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1. Introduction

The theory of grammar systems [3] has provided an effective grammatical framework for capturing
several phenomena characteristic of multi-agent systems.Different kinds of grammar systems have been
introduced and investigated in the literature to capture various features such as cooperation, distribution,
communication, parallelism and so on. On the other hand the new computability model introduced
by Pǎun [11] inspired by the structure and functioning of living cells has proved to be a rich frame
work for obtaining universality results and studying many computational problems. Although these
two areas originated from different motivations and the models were formulated with different basic
structures, recently these two have been linked in [4], by incorporating into rewritingP systems [11], a
communication mode calledt−mode of cooperating distributed (CD) grammar systems [3]. The power
of the resultingP systems is investigated in [4] by comparing them with CD grammar systems.

In theoretical studies on generation and analysis of imagesor pictures in the two-dimensional plane,
syntactic techniques have constituted one of the main areasof study. Motivated by different applications
such as character recognition, pictorial information system design, pattern recognition and so on, several
types of two-dimensional picture generating systems have been proposed in the literature [13, 14, 7, 2,
25, 24] extending to two-dimensions the well-known Chomskian string grammars [16] or Lindenmayer
systems [15] or Marcus contextual grammars [6, 10] and others.

The power of the mechanism of cooperation in generating pictures by array grammars is investigated
in [5]. It is shown in [5] that the power of cooperating array grammar systems is strictly greater than that
of context-free array grammars. In fact the generative power is increased even in the case of systems with
components having regular array grammar rules which is in contrast to the string case. On the other hand
in [1], array P systems are considered extending the string-objects P systems to array-objects P systems,
thus bringing together the two areas of membrane computing and picture grammars considered in the
form of two-dimensional(2d) array grammars. It is shown in [1] that P systems with array context-
free rules are computationally universal. The array P system in [1] uses an extended alphabet which
includes a terminal alphabet, has internal output with the result being obtained in a specified membrane
and considers halting computations.

Motivated by the study in [4], here we incorporate into arrayP systems thet−mode of communica-
tion of cooperating array grammar systems, and examine the power of the array P systems, thus providing
a natural extension of the study in [4] to picture arrays.

2. Basic Definitions and examples

We refer to [16] for notions of formal language theory and to [5] for array grammars and array languages.
For notions pertaining to P systems, we refer to [11] and for grammar systems to [3].

An alphabetV is a finite set of symbols. A word or a stringw over V is a sequence of symbols
from V . The set of all words, including the empty wordλ with no symbols, is denoted byV ∗ and
V + = V ∗ − λ.

The pictures that we consider are arrays consisting of finitely many symbols from a given alphabet
V with the symbols placed in the points of the plane and the points not marked with elements ofV
are assumed to have theblank symbol# /∈ V . An array is described by specifying thepixels v of
nonblank points, together with their associated symbols from V . We will also use the intuitive pictorial
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representation for 2D finite arrays indicating their non-blank pixels. Also we take into account only the
relative positions of non-blank pixels in the array. For example, the T-shaped array with equal arms in
Figure 1 is formally given by

{((0, 4), a), ((1, 4), a), (2, 4), a), ((3, 4), a), ((4, 4), a), ((5, 4), a), ((6, 4), a),

((7, 4), a), ((8, 4), a), ((4, 0), a), ((4, 1), a), ((4, 2), a), ((4, 3), a)}

a a a a a a a a a

a

a

a

a

Figure 1: T-shaped array with equal arms

We denote byV +2 the set of all two-dimensional non-empty finite arrays overV . The empty array
is denoted byλ, and then the set of all arrays overV is V ∗2 = V +2 ∪ {λ}. Any subset ofV ∗2 is called
anarray language.

The array grammars we consider here are extensions of stringgrammars to two dimensional pictures
[5, 2, 26].

An array rewriting rulep overV is of the formp : A −→ B whereA andB are arrays overV . For
two arraysC,D overV and a rulep as above, we writeC =⇒p D (C =⇒ D whenp is understood), ifD
can be obtained by replacing a subarray ofC identical toA with B. The reflexive and transitive closure
of the relation=⇒ is denoted by=⇒∗.

An array productionp = (W,A,B) is called:

1. monotonic, if the symbol positions ofA are all contained inB;

2. #-context-free, if there is exactly one nonblank symbol inA;

3. context-free, if it is both monotonic and#-context-free.

An array grammar is a five-tupleG = (N,T,#, {((0, 0), S)}, P ), whereN,T are disjoint alphabets
of nonterminal symbols and of terminal symbols, respectively, # /∈ N ∪ T is the blank symbol,S ∈ N ,
andP is a finite set of array productionsA −→ B such that at least one pixel ofA is marked with an
element ofN ; usually, theaxiom array{((0, 0), S)} will be simply written asS.

An array grammar is monotonic,#-context-free, or context-free if all its rules are of thesetypes;
clearly, in the case of#-context-free and context-free grammars, there is a uniquenon-blank pixel in
the left hand array of each rule, marked with a nonterminal.Regulararray grammar rules are of the

following forms: A # → a B, # A → B a,
#

A
→

B

a
,

A

#
→

a

B
, A → B, A → a, where

A,B are nonterminals anda is a terminal.
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The array language generated byG is

L(G) = {A ∈ T ∗2 | {((0, 0), S)} =⇒∗ A}.

The families of array languages generated by arbitrary, monotonic,#-context-free, context-free, and
regular array grammars are denoted byARE,AMON,A#CF,ACF,AREG respectively. The fol-
lowing strict inclusions are known:AREG ⊂ ACF ⊂ AMON ⊂ ARE, ACF ⊂ A#CF ⊂ ARE.
Here we deal with only the familiesACF andAREG.

The two-dimensional matrix grammars introduced in [17] andstudied extensively in the literature
(to quote a few [18, 8, 20, 19]) generate only rectangular arrays over terminals. We briefly recall these
grammars. A2d matrix grammar has two components(G1, G2) whereG1 is a Regular,CF or CS
grammar generating in the first phase strings over a set of symbols{S1, S2, · · · , Sk}, called intermedi-
ates;G2 = (G21, G22, · · · , G2k) where eachG2i is a regular grammar corresponding toSi and has right
linear production rules of the formX → aY or X → a whereX,Y are nonterminals ofG2i anda is a
terminal ofG2i.

G is a regular, context-free, context-sensitive2d matrix grammar ifG1 is regular, context-free, con-
text sensitive respectively. Derivations are defined as follows: First a string over the intermediates ofG1

is generated horizontally using the rules ofG1. Vertical derivations then proceed in parallel using the
rules ofG2i generating rectangular arrays over terminal symbols ofG2is when the vertical derivation
terminates.

The setL(G) consists of allm × n arrays generated byG. We denote the picture language classes
of regular,CF 2d Matrix grammars by2dRML, 2dCFML, respectively.

Now we very briefly mention the notion of cooperating array grammar system defined in [5]. The
idea is analogous to string cooperating grammar system [3] except that array rewriting rules are taken in
the components of the system. The family of array languages generated by cooperating array grammar
systems consisting of at mostn components with the rules in the components either regular or CF array
rewriting rules and in thet−mode of derivation, is denoted byCDn(REGA, t) and CDn(CFA, t)
according as all the components use regular rules or at leastone component uses non-regular CF rules.
In [5] an extensive investigation of the power of these systems is done.

We now briefly and informally recall a specific basic model of string-rewritingP systems and com-
putations carried out in such systems. A comprehensive account of these systems can be found in [11]
or at the web addresshttp://psystems.disco.unimib.it.

In the regionsof a string-rewritingP system defined by a hierarchical arrangement ofmembranes,
objectswhich are strings of symbols are processed byrewriting rules(or other string handling operations)
associated with the membranes. A typical rewriting rule used in a string-objects membrane system
(also calledP system) is of the formX → u(tar), whereX → u is a usual context-free rule, and
tar ∈ {here, out, in} is a target indication, specifying the region where the result of the rewriting should
be placed in the next step:heresays that the result remains in the same compartment where the rule was
applied,out says that the string has to be sent to the region surrounding the region where it has been
produced, andin says that the string should go to one of the directly inner membranes, if any exists. By a
commandouta string can leave the system which happens when it is produced in the external membrane
of a system. Each string is processed by at most one rule at a time; if any rule can be used, then one
of these, nondeterministically chosen, is used; if no rule is available to rewrite a string, then it remains
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unchanged. All strings, from all regions, are rewritten at the same time. A sequence of such steps is
called a computation; a computation provides a result only if it halts, and a configuration of the system
is reached where no further rule can be applied. The result ofa computation is the set of strings present
in the halting configuration in a specified elementary membrane; if acceptance is defined by collecting
only the strings over a specified terminal alphabet, then thesystem is called extended and otherwise, it
is called non-extended. We have described here a specific type of rewriting P systems, namely one with
internal outputin which the result is obtained in a specified membrane and with halting computations
and this model has proved to be very useful in the array case.

We now very briefly mention computation in the basic model of arewriting array-objectsP system
introduced in [1].

A computation in an arrayP systemΠ is defined in the same way as in the string rewritingP
system described earlier with the successful computationsbeing the halting ones: In the compartments
of a membrane structure we place arrays, which evolve by means of array rewriting rules. The result of a
computation is the set of arrays collected in a specified elementary membrane in the halting configuration.

The family of all array languages generated by systemsΠ as above, with at mostm membranes, with
rules of typeα ∈ {REG,CF} is denoted byEAPm(α) whereREG,CF respectively refer to regular
and context-free array rewriting rules ; if non-extended systems are considered (that is, we haveV = T ;
in such a case we ignore the condition to have at least one nonterminal pixel in the left hand side of
rules), then we writeAPm(α).

3. Array P system with t mode of communication

Csuhaj-Varju et al [4] have brought out the relationsihp between coperating distributed string grammar
systems and string-objectsP systems by linking them through thet−derivation mode. Dassow et al [5]
have incorporated thet−mode of derivation in their study of cooperating array grammar systems and
have demonstrated the power of this mechanism oft−mode of derivation, besides establishing other
results. Motivated by the studies in [4], we now introduce anarrayP system witht mode of communi-
cation.
A P system (of degreem ≥ 1) with array-objects andt−communication (or in short, at−communicating
arrayP system of typeα, (tEAPSm(α, β)), α ∈ {tin, tout}, β ∈ {REG,CF} is a construct

Π = (V, T,#, µ, F1, . . . , Fm, R1, . . . , Rm, io),

where:

1. V is the total alphabet,

2. T ⊆ V is the terminal alphabet,

3. # is the blank symbol,

4. µ is a membrane structure withm membranes labelled in a one-to-one way with1, 2, . . . ,m,

5. F1, . . . , Fm are finite sets of arrays overV associated with them regions ofµ,
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6. R1, . . . , Rm are finite sets of array rewriting rules overV associated with them regions ofµ; the
array-rewriting rules are context-free of the formA → B or A → B(tar) andtar ∈ {out , in}; In
a given system at most one of the target indicationsin andout may be present in the rules of the
regions.

7. io is the label of an elementary membrane ofµ (the output membrane).

The computation starts in the usual way with the arrays, if any, of Fi initially present in theith region
1 ≤ i ≤ m. Each array in every membrane regioni is rewritten by any available array-rewriting rule
in the regionRi; only one rule, nondeterministically chosen, is applied toeach array in every region.
We now describe the manner in which the arrays are communicated or sent among the regions.If an
array-rewriting rule has target indicationin, then the array to which it is applied is non-deterministically
sent to one of the immediately direct inner regions and if no such region exists such a rule cannot be
applied. If an array-rewriting rule has target indicationout, then the array to which it is applied is sent
to its immediately direct upper region. If an array-rewriting rule has no target indication, then the array
to which it is applied remains in the same region if it can be further rewritten there but if no rule can be
applied to it in that region, then one of the following actions is done depending on the system is of type
tin or tout.

1. A t−communicating arrayP system of typetin has array-rewriting rules in its regions with target
indicationout or no target indication (and does not have rules with target indicationin). In fact
when an array cannot be further rewritten in a region, it is sent to the immediately direct inner
region if one such region exists. In other words thet−mode or maximal derivation performed
enforces thein target command. If the membrane is elementary, the rewritten array remains there.

2. A t−communicating arrayP system of typetout has array-rewriting rules in its regions with target
indication in or no target indication (and does not have rules with target indicationout). In fact
when an array cannot be further rewritten in a region, it is sent to the immediately direct outer
region if one such region exists. In other words thet−mode or maximal derivation performed
enforces theout target command.

Remark 3.1. In defining correct computations, the halting condition hasproved to be useful in the array
case as has been noted in [1]. Here we therefore deal only witht−communicating arrayP system of type
tin in the rest of the study and so we writetEAPSm(REG), tEAPSm(CF ), with the understanding
that the type of the system istin.

The set of all arrays computed or generated by at−communicatingP systemΠ is denoted by
tAL(Π). The family of all array languagestAL(Π) generated by such systemsΠ with at mostm mem-
branes and rules of typeα ∈ {REG,CF} is denoted bytEAPm(α).

Example 1.Consider thet−communicating arrayP system,tEAPS4(REG),

Π1 = ({A,B,C,A′, B′, C ′,X, Y, a}, {a},#, [1 [2[3[4]4]3]2]1,

{

AX B

C

}

, ∅, ∅, ∅, R1, R2, R3, R4, 4),

R1 = { # A → A′ a , B # → aB′ ,
C

#
→

a

C ′

}
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R2 = { A′ → A , B′ → B , C ′ → C , Y → X (out)}

R3 = { X → Y (out), X → a }

R4 = { A → a , B → a , C → a }

Starting with the array

{

AX B

C

}

initially present in region1 of the system, the “horizontal” and the

“vertical” “arms” are grown once and due to the maximal mode of derivation and typetin of the system,
the array is sent to the inner region2 wherein the cells with labelsA′, B′, C ′ are respectively changed into
A,B,C. Again due to thetin type the array is sent to region3. If the rule used isX → Y , the target

indicationout sends it immediately to region2 wherein the rule that can be used is onlyY → X
with target indicationout and so the array is sent to region1. The process repeats. But if the rule used
in region3 is X → a , then the array enters region4, the nonterminals are changed into the terminal
a and the array generated is in the form of the letter T (Figure 1) with all three “arms” of equal length.
These arrays constitute the language generated.

Example 2.Consider thet−communicating arrayP system,tEAPS4(CF ),

Π2 = ({A,B,C,A′, B′, C ′,X, Y, a}, {a},#, [1 [2[3[4]4]3]2]1,

{

AC

X B

}

, ∅, ∅, ∅, R1, R2, R3, R4, 4),

R1 = {
#

A
→

A′

a
,

# #

C #
→

A′ C ′

aB′

, B # → a B′}

The rules inR2, R3, R4 are as in example 1.

Starting with the array

{

AC

X B

}

initially present in region1 of the system, the border made of the

top row and rightmost column is grown just to increase the size of the array by one in both row and
column, thus maintaining the “square” shape. The rest of thecomputation is similar to the example 1,
finally yielding solid “square” arrays (Figure 2) over the terminal symbola and these are collected in the
region 4.

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

Figure 2: A Solid square ofa′s

Remark 3.2. It is known that the setSs of all n×n (n ≥ 2) solid squares overa, can be generated [26]
by a regular array grammar. Here thet−communicatingP systemΠ2 of typetin also generates it. But
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the difference is that the number of rules required in the former case is very large whereas in the case of
Π2, we have only 12 rules in all the 4 membranes together. It remains to be seen whether the number of
rules can still be reduced.

The following results in Theorem 3.1 are immediate from the definition of t−communicating array
P system.

Theorem 3.1. 1. ForX ∈ {AREG,ACF}, X ⊆ tEAP1(X)

2. ForY ∈ {REG,CF}, tEAPn(Y ) ⊆ tEAPn+1(Y ), n ≥ 1

3. tEAPn(REG) ⊆ tEAPn(CF ), n ≥ 1

Theorem 3.2. 1. 2dRML ⊂ tEAP4(CF )

2. tEAP4(CF ) − 2dCFML 6= ∅

Proof:
Every2dRML generated by a2dRMG G can be simulated by atEAPS4(CF ) Π (of typetin) which
is described below: We can assume that the rules in the first phase of the2dRMG G are of the form
X → AY or X → A where X,Y are nonterminals in the first phase ofG and A is a terminal
symbol (also called intermediate) of the first phase ofG. Π has four membranes having a structure
[1[2[3[3[4]4]3]2]1. In regions 2, 3 and 4 initially there are no array-objects.

In the region 1 ofΠ, the start symbol of the2dRMG is the initial array object. For every rule of
the first phase of the2dRMG of the formX → AY, whereX,Y are nonterminals of the first phase
andA an intermediate, we include a ruleX# → AY in region 1. For each rule of the formX → A,
whereX is a nonterminal of the first phase andA an intermediate, we include in region 1, a rule of the
form X → [A, 1] where[A, 1] is a new symbol and corresponds toA. Also rules of the of the forms
A

#
→

a

B′

,
[A, 1]

#
→

a

[B, 1]
are included in region 1, corresponding to a regular ruleA → aB in

the second phase of the2dRMG, where [A, 1], [B, 1] are new symbols that respectively correspond
to A,B.

Region 2 has rules of the formA′ → A whereA′ is a new symbol corresponding to the nonterminal
A of the second phase of the2dRMG. Also rules of the forms[A, 1] → [A, 2], [A, 3] → [A, 1](out) are
included in region 2, for every such[A, 1], where[A, 2], [A, 3] are new symbols that correspond to[A, 1].

In region 3, for every such symbol[A, 2] created, a rule of the form[A, 2] → [A, 3](out) is added.
Also, if A → a is a terminal rule in phase 2 of the2dRMG, we add a rule[A, 2] → a in region 3.

Region 4 is the output membrane. Region 4 contains all the terminal rules of the second phase of the
2dRMG G. The terminal symbols ofΠ are the terminal symbols of the2dRMG and the nonterminals
are the nonterminals, the intermediates of the2dRMG and the newly introduced symbols.
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It can be seen that due to thet− mode of rewriting in the regions and the typetin of the systemΠ,
the first phase of the2dRMG is simulated in region 1 starting from start symbol (array)S except that
in the strings generated the last symbol will be of the form[A, 1] for some intermediateA. Also one
step of “vertical” derivation of the second phase of the2dRMG is also simulated in this region. The
resulting array is passed on to the region 2 wherein the nonterminals (of the second phase of2dRMG)
are changed into their primed versions but the symbol of the form [A, 1] is changed into[A, 2]. The result
is passed on to region 3 wherein if the rule[A, 2] → [A, 3](out) is used, the array is sent back to region
2 and an application of the only possible rule[A, 3] → [A, 1](out) sends it to region 1 and the process is
repeated. Otherwise, an application of the rule of the form[A, 2] → a sends it to region 4 wherein the
terminal rules of the second phase of the2dRMG are used yielding the terminal arrays generated by the
2dRMG. This shows the inclusion in the first statement.

The proper inclusion in the first statement is due to the fact that no2dCFMG and hence no2dRMG
can generate the setSs of solid squares over{a} as the derivations in the two phases of the2dRMG
are independent of each other. But from example 2,Ss ∈ tEAP4(CF ). This also proves the second
statement. ut

Remark 3.3. In [8], a variation of2dRMG is considered by allowing “vertical” derivations to take
place with the columns “growing” either up or down in parallel. This model can also be generated by a
tEAPS4(CF ) as in Theorem 3.2. The rules in the regions are to be suitably modified to take care of
‘up’ or ‘down’ rewriting in the variation [8] of the2dRMG.

LetRh be the set of all hollow rectangles over the symbol{a}, a member of which is shown in Figure
3. LetSh be the set of all hollow squares over the symbol{a}, in which all the sides are of equal length.

a a a a a a

a a

a a

a a

a a

a a

a a

a a a a a a

Figure 3: A hollow rectangle ofa′s

Theorem 3.3. 1. Rh ∈ tEAP2(REG) ∩ CD2(REG, t)

2. tEAP2(REG) − ACF 6= ∅

Proof:
The setRh is generated by the followingt−communicating arrayP systemtEAPS2(REG)
Π3 = ({S,A,X,B, Y,C,Z,D,F}, {a}, [1 [2]2]1, {S}, ∅, ∅, R1 , R2, 2)
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R1 = {
#

S
→

S

a
,

#

S
→

X

a
, X # → aA , A# → aA ,

A# → aY ,
Y

#
→

a

B
,

B

#
→

a

B
,

B

#
→

a

Z
,

# Z → C a , # C → C a , # C → D a ,
#

D
→

F

a
}

R2 = {D → a}

Starting fromS and using rules of regionR1 a vertical line ofa′s (the leftmost column of a rectan-
gle) is grown until the generation turns right on an application of the rule X # → aA to grow a

horizontal line ofa′s (the topmost row of the rectangle). The application of the rule
Y

#
→

a

B
turns

the generation down to grow again a vertical line ofa′s (the rightmost column of the rectangle) until the
application of the rule# Z → C a which turns the generation to the left again to grow a horizontal
line of a′s (the bottommost row of the rectangle). If the generation ends in region 1 with a correct appli-
cation of the rule # C → D a (the correct application is indicated by non-applicability of the rule

#

D
→

F

a
) the array is then sent to region 2 due totin type and the hollow rectangle ofa′s is formed

by an application of the ruleD → a.

An incorrect application of the rule# C → D a will end the generation with an application of

the rule
#

D
→

F

a
, again sending the array to region 2 where it remains forever but not collected as a

member in the language as it has a nonterminalF in it. It is known [5] thatRh ∈ CD2(REG, t). In fact
the generation of a hollow rectangle ofa′s in the t−communicating array P system given here is based
on the technique used in [5] except that the typetin of the arrayP system is crucial in sending the array
to region 2. This proves statement (1).

The statement (2) follows from (1) by noting that the setRh of all hollow rectangles over a symbol
a is not inACF as no CF array grammar can generate it [26]. ut

Theorem 3.4. 1. Sh ∈ tEAP5(REG) ∩ CD3(CFA, t)

2. Sh /∈ CDn(REGA, t), n ≥ 1

3. tEAP5(REG) − CDn(REGA, t) 6= ∅, n ≥ 1

Proof:
The setSh is generated by the followingt−communicating arrayP systemtEAPS5(REG)

Π4 = ({U,R,U ′, R′,X, Y,R′′, U ′′, Z, F}, {a}, [1 [2[3[4[5]5]4]3]2]1,

{

U

X R

}

,

∅, ∅, ∅, ∅, R1 , R2, R3, R4, R5, 5)
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R1 = {
#

U
→

U ′

a
, R # → aR′ },

R2 = { U ′ → U , R′ → R , Y → X (out)}

R3 = { X → Y (out), X → a }

R4 = { U # # → a aR′′ , R′′ # → aR′′ , R′′ → a ,
#

#

R

→
U ′′

a

a

,

#

U ′′

→
U ′′

a
,

#

U ′′

→
Z

a
, # Z → F a }

R5 = { Z → a }

Starting with the initial array

{

U

X R

}

each of the leftmost column and the bottommost row of the

hollow square ofa′s is grown one step by the application of the rules
#

U
→

U ′

a
, R# → aR′

and the array is passed on to the region 2 due to thetin type of the system wherein the symbolsU ′, R′

are changed intoU,R respectively and then sent to region 3, again due to thetin type of the system. If
the rule applied isX → Y (out), then the array is immediately sent back to region 2 where the only rule
applicable isY → X(out) which sends it to region 1 and the process repeats.

But if the rule applied in region 3 isX → a, then the array is sent to region 4 again due to thetin type
of the system. In region 4, the uppermost side and rightmost side are grown. A correct application of the
rules makes the growing uppermost side and the rightmost side meet at the right position thus yielding
a hollow square ofa′s except for the ‘northeast’ corner symbol which isZ. The tin type of the system
sends the array to region 5 where the symbolZ is changed intoa thus yielding a hollow square ofa′s
in the language generated. On the other hand an incorrect application of the rules in region 4 will send
an array with a nonterminalF or U” to region 5 where it remains forever. This proves the statement
(1). It is known [5] thatSh ∈ CD3(CFA, t). Statement (2) is due to [5]. Statement (3) follows from
statements (1) and (2). ut

Another model of grammars called Puzzle grammar has been introduced in [9] as an array generating
two-dimensional grammar motivated by the problem of tilingthe plane. It is known that context-free
puzzle grammars (CFPG) and context-free array grammars (CFAG) coincide [9] whereas a subclass of
CFPG, called Basic Puzzle grammars is known [21] to properlyinclude the class of RAG’s.

A −→ a��
��

B , A −→ a��
��

B A −→ B��
��

a , A −→ B��
��

a

A −→
a��

��

B

, A −→
a

��
��

B
, A −→

B

��
��

a
, A −→

B��
��

a
, A −→ a��

��
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A Basic Puzzle grammar consists of rules analogous to the rules of a regular array grammar but one
of the symbols in the right side of the rule is circled. We givehere the types of rules. (HereA,B ∈ N
anda ∈ T .)

Derivations begin withS written in a unit cell in the two-dimensional plane, with allthe other cells
containing the blank symbol#, not in N ∪ T . In a derivation step, denoted⇒, a non-terminalA in a
cell is replaced by the right-hand member of a rule whose left-hand side isA. In this replacement, the
circled symbol of the right-hand side of the rule used, occupies the cell of the replaced symbol and the
non-circled symbol of the right side occupies the cell to theright or the left or above or below the cell of
the replaced symbol depending on the type of rule used. The replacement is possible only if the cell to
be filled in by the non-circled symbol contains a blank symbol.

The set of pictures or arrays generated byG, denotedL(G), is the set of connected, digitized finite
arrays overT , derivable in one or more steps from the axiom.

In [22] cooperating basic puzzle grammar systems with components having basic puzzle grammar
rules and maximal mode of derivation has been considered andtheir picture generating power has been
examined. The family of array languages generated by such systems with at mostn components in
the maximal derivation mode is denoted byCDn(BPG, t). On the other hand in [23] arrayP systems
with array objects and basic puzzle grammar rules in the regions of the system are considered. TheseP
systems are called as BPG arrayP systems. Here we can incorporatet−communication in these BPG
arrayP systems. We denote bytEAPSm(BPG) such an arrayP system having at mostm membranes
and having BPG rules and array objects in its regions and typetin. The family of array languages
generated by such systems is denoted bytEAPm(BPG)

LetRhf be the set of all hollow rectangular frames over the symbol{a}, a member of which is shown
in Figure 4.

a a

a a a a a a a a

a a

a a

a a a a x a a a

a a

Figure 4 : A Rectangular frame ofa′s

Theorem 3.5. 1. Rhf ∈ tEAP2(BPG) ∩ CD2(BPG, t)

2. tEAP2(BPG) − ACF 6= ∅

Proof:
The setRhf is generated by the followingt−communicating arrayP systemtEAPS2(BPG)

Π5 = ({S,A,B,C,D,E, I, J,K,X, Y,Z}, {a}, [1 [2]2]1, {S}, ∅, ∅, R1 , R2, 2)
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P1 = {S → a , S → a , A → a B , B → C ,��
��

��
��

��
��

��
��S A a

C → a C , C → D a , D → E , E → a ,��
��

��
��

��
��

��
��a

F

I → J a , J → J a , J → K a , K → a ,��
��

��
��

��
��

��
��Z

F → a , F → I }

F
��
��

a
��
��

P2 = {K → X , X → a Y , Y → a }��
��

��
��

��
��

a

It can be seen thatRhf is generated by thet−communicating arrayP systemΠ5. The generation will
proceed analogous to the generation of a rectangle in the proof of Theorem 3.4 except that the ‘protru-
sions’ in the corners will be produced. It is known [23] thatRhf ∈ CD2(REG, t). In fact the generation
of a hollow rectangular frame ofa′s in thet−communicating array P system given here is based on the
technique used in [23] except that the typetin of the arrayP system sends the array to an inner region.
This proves statement (1).

The statement (2) follows from (1) by noting that the setRhf of all hollow rectangular frames over
a symbola is not inACF as no CF array grammar can generate it [5]. ut

4. Conclusion

We have examined in this paper the relationship between the two array generating models, namely ar-
ray grammar systems and arrayP systems by extending thet−derivation mode of cooperating array
grammar systems [5] to rewritingP systems [1] with array objects and array-rewriting rules. We have
also compared the power of thet−communicating arrayP systems with other array grammar models. It
remains to be seen whether the number of membranes used in theexamples and results could be reduced.
Although thetin type of the system considered here has proved to be very useful in view of the halting
condition in computations, it remains to examine the power of the other typetout. This might require a
different approach in the way of defining successful computations.
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