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ABSTRACT 

The pulsatile flow of blood in narrow arteries with multiple-stenoses under body acceleration is analyzed 

mathematically, treating blood as (i) single-phase Herschel-Bulkley fluid model and (ii) two-phase Herschel-

Bulkley fluid model. The expressions for various flow quantities obtained by Sankar and Ismail (2010) for single-

phase Herschel-Bulkley fluid model and Sankar (2010c) for two-phase Herschel-Bulkley fluid model are used to 

compute the data for comparing these fluid models in a new flow geometry. It is noted that the plug core radius, 

wall shear stress and longitudinal impedance to flow are marginally lower for two-phase H-B fluid model than 

those of the single-phase H-B fluid model. It is found that the velocity decreases significantly with the increase 

yield stress of the fluid and the reverse behavior is noticed for longitudinal impedance to flow. It is also noticed 

that the velocity distribution and flow rate are higher for two-phase Herschel-Bulkley fluid model than those of 

the single-phase Herschel-Bulkley fluid model. It is also recorded that the estimates of the mean velocity increase 

with the increase of the body acceleration and this behavior is reversed when the stenosis depth increases.  

 

Keywords: Blood flow; Single-phase fluid flow; Two-phase fluid flow; Body acceleration; Multiple-stenoses; 

Comparative study.  

 

NOMENCLATURE 

B                  Body acceleration parameter 
PR                  

Dimensionless plug core radius 

e                     Pressure gradient parameter  

r                    

 

Dimensionless radial distance   

n                    Power law index 
Hu                  Dimensionless axial velocity of 

Herschel-Bulkley fluid 
p                   Dimensionless pressure 

Nu                   Dimensionless axial velocity of 

Newtonian fluid 

Q   

                  

Dimensionless flow rate t                      Dimensionless time 

 R z  

              

Dimensionless radius of the artery in the 

stenosed region 

z                    Dimensionless axial distance 

  

Greek letters 

  

  

                    

Pulsatile Reynolds number ratio                          Lead angle 

H                   Pulsatile Reynolds number of  Herschel-

Bulkley fluid 

 

                     Shear rate 

N                   Pulsatile Reynolds number of  

Newtonian fluid 
   Dimensionless longitudinal impedance 

to flow 



  

  

1  Semi-depth of the maximum projection 

of the first stenosis in the single-phase 

Herschel-Bulkley fluid model   

 

                     Angular frequency of the blood flow 

2                      Semi-depth of the maximum projection 

of the second stenosis in the single-phase 

Herschel-Bulkley fluid model   

 

  Yield stress 

1P                  Semi-depth of the maximum projection 

of the first stenosis in the peripheral 

layer region of the two-phase Herschel-

Bulkley fluid model 

 

                     Azimuthal angle 

2P                  Semi-depth of the maximum projection 

of the second stenosis in the peripheral 

layer region of the two-phase Herschel-

Bulkley fluid model 

 

H                    Dimensionless shear stress of Herschel-

Bulkley fluid 

 

1C                  Semi-depth of the maximum projection 

of the first stenosis in the core region of 

the two-phase Herschel-Bulkley fluid 

model 

 

N                    Dimensionless shear stress of 

Newtonian fluid 

 

2C                  Semi-depth of the maximum projection 

of the second stenosis in the core region 

of the two-phase Herschel-Bulkley fluid 

model 

 

w                    Dimensionless wall shear stress 

Subscripts    

H   
                   

   Herschel P                        Plug core region 

N                         Newtonian fluid (used for ,u  ) w                         Wall shear stress (used for  ) 

 

1. INTRODUCTION 

 In several circumstances of our routine life, like 

during our travel in a bus, train, car, aircraft, ship, 

even while accepting vibration therapy as a 

treatment process to cardiovascular diseases, we are 

subjected to body accelerations or vibrations 

(Chakravarty and Mandal, 1996). In some situations 

like travelling in a bus/train etc, our whole body is 

exposed to vibrations, whereas in some other 

situations like, while operating jack hammer or 

lathe machine, specific part of our body is subjected 

to accelerations (Nagarani and Sarojamma, 2008; 

El-Shehawey et al., 2000). The continuous 

exposure of high level unintended external body 

accelerations to our body causes disturbance in the 

blood circulation (El-Shahed, 2003) and this leads 

to serious diseases which may show the symptoms 

like frequent headache, abdominal pain, increase in 

pulse rate, venous pooling of blood in the 

extremities, hemorrhage in face, neck and eye-

sockets, loss of vision etc (Mustapha et al., 2008; 

Chaturani and Issac, 1995; Usha and Prema, 1999). 

Hence, the investigation on the blood flow in 

arteries under periodic body acceleration is 

important in the diagnosis and therapeutic treatment 

of health problems (Mandal et al., 2007; Mishra, 

1999; Sarojamma and Nagarani, 2002).  

Many cardiovascular diseases are known to be 

responsible for deaths of thousands of people yearly 

and the origin of most of them are closely related to 

the nature of blood circulation and the dynamic 

behavior of the blood vessel (Ang and Mazumdar, 

1995). Medical survey reveals that more than 80% 

of the total deaths of humans are due to the diseases 

of blood vessel walls (Liepsch, 2002; Rogers, 

2011). Among them, arthrosclerosis is a very 

dangerous disease that is caused due to deposition 

of cholesterol and some other substances on the 

endothelium and by the proliferation of connective 

tissues in the arterial wall (Liepsch et al., 1992). 

Once a mild stenosis is developed in the lumen of 

the artery, it causes circulatory disorder in the 

arteries (Tu and Deville, 1996). 

Several researchers studied the blood flow 

characteristics in the presence of stenoses in the 

lumen of the arteries (Ikbal et al., 2009; Sankar, 

2010a; Ismail et al., 2008). Blood behaves like a 

Newtonian fluid when it flows in larger diameter 

arteries at high shear rates. Many studies were 

carried out to analyze the steady and unsteady flow 

of blood in larger diameter arteries, treating it as 

Newtonian fluid (Liu et al., 2004; Chakravarty and 

Mandal, 2004; Sud and Sekhon, 1985). Blood 

exhibits remarkable non-Newtonian character when 



  

it flows through narrow diameter arteries at low 

shear rates and blood flow in narrow arteries is 

highly pulsatile, particularly in diseased state.  

Several attempts made to study the pulsatile flow of 

blood through stenosed narrow arteries, modeling it 

as a non–Newtonian fluid (Chaturani and 

Palanisamy, 1990; Siddiqui et al., 1999).  

Chakravarty et al. (2004) and Mishra et al. (2002) 

mentioned that when blood flows through narrow 

blood vessels, there is a peripheral layer of plasma 

and a core layer with the suspension of all the 

erythrocytes. Thus, for a realistic description of 

blood flow in narrow arteries at low shear rates, it is 

appropriate to model blood as a two-phase fluid 

model with the suspension of all the erythrocytes in 

the core region as non-Newtonian fluid and the 

plasma in the peripheral layer region as Newtonian 

fluid. Several researchers have studied the two-

phase fluid models for blood flow through stenosed 

arteries treating the fluid in the core region as a 

non-Newtonian fluid and the plasma in the 

peripheral layer region as Newtonian fluid 

(Srivastava and Saxena, 1994; Sankar, 2010b).   

Herschel-Bulkley (H- B) fluid is a non-Newtonian 

fluid model with yield stress which is generally 

used to model blood when it flows through narrow 

arteries (Chaturani and Ponnalagar Samy, 1985). 

Sankar and Ismail (2010) studied the pulsatile flow 

of single-phase H-B fluid model for blood flow in 

narrow arteries with single axi-symmetric stenosis 

under the influence of body acceleration. Sankar 

(2010c) mathematically analyzed the blood flow 

with single stenosis in narrow arteries under the 

influence of body acceleration, treating blood as 

two-phase H-B fluid model. The pulsatile flow of 

single-phase and two-phase H-B fluid models for 

blood flow in a narrow artery with multiple-

stenoses under periodic body acceleration was 

investigated by anyone so far, to the knowledge of 

the authors. Hence, in the present study, a 

theoretical study is taken up to compare the 

pulsatile flow of single-phase H-B fluid model and 

two-phase H-B fluid model for blood flow in a 

narrow artery with mild multiple-stenoses under the 

influence of external periodic body acceleration. In 

the first model, H-B fluid model is used to represent 

blood in the entire flow region, whereas in the 

second model, blood is treated as two-phase fluid 

flow model with the suspension of all the 

erythrocytes in the core region is modeled by H-B 

fluid and the cell-free plasma in the peripheral layer 

region is represented by Newtonian fluid. The 

asymptotic solution obtained for the flow quantities 

by Sankar and Ismail (2010) for single-phase H-B 

fluid model and Sankar (2010c) for two-phase H-B 

fluid model are used to compute the data in new 

flow geometry (multiple-stenoses) to perform a 

comparative study among these fluid models. The 

advantageous of using two-phase H-B fluid model 

rather than single-phase H-B fluid model for blood 

flow modeling in a narrow artery are also spelt out. 

The layout of the paper is as follows. 

Section 2 formulates both the fluid model’s 

governing differential equations and boundary 

conditions and solves them to obtain asymptotic 

solution to the physiologically important flow 

quantities such as plug core radius, velocity 

distribution, flow rate, wall shear stress and 

longitudinal impedance to flow. The effects of 

various physical parameters on these flow 

quantities are analyzed and the flow quantities of 

different fluid models are compared in section 3. 

Some possible physiological applications to the 

present study are also given in section 3. The main 

findings of the study are summarized in the 

concluding section 4.               

2. MATHEMATICAL FORMULATION 

Consider an axially symmetric, laminar, pulsatile 

and fully developed unidirectional flow of blood 

(assumed to be viscous incompressible fluid) under 

the influence of periodic body acceleration through 

a circular artery with an axially symmetric mild 

multiple stenoses, blood is modeled as two 

nonlinear fluid models such as (i) single-phase H-B 

fluid model and (ii) two-phase H-B fluid model. In 

the single-phase H-B fluid model, blood is modeled 

as H-B fluid model in the entire flow region, 

whereas, in the two-phase H-B fluid model of 

blood, the suspension of all erythrocytes in the core 

region is treated as H-B fluid and the cell-free 

plasma in the peripheral layer region is assumed as 

Newtonian fluid. Due to the presence of the 

stenosis in the lumen of the artery wall, it is 

appropriate to treat the wall of the artery as rigid. 

The artery is assumed to be too long so that the 

entrance and end effects can be neglected. The 

geometries of the segment of artery with mild 

multiple stenoses for single-fluid flow and two-

fluid flow of blood are shown in Fig.1. Cylindrical 

polar coordinates system  r , , z  is used to analyze 

the flow. 

 

a. Single-phase H-B fluid model 



  

 

b. Two-phase H-B fluid model 

Fig. 1 Geometry of segment of the narrow 

artery with multiple stenoses 

2.1  Single-phase H-B fluid model  

2.1.1 Governing equations 

 Since the size of the stenoses in the lumen of the 

artery is mild and the flow is assumed to be slow in 

a narrow artery, the radial component of velocity is 

negligibly small and can be neglected for low 

Reynolds number flow. The non-dimensional form 

of the momentum equation governing the flow is 

given below (One can refer Sankar and Ismail 

(2010) for dimensional form of the governing 

equations).  
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where 
H  pulsatile Reynolds number or 

Womersley number of H-B fluid model which 

is mathematically defined as 2

0 0H R   , 

(where 
1

0 0 02
n

H R A 


    , 0 0 0, , ,A R     

and 
H are the constant pressure gradient of 

the flow, radius of the normal artery, angular 

frequency of the flow, blood density, viscosity 

coefficient having the dimension as that of 

Newtonian fluid and coefficient of viscosity of 

H-B fluid respectively (in dimensional form)), 

,H Hu  are the shear stress and axial component 

of the velocity; e and B are the parameters for the 

pressure gradient and body acceleration 

respectively; ,t   and   are the parameters for time, 

angular frequency and phase angle of the flow 

respectively, R  is the radius of the artery. The non-

dimensional form of the constitutive equation of the 

H-B fluid which models blood is 

 2 if and

0 if and 0

n

H H H P

H P

u R r R

r r R

   

 
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 

   

 (2)          

 

where  is the non-dimensional form of the yield 

stress and 
PR  is the plug core radius. Eq. (2) 

signifies that normal shear flow happens in the 

regions where the shear stress exceeds the yield 

stress and plug flow (or solid like flow) occurs in 

the regions where the shear stress does not exceed 

the yield stress. The boundary conditions in the 

non-dimensional form are  

 

is finite at 0H r                                       (3) 

 0 atHu r R z                                              (4) 

 

The geometry of segment of an artery with multiple 

stenoses in dimensionless form is mathematically 

defined by 

 

 

 

1 1 1 1

1 2 22 22

1

( ) 1 1 cos , if

( ) ( ) 1 1 cos , if

( )                                         otherwise

a t z S z S
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a t




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where 1 1 2 2( ) ; ( ) ;z z S Z z z S Z     
1 1 1;S S Z  

1 1 1;S S Z  2 2 2;S S Z   2 2 2;S S Z  
1 2,  ar

e the maximum heights of first and second stenosis 

respectively such that 
1 0 1,R  ; 

1 1 2 2,S Z S Z   and 
1 1 2 2,S Z S Z  are the start and 

end positions of the first and second stenosis, 

 1a t represents the time dependent changes in the 

radius of the artery. The non-dimensional volume 

flow rate  Q t  is given by 

 

 
( )

0

, 4 ( , , )

R z

Q z t u z r t r dr                                (6) 

 

2.1.2  Method of solution 

Since Eqs. (1) and (2) form a system of nonlinear 

partial differential equations, it is not possible to 

obtain an exact solution to this system of 

differential equations. Hence, perturbation method 

with pulsatile Reynolds number 
H  as the small 

parameter of the series expansion is employed to 

solve this system of nonlinear partial differential 

equations. Since the present study deals with 

pulsatile flow of blood and the square of the 

pulsatile Reynolds number ( 2

H ) occurs naturally 

in the non-dimensionalize form of the momentum 

equation and is very small, it is more appropriate to 

expand the unknowns 
Hu  and 

H  (appearing in 

Eqs. (1) and (2)) in the perturbation series about 
2

H . Let us expand the velocity 
Hu  in the 

perturbation series about the square of the pulsatile 



  

Reynolds number 
2

H  (where 2 1H  ) as shown 

below.  

2

0 1( , , ) ( , , ) ( , , ) ...H H H Hu r z t u r z t u r z t      (7) 

 

Similarly, the shear stress  , ,H r z t , the plug 

core radius  ,pR z t , the plug core velocity  ,pu z t , 

and the plug core shear stress  ,p z t   can be 

expanded in perturbation series about 2

H . 

Applying the perturbation series expansions of 

Hu and H  in Eq. (1) and then equating the 

constant terms and 2

H  terms, one can get 
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Using the binomial series approximation in Eq. (2) 

and then using the perturbation series expansions of 

Hu  and 
H  in the resulting equation and then 

equating the constant terms and 
2

H  terms, one can 

obtain 

 

 10

0 02 ,nH

H H

u
n

r
  

  


                           (10) 

 21

0 1 02 ( 1) .nH

H H H

u
n n

r
   

   


        (11) 

    

Applying the perturbation series expansions of Pu  

and P  in the boundary conditions (3) and (4), one 

can get 

 

0 1and are finite at 0P P r   ,                 (12)       

0 10 and 0 at 0.H Hu u r                       (13) 

          

Integrating Eq. (8) between 0 and 
0 ,PR then using 

the condition that 0P  is finite at r = 0, we obtain    

                   

 P0 P0g t R                                                (14) 

 

where      1 cos Bcosg t e t      . 

Integrating Eq. (8) between 
0PR and r and using 

Eq. (14), we get 

 

 0 .H g t r                                                      (15) 

 

Using Eq. (15) into Eq. (10) and then integrating it 

between r and   R R z with the help of first of the 

boundary condition (13), we obtain 

 H0 2
n

u g t R R        
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(16)  

where   2q g t . The plug core velocity 0 pu  

can be obtained from Eq. (16) as 
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Neglecting the terms involving 2

H and higher 

powers of H  in the perturbation series expansion 

of pR and using Eq. (14), the expression for 

0PR can be obtained as 
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0 .
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Using Eq. (18) in Eq. (17), one can obtain 
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Similarly, solving Eqs. (9) and (11) with the 

boundary conditions (12) and (13) and Eqs. (14) – 

(19), the expressions for 
1 1 1, ,P H Hu  and 

1Pu can 

be obtained as given in Appendix A.One can obtain 

the expression for the correction in the velocity 

distribution 
1Pu can be obtained from Eq. (A3) by 

replacing r by  2 2

0Pq R . The wall shear stress 

HW is a physiologically important quantity which 

plays an important role in determining aggregate 

sites of platelets (Chaturani and Ponnalagar Samy, 

1985). The expression for wall shear stress 
HW  is 

given by  
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From Eq. (6) and the expressions for velocity, the 

expression for the volumetric flow rate  ,Q z t is 

obtained as in Appendix B. The correction to the 



  

plug core radius
1PR can be obtained by neglecting 

the terms with 
4

H and higher powers of H  in the 

perturbation series expansion of PR  in the 

following manner. The shear stress 
2

0 1H H H H      at 
Pr R  is given by 
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From the Taylor’s series expansion of 0H  and 

1H  about 0PR and 
P 0

H0 r R



 , we get 
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Using Eqs. (21) and (22) in the perturbation series 

expansion of PR , we obtain 
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The longitudinal impedance (or resistive 

impedance) to flow in the artery is defined by 

 

   , .g t Q z t                                             (24) 

 

2.2 Two-phase H-B fluid model 

2.2.1 Governing equations 

For low Reynolds number slow flow of blood 

(viscous incompressible fluid) in a narrow artery 

with mild axially symmetric multiple stenoses, the 

radial component of the velocity is negligibly small 

and can be neglected. Blood is modeled as two-

phase fluid model with the suspension of all the 

erythrocytes in the core region is represented by H-

B model and the cell free plasma in the peripheral 

layer region is treated Newtonian fluid. The non-

dimensional form of the basic momentum equations 

governing the flow in the core and peripheral layer 

regions are given below respectively (One shall 

refer Sankar (2001c) for the dimensional form of 

the governing equations). 

   

 

2

1

4 1 cos 4 cos

2
if 0 ( )

H

H

H

u
e t B t

t

r r R z
r r




      




  



             (25)    

   

 

2

1

4 1 cos 4 cos

2
if ( ) ( )

N

N

N

u
e t B t

t

r R z r R z
r r




      




  



          (26) 

where 
N is the pulsatile Reynolds number or 

Womersley number of Newtonian fluid model 

in the peripheral layer region which is 

mathematically defined as 2

0N NR   , 

(where, 0 0, , , and NA R    are the constant 

pressure gradient of the flow, radius of the 

normal artery, angular frequency of the flow, 

blood density and coefficient of viscosity of 

Newtonian fluid model respectively (in 

dimensional form)); , H Nu u  are the axial 

component of the fluid’s velocity in the core and 

peripheral layer regions; ,H N   are the shear 

stress of the fluid in the core region and peripheral 

layer region; H , e , B , ,t   and   are already 

defined in section 2.1.1.  R and 1R are the radius of 

the artery with the peripheral layer region and core 

region respectively. The non-dimensional form of 

the constitutive equation of the fluids in the core and 

peripheral layer region are 

 
  12 if and ( ) ( )

0 if and 0 ( )

n

H H H P

H P

u R z r R z

r r R z

   

 

     
 

   
(27) 

  12 , if ( ) ( )N

N

u
R z r R z

r



   


  (28) 

where 
PR is the plug core radius. The boundary 

conditions can be written in their non-dimensional 

form are  

 

is finite at 0H r                               (29) 

0 at 0Hu r r                                        (30) 

1at ( )H N r R z                              (31) 

1at ( )H Nu u r R z                                 (32)                    

 0 atNu r R z  .                                    (33) 

 

The non-dimensional form of the expressions 

representing the geometry of the stenoses in 

peripheral layer region and core region are given 

below.

 

 

1 1 1 1

1 2 2 22

1

( ) 1 1 cos , if

( ) ( ) 1 1 cos , if

( )                                          otherwise
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 where 
1 2,P P   are the maximum height of the 

first and second stenosis in the peripheral layer 

region such that 
1 0 1,P R   

2 0 1P R  ; 



  

1 2,C C   are the maximum height of the first and 

second stenosis in the core region such that 

1 0 2 01, 1C CR R   ;   is the 

ratio of the central core radius to the radius of the  

normal artery, 
1 1 2 2, , , , ,z z S S S S       are defined 

in section 2.1.1;  1a t represents the time 

dependent changes in the radius of the artery. The 

non-dimensional volume flow rate  Q t  is given by 

 
( )

0

, 4 ( , , )

R z

Q z t u z r t r dr                     (36) 

2.2  Method of solution 

Perturbation method is used to solve the system of 

partial differential equations (25) – (28) with the 

boundary conditions (29) - (33). Let us expand the 

plug core velocity Pu  and the velocity in the core 

region Hu  in the perturbation series about 
2

H  

(where 
2 1H  ) as shown below. 

 
2

0 1( , ) ( , ) ( , ) ...P P H Pu z t u z t u z t        (37) 

2

0 1( , , ) ( , , ) ( , , ) ...H H H Hu r z t u r z t u r z t   (38) 

 

Similarly, one can expand the other unknown 

quantities , ,P H Nu   and N in the perturbation 

series about 
2
H  and 

2
N . Substituting the 

perturbation series expansions of 
Hu and H  in 

Eq. (25) and then equating the constant terms and 
2

H  terms, we get 

     0 2 1 sin cos ,Hr r e t B t
r




      
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 0

1

2
.H

H

u
r

t r r


 
 

 
                            (40) 

 

Using the binomial series approximation in Eq. (27) 

and applying the perturbation series expansions of 

Hu  and H  in the resulting equation and then 

equating the constant terms and 
2

H  terms, one can 

obtain 

 

 10

0 02 ,nH

H H

u
n
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  
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Using the perturbation series expansions of 
Nu  

and 
N  in Eq. (26) and then equating the constant 

terms and 2

N  terms, one can obtain   

 

     0 2 1 sin cos ,Nr r e t B t
r



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                                 (44) 

 

On substituting the perturbation series expansion of 

Nu  and N  in Eq. (28) and then equating the 

constant terms and 2
N terms, we get 

0

02N

N

u

r



 


                                            (45) 

1

12N

N

u

r



 


                                              (46) 

 Applying the perturbation series expansions of 

, ,H H Nu u and N  in Eqs. (29) - (33) and then 

equating the constant terms and 
2

H  and 
2

N  terms, 

the boundary conditions reduce respectively to 

 

0 1and are finite at 0P P r                   (47)        

0 10 and 0 at 0P Pu r u r r        (48)

 

 

0 0 1 1 1and at ( )H N H N r R z       (49) 

0 0 1 1 1and at ( )H N H Nu u u u r R z    (50) 

 0 10 0N Nu and u at r R z             (51) 

 

Eqs (39) - (46) form a system of partial differential 

equations which can be solved for the unknowns 

0 1 0 1 0, , , , ,H H H H Nu u u  1 0,N Nu   and 1N  with 

the help of boundary conditions (47) - (51) and the 

expressions obtained for these quantities are given 

in Appendix C. The expression for correction in the 

plug flow velocity 
1Pu  can be obtained from Eq. 

(33) by evaluating it at 
2

0Pr R q  .  The 

expression for wall shear stress w  is obtained by 

evaluating
N  at r R as given below. 

2 2
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Using the expression obtained for velocity 

distribution in Eq. (36), the expression for the 

volumetric flow rate  ,Q z t can be obtained as in 

Appendix D. The two term approximated 

perturbation series expansion of PR  yields the 

expression for plug core radius as  

       

      22 2 2 2
14 [ ( ) ] 1P HR q D R g t R q R R R            
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2 2 2 2
1 1 1( 1)

n

q R n n q R q R
 

    
 

(53) 

The longitudinal impedance to flow in the artery is 

defined as 

   , .g t Q z t                                              (54) 

 

 3. RESULTS AND DISCUSSION 

The main objective of the present mathematical 

analysis is to compare the physiologically important 

flow quantities of single-phase H-B fluid model and 

two-phase H-B fluid model which are used to 

model the blood when it flows through a narrow 

artery with multiple mild stenoses at low shear rates 

under the influence of periodic body acceleration 

and to spell out the advantageous of using two-

phase H-B fluid model rather than single-phase    

H-B fluid model for blood flow modeling. Also, it 

is aimed to investigate the effects of various 

physiological parameters such as maximum depth 

of the stenoses, pressure gradient, body 

acceleration, pulsatile Reynolds number, time, 

angular frequency and lead angle on the flow 

measurements such as plug core radius, velocity 

distribution, flow rate, wall shear stress and 

longitudinal impedance to flow. To analyze the 

aforesaid flow quantities and to validate the present 

study with the published results of others, we use 

the following range of parameters (Sankar and 

Ismail, 2010; Sankar, 2010c).      

Power law index n: 0.95 - 1.05; Yield stress θ: 0 – 

0.2;  Pressure gradient e: 0.5 - 0.7; Body 

acceleration parameter B: 0 – 2; Interface location 

parameter  : 0.95 – 1; Maximum projection of 

first stenosiss 
1P  (=

1 in single-phase H-B fluid 

model) and second stenosis 
2P  (=

2 in two-phase 

H-B fluid model)  in the peripheral layer region: 

0.05 – 0.15; Maximum projection of first stenosiss 

1 1C P    and second stenosis 
2 2C P      in 

the core region; Length of segment of the artery: 

60.6; Pulsatile Reynolds number 
H : 0.2 – 0.7; 

Pulsatile Reynolds number ratio  N H   takes 

the same value that is given to 
H ; 

N is 

calculated from 
N H   (Sankar, 2010b).  

3.1 Plug core radius 

The variation of plug core radius with axial distance 

of single-phase H-B fluid model and two-phase H-

B fluid model for different values of ,   and e 

with n = 0.95, t = 296.47°, θ = 0.1, ω = 1,  δ1 = 0.15, 

δ2 = 0.1 and B = 1 are shown in Fig. 2a and 2b 

respectively. One can easily note that all the 

distribution curves appear to follow the outline of 

the two stenoses where the plug core radius 

decreases from the beginning of the constriction ( z 

= 9.376, z = 32.9) until the peak of the stenoses ( z 

= 18.85, z = 41.45) and then it increases until the 

offset of the constrictions (z = 28.325, z = 50) are 

reached. At non-stenotic region, plug core radius 

remain at maximum value. It is seen that when the 

pulsatile Reynolds number α increases, the plug 

core radius increases considerably and it decreases 

significantly with the increase of the pressure 

gradient and lead angle  . It is also clear that for a 

given set of values of the parameters, the plug core 

radius of the two-phase H-B fluid model is 

marginally higher than that of single-phase H-B 

fluid model. 

 

a. Single-phase H-B fluid model 

 

b. Two-phase H-B fluid model with  = 0.95. 

Fig. 2 Variation of plug core radius with axial 

distance for different e, αH and  with n = 

0.95, t = 296.47˚, θ = 0.1, α = 0.2 , ω = 1 , 

δ1P = 0.15 , δ2P = 0.1, B = 1. 

 



  

3.2 Plug flow velocity 

The axial variation of plug flow velocity of single-

phase and two-phase H-B fluid models for different 

values of the parameters θ,  , 1P and 2P with n = 

0.95, ω = 1, t = 296.47˚, e = 0.5, α = 0.2 and B = 1 

are exhibited in Figs. 3a and 3b respectively. It is 

noted that plug flow velocity of the fluid decreases 

significantly when it moves from non-stenotic 

region to stenotic region and attains its minimum 

value at the mid-point of the stenoses ( z = 18.85, z 

= 41.45 ) where the depth of the stenoses are 

maximum and from there, the plug flow velocity 

increases significantly until it reaches the non-

stenotic region. It is also observed that for fixed 

value of  and increasing values of the yield stress 

 and the maximum depth of the stenoses 1P and 

2P , the plug flow velocity decreases marginally, 

but it increases marginally with the increase of the 

lead (phase) angle  while all the other parameters 

were treated as invariants. It is of important to note 

that the plug flow velocity of two-fluid H-B model 

is considerably higher than that of the single-fluid 

H-B fluid model.   

 

a. Single-phase H-B fluid model. 

 

b. Two-phase H-B fluid model with  = 0.95. 

Fig. 3 Variation of plug flow velocity with axial 

distance for different values of θ, , δ1P and 

δ2P with n = 0.95, t = 296.47˚, e = 0.5, αH = 

0.2, ω = 1, B = 1 and β = 0.95. 

3.3 Velocity distribution 

Velocity profiles of single-phase and two-phase H-

B fluid models for different values of B, n, 1P and 

  with z = 18.85, 
2 , 0.2,P H     1  are 

depicted in Figs. 4a and 4b respectively. One can 

notice the flattened velocity distribution around the 

axis of the tube for both of the fluid models. It is 

clear that the velocity of both of the fluid models 

increases significantly with the increase of the body 

acceleration and it decreases considerably when the 

power law index n increases while all the other 

parameters were kept as constant. For fixed values 

of B and n and increasing values of  and 1P , 

the velocity decreases marginally. It is also 

observed that the velocity distribution of two-phase 

H-B fluid model is marginally higher than that of 

single-phase H-B fluid model. It is of important to 

mention that the plot of the velocity profile in Fig. 

8a for single-phase H-B fluid model is in good 

agreement with the corresponding plot in Fig. 6 of 

Sankar and Ismail (2010) and the plot of the 

velocity profile in Fig. 8b for two-phase H-B fluid 

model is in good agreement with the corresponding 

plot in Fig. 7 of Sankar (2010).    

 

a. Single-phase H-B fluid model 

 

b. Two-phase H-B fluid model with β = 0.95.  

Fig. 4 Velocity distribution for different values of 

B, n, δ1P and θ with δ2P = 0.1, 
H  = 0.2 ,  

= 0.2, ω = 1, z = 18.85. 



  

3.4 Flow rate 

Fig. 5 shows the variation of flow rate of single-

phase H-B fluid model with yield stress for 

different values of B, , α and δ1 with t = 296.47o, ω 

= 1, 
2  = 0.1, n = 0.95, e = 0.5 and  z = 18.85. It is 

seen that the flow rate decreases linearly with 

increasing yield stress θ. For a given set of values 

of the parameters α and δ1, the flow rate increases 

considerably with the increase of the lead angle   

and it increases significantly with the increase of 

the body acceleration parameter B. It is also noted 

that the flow rate decreases slightly with the 

increase of the pulsatile Reynolds number ratio   

and it decreases significantly with the increase of 

the maximum depth of the first stenosis when all 

the other parameters were kept as invariables. The 

Variation of flow rate of two-phase H-B fluid 

model with yield stress for different values of 

, , HB   and e with ω = 1, t = 296.47˚, 

1 2 0.1P P   , n = 0.95, 0.95  and z = 18.85  

is depicted in Fig. 6. It is observed that flow rate 

decreases linearly with the increase of the yield 

stress of the fluid. For a given set of values of the 

parameters ,B e  and  , the flow rate decreases 

marginally with the increase of the pulsatile 

Reynolds number 
H of H-B fluid (fluid in the core 

region), whereas, the flow rate increases 

significantly with the increase of the body 

acceleration parameter B and it increases 

considerably with the increase of the lead angle 

 and pressure gradient parameter e  when all the 

other parameters were held fixed. From Figs. 5 and 

6, one can observe that the flow rate of two-phase 

H-B fluid model is significantly higher than that of 

the single-phase H-B fluid model.  

 

Fig.5 Variation of flow rate of single-phase H-B 

fluid model with yield stress for different 

values of B, , α and δ1 with t = 296.47o, ω = 

1, δ2 = 0.1, n = 0.95, e = 0.5 and z = 18.85. 

 

 

Fig. 6 Variation of flow rate of two-phase H-B fluid 

model with yield stress for different values of 

, , HB   and e  with ω = 1, n = 0.95,   t = 

296.47˚, 
1 2 0.1P P   , 0.95   and 

18.85z  . 

 

3.5 Wall shear stress 

The variation of wall shear stress of two-phase H-B 

fluid model in a time cycle for different values of B, 

1P  and ω with n = 0.95, 
2 0.1, 0.2P H   ,    

= 0, ω = 1, z = 18.85, β = 0.95 and e = 0.5 is 

exhibited in Fig. 7. One may observe that the wall 

shear stress decreases rapidly as time t increases 

from 0° to 140°and then it increases slowly with the 

increase of time t from 140° to 180° and then it 

decreases slowly with the increase of time t from 

180° to 220° and thereafter it increases rapidly as 

time t increases from 220° to 360°. One may notice 

that when the maximum depth of the first stenosis 

in the peripheral layer region 
1P  increases, the 

wall shear stress decreases considerably in the time 

range 0° - 140° and  220° to 360° , decreases 

marginally in the time range 140° - 220°. It is also 

clear that the wall shear stress increases 

considerably with the increase of the body 

acceleration parameter B. When the parameters B 

and
1P  held constant and the frequency parameter 

 increases, the wall shear stress decreases very 

slightly in the time range 0° - 140°and 180° - 230° 

and then it increases very slightly in the time range 

140° - 180°and 230° - 360°. Fig. 8 depicts the 

variation of wall shear stress of single-phase and 

two-phase H-B fluid models in a time cycle. It is 

noted that the wall shear stress of two-phase H-B 

fluid model is considerably lower than that of 

single-phase H-B fluid model and in the flow of 

both of the fluid models, the wall shear stress 

increases marginally with the increase of the 

pressure gradient parameter. 



  

 

Fig. 7 Variation of wall shear stress of two-phase 

H-B fluid model in a time cycle for 

different values of B, δ1P, 
H  and θ with n 

= 0.95 , δ2P = 0.1 ,  = 0, ω = 1, z = 18.85, 

β = 0.95 and e = 0.5. 

 

Fig. 8 Variation of wall shear stress with time for 

different fluid models with αH = 0.2, ,     

e =0.5, β = 0.95, n = 0.95, δ1P = 0.15, θ = 

0.1, δ2P = 0.1, ω = 1 and z = 18.85. 

3.6 Longitudinal impedance to flow 

The variation of longitudinal impedance to flow of 

single-fluid H-B model with pressure gradient 

parameter e for different values of B, and ω with 

θ = 0.1, n = 0.95, t = 296.47˚, 
1 2 0.1   , z = 

18.85 and 0.2  is illustrated in Fig. 9. One can 

observe that the longitudinal impedance to flow 

decreases rapidly with the increase of pressure 

gradient parameter e from 0 to 1.5 and then it 

decreases very slowly when the pressure gradient 

parameter e increases from 1.5 to 6. It is noticed 

that the longitudinal impedance to flow decreases 

with the increase of the parameters ,B  and  ; 

but the decrease in the longitudinal impedance to 

flow  is marginal when lead angle  increases, 

considerable when the body acceleration parameter 

B  increases and significant when the frequency 

parameter  increases. The variation of 

longitudinal impedance to flow of single-phase and 

two-fluid H-B models in a time cycle for different 

values of yield stress   with t = 296.47˚, B = 1, δ1P 

= 0.15, δ2P = 0.1, n = 0.95,          e = 0.5, ω = 1,  = 

0.2, 
H  = 0.2 and β = 0.95 is shown in Fig. 10. It 

is noted that the impedance to flow of two-phase H-

B fluid model is marginally lower than that of 

single-phase H-B fluid model. It is clear that the 

impedance to flow increases significantly with the 

increase of the fluid’s yield stress. 

 

Fig. 9 Variation of longitudinal impedance to flow 

of single-phase H-B fluid model with 

pressure gradient for different values of B, 

and ω with θ = 0.1, n = 0.95, t = 296.47˚, 

α = 0.2, δ1 = δ2 = 0.1 and z = 18.85. 

     

 

Fig. 10 Variation of longitudinal impedance to flow 

with axial distance for different fluid 

models when e = 0.5, αH =0.5, n = 0.95, t = 

296.47˚, α = 0.2, ω = 1, δ1P = 0.15, B = 1, 

δ2P = 0.1 and β = 0.95. 

3.7 Physiological applications 

To spell out some physiological applications of the 

this study, the data (for different types of arteries, 

their corresponding radii, steady and pulsatile 

pressure gradient values) reported by Chaturani and 

Issac (1995) are reproduced in Table 1 and are used 

in our study to compute some important clinical 

measures of cardiovascular system. For arteries 

with different radii, the estimates of the mean 

velocity for two-phase and single-phase H-B fluid 

models for blood flow in narrow arteries with mild 

multiple-stenoses in the presence and absence of 

body acceleration with t = 296.47˚, B = 1, δ1P = 

0.15, δ2P = 0.1, n = 0.95,  e = 0.5, ω = 1,  = 0.2, 

0.2,H    and β = 0.95 are computed in 

Table 2. One can note that for both of the fluid 

models, the estimates of the mean velocity 

decreases significantly with the increase of radius 



  

of the artery except for the arteriole. It is also 

recorded that that the presence of body acceleration 

influences the mean velocity by increasing its 

magnitude significantly. It is found that the 

estimates of the mean velocity of the two-phase 

flow of blood are marginally higher than that of the 

single-phase flow of blood.  
 

Table 1 Physiological data for different arteries. 

Artery 

Radius 

 2x 10 m

 

0A  

 x -2 -110 Kg m s

 

1A  

 x -2 -110 Kg m s

 

Aorta 1.0 7.3 1.46 

Femoral 0.5 32.0 6.4 

Carotid 0.4 50.0 10.0 

Coronary 0.15 698.65 139.74 

Arteriole 0.008 2000.0 400 

 
Table 2 Estimates of mean velocity for two-phase 

and single-phase blood flow models               

for arteries with different radii. 

Artery  Mean velocity 

with body 

acceleration 

 210 m s  

Mean velocity 

without  body 

acceleration 

 210 m s  

Two- 

phase 

fluid 

model  

Single- 

phase 

fluid 

model  

Two- 

phase 

fluid 

model  

Single-

phase  

fluid 

model  

Aorta  72.56  70.25  64.46  62.18  

Femoral  80.23  76.45  70.61  68.72  

Carotid  80.23  76.45  70.61  68.72  

Coronary  155.68  150.42  133.74  129.4  

Arteriole  1.3212  1.2732  1.1243  1.101  

 

3.8 Discussion on the results  

The results obtained in this study bring out the 

following important observations. 

 The presence of body acceleration enhances the 

velocity and flow rate and reduces the wall 

shear stress and longitudinal impedance to flow. 

 The velocity and flow rate of the blood flow are 

considerably higher when is it modeled by two-

phase H-B model compared to the 

corresponding flow quantities when it is 

modeled by single-phase H-B model.   

 The wall shear stress and longitudinal 

impedance to flow of the blood flow are 

considerably lower when is it modeled by two-

phase H-B model compared to the 

corresponding flow quantities when it is 

modeled by single-phase H-B model.   

4. CONCLUSION 

The present mathematical analysis spells out 

several useful and interesting rheological properties 

of blood when it flows through narrow arteries with 

mild axi-symmetric multiple-stenoses in the 

presence of periodic body acceleration, treating it 

as (i) single-phase H-B fluid model and (ii) two-

phase H-B fluid model. Some major findings of 

this comparative analysis are listed below.  

 The velocity decreases significantly with the 

increase of the yield stress and the reverse 

behavior is observed for longitudinal 

impedance to flow. 

 The plug flow velocity, velocity distribution 

and flow rate are considerably higher for two-

phase H-B fluid model than those of the single-

phase H-B fluid model. 

 The plug core radius, wall shear stress and 

longitudinal impedance to flow are marginally 

lower for two-phase H-B fluid model than 

those of the single-phase    H-B fluid model. 

 The estimates of the mean velocity are 

considerably higher for two-phase H-B fluid 

model than those of the single-phase H-B fluid. 

From the results obtained in this investigation, it is 

observed that there is substantial difference 

between the flow quantities of single-fluid and 

two-phase H-B fluid models. Thus, it is expected 

that the use of two-phase H-B fluid model for 

blood flow in diseased artery may provide better 

results which may be used by the physicians to 

predict the effects of periodic body accelerations 

and different depths of stenoses in the artery on the 

physiologically important flow quantities. Also, 

one may hope that this analysis may provide some 

useful information to surgeons to take some crucial 

decisions regarding the treatment of patients, 

whether the vascular diseases can be treated with 

medicines or should the patient undergo a surgery. 

Hence, it is concluded that the present study may 

be considered as an improvement in the analysis of 

blood flow in narrow arteries with mild multiple-

stenoses under periodic body accelerations.  
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Appendix A 

Solving Eqs. (9) and (11) with the help of the 

boundary conditions (12) and (13) and Eqs. (14) – 

(19), one can obtain the following expressions for 

1 1 1, ,P H Hu  and 
1Pu  (Sankar and Ismail, 2010). 
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where   1 .D g dg dt  

 

Appendix B 

From Eq. (6) and the expressions for velocity, the 

expression for the volumetric flow rate  ,Q z t is 

obtained as below. 
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Appendix C 

Eqs (39) - (46) form a system of partial differential 

equations which can be solved for the unknowns 

0 1 0 1 0, , , , ,H H H H Nu u u  1 0,N Nu   and 1N  with 

the help of boundary conditions (47) - (51) and the 

expressions obtained for these quantities are 

obtained as below. 
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     1 cos Bcosg t e t      , 

  1 .B g dg dt  One can refer Sankar (2010c)  

for details of obtaining the above expressions. 

Appendix D 

Using the expression obtained for velocity 

distribution in Eq. (36), the expression for the 

volumetric flow rate  ,Q z t can be obtained as 

given below. 
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