
A Deterministic Improved Q-learning for Path-
Planning of a Mobile Robot

Amit Konar1, Indrani Goswami (Chakraborty)1, Sapam Jitu Singh1, Lakhmi C. Jain2 and Atulya K. Nagar3

1ETCE Department, Jadavpur University, Kolkata, India.
2University of South Australia, Adelaide.

3Liverpool Hope University, UK.
{konaramit@yahoo.co.in, ic_iit@yahoo.com, sapamjitu@yahoo.com, Lakhmi.Jain@unisa.edu.au, nagara@hope.ac.uk}

Abstract— The paper provides a new deterministic Q-learning
with a presumed knowledge about the distance from the current
state to both the next state and the goal. This knowledge is
efficiently used to update the entries in the Q-table once only by
utilizing four derived properties of the Q-learning, instead of
repeatedly updating them like the classical Q-learning. Naturally,
the proposed algorithm has an insignificantly small time-
complexity in comparison to its classical counterpart. Further,
the proposed algorithm stores the Q-value for the best possible
action at a state, and thus saves significant storage. Experiments
undertaken on simulated maze and real platforms confirm that
the Q-table obtained by the proposed Q-learning when used for
path-planning application of mobile robots outperforms both the
classical and extended Q-learning with respect to three metrics:
traversal time, number of states traversed, and 90o turns
required. Reduction in 90o turnings minimizes the energy
consumption, and thus has importance in robotics literature.

Keywords— Agent; Q-learning; Reinforcement learning; Path-
planning, Mobile robots.

I. INTRODUCTION
Motion planning is one of the important tasks in intelligent

control of a mobile robot. The problem of motion planning is
often decomposed into path planning and trajectory planning.
In path planning, we need to generate a collision-free path in
an environment with obstacles and optimize it with respect to
some given criteria [8], [9]. However, the environment may be
imprecise, vast, dynamical and partially non-structured [7]. In
such environment, path planning depends on the sensory

information of the environment, which might be associated
with imprecision and uncertainty. Thus, to have a suitable
planning scheme in a cluttered environment, the controller of
such kind of robots must have to be adaptive in nature. Several
approaches have been proposed to address the problem of
motion planning of a mobile robot. If the environment is a
known static terrain and it generates a path in advance, it is
said to be off-line algorithm. It is called on-line, if it is capable
of producing a new path in response to environmental
changes.

Machine learning is generally employed in a mobile robot
to make it aware about its world map. The early research on
mobility management of robots emphasized the needs of
supervised learning to train a robot to determine its next
position in a given map using the sensory readings obtained by
the robot about the environment. Supervised learning is a good
choice for mobility management of robots in fixed maps.
However, if there is a small change in the robot’s world, the
acquired knowledge is no longer useful to guide the robot to
select its next position. A complete training of the robot with
both the old and the new sensory data-action pairs is then
required to overcome the said problem.

Reinforcement learning is an alternative learning policy,
which rests on the principle reward and punishment. No prior
training instances are presumed in reinforcement learning. A
learning agent here does an action on the environment, and
receives a feedback from the environment based on its action.
The feedback provides an immediate reward for the agent. The
learning agent here usually adapts its parameter base

d on the current and cumulative (future) rewards. Since the
exact value of the future reward is not known, it is guessed
from the knowledge about the robot’s world map. The primary
advantage of reinforcement learning lies in its inherent power
of automatic learning even in presence of small changes in the
world map.

Usually, the planning involves an action policy to reach a
desired goal state, through maximization of a value function
[1]-[3], which designates sub-objectives and helps choosing
the best path. For instance, the value function could be the
shortest path, the path with the shortest time, the safest path, or
any combination of different sub-objectives. The definition of
a task in this context may contain, besides the value function,
some a priori knowledge about the domains, such as the
environmental map, the environmental dynamics and the goal
position. The a priori knowledge helps the robot generating a
plan for motion amidst obstacles, while the lack of such

knowledge obliges the robot to learn it first before invoking
the motion planning algorithm.

Our research applies reinforcement learning techniques to
real-world robots. Reinforcement learning has been tested in
many simulated environments [3] - [11] but on a limited basis
in real-world scenarios. A real-world environment poses more
challenges than a simulated environment, such as enlarged
state spaces [2], increased computational complexity,
significant safety issues (a real robot can cause real damage),
and longer turnaround times for results. This research
measures how well reinforcement-learning technique, such as
Q-learning, can be applied to the real robot for navigational
problem. In our research, we modified the classical Q-learning
algorithm, hereafter called the improved Q-learning for
increasing its performance in the path-planning problem.

Performance of a reinforcement learning algorithm is
greatly influenced by two important factors used in the control

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hope's Institutional Research Archive

https://core.ac.uk/display/46600893?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

strategy of the algorithm, popularly known as ‘exploration’
and ‘exploitation’. Exploration usually refers to selecting any
action with non-zero probability in every encountered state to
learn the environment by the agent. Exploitation, on the other
hand, is targeted at employing the current knowledge of the
agent to expect achieving good performance by selecting
greedy actions [37]. One classical method to balance
exploration and exploitation in Q-learning is -greedy
exploration [39], where a parameter representing exploration
probability is introduced to control the ratio between
exploration and greedy action selection.

The second alternative method to handle the above
problem is to employ Boltzman exploration, where the agent
selects an action a with a probability:

 / expexp(
a

Ta S,QTa S,Q in which Q(S, a) denotes

the Q-value at state S due to action a , and T is a positive
constant called the ‘temperature parameter’. The Boltzman
exploration ensures that the agent is more likely to select
action a with higher Q-value: Q(S, a). The temperature
parameter T adjusts the balance between exploration and
exploitation. Large T refers to better exploration, while small
T approaching zero indicates almost deterministic (greedy)
action selection. Usually these parameters are determined by
trial and error to achieve desired performance.

In [38], the authors employed an interesting strategy of
internal prediction/estimation to control the balance between
exploration and exploitation for efficient adaptability of an
agent in a new environment. Here, a reliability parameter RI
has been introduced as an internal variable to estimate the
‘expected prediction error’. The variable RI is updated after
every action by comparing itself to the actual error. The RI is
introduced in the expression of Boltzman exploration by
replacing temperature parameters T by RI=R(S)/, where is
a positive constant and S denotes the current state of the agent.
The factor is used to normalize the magnitude of Q(s, a)
with R(s).

In the context of path-planning by a mobile robot, the
robotic agent usually has additional knowledge about the
distance from the current state to both the next state and the
goal. This knowledge has been efficiently used here during the
learning phase of the robotic planner to speed up learning
through greedy selection of actions. Four properties (rules)
concerning computation of Q-values at state S/ from the
current estimate of Q-value at state S, where S/ is a neighbor
of state S, has been developed. Each rule has a conditional part
and an action part. If the conditional part is found true, the
action part is realized. The conditional part involves checking
a locking status of a state along with a distance comparison,
where locking of a state indicates that its Q-value needs no
further updating. The action part ensures that the Q-value at S/
can be evaluated in one step only, and the state S/ will also be
locked. Thus when conditional part of a property is activated,
Q-value at a new state is evaluated once only for ever, and the
new state is locked. The proposed improved Q-learning
algorithm is terminated when all the states in the workspace
are locked.

It is apparent from the above discussion that exploration
in the improved Q-learning algorithm takes place when all the
rules’ conditional parts do not satisfy at a given situation,
whereas exploitation takes place when conditional part of one
rule is activated. The balancing of exploration and exploitation
is done naturally, and no parameter is involved to control
balancing.

The present paper is an extension of the Extended Q-
learning (EQL) [17] algorithm, where too the authors
presumed that their learning algorithm has knowledge about
distance measure of the current state to the next state and the
goal. They also listed four properties (rules) of EQL without
proof, two of which are derived in the current paper. But the
remaining two properties presented here are novel. These two
new properties provide alternative conditions for locking,
thereby improving relative learning speed of the proposed
algorithm in comparison to EQL.

The work presented in this paper is better than the classical
[3] and the extended Q-learning by the following counts

1. In classical Q-learning (CQL), Q-values of the states are
updated theoretically for infinite number of steps. For all
practical purposes however, the algorithm is terminated
when the difference in Q-values of each state in two
successive iterations is within a prescribed limit. The
algorithm is said to have converged under this
circumstance, which too requires excessive
computational time. The time-complexity of the
proposed Q-learning algorithm has been reduced here by
locking selected states, where Q-value update is no
longer required. The conditions used for identifying the
states to be locked are derived here.

2. The extended Q-learning presented in [17] stores only
the best action at a state. Naturally, the knowledge
acquired by Q-learning in a world map without obstacles
cannot be correctly used for planning, particularly when
the next state due to the best action is occupied with an
obstacle.
 In the modified Q-learning presented here, the agent is
capable of ranking all the actions at a state based on the
Q-values at its neighboring states. Consequently, during
the planning cycle, if the state corresponding to the best
action is occupied with an obstacle, the robot would
pickup the next best action. This in one way overcomes
one fundamental limitation of the extended Q-learning.

3. Since the extended Q-learning stores only the best action
at a state, it cannot take care of the multiplicity of the
best actions. Thus if there exist two or more best actions,
it selects one of them arbitrarily and saves the selected
action with the state. Naturally, the stored action may
sometimes involve more turning of the robot during
planning than it could have been obtained by an
alternative best action. In our algorithm, if we have more
than one competitive action at a state during the planning
cycle, we select the one ensuring minimum turning of
the robot. Thus our present algorithm is energy optimal.

4. Both the extended [17] and the improved Q-learning,
algorithms are terminated when all the states are locked.
However, the improved Q-learning has 4 locking
conditions, including the two of the extended Q-learning.
Because of these two additional conditions of locking,
the probability of locking of a state in a given interval of
time by the improved Q-learning is higher than the
extended Q-learning.

The rest of the paper is organized as follows. Classical Q-
learning is introduced in section II. Some properties of the Q-
learning based on the concept of locking of states are derived
in section III. The algorithm for the improved Q-learning is
given in section IV. The algorithm for the path planning is
given in section V. Computer Simulation is shown in section
VI. Experimental details are included in section VII.
Conclusions are listed in section VIII.

II. THE CLASSICAL Q-LEARNING

In classical Q-learning, all possible states of an agent and its
possible actions in a given state are deterministically known.
In other words, for a given agent A, let S1, S2,..., Sn, be n-
possible states, where each state has m possible actions ,1a

,2a ..., ma . At a particular state-action pair, the specific
reward that the agent acquires is known as immediate reward.
Let),(ji aSr be the immediate reward that the agent A

acquires by executing an action ja at state iS . The agent
selects its next state from its current states by using a policy.
The policy attempts to maximize the cumulative reward that
the agent could have in subsequent transition of states from its
next state. Let the agent be in state iS and is expecting to

select the next best state. Then the Q-value at state iS due to

action of ja [36] is given in (1).

)),,((),() , (/
/

 aaSQMaxaSraSQ ji
a

jiji (1)

where 10 and),(ji aS denotes the next state due to

the selection of action ja at state iS . Let the next state

selected be kS . Then),()),,((// aSQaaSQ kji .

Consequently selection of /a that maximizes),(/aSQ k and in
turn

),(ji aSQ is an interesting problem.

The classical Q-learning algorithm for deterministic state
transitions is given below. The algorithm starts with a
randomly selected initial state. An action ‘ a ’ from a list of

actions ,1a ,2a ..., ma is selected, and the agent because of
this action receives an immediate reward r , and move to the
new state following the -transition rule given in a table. The
Q-value of the previous state due to the action of the agent is

updated following the Q-learning equation (1). Now, the next
state is considered as the initial state and the steps of action
selection, receiving immediate reward, transition to next state
and Q-update are represented for ever.

Classical Deterministic Q-learning

.ever For
;

;,,,
,

;,
;,

,...,,
Repeat

;
;,,For

/

/

/

/

SS

aaSQMaxaS r S,aQ
aSQ

aSS
aSr

aaaa

S
aSQaS

a

m

))(()()(
)by(entry table the Update

)(statenew the Observe
)(reward immediate an Receive
it; execute and }{ Select

 state current the Observe
)(initialize each

21

0

The classical Q-learning requires a memory of (n×m) to
keep track of the Q-table. For large n and m, the space
complexity thus is high. In the improved Q-learning (IQL) we
attempted to reduce the space complexity. The improved Q-
learning algorithm presented here involves n Boolean
variables called Lock for n states to indicate whether),(aSQ
at state S due to action a needs to be updated. The Lock
variables are used to avoid unnecessary update of entries

),(aSQ in the Q-table and thus to save time-complexity.
In IQL, we require n-memories to store n-Lock variables

associated with n-states. Here, instead of the Q-table of n×m
dimension, we require to store the best Q-value of a state
because of any action, and thus require n-memories for n best
Q-value of n-states. So, we save some space complexity (nm-
2n)=n(m-2).

III. PROPERTIES OF THE IMPROVED Q-LEARNING

This section provides four interesting properties, based on
which the IQL algorithm has been developed. The properties
stress upon the following two issues.

1) If Q-value at any state S (is known and) needs no
updating, the state is locked.

2) If S is a locked state and S/ is a neighboring state of
S, and any one of the four properties to be derived
is applicable at (S, S/) pair, then we can compute Q-
value at state S/ once only using the property, and
the S/ is also locked.

 If no property is applicable at a given (S, S/) pair, state-
transition takes place without any updating in Q-value. It may
not be out of place to mention here that the first locking in
IQL takes place when the agent has a state-transition from the
goal state to any of the neighboring states of the goal. The
locking of states then is continued as and when one of the four

properties is applicable. The IQL terminates when all the
states are locked. We now formally define some parameters to
derive the properties.

Let for any state Sk, the distance between the goal state and
the next feasible states of Sk are known. Let the next feasible
state of Sk be S{Sa, Sb, Sc,Sd }. Let G be the goal and the city
block distance between Sa, Sb, Sc, Sd and G be daG, dbG, dcG and
ddG respectively. Let the distance in order be dbG<daG<dcG<ddG.
Then the agent should select the next state Sb from its current
state Sk. If the Q-value of the state Sb is known, we can
evaluate the Q-value of state Sk by the following approach.

)3()()., (S

},S|S|S|{S

)), ,((
Therefore,

 operator. OR denotes | where,S|S|S|S),(Sδ Now

 (2))),,S((γ 0

)),,((),(),(

//
b

//
dcb

///

dcb
/

k

///
k

/////

//

//

//

//

 dddd a Q

aQMax

aaS QMax

a

aaQMax

aaSQMaxaSraSQ

dGcGaGbG

a
a

k
a

a

a

k
a

kk

). , (Sγ
) , (Sγ0) , (S

 : have we(3) and (2) Combining

//
b

//
b

/
k

aQ
aQaQ

Thus if the next state having the shortage distance with the
goal is known, and the Q-value of this state is also known,
then the Q-value of the current state is simply ×Q-value of
the next state.

Let Sp, Sn and SG be the present, next and the goal states
respectively. Let Qp and Qn be the Q-value at the present and
the next states Sp and Sn respectively for the best action. Let
dxy be the city block distance between the states Sx and Sy. We
use a Boolean variable Lock: Lx to indicate that the Qx value
of a state is fixed permanently. We set lock Ln=1 if the Q-
value of the state n is fixed, and won’t change further after Ln
is set to 1. The Lock variable for all states except the goal will
be initialized to zero in our proposed Q-learning algorithm.
We observe four interesting properties as indicated below.

Property 1: If Ln=1 and nGpG dd then np Q γ Q and set
Lp = 1.

Proof: Let the neighborhood state of Sp be S{Sa ,Sb,Sc ,Sn},
and the agent selects Sn as the next state as xGnG dd for

}.,,,{ ncbax

Now,

(4) .
),(),(

),|||(0

)),,((),(

),(

/

/

/

/

/

n

xGnGn

ncba
a

p
a

p

pp

Q
xddaSQ

aSSSSQMax

aaSQMaxaSr

aSQQ

Since Ln =1, and nGpG dd , ,np QQ and thus

np QQ γ for 10 is the largest possible value of pQ ,

and so pQ should not be updated further. Therefore, Lp = 1 is

set.

Property 2: If Lp =1 and pGnG dd then /γQQ pn and set
Ln = 1.

Proof: Since pGnG dd , the agent will select next state n
from the current state p. Hence by (4)

(5) . γ/

γ

n

p

p

n

QQ
QQ

Since Lp =1, and pGnG dd , ,np QQ and thus

/n pQQ for 10 is the largest possible value of nQ ,

and nQ should not be updated further. So, Ln = 1 is set.

Property 3: If Lp = 1 and pGnG dd then pn QγQ and
set Ln = 1.
Proof: If the robot is moving from Si to the goal G in one step
the immediate reward is R, say. On the other hand, if the robot
moves from Si to any state other than the goal G then the
immediate reward is zero.

Now, suppose the robot moves from Sp to the goal G in k.
Now, as 1pL , k is the minimum number of state

transitions to reach the goal from Sp. So, we obtain

(6) . 0

R

aaSQMaxaSr

aSQQ

k

p
a

p

pp

)),,((),(

),(
/

/

Suppose the robot moves from Sn to the goal G in k+1
transition steps. Here, (k+1) is also the minimum number of
steps to reach goal G from Sn, failing which the agent would
have selected some other state as the next state from the
current state Sp.

(7) . 0

1 R

aaSQMaxaSr

aSQQ

k

n
a

n

nn

)),,((),(
),(

/
/

Dividing (6) by (7), we have:

(8) .

1

 1

pn

k

k

n

p

QQ

R
R

Q
Q

Since ,pGnG dd .pn QQ So, pn QQ has largest

possible value for 10 . Further, as Lp=1, and Sn is the
nearest state to Sp with respect to given distance metric,
therefore Ln is set to 1.

Property 4: If Ln=1 and pGnG dd then /γQQ np and
set Lp = 1.

Proof: Since pGnG dd , nQ can be evaluated from pQ by
(8). Thus

(9) . γ/

γ

p

n

n

p

QQ
QQ

Since Ln =1, and pGnG dd , ,pn QQ and thus

/p nQQ for 10 is the largest possible value of pQ ,

and pQ should not be updated further. So, Lp = 1 is set.

IV. THE IMPROVED Q-LEARNING ALGORITHM
The classical Q-learning employs a Q-table to store the

Q(S, a) for S=S1 to Sn and a=a1 to am. Thus it requires an array
of (n×m) size. In the improved Q-learning, we, however,
require to store only the Q-values at a state S for the best
action. Thus for n states, we need to store n Q-values. Besides
the Q-storage, we in addition require n Boolean Lock
variables, denoted by Li for state Si, i= 1 to n, depicting the
current status of the state. If the Lock-variable at a state is 1,
then the Q-value at that state need not be updated further.

In path-planning application of mobile robots, the
environment can be partitioned into non-overlapped grids,
called states. Thus a state can have four neighbors.
Consequently, during the planning phase, the robot can
determine the best action to move to the next (best) state Sn
from the current Sp by identifying the neighboring state having
the largest Q-value. The corresponding action of the robot to
move to the next (best) state Sn is apparent.

The proposed algorithm for improved Q-learning has 2
main steps; i) initialization, ii) Q-table updating. In the
initialization phase, the lock variable at all states except the
goal state SG is set to zero. The immediate reward from any
neighboring state to the goal state is set to 100. The
discounting factor γ and the initial state are fixed up.

In the present update policy of the Q-table, if Lp (Ln) is 1,
then Ln (Lp) will be set to 1. However, in the initialization
phase only LG is set to 1. Thus, unless the current or the next
state = LG, there will be no update in the Q-table. In order to
have Lp or Ln = LG, the robot usually has to wander in its world
map for a finitely large number of iterations. To avoid the

unnecessary execution of the Q-table update, we add a small
repeat-until loop between the two main phases of the program.
This loop continues selecting an action and execute it (without
updating Q-table) until the robot reaches the goal.

Once the robot reaches the goal, the first repeat-until loop
exits, and the Q-table updating is initiated. The process of Q-
table updating is continued until all the states are locked.

The pseudo code of the improved Q-learning is given
below.
Pseudo Code for Improved Q-learning

1. Initialization

 obstacle; withouti all for 1 }
}{

)(
}{

)(
)(

 } ;{
)(

} {
)(

)(
)(

; and Determine b)
};{ Afrom Select a)

 {

 Update 3.
 }

it; execute and }{= Afrom Select
 {

 2.
; state initial and 1) (0, in Assign

100;) goal (for
1;) goal (for

} {set
 except n to 1i, all

i

pnp

n

npn

n

p

npn

p

pnp

p

n

pGnG

pGnG

mi

GP

mi

p

GG

GG

ii

Gii

L
;LQQ

L
;;L Qγ Q

L
L

L/γQQ

L
;;LQγQ

L
L
dd

dd
,...,a,aaa

table:Q
S S

, …, a,aaa

S
SQ
SL

;;QL
SSS

 Until
;/Then

if Else
Then
if Then

if Else
;Then

if Else
Then
if Then

 if Then
If

Repeat

;Until

Repeat

For

1
1

1
0

1
1

1
1

0
1

00

21

21

Theorem 1: The entries in the Q-table for the best action in
the classical Q-learning have the same value as in the
improved Q-learning.

Proof: Let Qp and Qn be the Q-value for the best action at the
present state Sp and the next state Sn. In classical Q-learning Qp
is updated, when the agent has a transition from Sp to Sn.
However, Qp would attain maximum value in a learning
epoch, if the Qn had already attained the maximum value.

Now, if Sp is closest to the goal, then RQ p . , where R
is immediate reward and γ is the discounting factor. So, if Sp is
at a distance of k through a shortest path measured by city
block distance, then RQ k

p . . Qp if updated later cannot

exceed Rk . , as it is at a shortest distance k w.r.t. the goal.

In the improved Q-learning, if nGpG dd , then by property

(1) and (2) np Q γ Q . . Now, if 1nL , i.e., state n is at a

shortest distance (k-1) to the goal, RQ k
n .1 , and then

RRQQ kk
np 1 . So, when nGpG dd

and 1nL , RQ k
p . , and this value of Qp should not change

further.

Further, if pGnG dd , then by property (3) and (4)

/γQQ np . Now, if Qp is at a shortest distance (k+1) from the

goal, then RQ k
n .1 and RQQ k

np ./ , and Rk .
is the largest possible value of Qp.

In the improved Q-learning, irrespective of nGpG dd

or

pGnG dd it is found that RQ k
p . . So, both the classical

Q-learning and the improved Q-learning have a steady state Q-
table with p ,.RQ k

p .

We now determine the space- and time-complexity of the
Improved Q-learning.

Space-Complexity: In classical Q-learning, if there are n
states and m action per state, then the Q-table will be of n)(m
dimension. In the Improved Q-learning, 2 storages are
required for each state, one for storing Q-value and other for
storing value of the lock variable of a particular state. Thus for
n number of states, we require a Q-table of n)(2 dimension.
The saving in memory in the present context with respect to
classical Q thus is given by mn 2n = n(m 2), which is of
the order of mn.
Time-Complexity: In classical Q-learning, the updating of Q-
values in a given state requires determining the largest Q-
value, in the next state for all possible actions by Equation (1).
Thus if there are m possible actions at a given state,
maximization of m possible Q-values, require m1
comparison. Consequently, if we have n number of states, the
updating of Q values of the entire Q table by classical method
requires n(m 1) comparisons. Unlike the classical case, here
we do not require any such comparison to evaluate the Q
values at a state Sp from the next state Sn. But we need to know
whether state n is locked that is, Q-value of Sn is permanent
and stable. Thus if we have n number of states, we require n
number of comparison. Consequently, we save a time n(m 1)
 n = nm 2n= n(m2), which is of the order of mn.

V. THE PATH PLANNING ALGORITHM

The Q-learning algorithm presented above stores the Q-
values at each state for the best action. After the learning is
completed, i.e., all the states are locked, the Q-table can be
used for path planning application. During path planning, the
robot while at state Sp identifies the next best state Sn, where
the Q-value is higher than the Q-value of other neighboring
states of Sp. However, if there exist more than one next state
having the largest Q-value among the neighboring state of SP,
the robot ideally would select any one of them.

In this paper, we, however, economically select the next
state Sn, while the robot is at Sp, based on the torque
requirement. For example, let there exist two states Sn1 and Sn2
having the largest Q-value around the neighbor of Sp. Then the
robot would select Sn1 as the next state, if the angular rotation
to move to Sn1, is smaller than that of Sn2. A small angular
turning requires less torque to be generated by the robot.
Consequently, the robot in the proposed planning algorithm
consumes minimum energy as the torques generated during
successive movement of the robot toward the goal is optimally
selected.
 Let the present state be Sp and Sn be the next state with the
largest Q-value. Sr be a next state of Sp, and SG be the goal
state. We now develop a path-planning algorithm to determine
an obstacle-free trajectory of optimal path-length and energy
for the robot between an arbitrary starting point and a fixed
goal point in the pre-trained world map.

Pseudo Code for Path Planning

END
; until 2 step fromRepeat 5.

; 4.
; toGo 3.

 free;-obstacle is n and minimum is reach

 torequiredrotation angular such that , from select Then

r If 2.
; 1.

BEGIN

/

GOALNEXT
NEXTCURRENT

NEXT
n

nnn
QQ

SCURRENT

/

/
rn

p

 VI. COMPUTER SIMULATION
In our computer simulation, we consider an environment of

20×20 grids, where each grid is given a state number. For
example, a grid located at position (x, y) defined in the
Cartesian coordinate reference frame has a

yrowsizexstateno)1(. (10)
where rowsize denotes the number of grids in a row.
 Performance of the Q-learning algorithm has been studied
here in two phases. First, a given world map is trained by the
proposed Q-learning algorithm. Second, the trained world map
with a known Q-table is used to generate a trajectory of
motion of the robot between an arbitrarily selected initial
position and the fixed goal position in the said world map. The
performance metrics used here to compare the relative
performance of our proposed algorithm with the classical Q-
and the extended Q-learning [5] include the convergence time
of the learning algorithm, total time taken to execute a plan of
motion in a pre-trained world map, and the number of 90o

rotations involved to completely execute the plan. While
convergence is considered for the learning algorithm, the
issues of time and energy consumptions, the latter being
measured in terms of 90o turnings, are part of the planning
algorithm. The performance analysis considers both the
learning and the planning algorithms together as both of them
jointly determine the overall performance in the path-planning
application.

 The performance of the Q-learning algorithm is studied
under four experimental settings. First, the training and
planning is performed on the same obstacle-free world maps.
Second, the training is performed on obstacle-free map, but
before planning algorithm is executed obstacles are added in
the map. Third, both training and planning are performed on
the same map with few obstacles. Lastly, the training was
performed in a map with few obstacles, and a few more
obstacles are added before planning. The classical Q-, the
extended Q- and the improved Q-learning algorithms are
compared with the well-known Dijkstra’s shortest path finding
algorithm in a graph and the heuristic A* algorithm under the
above four experimental settings.

A. Experiments

Let S and G be the starting and the goal states in all the world
maps considered for path-planning in the following
experiments. In each experiment, the Q-table is obtained by
three different Q-learning algorithms: the classical Q-, the
extended Q- and the improved Q-learning. After the learning
is over, the robot is kept at the starting position with the
heading direction in the east. The experiments and the
corresponding results are briefly outlined below.
Experiment 1: The first experiment is carried out on a world
map of 20 20 grids as shown in Fig. 1 to compare the
relative performance of the three distinct Q-learning
algorithms. The classical Q-learning with random action
selection and Boltzman action selection with T= 0.01 have
found to converge after 50026 and 8276 iterations.
 The extended and the improved Q-learning are executed
until all the Lock variables associated with each state are set to
1. The numbers of iterations required to learn the world map
of Fig. 1 by the extended Q-learning was found to be 20273,
whereas the improved Q-learning requires 6502 iterations to
set all the states locked.
 The experiment 1 reveals that the paths obtained by the
planning algorithm by acquiring knowledge in the Q-table by
all the three algorithms are optimal (having 21 state
transitions) with respect to a measure of city block distance.
However, the improved Q-learning requires minimum turning
and thus consumes minimum energy to execute the complete
task of path-planning (Table- I). As A* and Dijkstra’s
algorithms search optimal paths in real time, they respectively
consume almost double and 4-times the time required for path-
planning by IQL.
Experiment 2: The second experiment is concerned with
training in the obstacle-free world map of Fig. 1 by the three
Q-learning algorithms. After the training is over, we add
obstacles in the map and change the starting position as
indicated in Fig.2 to Fig.5, and execute the respective planning
programs. The resulting paths obtained by the planning
algorithms with the acquired knowledge stored in the Q-tables
by respective Q-learning algorithm reveal interesting
observations. First, the resulting Q-tables obtained by the
classical and the improved Q-learning based techniques help
the planning algorithms to construct optimal paths in all the

maps of Fig. 2-5. Fig. 2, 4 and 5 exhibit an immature
termination of the trajectory of motion by the robot, when the
Q-table is updated by the extended Q-learning. This happens
because the extended Q-learning algorithm stores only the best
action at each state, which sometimes is occupied by an
obstacle.
 The scenario, however, is different in case of modified Q-
learning. In modified Q-learning, the agent during execution
of the plan determines the best neighborhood state having the
largest Q-value. If the neighboring state thus selected is
occupied by an obstacle, the robot selects the next feasible
neighboring state with the largest Q-value, and selects it as the
next state. Consequently, even only one neighboring state,
which was the previous state of the agent is unoccupied with
obstacle, the agent can return to that state. Thus the planning
algorithm never gets stuck to a state as in case of the extended
Q-learning.
 It is noteworthy that 90o turns taken by A* and Dijkstra’s
algorithms are smaller in comparison to that by IQL in Fig. 4
and 5. The justification of the results is due to the phenomenon
that the Q-values stored do not carry information about turning
angles. So a search algorithm looking for a shortest path
naturally identifies a trajectory with less turning angles.
Experiment 3: The third experiment is carried out in world
map (Fig. 6) with obstacles during both the learning and the
planning phase. The number of learning epochs required for
convergence by different algorithms are 50604 for classical Q-
learning with random action selection, 9104 for classical Q-
learning with Boltzman action selection (T=0.01), 21701 for
EQL and 6546 for IQL.
 The planned trajectories obtained by consulting respective
Q-tables for CQL, EQL and IQL algorithms are shown in Fig.
6. The paths planned by Dijkstra’s shortest path finding and
A* algorithms are also included in Fig. 6 for comparison. It is
apparent from the figure that the shortest path (no. of state
transitions=13) is obtained, when the Q-table is updated both
by the extended Q-learning and the improved Q-learning. On
the other hand, the path constructed by consulting the Q-table
obtained by the classical Q-learning is excessively longer with
19 state transitions. The torque requirement is the smallest in
the improved Q-learning, as the number of turnings required
here is minimum (once only). A* and Dijkstra’s algorithms
take excessively large planning time.
Experiment 4: The last experiment is concerned with training
in a map with 5 dark obstacles, and planning trajectory in that
map with 3 additional shaded obstacles (Fig. 7). It is apparent
from Fig. 7 that the improved and the classical Q-learning
induced Q-table help the robot generate complete trajectories
of motion of the robot. However, the planning algorithm
realized with the Q-table obtained by the extended Q-learning
fails to generate a complete trajectory. The number of state
transitions and torque requirement are also minimum in case
of improved Q-learning. In Fig. 8, we consider 5 dark
obstacles during the training and 4 additional shaded obstacles
during the planning phase. It is noted from the figure that
minimum number of state transitions take place in case of path
planning using the Q-table obtained by improved Q-learning.

The turning required by the said trajectory is also minimum
when compared to the other trajectories.

Path taken by the robot with stored Q-table by classical Q-learning
Path taken by the robot with stored Q-table by extended Q-learning
Path taken by the robot with stored Q-table by improved Q-learning,
A-Star Algorithm and Dijkstra’s Algorithm

Fig. 1: World map 1 without obstacle. Paths taken by the robot with
stored Q-table by the different algorithms are shown in the fig.

Obstacle
Path taken by the robot with stored Q-table by classical Q-learning
Path taken by the robot with stored Q-table by extended Q-learning
Path taken by the robot with stored Q-table by improved Q-learning,
A-Star Algorithm and Dijkstra’s Algorithm

Fig 2: World map 2 with obstacles. Paths taken by the robot with the stored Q-

table by the different algorithms are shown in the fig. The robot with
the stored Q-table by the extended Q-learning fails to reach the goal.

Obstacle
Path taken by the robot with stored Q-table by classical Q-learning
Path taken by the robot with stored Q-table by extended Q-learning.
Path taken by the robot with stored Q-table by improved Q-learning,
A-Star Algorithm and Dijkstra’s Algorithm

Fig 3: A Partial World map 3 with obstacles. It shows the paths taken by the

robot with the stored Q-table of different algorithms.

Obstacle
Path taken by the robot with stored Q-table by classical Q-learning
Path taken by the robot with stored Q-table by extended Q-learning
Path taken by the robot with stored Q-table by improved Q-learning
Path taken by the robot with stored Q-table by A-Star Algorithm and
 Dijkstra’s Algorithm

Fig 4: World map with obstacles. It shows the paths taken by the robot with
the stored Q-table of different algorithms. The robot with the stored Q-
table by the extended Q-learning fails to reach the goal.

Obstacle
Path taken by the robot with stored Q-table by classical Q-learning
Path taken by the robot with stored Q-table by extended Q-learning
Path taken by the robot with stored Q-table by improved Q-learning
Path taken by the robot with stored Q-table by A-Star Algorithm and
 Dijkstra’s Algorithm

Fig 5: World map 5 with obstacles. It shows the path taken by the robot with
the stored Q-table of different algorithms. Here the robot with the
stored Q-table by the extended Q-learning fails to reach the goal.

S

G

S

G

S

G

S

G

S

Obstacle
Path taken by the robot with stored Q-table by classical Q-learning
Path taken by the robot with stored Q-table by extended Q-learning
Path taken by the robot with stored Q-table by improved Q-learning,
 A-Star Algorithm and Dijkstra’s Algorithm

Fig 6: World map 6 with obstacles. It shows the paths taken by the robot with
the stored Q-table of different algorithms.

 New obstacle added
 Obstacle present
 Path taken by the robot with stored Q-table by classical Q-learning
 Path taken by the robot with stored Q-table by extended Q-learning
 Path taken by the robot with stored Q-table by improved Q-learning,
 A start and Dijkstra’s Algorithm

Fig 7: World map 7 with obstacles. Paths taken by the robot with stored Q-
table by the different algorithms are shown in the fig. Here the robot
with the stored Q-table by the extended Q-learning fails to reach the
goal.

New obstacle added
Obstacles present
Path taken by the robot with stored Q-table by classical Q-learning
Path taken by the robot with stored Q-table by extended Q-learning
Path taken by the robot with stored Q-table by improved Q-learning,
A-Star Algorithm and Dijkstra’s Algorithm

Fig 8: World map 8 with obstacles. Paths taken by the robot with stored Q-
table by the different algorithms are shown in the fig. The robot with
the stored Q-table by the extended Q-learning fails to reach the goal.

Table 1: Comparison of time taken by the robot and number of 90 turn
required by the robot

World
map

Planning time taken in
seconds

No. of 90 turns

IQL EQL CQL A-star Dijkstra IQL EQL CQL A-star Dijkstra
Fig.

1 22.25 24.82 26.47 40.25 88.25 2 15 16 2 2

Fig.
2 23.07 - 30.76 42.05 91.24 6 - 20 6 6

Fig
3 13.78 14.17 16.70 27.65 52.60 4 4 10 4 4

Fig.
4 23.40 - 32.95 47.90 93.86 11 - 22 10 10

Fig.
5 31.48 - 47.08 64.01 121.35 15 - 38 8 8

Fig.
6 09.34 10.16 14.77 18.52 36.73 2 6 9 2 2

Fig.
7 24.55 - 37.51 49.47 122.31 5 - 29 5 5

Fig.
8 16.81 - 20.21 32.76 63.87 4 - 12 4 4

IQL Improved Q-learning
EQL Extended Q-learning
CQL Classical Q-learning
- Goal cannot be reached

S

G

G

S
S

G

No. of states locked

 EQL IQL

 Fig. 9: Comparison between no. of iterations required by the
improved Q-learning (IQL) algorithm and the extended Q-learning
(EQL) algorithm to learn the world map (given in Fig. 2) without
any obstacle.

EQL IQL

 Fig. 10: Comparison between no of iteration required by the
improved Q-learning (IQL) algorithm and the extended Q-learning
(EQL) algorithm to learn the world map (given in Fig. 7) with 5
obstacles.

Fig. 9 and 10 provide information about the number of

states locked for EQL and IQL. It is apparent from the figures
that IQL takes relatively smaller number of iterations than
EQL for having the same number of states locked. This
justifies the significance of the two additional locking
conditions in IQL when compared to EQL.

VII. EXPERIMENTS WITH KHEPERA II ROBOT
Khepera II (Fig. 11) is a miniature robot (diameter of 7 cm)

equipped with 8 built-in infrared proximity sensors, and 2
relatively accurate encoders for the two motors. The range
sensors are positioned at fixed angles and have limited range
detection capabilities. The sensors are numbered between 0
and 7 with the leftmost sensor, designated by 0, and the
rightmost by 7 (Fig. 12). The robot represents measured range
data in the scale: [0, 1023]. When an obstacle is away from the
sensor by more than 5cm, it is represented by zero. When an
obstacle is approximately 2 cm away, it is represented by
1023. The onboard Microprocessor includes a flash memory
of 512 KB, and a Motorola 68331, 25MHz processor. The
Khepera model we used is a table-top robot, connected to a
workstation through a wired serial link. This configuration
allows an optional experimental configuration with everything
at hand: the robot, the environment and the host computer.

Figure 11: The Khepera II Robot

Fig. 12: Position of the sensors of Khepera II

Different experimental world maps have been developed to

study the performance of the three different Q-learning and the
corresponding path-planning algorithms. The starting and the
goal states S and G are marked in all the experimental maps.
The snapshots of each map after construction of the trajectory
by the robot using distinctive colored lines for three
algorithms CQL, EQL and IQL for all the experiments are
given.

The first experiment is developed based on the world map
shown in Fig. 13. The IQL and the EQL respectively takes 179
and 1710 iterations to learn the said environment. The CQL
algorithm with random selection requires 3012 iterations for
convergence. After the learning phase is over, the path
planning algorithm is executed by keeping the Khepera at state
no 48, facing left, in the experimental world map and is
allowed to traverse to the goal using the stored Q-table by all
the three algorithms. Path taken by the robot with the stored
Q-table by the IQL, the CQL and the EQL are shown in Fig.
13 by red blue and green lines respectively.

No. of states locked

N
o.

 o
f i

te
ra

tio
ns

Fig.13: World map without any obstacle. Path planned by the robot:

Using the Q-table returned by the IQL.
Using the Q-table returned by the CQL.
Using the Q-table returned by the EQL.

The second experiment considers Q-learning in Fig. 14,
and path-planning in the same world map after introducing six
rectangular obstacles. The path taken by the robot with the
stored Q-table by IQL, CQL and EQL are shown in Fig. 14 by
distinctive colored lines. The robot with the stored Q-table by
the EQL fails to reach the goal as indicated by black line in
Fig 14. After reaching state no. 36, the best action stored in the
Q-table is RIGHT action. In order to perform this action the
robot turns right by 90 and checks for the presence of any
obstacle in front of it with the help of sensor 2 and sensor 3.
The robot finds an obstacle in state no. 35 and there is no
alternative action stored in the Q-table. Therefore the robot
with the stored Q-table obtained by the EQL fails to reach goal
and stop at state no. 36.

Fig. 14: World map with six obstacles added after the learning phase.Path
planned by the robot:

Using the Q-table returned by the IQL.
Using the Q-table returned by the CQL.
Using the Q-table returned by the EQL (The robot fails to
reach the goal. After reaching state no. 36 the next state is

state no. 35 but an obstacle is present in that state. The
robot will stop at the state no 36).

Experiment 3 is concerned with learning and planning in
the world map shown in Fig. 15 containing four obstacles,
numbered 1 to 4. All the three algorithms are used to learn the
movement steps from each grid in the map to its neighboring
grid. The IQL takes 311 iterations to learn the said
environment, while the EQL algorithm takes 1857 iterations
for the same learning task. The CQL algorithm with random
action selection takes 3060 iterations for convergence. After
completion of the learning phase we kept the Khepera, facing
left, in the same environment and the planning phase is
executed with all three algorithms by using the stored Q-table
obtained by the respective learning algorithm. The red, blue
and green lines in Fig. 15 show the paths taken by the robot
with the stored Q-table by IQL, CQL and EQL respectively.

Fig. 15: World map with four obstacles. Path planned by the robot using:

Using the Q-table returned by the IQL.
Using the Q-table returned by the CQL.
Using the Q-table returned by the EQL

In experiment 4, we train the robot in the world map given
in Fig. 16 with four obstacles numbered 1 to 4. After the
training is over, we add two obstacles numbered 5 and 6 in the
map, the planning cycle is executed in the modified world map
given in Fig. 16. The path taken by the robot with the stored
Q-table by IQL, CQL and EQL are given by red, blue and
green lines respectively. The robot with the stored Q-table by
the extended Q-learning fails to reach the goal as indicated by
the incomplete green line segment in Fig. 16. The justification
of the failure is given below. After reaching state no. 8, the
robot determines the best action at this state, which is move
left, but an obstacle is present at the next state. Therefore, the
robot reports failure and stops in state no. 8.

Fig. 16: World map with four obstacles. Path planned by the robot using:

Using the Q-table returned by the IQL.
Using the Q-table returned by the CQL.
Using the Q-table returned by the EQL (When the robot
reaches at state no. 8, the best action at state no. 8 is move
left but an obstacle is present at state no. 7. So, the robot
will stop at the state no.8).

Results of the experiments undertaken above are
summarized in Table-2. The Table compares the relative
performance of the IQL, EQL and CQL in path-planning. The
metrics employed to compare the relative merits of the Q-
learning algorithms in the planning phase are: 1) time taken to
reach the goal, 2) the number of 90o turns involved in the path-
planning, and 3) the number of states traversed during the
planning phase.

It is apparent from Table-2 that for all the world maps
shown in Fig. 13-16 the IQL outperforms the CQL and the
EQL with respect to all the three metrics. The maximum
noteworthy merit of the IQL over the others is the number of
90o turns, which is a bare minimum as evident from Table-2.
Table 2: Comparison of Time taken by the robot, no. of 90 turns required by
the robot and no. of state traversed by the robot

Fig. No
Time Taken in

sec
No. of 90

turn
No. of states

traversed
IQL EQL CQL IQL EQL CQL IQL EQL CQL

13 40.73 48.44 47.40 1 5 4 12 12 12
14 43.74 - 71.17 2 - 9 12 - 16
15 39.62 48.40 48.40 2 7 7 11 11 11
16 43.72 - 59.52 4 - 10 11 - 13

IQL Improved Q-learning
EQL Extended Q-learning
CQL Classical Q-learning
- Goal cannot be reached

VIII. Conclusions
The paper proposed an alternative algorithm for deterministic
Q-learning, presuming that the background knowledge about
the distance from the current state to both the next state and
the goal state are available. The proposed algorithm updates
the entries of the Q-table only once unlike the classical Q-
learning, where the entries in the Q-table were updated many

times until convergence was ensured. This results in a
significant saving in time complexity of the order of mn in
comparison to the classical Q-learning, where n and m are the
number of states and number of actions at each state
respectively.
 Theorem 1 indicates the correctness in the steady-state values
in the entries of the Q-table. Time-complexity analysis also
reveals that the proposed algorithm saves a time-complexity of
the order of mn, when compared to the classical Q-learning.
 Experiments simulated on different experimental maze and
on the Khepera platform confirms the better performance of
the proposed algorithm in comparison to Classical and the
extended Q-learning algorithms. The Q-table updated by the
improved Q-learning, when used for path-planning
application, outperforms both the classical and the extended
Q-learning with respect to all the three metrics used in the
experimental study. Most importantly, the 90o turnings
required in the IQL is significantly reduced in comparison to
the CQL and the EQL. Since the IQL outperforms CQL and
EQL in all the three metrics as indicated in Table 1 and 2, it
has a good potential in path-planning applications of mobile
robots, particularly when obstacles are added in real time

REFERENCES
[1] Dean, T., Basye, K. and Shewchuk, J. “Reinforcement learning for

planning and Control”. In: Minton, S. (ed.) Machine Learning Methods
for Planning and Scheduling. Morgan Kaufmann 1993.

[2] Bellman, R.E., Dynamic programming, Princeton, NJ: Princeton
University Press, 1957.

[3] Watkins, C. and Dayan, P., “Q-learning”, Machine Learning, Vol. 8, pp.
279- 292, 1992

[4] Konar, A., Computational Intelligence: Principles, Techniques and
Applications, Springer-Verlag, 2005

[5] Busoniu, L., Babushka, R., Schutter, B.De., Ernst, D., Reinforcement
Learning and Dynamic Programming Using Function Approximators,
CRC Press, Taylor & Francis group, Boca Raton, FL, 2010.

[6] Chakraborty, J., Konar A., Jain, L.C., and Chakraborty, U., “Cooperative
Multi-Robot Path Planning Using Differential Evolution” Journal of
Intelligent & Fuzzy Systems, Vol. 20, Pp.13-27, 2009.

[7] Gerke, M., and Hoyer, H., “Planning of Optimal paths for autonomous
agents moving in inhomogeneous environments”, in: Proceedings of the
8th Int. Conf. on Advanced Robotics, July 1997, pp.347-352.

[8] Xiao, J., Michalewicz, Z., Zhang, L., and Trojanowski, K., “Adaptive
Evolutionary Planner/ Navigator for Mobile robots”, IEEE Transactions
on evolutionary Computation 1 (1), April 1997.

[9] Bien, Z., and Lee, J., “A Minimum–Time trajectory planning Method for
Two Robots”, IEEE Trans on Robotics and Automation 8(3).PP.443-
450, JUNE 1992.

[10] Moll, M., and Kavraki, L.E., “Path Planning for minimal Energy Curves
of Constant Length”, in: Proceedings of the 2004 IEEE Int. Conf. on
Robotics and Automation, pp.2826-2831, April 2004.

[11] Regele, R., and Levi, P., “Cooperative Multi-Robot Path Planning by
Heuristic Priority Adjustment”, in: Proceedings of the IEEE/RSJ Int
Conf on Intelligent Robots and Systems, 2006.

[12] Yuan-Pao Hsu, Wei-Cheng Jiang, Hsin-Yi Lin, “A CMAC-Q-Learning
Based Dyna Agent”, in: SICE Annual Conference, 2008, pp. 2946 –
2950, The University Electro-Communications, Tokyo, Japan.

[13] Yi Zhou and Meng Joo Er, “A Novel Q-Learning Approach with
Continuous States and Actions”, in: 16th IEEE International Conference
on Control Applications Part of IEEE Multi-conference on Systems and
Control, Singapore, 1-3 October 2007

[14] Kyungeun Cho, Yunsick Sung, Kyhyun Um, “A Production Technique
for a Q-table with an Influence Map for Speeding up Q-learning”, in :
International Conference on Intelligent Pervasive Computing, 2007.

[15] Deepshikha Pandey, Punit Pandey, “Approximate Q-Learning: An
Introduction”, in : Second International Conference on Machine
Learning and Computing, 2010.

[16] S. S. Masoumzadeh and G. Taghizadeh, K. Meshgi and S. Shiry, Deep
Blue, “A Fuzzy Q-Learning Enhanced Active Queue Management
Scheme”, in : International Conference on Adaptive and Intelligent
Systems, 2009.

[17] Indrani Goswami (Chakraborty), Pradipta Kumar Das, Amit Konar, R.
Janarthanan. “Extended Q-learning Algorithm for Path-Planning of a
Mobile Robot”, in: Eighth International Conference on Simulated
Evolution And Learning (SEAL-2010), Indian Institute of Technology
Kanpur, India, December 2010.

[18] L. A. Jeni, Z. Istenes P Korondi, H. Hashimoto Hierarchical
“Reinforcement Learning for Robot Navigation using the Intelligent
Space Concept”, in 11th International Conference on Intelligent
Engineering Systems - 29 June - 1 July 2007 - Budapest, Hungary

[19] Tom´as Mart´ınez-Mar´ın and Rafael Rodr´ıguez, “Navigation of
Autonomous Vehicles in Unknown Environments using Reinforcement
Learning”, in 2007 IEEE Intelligent Vehicles Symposium, Istanbul,
Turkey, June 13-15, 2007

[20] Wooyoung Kwon, Il Hong Suh, Sanghoon Lee, Young-Jo Cho, “Fast
Reinforcement Learning Using Stochastic Shortest Paths for a Mobile
Robot” in 2007 IEEE/RSJ International Conference on Intelligent
Robots and Systems, San Diego, CA, USA, Oct 29 - Nov 2, 2007

[21] L. A. Jeni , Z. Istenes , Péter Szemes, H. Hashimoto, “Robot Navigation
Framework Based on Reinforcement Learning for Intelligent Space”,
2008 Conference on Human System Interaction, Krakow, Poland, May
25-27, 2008

[22] Roland Lang, Stefan Kohlhauser, Gerhard Zucker, and Tobias Deutsch,
“Integrating Internal Performance Measures into the Decision Making
Process of Autonomous Agents”, in 2010 Conference on Human System
Interaction, Rzeszow, Poland, May 13-15, 2010.

[23] G. Tesauro, “Extending Q-Learning to General Adaptive. Multi-Agent
Systems”, in Advances in Neural Information Processing Systems,
volume 16, 2004.

[24] Frazier, P. and W. B. Powell, “The Knowledge Gradient Policy for
Offline Learning with Independent Normal Rewards”, in Proceedings of
the 2007 IEEE Symposium on Approximate Dynamic Programming and
Reinforcement Learning (ADPRL 2007).

[25] Jung-Jun Park, Ji-Hun Kim, and Jae-Bok Song, “Path Planning for a
Robot Manipulator based on Probabilistic Roadmap and Reinforcement
Learning”, in International Journal of Control, Automation, and
Systems, vol. 5, no. 6, pp. 674-680, December 2007.

[26] Shoufeng Lu, Ximin Liu, Shiqiang Dai, “Incremental Multistep Q-
learning for Adaptive Traffic Signal Control Based on Delay
Minimization Strategy”, in Proceedings of the 7th World Congress on
Intelligent Control and Automation, June 25 - 27, 2008, Chongqing,
China.

[27] Wei Chen,Jing Guo,Xiong Li,Jie Wang, “Hybrid Q-learning Algorithm
About Cooperation in MAS”, 2009 Chinese Control and Decision
Conference (CCDC 2009).

[28] E. Gomes and R. Kowalczyk, “Dynamic Analysis of Multiagent Q-
learning with E-greedy Exploration,” Proceedings of the 26th
International Conference on Machine Learning, vol. 382, pp. 369–376,
2009.

[29] Zhe Chen, and Robert C. Qiu, “Q-Learning Based Bidding Algorithm
for Spectrum Auction in Cognitive Radio”, in Proceedings of IEEE
SoutheastCon, March, 2011.

[30] A. Galindo-Serrano and L. Giupponi, “Distributed Q-learning for
aggregated interference control in cognitive radio networks,” IEEE
Transactions on Vehicular Technology, vol. 59, no. 4, pp. 1823 – 1834,
2010.

[31] O. Alsaleh, B. Hamdaoui, and A. Fern, “Q-learning for opportunistic
spectrum access,” in Proceedings of the 6th International Wireless
Communications and Mobile Computing Conference, 2010, pp. 220–
224.

[32] C. Wu, K. Chowdhury, and M. D. Felice, “Spectrum management of
cognitive radio using multi-agent reinforcement learning,” in
Proceedings of the International Conference on Autonomous Agents and
Multiagent Systems, 2010.

[33] R. C. Qiu, Z. Chen, N. Guo, Y. Song, P. Zhang, H. Li, and L. Lai,
“Towards a real-time cognitive radio network testbed: architecture,
hardware platform, and application to smart grid,” in Proceedings of the
fifth IEEE Workshop on Networking Technologies for Software-Defined
Radio and White Space, June 2010.

[34] Wang Yaping, Zhang Zheng, “A Method of Reinforcement Learning
Based Automatic Traffic Signal Control”, in Third International
Conference on Measuring Technology and Mechatronics Automation,
2011

[35] Hiroyuki Okamura and Tadashi Dohi, “Application of Reinforcement
Learning to Software Rejuvenation”, in Tenth International Symposium
on Autonomous Decentralized System 2011

[36] Sridhar Mahadevan, “Average Reward Reinforcement Learning:
Foundations, Algorithms, and Empirical Results”, Machine Learning ,
Special Issue on Reinforcement Learning (edited by Leslie Kaebling),
vol. 22, pp. 159-196, 1996.

[37] L.Busoniu, R. Babuska, B.D. Schutter and D. Ernst, Reinforcement
Learning and Dynamic Programming using Function Approximators,
CRC Press, Florida, 2010.

[38] Y. Sakaguchi and M. Takano, “Reliability of internal prediction/
estimation and its application. I.Adaptive action selection reflecting
reliability of value function, Neural Networks”, vol.17, pp.935-952,
2004.

[39] Sutton, R. S. and Barto, A. G., Reinforcement Learning, MIT Press,
Boston, MA, 1998.

[40] http://www.computationalintelligence.net/main/main_page.html

Amit Konar (SM’10) received the
B.E. degree from Bengal Engineering
and Science University (B.E. College),
Howrah, India, in 1983 and the M.E.
Tel E, M. Phil., and Ph.D.
(Engineering) degrees from Jadavpur
University, Calcutta-700032, India, in
1985, 1988, and 1994, respectively. In
2006, he was a Visiting Professor with
the University of Missouri, St. Louis.
He is currently a Professor with the
Department of Electronics and Tele-
communication Engineering (ETCE),
Jadavpur University, where he is the
Founding Coordinator of the M.Tech.
program on intelligent automation and
robotics. He has supervised fifteen
Ph.D. theses. He has over 250
publications in international journal
and conference proceedings.

He is the author of eight books, including two popular texts Artificial
Intelligence and Soft Computing (CRC Press, 2000) and Computational
Intelligence: Principles, Techniques and Applications (Springer, 2005). He
serves as the Associate Editor of IEEE Transactions on Systems, Man and
Cybernetics, Part-A, and IEEE Transactions on Fuzzy Systems. His research
areas include the study of computational intelligence algorithms and their
applications to the various domains of electrical engineering and computer
science. Specifically, he worked on fuzzy sets and logic, neurocomputing,
evolutionary algorithms, Dempster–Shafer theory, and Kalman filtering, and
applied the principles of computational intelligence in image understanding,
VLSI design, mobile robotics, pattern recognition, brain-computer interfacing
and computational biology. He was the recipient of All India Council for

Technical Education (AICTE)-accredited 1997–2000 Career Award for
Young Teachers for his significant contribution in teaching and research.

 Indrani Goswami (Chakraborty)

received her B.E. degree in Electrical
engineering, M.E. degree (with
specialization in Control Engineering) in
Electronics and Communication
Engineering and Ph.D. degree in
Cognitive Robotics all from Jadavpur
University in 1993, 1988 and 2012
respectively. She was a visiting Research
scientist in Robotics Lab, MIE
University, Nyoga, Japan. Indrani has
been currently teaching in Calcutta
Institute of Technology for the last 2
years.

Her current research interest includes Machine Intelligence and Robotics,
Industrial Control, Cognitive science, Brain-Computer Interfacing and
Evolutionary Algorithms. She has published a number of interesting papers in
top international journals and conference proceedings.

 Lakhmi C. Jain is currently a Professor of
knowledge-based engineering and the Director/
Founder of the Knowledge-Based Intelligent
Engineering Systems Centre, University of South
Australia, Adelaide, Australia. His interests focus
on artificial intelligence paradigms and their
applications in complex systems, art-science fusion,
e-education, e-healthcare, robotics, unmanned air
vehicles, and intelligent agents. Prof. Jain is a
Fellow of the Institution of Engineers Australia.

Atulya K. Nagar holds the Foundation Chair,
as Professor of Computer and Mathematical
Sciences, at Liverpool Hope University and is
Head of the Department of Mathematics and
Computer Science. A mathematician by
training, Professor Nagar possesses multi-
disciplinary expertise in Natural Computing,
Bioinformatics, Operations Research and
Systems Engineering. He has an extensive
background and experience of working in
Universities in the UK and India. He has been
an expert reviewer for the Biotechnology and
Biological Sciences Research Council
(BBSRC) grants peer-review committee for
Bioinformatics Panel and serves on Peer-
Review College of the Arts and Humanities
Research Council (AHRC) as a scientific
expert member.

He has coedited volumes on Intelligent Systems, and Applied Mathematics; he
is the Editor-in-Chief of the International Journal of Artificial Intelligence and

Soft Computing (IJAISC) and serves on editorial boards for a number of
prestigious journals as well as on International Programme Committee (IPC)
for several international conferences. He received a prestigious
Commonwealth Fellowship for pursuing his Doctorate in Applied Non-Linear
Mathematics, which he earned from the University of York in 1996. He holds
BSc (Hons.), MSc, and MPhil (with Distinction) from the MDS University of
Ajmer, India. Prior to joining Liverpool Hope, Prof.Nagar was with the
Department of Mathematical Sciences, and later at the Department of Systems
Engineering, at Brunel University, London.

Sapam Jitu Singh received B.E. (Computer
Technology) in 2000 from Nagpur
University, Maharashtra, India and M.E. in
Electronics & Tele-communication
Engineering (Computer Engineering
specialization) in 2011 from Jadavpur
University, West Bengal, India. Since 2003,
he has been working as Lecturer with
Department of Computer Science and
Engineering, Manipur Institute of
Technology, Manipur, India. His research
interests include evolutionary computing,
digital image processing and robotics.

