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Abstract— The paper provides a new deterministic Q-learning 
with a presumed knowledge about the distance from the current 
state to both the next state and the goal. This knowledge is 
efficiently used to update the entries in the Q-table once only by 
utilizing four derived properties of the Q-learning, instead of 
repeatedly updating them like the classical Q-learning. Naturally, 
the proposed algorithm has an insignificantly small time-
complexity in comparison to its classical counterpart. Further, 
the proposed algorithm stores the Q-value for the best possible 
action at a state, and thus saves significant storage. Experiments 
undertaken on simulated maze and real platforms confirm that 
the Q-table obtained by the proposed Q-learning when used for 
path-planning application of mobile robots outperforms both the 
classical and extended Q-learning with respect to three metrics: 
traversal time, number of states traversed, and 90o turns 
required. Reduction in 90o turnings minimizes the energy 
consumption, and thus has importance in robotics literature. 

Keywords— Agent; Q-learning; Reinforcement learning; Path-
planning, Mobile robots. 

 

I.  INTRODUCTION 
Motion planning is one of the important tasks in intelligent 

control of a mobile robot. The problem of motion planning is 
often decomposed into path planning and trajectory planning. 
In path planning, we need to generate a collision-free path in 
an environment with obstacles and optimize it with respect to 
some given criteria [8], [9]. However, the environment may be 
imprecise, vast, dynamical and partially non-structured [7]. In 
such environment, path planning depends on the sensory 

information of the environment, which might be associated 
with imprecision and uncertainty. Thus, to have a suitable 
planning scheme in a cluttered environment, the controller of 
such kind of robots must have to be adaptive in nature. Several 
approaches have been proposed to address the problem of 
motion planning of a mobile robot. If the environment is a 
known static terrain and it generates a path in advance, it is 
said to be off-line algorithm. It is called on-line, if it is capable 
of producing a new path in response to environmental 
changes. 

Machine learning is generally employed in a mobile robot 
to make it aware about its world map. The early research on 
mobility management of robots emphasized the needs of 
supervised learning to train a robot to determine its next 
position in a given map using the sensory readings obtained by 
the robot about the environment. Supervised learning is a good 
choice for mobility management of robots in fixed maps. 
However, if there is a small change in the robot’s world, the 
acquired knowledge is no longer useful to guide the robot to 
select its next position. A complete training of the robot with 
both the old and the new sensory data-action pairs is then 
required to overcome the said problem.  

Reinforcement learning is an alternative learning policy, 
which rests on the principle reward and punishment. No prior 
training instances are presumed in reinforcement learning. A 
learning agent here does an action on the environment, and 
receives a feedback from the environment based on its action. 
The feedback provides an immediate reward for the agent. The 
learning agent here usually adapts its parameter base

d on the current and cumulative (future) rewards. Since the 
exact value of the future reward is not known, it is guessed 
from the knowledge about the robot’s world map. The primary 
advantage of reinforcement learning lies in its inherent power 
of automatic learning even in presence of small changes in the 
world map.  

Usually, the planning involves an action policy to reach a 
desired goal state, through maximization of a value function 
[1]-[3], which designates sub-objectives and helps choosing 
the best path. For instance, the value function could be the 
shortest path, the path with the shortest time, the safest path, or 
any combination of different sub-objectives. The definition of 
a task in this context may contain, besides the value function, 
some a priori knowledge about the domains, such as the 
environmental map, the environmental dynamics and the goal 
position. The a priori knowledge helps the robot generating a 
plan for motion amidst obstacles, while the lack of such 

knowledge obliges the robot to learn it first before invoking 
the motion planning algorithm. 

Our research applies reinforcement learning techniques to 
real-world robots. Reinforcement learning has been tested in 
many simulated environments [3] - [11] but on a limited basis 
in real-world scenarios. A real-world environment poses more 
challenges than a simulated environment, such as enlarged 
state spaces [2], increased computational complexity, 
significant safety issues (a real robot can cause real damage), 
and longer turnaround times for results. This research 
measures how well reinforcement-learning technique, such as 
Q-learning, can be applied to the real robot for navigational 
problem. In our research, we modified the classical Q-learning 
algorithm, hereafter called the improved Q-learning for 
increasing its performance in the path-planning problem. 

Performance of a reinforcement learning algorithm is 
greatly influenced by two important factors used in the control 
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strategy of the algorithm, popularly known as ‘exploration’ 
and ‘exploitation’. Exploration usually refers to selecting any 
action with non-zero probability in every encountered state to 
learn the environment by the agent. Exploitation, on the other 
hand, is targeted at employing the current knowledge of the 
agent to expect achieving good performance by selecting 
greedy actions [37]. One classical method to balance 
exploration and exploitation in Q-learning is -greedy 
exploration [39], where a parameter  representing exploration 
probability is introduced to control the ratio between 
exploration and greedy action selection. 

The second alternative method to handle the above 
problem is to employ Boltzman exploration, where the agent 
selects an action a  with a probability: 

    / expexp(
a

Ta  S,QTa  S,Q  in which Q(S, a ) denotes 

the Q-value at state S due to action a , and T is a positive 
constant called the ‘temperature parameter’. The Boltzman 
exploration ensures that the agent is more likely to select 
action a  with higher Q-value: Q(S, a ). The temperature 
parameter T adjusts the balance between exploration and 
exploitation. Large T refers to better exploration, while small 
T approaching zero indicates almost deterministic (greedy) 
action selection. Usually these parameters are determined by 
trial and error to achieve desired performance. 

In [38], the authors employed an interesting strategy of 
internal prediction/estimation to control the balance between 
exploration and exploitation for efficient adaptability of an 
agent in a new environment. Here, a reliability parameter RI 
has been introduced as an internal variable to estimate the 
‘expected prediction error’. The variable RI is updated after 
every action by comparing itself to the actual error. The RI is 
introduced in the expression of Boltzman exploration by 
replacing temperature parameters T by RI=R(S)/, where  is 
a positive constant and S denotes the current state of the agent. 
The factor  is used to normalize the magnitude of Q(s, a) 
with R(s). 

In the context of path-planning by a mobile robot, the 
robotic agent usually has additional knowledge about the 
distance from the current state to both the next state and the 
goal. This knowledge has been efficiently used here during the 
learning phase of the robotic planner to speed up learning 
through greedy selection of actions. Four properties (rules) 
concerning computation of Q-values at state S/ from the 
current estimate of Q-value at state S, where S/ is a neighbor 
of state S, has been developed. Each rule has a conditional part 
and an action part. If the conditional part is found true, the 
action part is realized. The conditional part involves checking 
a locking status of a state along with a distance comparison, 
where locking of a state indicates that its Q-value needs no 
further updating. The action part ensures that the Q-value at S/ 
can be evaluated in one step only, and the state S/ will also be 
locked. Thus when conditional part of a property is activated, 
Q-value at a new state is evaluated once only for ever, and the 
new state is locked. The proposed improved Q-learning 
algorithm is terminated when all the states in the workspace 
are locked.  

It is apparent from the above discussion that exploration 
in the improved Q-learning algorithm takes place when all the 
rules’ conditional parts do not satisfy at a given situation, 
whereas exploitation takes place when conditional part of one 
rule is activated. The balancing of exploration and exploitation 
is done naturally, and no parameter is involved to control 
balancing. 

The present paper is an extension of the Extended Q-
learning (EQL) [17] algorithm, where too the authors 
presumed that their learning algorithm has knowledge about 
distance measure of the current state to the next state and the 
goal. They also listed four properties (rules) of EQL without 
proof, two of which are derived in the current paper. But the 
remaining two properties presented here are novel. These two 
new properties provide alternative conditions for locking, 
thereby improving relative learning speed of the proposed 
algorithm in comparison to EQL. 

The work presented in this paper is better than the classical   
[3] and the extended Q-learning by the following counts 

1. In classical Q-learning (CQL), Q-values of the states are 
updated theoretically for infinite number of steps. For all 
practical purposes however, the algorithm is terminated 
when the difference in Q-values of each state in two 
successive iterations is within a prescribed limit. The 
algorithm is said to have converged under this 
circumstance, which too requires excessive 
computational time. The time-complexity of the 
proposed Q-learning algorithm has been reduced here by 
locking selected states, where Q-value update is no 
longer required. The conditions used for identifying the 
states to be locked are derived here. 

2. The extended Q-learning presented in [17] stores only 
the best action at a state. Naturally, the knowledge 
acquired by Q-learning in a world map without obstacles 
cannot be correctly used for planning, particularly when 
the next state due to the best action is occupied with an 
obstacle. 
    In the modified Q-learning presented here, the agent is 
capable of ranking all the actions at a state based on the 
Q-values at its neighboring states. Consequently, during 
the planning cycle, if the state corresponding to the best 
action is occupied with an obstacle, the robot would 
pickup the next best action. This in one way overcomes 
one fundamental limitation of the extended Q-learning. 
 

3. Since the extended Q-learning stores only the best action 
at a state, it cannot take care of the multiplicity of the 
best actions. Thus if there exist two or more best actions, 
it selects one of them arbitrarily and saves the selected 
action with the state. Naturally, the stored action may 
sometimes involve more turning of the robot during 
planning than it could have been obtained by an 
alternative best action. In our algorithm, if we have more 
than one competitive action at a state during the planning 
cycle, we select the one ensuring minimum turning of 
the robot. Thus our present algorithm is energy optimal. 



4. Both the extended [17] and the improved Q-learning, 
algorithms are terminated when all the states are locked. 
However, the improved Q-learning has 4 locking 
conditions, including the two of the extended Q-learning. 
Because of these two additional conditions of locking, 
the probability of locking of a state in a given interval of 
time by the improved Q-learning is higher than the 
extended Q-learning. 

The rest of the paper is organized as follows. Classical Q-
learning is introduced in section II. Some properties of the Q-
learning based on the concept of locking of states are derived 
in section III. The algorithm for the improved Q-learning is 
given in section IV. The algorithm for the path planning is 
given in section V. Computer Simulation is shown in section 
VI. Experimental details are included in section VII. 
Conclusions are listed in section VIII. 

II.  THE CLASSICAL Q-LEARNING 
 

In classical Q-learning, all possible states of an agent and its 
possible actions in a given state are deterministically known. 
In other words, for a given agent A, let S1, S2,..., Sn, be n- 
possible states, where each state has m possible actions  ,1a  

,2a  ..., ma . At a particular state-action pair, the specific 
reward that the agent acquires is known as immediate reward. 
Let ),( ji aSr  be the immediate reward that the agent A 

acquires by executing an action ja  at state iS . The agent 
selects its next state from its current states by using a policy. 
The policy attempts to maximize the cumulative reward that 
the agent could have in subsequent transition of states from its 
next state. Let the agent be in state iS  and is expecting to 

select the next best state. Then the Q-value at state iS  due to 

action of ja  [36] is given in (1). 

       )),,((  ),() , ( /
/

 aaSQMaxaSraSQ ji
a

jiji               (1) 

where 10    and ),( ji aS  denotes the next state due to 

the selection of action ja  at state iS . Let the next state 

selected be kS . Then ),()),,(( // aSQaaSQ kji  . 

Consequently selection of /a  that maximizes ),( /aSQ k  and in 
turn

 ),( ji aSQ  is an interesting problem.  

The classical Q-learning algorithm for deterministic state 
transitions is given below. The algorithm starts with a 
randomly selected initial state. An action ‘ a ’ from a list of 

actions ,1a  ,2a  ..., ma  is selected, and the agent because of 
this action receives an immediate reward r , and move to the 
new state following the  -transition rule given in a table. The 
Q-value of the previous state due to the action of the agent is 

updated following the Q-learning equation (1). Now, the next 
state is considered as the initial state and the steps of action 
selection, receiving immediate reward, transition to next state 
and Q-update are represented for ever. 

Classical Deterministic Q-learning 
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The classical Q-learning requires a memory of (n×m) to 
keep track of the Q-table. For large n and m, the space 
complexity thus is high. In the improved Q-learning (IQL) we 
attempted to reduce the space complexity. The improved Q-
learning algorithm presented here involves n Boolean 
variables called Lock for n states to indicate whether  ),( aSQ  
at state S due to action a  needs to be updated. The Lock 
variables are used to avoid unnecessary update of entries 

),( aSQ in the Q-table and thus to save time-complexity. 
In IQL, we require n-memories to store n-Lock variables 

associated with n-states. Here, instead of the Q-table of n×m 
dimension, we require to store the best Q-value of a state 
because of any action, and thus require n-memories for n best 
Q-value of n-states. So, we save some space complexity (nm-
2n)=n(m-2).  

III.  PROPERTIES OF  THE IMPROVED Q-LEARNING 

This section provides four interesting properties, based on 
which the IQL algorithm has been developed. The properties 
stress upon the following two issues. 

1) If Q-value at any state S (is known and) needs no 
updating, the state is locked.  

2) If S is a locked state and S/ is a neighboring state of 
S, and any one of the four properties to be derived 
is applicable at (S, S/) pair, then we can compute Q-
value at state S/ once only using the property, and 
the S/ is also locked. 

      If no property is applicable at a given (S, S/) pair, state-
transition takes place without any updating in Q-value. It may 
not be out of place to mention here that the first locking in 
IQL takes place when the agent has a state-transition from the 
goal state to any of the neighboring states of the goal. The 
locking of states then is continued as and when one of the four 



properties is applicable. The IQL terminates when all the 
states are locked. We now formally define some parameters to 
derive the properties. 

Let for any state Sk, the distance between the goal state and 
the next feasible states of Sk are known.  Let the next feasible 
state of Sk be S{Sa, Sb, Sc,Sd }. Let G be the goal and the city 
block distance between Sa, Sb, Sc, Sd and G be daG, dbG, dcG and 
ddG respectively. Let the distance in order be dbG<daG<dcG<ddG. 
Then the agent should select the next state Sb from its current 
state Sk. If the Q-value of the state Sb is known, we can 
evaluate the Q-value of state Sk by the following approach. 
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Thus if the next state having the shortage distance with the 
goal is known, and the Q-value of this state is also known, 
then the Q-value of the current state is simply ×Q-value of 
the next state. 

Let Sp, Sn and SG be the present, next and the goal states 
respectively. Let Qp and Qn be the Q-value at the present and 
the next states Sp and Sn respectively for the best action. Let 
dxy be the city block distance between the states Sx and Sy. We 
use a Boolean variable Lock: Lx to indicate that the Qx value 
of a state is fixed permanently. We set lock Ln=1 if the Q-
value of the state n is fixed, and won’t change further after Ln 
is set to 1. The Lock variable for all states except the goal will 
be initialized to zero in our proposed Q-learning algorithm. 
We observe four interesting properties as indicated below. 
 
Property 1: If Ln=1 and nGpG dd   then np Q γ Q  and set 
Lp = 1. 

Proof:  Let the neighborhood state of Sp be S{Sa ,Sb,Sc ,Sn}, 
and the agent selects Sn as the next state as xGnG dd   for 

}.,,,{ ncbax  
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Since Ln =1, and nGpG dd  , ,np QQ  and thus 

np QQ  γ for 10   is the largest possible value of pQ , 

and so pQ should not be updated further. Therefore, Lp = 1 is 

set.         � 

Property 2: If Lp =1 and pGnG dd  then /γQQ pn   and set 
Ln = 1. 

Proof:  Since pGnG dd  , the agent will select next state n 
from the current state p. Hence by (4)  
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Since Lp =1, and pGnG dd  , ,np QQ  and thus 

/n pQQ  for 10   is the largest possible value of nQ , 

and nQ should not be updated further. So, Ln = 1 is set.  � 

Property 3: If Lp = 1 and pGnG dd  then pn QγQ  and 
set Ln = 1. 
Proof: If the robot is moving from Si to the goal G in one step 
the immediate reward is R, say. On the other hand, if the robot 
moves from Si to any state other than the goal G then the 
immediate reward is zero. 

Now, suppose the robot moves from Sp to the goal G in k. 
Now, as 1pL , k is the minimum number of  state 

transitions to reach the goal from Sp. So, we obtain 
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Suppose the robot moves from Sn to the goal G in k+1 
transition steps. Here, (k+1) is also the minimum number of 
steps to reach goal G from Sn, failing which the agent would 
have selected some other state as the next state from the 
current state Sp.  
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Dividing (6) by (7), we have: 
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Since ,pGnG dd   .pn QQ  So, pn QQ   has largest 

possible value for 10   . Further, as Lp=1, and Sn is the 
nearest state to Sp with respect to given distance metric, 
therefore Ln is set to 1.  � 

Property 4: If Ln=1 and pGnG dd  then /γQQ np   and 
set Lp = 1.

 
Proof:  Since pGnG dd  , nQ  can be evaluated from pQ  by 
(8). Thus 
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Since Ln =1, and pGnG dd  , ,pn QQ  and thus 

/p nQQ  for 10   is the largest possible value of pQ , 

and pQ should not be updated further. So, Lp = 1 is set.         � 

IV.  THE IMPROVED Q-LEARNING ALGORITHM 
The classical Q-learning employs a Q-table to store the 

Q(S, a) for S=S1 to Sn and a=a1 to am. Thus it requires an array 
of (n×m) size. In the improved Q-learning, we, however, 
require to store only the Q-values at a state S for the best 
action. Thus for n states, we need to store n Q-values. Besides 
the Q-storage, we in addition require n Boolean Lock 
variables, denoted by Li  for state Si, i= 1 to n, depicting the 
current status of the state. If the Lock-variable at a state is 1, 
then the Q-value at that state need not be updated further. 

In path-planning application of mobile robots, the 
environment can be partitioned into non-overlapped grids, 
called states. Thus a state can have four neighbors. 
Consequently, during the planning phase, the robot can 
determine the best action to move to the next (best) state Sn 
from the current Sp by identifying the neighboring state having 
the largest Q-value. The corresponding action of the robot to 
move to the next (best) state Sn is apparent. 

The proposed algorithm for improved Q-learning has 2 
main steps; i) initialization, ii) Q-table updating. In the 
initialization phase, the lock variable at all states except the 
goal state SG is set to zero. The immediate reward from any 
neighboring state to the goal state is set to 100. The 
discounting factor γ and the initial state are fixed up. 

In the present update policy of the Q-table, if Lp (Ln) is 1, 
then Ln (Lp) will be set to 1. However, in the initialization 
phase only LG is set to 1. Thus, unless the current or the next 
state = LG, there will be no update in the Q-table. In order to 
have Lp or Ln = LG, the robot usually has to wander in its world 
map for a finitely large number of iterations. To avoid the 

unnecessary execution of the Q-table update, we add a small 
repeat-until loop between the two main phases of the program. 
This loop continues selecting an action and execute it (without 
updating Q-table) until the robot reaches the goal. 

Once the robot reaches the goal, the first repeat-until loop 
exits, and the Q-table updating is initiated. The process of Q-
table updating is continued until all the states are locked. 

The pseudo code of the improved Q-learning is given 
below.  
Pseudo Code for Improved Q-learning  

1.  Initialization 
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Theorem 1: The entries in the Q-table for the best action in 
the classical Q-learning have the same value as in the 
improved Q-learning. 

Proof: Let Qp and Qn be the Q-value for the best action at the 
present state Sp and the next state Sn. In classical Q-learning Qp 
is updated, when the agent has a transition from Sp to Sn. 
However, Qp would attain maximum value in a learning 
epoch, if the Qn had already attained the maximum value. 

Now, if Sp is closest to the goal, then RQ p . , where R  
is immediate reward and γ is the discounting factor. So, if Sp is 
at a distance of k through a shortest path measured by city 
block distance, then RQ k

p . . Qp if updated later cannot 

exceed Rk . , as it is at a shortest distance k w.r.t. the goal. 

In the improved Q-learning, if nGpG dd  , then by property 

(1) and (2) np Q γ Q  . . Now, if 1nL , i.e., state n is at a 



shortest distance (k-1) to the goal, RQ k
n .1  , and then 

RRQQ kk
np ....   1 . So, when nGpG dd   

and 1nL , RQ k
p . , and this value of Qp should not change 

further. 

Further, if pGnG dd  , then by property (3) and (4)
 

/γQQ np  . Now, if Qp is at a shortest distance (k+1) from the 

goal, then RQ k
n .1   and RQQ k

np ./   , and Rk .  
is the largest possible value of Qp. 

In the improved Q-learning, irrespective of nGpG dd 
 

or 

pGnG dd   it is found that RQ k
p . . So, both the classical 

Q-learning and the improved Q-learning have a steady state Q-
table with p   ,.RQ k

p   .                                              � 

We now determine the space- and time-complexity of the 
Improved Q-learning.  

Space-Complexity:  In classical Q-learning, if there are n 
states and m action per state, then the Q-table will be of n)(m  
dimension. In the Improved Q-learning, 2 storages are 
required for each state, one for storing Q-value and other for 
storing value of the lock variable of a particular state. Thus for 
n number of states, we require a Q-table of n)(2  dimension. 
The saving in memory in the present context with respect to 
classical Q thus is given by mn  2n = n(m  2), which is of 
the order of mn. 
Time-Complexity: In classical Q-learning, the updating of Q-
values in a given state requires determining the largest Q-
value, in the next state for all possible actions by Equation (1). 
Thus if there are m possible actions at a given state, 
maximization of m possible Q-values, require m1 
comparison. Consequently, if we have n number of states, the 
updating of Q values of the entire Q table by classical method 
requires n(m 1) comparisons. Unlike the classical case, here 
we do not require any such comparison to evaluate the Q 
values at a state Sp from the next state Sn. But we need to know 
whether state n is locked that is, Q-value of Sn is permanent 
and stable. Thus if we have n number of states, we require n 
number of comparison. Consequently, we save a time n(m 1) 
 n = nm  2n= n(m2), which is of the order of mn. 

 
V.  THE PATH PLANNING ALGORITHM 

The Q-learning algorithm presented above stores the Q-
values at each state for the best action. After the learning is 
completed, i.e., all the states are locked, the Q-table can be 
used for path planning application. During path planning, the 
robot while at state Sp identifies the next best state Sn, where 
the Q-value is higher than the Q-value of other neighboring 
states of Sp. However, if there exist more than one next state 
having the largest Q-value among the neighboring state of SP, 
the robot ideally would select any one of them. 

In this paper, we, however, economically select the next 
state Sn, while the robot is at Sp, based on the torque 
requirement. For example, let there exist two states Sn1 and Sn2 
having the largest Q-value around the neighbor of Sp. Then the 
robot would select Sn1 as the next state, if the angular rotation 
to move to Sn1, is smaller than that of Sn2. A small angular 
turning requires less torque to be generated by the robot. 
Consequently, the robot in the proposed planning algorithm 
consumes minimum energy as the torques generated during 
successive movement of the robot toward the goal is optimally 
selected. 
     Let the present state be Sp and Sn be the next state with the 
largest Q-value. Sr be a next state of Sp, and SG be the goal 
state. We now develop a path-planning algorithm to determine 
an obstacle-free trajectory of optimal path-length and energy 
for the robot between an arbitrary starting point and a fixed 
goal point in the pre-trained world map. 
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                VI.  COMPUTER SIMULATION 
In our computer simulation, we consider an environment of 

20×20 grids, where each grid is given a state number. For 
example, a grid located at position (x, y) defined in the 
Cartesian coordinate reference frame has a  

yrowsizexstateno  )1(.  (10) 
where rowsize denotes  the number of grids in a row. 
   Performance of the Q-learning algorithm has been studied 
here in two phases. First, a given world map is trained by the 
proposed Q-learning algorithm. Second, the trained world map 
with a known Q-table is used to generate a trajectory of 
motion of the robot between an arbitrarily selected initial 
position and the fixed goal position in the said world map. The 
performance metrics used here to compare the relative 
performance of our proposed algorithm with the classical Q- 
and the extended Q-learning [5] include the convergence time 
of the learning algorithm, total time taken to execute a plan of 
motion in a pre-trained world map, and the number of 90o 

rotations involved to completely execute the plan. While 
convergence is considered for the learning algorithm, the 
issues of time and energy consumptions, the latter being 
measured in terms of   90o turnings, are part of the planning 
algorithm. The performance analysis considers both the 
learning and the planning algorithms together as both of them 
jointly determine the overall performance in the path-planning 
application. 



   The performance of the Q-learning algorithm is studied 
under four experimental settings. First, the training and 
planning is performed on the same obstacle-free world maps. 
Second, the training is performed on obstacle-free map, but 
before planning algorithm is executed obstacles are added in 
the map. Third, both training and planning are performed on 
the same map with few obstacles. Lastly, the training was 
performed in a map with few obstacles, and a few more 
obstacles are added before planning. The classical Q-, the 
extended Q- and the improved Q-learning algorithms are 
compared with the well-known Dijkstra’s shortest path finding 
algorithm in a graph and the heuristic A* algorithm under the 
above four experimental settings. 
 
A. Experiments 
 
Let S and G be the starting and the goal states in all the world 
maps considered for path-planning in the following 
experiments. In each experiment, the Q-table is obtained by 
three different Q-learning algorithms: the classical Q-, the 
extended Q- and the improved Q-learning. After the learning 
is over, the robot is kept at the starting position with the 
heading direction in the east. The experiments and the 
corresponding results are briefly outlined below. 
Experiment 1:  The first experiment is carried out on a world 
map of 20  20 grids as shown in Fig. 1 to compare the 
relative performance of the three distinct Q-learning 
algorithms. The classical Q-learning with random action 
selection and Boltzman action selection with T= 0.01 have 
found to converge after 50026 and 8276 iterations. 
   The extended and the improved Q-learning are executed 
until all the Lock variables associated with each state are set to 
1. The numbers of iterations required to learn the world map 
of Fig. 1 by the extended Q-learning was found to be 20273, 
whereas the improved Q-learning requires 6502 iterations to 
set all the states locked.  
    The experiment 1 reveals that the paths obtained by the 
planning algorithm by acquiring knowledge in the Q-table by 
all the three algorithms are optimal (having 21 state 
transitions) with respect to a measure of city block distance. 
However, the improved Q-learning requires minimum turning 
and thus consumes minimum energy to execute the complete 
task of path-planning (Table- I). As A* and Dijkstra’s 
algorithms search optimal paths in real time, they respectively 
consume almost double and 4-times the time required for path-
planning by IQL. 
Experiment 2: The second experiment is concerned with 
training in the obstacle-free world map of Fig. 1 by the three 
Q-learning algorithms. After the training is over, we add 
obstacles in the map and change the starting position as 
indicated in Fig.2 to Fig.5, and execute the respective planning 
programs. The resulting paths obtained by the planning 
algorithms with the acquired knowledge stored in the Q-tables 
by respective Q-learning algorithm reveal interesting 
observations. First, the resulting Q-tables obtained by the 
classical and the improved Q-learning based techniques help 
the planning algorithms to construct optimal paths in all the 

maps of Fig. 2-5.  Fig. 2, 4 and 5 exhibit an immature 
termination of the trajectory of motion by the robot, when the 
Q-table is updated by the extended Q-learning. This happens 
because the extended Q-learning algorithm stores only the best 
action at each state, which sometimes is occupied by an 
obstacle.  
   The scenario, however, is different in case of modified Q-
learning.  In modified Q-learning, the agent during execution 
of the plan determines the best neighborhood state having the 
largest Q-value. If the neighboring state thus selected is 
occupied by an obstacle, the robot selects the next feasible 
neighboring state with the largest Q-value, and selects it as the 
next state. Consequently, even only one neighboring state, 
which was the previous state of the agent is unoccupied with 
obstacle, the agent can return to that state. Thus the planning 
algorithm never gets stuck to a state as in case of the extended 
Q-learning. 
   It is noteworthy that 90o turns taken by A* and Dijkstra’s 
algorithms are smaller in comparison to that by IQL in Fig. 4 
and 5. The justification of the results is due to the phenomenon 
that the Q-values stored do not carry information about turning 
angles. So a search algorithm looking for a shortest path 
naturally identifies a trajectory with less turning angles. 
Experiment 3: The third experiment is carried out in world 
map (Fig. 6) with obstacles during both the learning and the 
planning phase. The number of learning epochs required for 
convergence by different algorithms are 50604 for classical Q- 
learning with random action selection, 9104 for classical Q-
learning with Boltzman action selection (T=0.01), 21701 for 
EQL and 6546 for IQL. 
     The planned trajectories obtained by consulting respective 
Q-tables for CQL, EQL and IQL algorithms are shown in Fig. 
6. The paths planned by Dijkstra’s shortest path finding and 
A* algorithms are also included in Fig. 6 for comparison. It is 
apparent from the figure that the shortest path (no. of state 
transitions=13) is obtained, when the Q-table is updated both 
by the extended Q-learning and the improved Q-learning. On 
the other hand, the path constructed by consulting the Q-table 
obtained by the classical Q-learning is excessively longer with 
19 state transitions. The torque requirement is the smallest in 
the improved Q-learning, as the number of turnings required 
here is minimum (once only). A* and Dijkstra’s algorithms 
take excessively large planning time. 
Experiment 4: The last experiment is concerned with training 
in a map with 5 dark obstacles, and planning trajectory in that 
map with 3 additional shaded obstacles (Fig. 7). It is apparent 
from Fig. 7 that the improved and the classical Q-learning 
induced Q-table help the robot generate complete trajectories 
of motion of the robot. However, the planning algorithm 
realized with the Q-table obtained by the extended Q-learning 
fails to generate a complete trajectory. The number of state 
transitions and torque requirement are also minimum in case 
of improved Q-learning. In Fig. 8, we consider 5 dark 
obstacles during the training and 4 additional shaded obstacles 
during the planning phase. It is noted from the figure that 
minimum number of state transitions take place in case of path 
planning using the Q-table obtained by improved Q-learning.  



The turning required by the said trajectory is also minimum 
when compared to the other trajectories. 
 

 
Path taken by the robot with stored Q-table by classical Q-learning  
Path taken by the robot with stored Q-table by extended Q-learning  
Path taken by the robot with stored Q-table by improved Q-learning,  
A-Star Algorithm and Dijkstra’s Algorithm 
 

Fig. 1: World map 1 without obstacle. Paths taken by the robot with 
stored Q-table by the different algorithms are shown in the fig. 

 
Obstacle 
Path taken by the robot with stored Q-table by classical Q-learning 
Path taken by the robot with stored Q-table by extended Q-learning  
Path taken by the robot with stored Q-table by improved Q-learning,  
A-Star Algorithm and Dijkstra’s Algorithm 

 
Fig 2: World map 2 with obstacles. Paths taken by the robot with the stored Q-

table by the different algorithms are shown in the fig. The robot with 
the stored Q-table by the extended Q-learning fails to reach the goal.  

 

 

Obstacle 
Path taken by the robot with stored Q-table by classical Q-learning 
Path taken by the robot with stored Q-table by extended Q-learning. 
Path taken by the robot with stored Q-table by improved Q-learning, 
A-Star Algorithm and Dijkstra’s Algorithm 

 
Fig 3: A Partial World map 3 with obstacles. It shows the paths taken by the 

robot with the stored Q-table of different algorithms. 

 
Obstacle 
Path taken by the robot with stored Q-table by classical Q-learning 
Path taken by the robot with stored Q-table by extended Q-learning  
Path taken by the robot with stored Q-table by improved Q-learning 
Path taken by the robot with stored Q-table by A-Star Algorithm and 
 Dijkstra’s Algorithm 

Fig 4: World map with obstacles. It shows the paths taken by the robot with 
the stored Q-table of different algorithms. The robot with the stored Q-
table by the extended Q-learning fails to reach the goal. 

 
Obstacle 
Path taken by the robot with stored Q-table by classical Q-learning 
Path taken by the robot with stored Q-table by extended Q-learning  
Path taken by the robot with stored Q-table by improved Q-learning 
Path taken by the robot with stored Q-table by A-Star Algorithm and 
 Dijkstra’s Algorithm 

Fig 5: World map 5 with obstacles. It shows the path taken by the robot with 
the stored Q-table of different algorithms. Here the robot with the 
stored Q-table by the extended Q-learning fails to reach the goal. 
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Obstacle 
Path taken by the robot with stored Q-table by classical Q-learning 
Path taken by the robot with stored Q-table by extended Q-learning  
Path taken by the robot with stored Q-table by improved Q-learning, 
 A-Star Algorithm and Dijkstra’s Algorithm 
 

Fig 6: World map 6 with obstacles. It shows the paths taken by the robot with 
the stored Q-table of different algorithms. 

 

 
                   New obstacle added 
                   Obstacle present         
                  Path taken by the robot with stored Q-table by classical Q-learning 
                  Path taken by the robot with stored Q-table by extended Q-learning 
                  Path taken by the robot with stored Q-table by improved Q-learning, 
                  A start and Dijkstra’s Algorithm  

Fig 7: World map 7 with obstacles. Paths taken by the robot with stored Q-
table by the different algorithms are shown in the fig. Here the robot 
with the stored Q-table by the extended Q-learning fails to reach the 
goal. 

 
 

 
 
New obstacle added 
Obstacles present   
Path taken by the robot with stored Q-table by classical Q-learning 
Path taken by the robot with stored Q-table by extended Q-learning 
Path taken by the robot with stored Q-table by improved Q-learning, 
A-Star Algorithm and Dijkstra’s Algorithm 

Fig 8: World map 8 with obstacles. Paths taken by the robot with stored Q-
table by the different algorithms are shown in the fig. The robot with 
the stored Q-table by the extended Q-learning fails to reach the goal. 

 

Table 1: Comparison of time taken by the robot and number of 90 turn 
required by the robot 

World 
map 

Planning time taken in 
seconds 

No. of 90 turns 

IQL EQL CQL A-star Dijkstra IQL EQL CQL A-star Dijkstra 
Fig. 

1 22.25 24.82 26.47 40.25 88.25 2 15 16 2 2 

Fig. 
2 23.07 - 30.76 42.05 91.24 6 - 20 6 6 

Fig 
3 13.78 14.17 16.70 27.65 52.60 4 4 10 4 4 

Fig. 
4 23.40 - 32.95 47.90 93.86 11 - 22 10 10 

Fig. 
5 31.48 - 47.08 64.01 121.35 15 - 38 8 8 

Fig. 
6 09.34 10.16 14.77 18.52 36.73 2 6 9 2 2 

Fig. 
7 24.55 - 37.51 49.47 122.31 5 - 29 5 5 

Fig. 
8 16.81 - 20.21 32.76 63.87 4 - 12 4 4 

 
IQL  Improved Q-learning 
EQL  Extended Q-learning 
CQL  Classical Q-learning 
- Goal cannot be reached 
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No. of states locked  

 
         EQL          IQL  

               Fig. 9: Comparison between no. of iterations required by the 
improved Q-learning (IQL) algorithm and the extended Q-learning 
(EQL) algorithm to learn the world map (given in Fig. 2) without 
any obstacle. 

 
 
EQL IQL 
 

                  Fig. 10: Comparison between no of iteration required by the 
improved Q-learning (IQL) algorithm and the extended Q-learning 
(EQL) algorithm to learn the world map (given in Fig. 7) with 5 
obstacles. 

 
Fig. 9 and 10 provide information about the number of 

states locked for EQL and IQL. It is apparent from the figures 
that IQL takes relatively smaller number of iterations than 
EQL for having the same number of states locked. This 
justifies the significance of the two additional locking 
conditions in IQL when compared to EQL. 

VII.   EXPERIMENTS WITH KHEPERA II ROBOT 
Khepera II (Fig. 11) is a miniature robot (diameter of 7 cm) 

equipped with 8 built-in infrared proximity sensors, and 2 
relatively accurate encoders for the two motors. The range 
sensors are positioned at fixed angles and have limited range 
detection capabilities. The sensors are numbered between 0 
and 7 with the leftmost sensor, designated by 0, and the 
rightmost by 7 (Fig. 12). The robot represents measured range 
data in the scale: [0, 1023]. When an obstacle is away from the 
sensor by more than 5cm, it is represented by zero. When an 
obstacle is approximately 2 cm away, it is represented by 
1023. The onboard Microprocessor includes a flash memory 
of 512 KB, and a Motorola 68331, 25MHz processor. The 
Khepera model we used is a table-top robot, connected to a 
workstation through a wired serial link. This configuration 
allows an optional experimental configuration with everything 
at hand: the robot, the environment and the host computer. 

 

 
Figure 11: The Khepera II Robot 

 

 
Fig. 12: Position of the sensors of Khepera II 

 
Different experimental world maps have been developed to 

study the performance of the three different Q-learning and the 
corresponding path-planning algorithms. The starting and the 
goal states S and G are marked in all the experimental maps. 
The snapshots of each map after construction of the trajectory 
by the robot using distinctive colored lines for three 
algorithms CQL, EQL and IQL for all the experiments are 
given.  

The first experiment is developed based on the world map 
shown in Fig. 13. The IQL and the EQL respectively takes 179 
and 1710 iterations to learn the said environment. The CQL 
algorithm with random selection requires 3012 iterations for 
convergence. After the learning phase is over, the path 
planning algorithm is executed by keeping the Khepera at state 
no 48, facing left, in the experimental world map and is 
allowed to traverse to the goal using the stored Q-table by all 
the three algorithms. Path taken by the robot with the stored 
Q-table by the IQL, the CQL and the EQL are shown in Fig. 
13 by red blue and green lines respectively.  
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Fig.13: World map without any obstacle. Path planned by the robot:  

Using the Q-table returned by the IQL. 
Using the Q-table returned by the CQL.  
Using the Q-table returned by the EQL.  

The second experiment considers Q-learning in Fig. 14, 
and path-planning in the same world map after introducing six 
rectangular obstacles. The path taken by the robot with the 
stored Q-table by IQL, CQL and EQL are shown in Fig. 14 by 
distinctive colored lines. The robot with the stored Q-table by 
the EQL fails to reach the goal as indicated by black line in 
Fig 14. After reaching state no. 36, the best action stored in the 
Q-table is RIGHT action. In order to perform this action the 
robot turns right by 90 and checks for the presence of any 
obstacle in front of it with the help of sensor 2 and sensor 3. 
The robot finds an obstacle in state no. 35 and there is no 
alternative action stored in the Q-table. Therefore the robot 
with the stored Q-table obtained by the EQL fails to reach goal 
and stop at state no. 36.   

 
Fig. 14: World map with six obstacles added after the learning phase.Path 
planned by the robot: 

Using the Q-table returned by the IQL. 
Using the Q-table returned by the CQL.  
Using the Q-table returned by the EQL (The robot fails to 
reach the goal. After reaching state no. 36 the next state is 

state no. 35 but an obstacle is present in that state. The 
robot will stop at the state no 36).  

Experiment 3 is concerned with learning and planning in 
the world map shown in Fig. 15 containing four obstacles, 
numbered 1 to 4. All the three algorithms are used to learn the 
movement steps from each grid in the map to its neighboring 
grid. The IQL takes 311 iterations to learn the said 
environment, while the EQL algorithm takes 1857 iterations 
for the same learning task. The CQL algorithm with random 
action selection takes 3060 iterations for convergence. After 
completion of the learning phase we kept the Khepera, facing 
left, in the same environment and the planning phase is 
executed with all three algorithms by using the stored Q-table 
obtained by the respective learning algorithm. The red, blue 
and green lines in Fig. 15 show the paths taken by the robot 
with the stored Q-table by IQL, CQL and EQL respectively. 

 

 
Fig. 15: World map with four obstacles. Path planned by the robot using: 

Using the Q-table returned by the IQL. 
Using the Q-table returned by the CQL.  
Using the Q-table returned by the EQL  
 

In experiment 4, we train the robot in the world map given 
in Fig. 16 with four obstacles numbered 1 to 4. After the 
training is over, we add two obstacles numbered 5 and 6 in the 
map, the planning cycle is executed in the modified world map 
given in Fig. 16. The path taken by the robot with the stored 
Q-table by IQL, CQL and EQL are given by red, blue and 
green lines respectively. The robot with the stored Q-table by 
the extended Q-learning fails to reach the goal as indicated by 
the incomplete green line segment in Fig. 16. The justification 
of the failure is given below. After reaching state no. 8, the 
robot determines the best action at this state, which is move 
left, but an obstacle is present at the next state. Therefore, the 
robot reports failure and stops in state no. 8. 



 
Fig. 16: World map with four obstacles. Path planned by the robot using: 

Using the Q-table returned by the IQL. 
Using the Q-table returned by the CQL.  
Using the Q-table returned by the EQL (When the robot 
reaches at state no. 8, the best action at state no. 8 is move 
left but an obstacle is present at state no. 7. So, the robot 
will stop at the state no.8). 

 

Results of the experiments undertaken above are 
summarized in Table-2. The Table compares the relative 
performance of the IQL, EQL and CQL in path-planning. The 
metrics employed to compare the relative merits of the Q-
learning algorithms in the planning phase are: 1) time taken to 
reach the goal, 2) the number of 90o turns involved in the path-
planning, and 3) the number of states traversed during the 
planning phase.   

It is apparent from Table-2 that for all the world maps 
shown in Fig. 13-16 the IQL outperforms the CQL and the 
EQL with respect to all the three metrics. The maximum 
noteworthy merit of the IQL over the others is the number of 
90o turns, which is a bare minimum as evident from Table-2. 
Table 2: Comparison of Time taken by the robot, no. of 90 turns required by  
the robot and no. of state traversed by the robot 
 

Fig. No 
Time Taken in 

sec 
No. of 90 

turn 
No. of states 

traversed 
IQL EQL CQL IQL EQL CQL IQL EQL CQL 

13 40.73 48.44 47.40 1 5 4 12 12 12 
14 43.74 - 71.17 2 - 9 12 - 16 
15 39.62 48.40 48.40 2 7 7 11 11 11 
16 43.72 - 59.52 4 - 10 11 - 13 

 
IQL   Improved Q-learning 
EQL  Extended Q-learning 
CQL  Classical Q-learning 
-   Goal cannot be reached 

  

VIII. Conclusions 
The paper proposed an alternative algorithm for deterministic 
Q-learning, presuming that the background knowledge about 
the distance from the current state to both the next state and 
the goal state are available. The proposed algorithm updates 
the entries of the Q-table only once unlike the classical Q-
learning, where the entries in the Q-table were updated many 

times until convergence was ensured. This results in a 
significant saving in time complexity of the order of mn in 
comparison to the classical Q-learning, where n and m are the 
number of states and number of actions at each state 
respectively. 
  Theorem 1 indicates the correctness in the steady-state values 
in the entries of the Q-table. Time-complexity analysis also 
reveals that the proposed algorithm saves a time-complexity of 
the order of mn, when compared to the classical Q-learning. 
   Experiments simulated on different experimental maze and 
on the Khepera platform confirms the better performance of 
the proposed algorithm in comparison to Classical and the 
extended Q-learning algorithms. The Q-table updated by the 
improved Q-learning, when used for path-planning 
application, outperforms both the classical and the extended 
Q-learning with respect to all the three metrics used in the 
experimental study. Most importantly, the 90o turnings 
required in the IQL is significantly reduced in comparison to 
the CQL and the EQL.  Since the IQL outperforms CQL and 
EQL in all the three metrics as indicated in Table 1 and 2, it 
has a good potential in path-planning applications of mobile 
robots, particularly when obstacles are added in real time  
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