2009) 3401-3411.

[22] Subramanian, K.G., Roslin Sagaya Mary, A., Der-
sanambika, K.S. : Splicing Array Grammar Systems,
Proc. International Colloquium Theoretical Aspects of
Computing 2005, Lecture Notes in Computer Science
3722, Springer 125-135 (2005).

[23] Subramanian, K.G., Nagar, A.K., Pan, L. : A Pic-
ture Array Generating Model Based on Flat Splicing
Operation, Proc. of the 10th International Conference
on Bio-inspired Computing:Theories and Applications
(BICTA), (2015).

[24] Subramanian, K.G., Rangarajan, K., Mukund. M.
(Eds.): Formal Models, Languages and Applications.
Series in Machine Perception and Artificial Intell. Vol.
66, World Scientific Publishing, 2006.

Author Biographies

G. Samdaielthompson was born on March 13, 1990. He
is pursuing his PhD programme from January 2015 in the
Department of Mathematics, Madras Christian College, In-
dia with Prof. N. Gnanamalar David as his supervisor. He
received his M.Phil degree in the year 2014. His research in-
terests include DNA computing, picture languages and graph
languages.

N. Gnanamalar David was born on December 22, 1958. He
has been on the faculty of the Department of Mathematics,
Madras Christian College, India since 1980 and is currently
the Head of this department. He was the Dean of Sciences,
Madras Christian College during the years 2012-2014. He
received his Ph.D. degree from the University of Madras in
2002. He has published a number of research papers in re-
puted journals. His research areas include graph grammars,
picture languages, DNA computing and astronomy. His aca-
demic visits include University of Bremen, Germany and
other institutions in France, Netherlands and Greece.

Atulya Nagar was born on January 25, 1967. He is the Dean,
Faculty of science, Liverpool Hope University, UK and also
holds the Foundation Chair as Professor of Mathematical
Sciences in this university. He received his Doctorate (DPhil)
in 1996 from the University of York. Prior to joining Liver-
pool Hope, he was with the Department of Mathematical Sci-
ences, and later at the Department of Systems Engineering, at
Brunel University, London. Earlier he has lectured at the Tata
Institute of Fundamental Research (TIFR), Bangalore, BITS
Pilani and the Indian Institute of Technology (IITs) in India.

His research is multi-disciplinary with expertise in Nonlin-
ear Mathematics, Natural Computing, Bio-Mathematics and
Computational Biology, Operations Research, and Control
Systems Engineering. He has edited volumes on Intelligent
Systems, and Applied Mathematics. He is the Editor-in-
Chief of the International Journal of Artificial Intelligence
and Soft Computing (IJAISC) and serves on editorial boards
for a number of prestigious journals such as the Journal of
Universal Computer science. He has more than 200 pub-
lications in prestigious publishing outlets and journals such
as the Journal of Applied Mathematics and Stochastic Anal-
ysis, the International Journal of Advances in Engineering
Sciences and Applied Mathematics, the International Journal
of Foundations of Computer Science, the IEEE Transactions
on Systems, Man, and Cybernetics, Discrete Applied Math-
ematics, Fundamenta Informaticae, IET Control Theory and
Applications and others.

K.G. Subramanian was born on July 6, 1948. He re-
ceived his PhD in 1980 from the University of Madras, India.
He was on the faculty of the Department of Mathematics,
Madras Christian College, Chennai, India from 1970 to 2006.
He has served as supervisor for a number of PhD scholars of
University of Madras. His main area of research falls un-
der the broad topic of Mathematical aspects of Computer
Science and his research interests include Combinatorics on
words, applications of the theory of formal languages to pic-
ture generation, learning and cryptography and biologically
motivated computing models. He has visited many institu-
tions in France, Spain, Germany, Vietnam, China, Malaysia,
Japan, UK on different periods for collaborative research. He
has many publications in reputed journals. He was a visit-
ing Professor at the School of Mathematical Sciences (2007-
2010) and the School of Computer Sciences (2011-2015) at
the Universiti Sains Malaysia, Malaysia. Currently, he has
a visiting professor position at Liverpool Hope University,
UK.

