
Selecting Bloom-filter Header Lengths for Secure
Information Centric Networking

Bander A. Alzahrani*, Vassilios G. Vassilakis**, and Martin J. Reed*
*School of CSEE, University of Essex, Colchester, U.K.

 **Dept. of Electronic Engineering, University of Surrey, Guildford, U.K.

Abstract—Information-centric networking (ICN) is a new
communication paradigm that shifts the focus from end
hosts to information objects. Recent studies have shown that
ICN can provide more efficient mobility support and
multicast/anycast content delivery compared to traditional
host-centric solutions. Nevertheless, the ICN solutions
proposed so far are not very mature from the security
viewpoint. In this paper, we study one of the most important
Bloom-filter based ICN forwarding mechanisms and discuss
its security vulnerabilities. Next, we propose some
enhancements to this mechanism, which aim at increasing
its resistance to brute-force attacks. Our proposed solutions
are supported by simulation studies.

Keyword—Information centric networks; Bloom filter;
Brute force attacks;

I. INTRODUCTION

It is widely recognised that the current Internet
architecture does not cope well with the today’s user
demands [1, 2]. The Internet is suffering from security,
mobility, scalability, and quality-of-service issues, just to
name a few. In recent years, a new communication
paradigm, namely information-centric networking (ICN),
appeared with the ambitious goal of solving the
abovementioned shortcomings [3-5]. ICN marks a
fundamental shift from the current host-centric
communication paradigm. Rather than naming the hosts,
ICN uses the information objects themselves as first class
citizens.

The ICN approach has recently been explored by a
number of research projects, including the Data Oriented
Network Architecture (DONA) [6], Named Data
Networking (NDN) [7], Scalable and Adaptive Internet
Solutions (SAIL) [8], Content Mediator Architecture for
Content Aware Networks (COMET) [9], and Publish-
Subscribe Internet Technology (PURSUIT) [10].

Our work is based on the PURSUIT ICN architecture.
This architecture relies on the concept of the
publish/subscribe paradigm. This is different from the
current send/receive paradigm used in today’s Internet.
The PURSUIT architecture comprises of the following
network entities: publishers, subscribers, and brokers [11].
Publishers advertise the available information objects by
issuing the publication messages. Subscribers issue the
subscription messages indicating their interest in receiving
some information objects. Brokers perform three
functions, namely rendezvous (RV) [12], topology
management (TM) [13], and forwarding (FW) [14]. The
RV is responsible for matching subscriptions with
publications. The TM is responsible for constructing a

delivery path for the publisher to the subscriber. The FW
is responsible for delivering the information object from
the publisher to the subscriber.

Each information object in the network is distinguished
through a pair of identifiers, the rendezvous identifier
(RID) and the scope identifier (SID). The RID uniquely
identifies the object within a scope, whereas the SID is
used to organise the information objects.

Research efforts on ICN have already provided notable
solutions in the areas of network efficiency, reduced
complexity, scalability and reliability, mobility support,
multicast and caching performance, traffic engineering,
network coding, etc. However, in the security domain
much work still needs to be done.

ICN can be subject to new types of denial-of-service
(DoS) attacks [15, 16]. One possible attack scenario can
be achieved by exploiting the forwarding function. In [14]
the authors propose the LIPSIN forwarding mechanism
for publish/subscribe networks. In [17], it has been shown
that the LIPSIN mechanism is vulnerable to replay attacks
which may lead to DDoS. Therefore, in [17] the Z-
formation technique has been introduced to offer a
distributed-denial-of-service resistant forwarding. In [18],
the authors analyse the Z-formation technique in terms of
the scalability of the TM function. In [19], the works of
[17] and [18] have been extended to prevent brute-force
attacks on the LIPSIN mechanism. The work of [19] has
been further improved in [20], where the authors calculate
an optimal Bloom filter fill factor for reducing the DDoS
attack probability.

In this paper, we demonstrate the problem of brute-force
attacks and improve on the analysis shown in [20]. We
also propose a solution that makes a balance between
mitigating brute-force attacks and in the same time be
scalable for large networks. The rest of this paper is
organised as follows. In Section II, we provide a brief
overview of the LIPSIN forwarding mechanism and
discuss its security vulnerabilities. In Section III, we
present the brute force attack probability and its reaming
issue. Section IV, we analyse our proposed solution and
present the results. We conclude the paper in Section V.

II. BACKGROUND

A. The LIPSIN forwarding mechansim

The LIPSIN [14] is one of the proposed forwarding
mechanisms in ICN and it is based on Bloom filter [21]
forwarding. Bloom filters are probabilistic, space-efficient
data structures that enable fast and cost-effective creation
and membership tests. LIPSIN uses a Bloom filter to
encode the source routing path from the publisher to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UWL Repository

https://core.ac.uk/display/46598297?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

subscriber. The encoded path is sent by the TM function
to the publisher and is used as the forwarding identifier
(FID) by the forwarding function.

In order to enable a Bloom filter based forwarding, each
link in the network is assigned a unique link identifier
(LID). An LID is an m-bit array with k bits set to 1. That
is, k is the number of hash functions used to create a LID.
Typically k is much smaller than m and its value may be
selected based to some optimization objectives [22], e.g.
m = 256 bits and k = 5 are typically chosen values [14,
13]. The number, n, of statistically unique LIDs is given
by [14]:

!

!
 (1)

For instance, if m = 265-bit and k = 5, then n ≈ 1.2
10 .

 Recall that the TM function is responsible for the
construction the delivery path from publisher to
subscriber. The LIDs of the links belonging to the
constructed path are encoded into a Bloom filter and sent
to the publisher. The fraction of ones in this filter is called
fill factor, ρ. In each network, a maximum value, ρm, of fill
factor is allowed and hence any packet with a Bloom filter
of ρ, where ρ>ρm, is automatically dropped. This is
required because otherwise an attacker could simply
create a packet of all one values and launch a DDoS attack
or send unwanted traffic to every user in the network [25,
24]. A Bloom filter with a maximum fill factor is called
maximally filled and hence no more LIDs can be inserted.
In [17] the Bloom filter is called a zFilter and we use this
term throughout the paper.

An example of the LIPSIN packet forwarding is
presented in Fig. 1. Consider one publisher (Pub-A), two
subscribers (Sub-A and Sub-B) and three forwarding
nodes (FW-1, FW-2, and FW-3), connected as shown in
Fig. 1. Each link is given an m-bit LID. For illustrational
purposes we use m = 8. Our aim is to construct the zFilter
for the path from Pub-A to Sub-A. This is performed by
OR-ing the LIDs of the links belonging to the delivery
path. In this example, the constructed zFilter includes
LID-1, LID-2, and LID-4, as shown in the figure. When
the zFilter is ready, the TM sends it to Pub-A. The latter
will insert the zFilter in the packet header and will send it
to its attached forwarding node (FW-1). FW-1 will
perform the forwarding test on each of its outgoing links.
The test is performed by AND-ing the zFilter with the
LID of the link. If, and only if, the result is equal to the
LID, the packet is forwarded via this link. As shown in the
figure, the packet will be forwarded to FW-2 and then to
Sub-A, whereas the forwarding test will fail for LID-3 and
the packet will not reach FW-3.

B. False positives in LIPSIN
One of the limitations of the Bloom filter based

forwarding is the probability of false positives. That is,
there is a chance that the packet will be forwarded via a
link that was not included during the Bloom filter creation.
For example, assume that LID-3 = 00110000 in Fig. 1.
Since this link is not part of the delivery path from Pub-A
to Sub-A, the created zFilter is still as shown in Fig. 1.
However, the forwarding test at FW-1 will give a positive
result for LID-3, and therefore a copy of the packet will
be forwarded also to FW-3.

Figure 1. Example of LIPSIN forwarding.
One obvious drawback of the false positives is that some

packets are unnecessarily duplicated over some links, thus
causing the waste of communication and processing
resources. In addition, as shown in [14, 20], false positives
can be exploited by malicious nodes for launching brute-
force attacks in the network. Also other types of attacks,
such as packet storms and forwarding loops are possible
[25].

The probability of false positives f can be calculated if
the fill factor ρ of a zFilter is known [26, 27]:

 (2)

A number of proposals have been introduced to mitigate
the effect of false positives [14, 22, 28]. In [14] the link ID
tag (LIT) mechanism is proposed. According to this
approach, d different zFilters are created and evaluated in
terms of false positives rate. Next, the best performing
zFilter is selected and its index is included in the packet
header.

C. Security vulnerabilities in LIPSIN
As discussed earlier, the LIPSIN mechanism is

vulnerable to brute-force attacks. These attacks are
launched by trying all possible zFilters until one of them
causes false positives and then will pass the forwarding
tests along the desired path. Consider a network with m =
256 bits, maximum fill factor ρm = 0.5, and the number of
hash functions k = 5. Below we investigate two possible
scenarios of brute-force attacks. In both scenarios we
assume that the attacker has obtained a valid zFilter, z,
representing the path between the source node and the
target node.

The first attack strategy depends on whether the zFilter z
is maximally filled or not. If it is not, that is ρ < ρm, then
the attack could convert some 0 bits into 1. The new
zFilter, zi, will be sent by the attacker to the network and
may cause some false positives over the links from the
attacker to the valid path. To increase the chance of
success, the attacker may try all possible combinations of
maximally filled zi that includes z.

The second attack strategy can be used when the
attacker has no any existing valid zFilter, or the existing
zFilter is maximally filled. In that case the attacker is
generating random zFilters with the hope that some of
them will reach the target node due to false positives. If
packet acknowledgment is supported by the application,

then the attacker will know that the randomly generated
zFilter can reach the target.

In addition to brute-force attacks, the LIPSIN
forwarding mechanism is also vulnerable to replay attacks
and computational attacks. A replay attack is when the
attacker uses a previously created valid zFilter for sending
non-requested traffic, this type of attack is of course
possible, and used, in existing IP networks. A
computational attack is launched by collecting a number
of valid zFilters and analysing the correlation between
their bit patterns. However, these types of attacks are not
covered in this paper.

D. Security enhancements to the forwarding plane
Many of the LIPSIN security vulnerabilities, discussed

in the previous subsection, exist due to the fixed LIDs
used in the network. That is, when a link is assigned a
LID, it keeps this LID forever. To overcome these
limitations, the Z-formation approach is proposed in [17].
The main idea is to make zFilters expire after a certain
time by periodically changing the LIDs. As a
consequence, the forwarding decisions become dynamic
and depend on the packet contents, zFilter, and processing
context. Also a time-bound shared key between the TM
and FWs is used [29].

To compute the LIT of each link, a cryptographically
secure hash function, called Z-formation, is used. This
function takes four input parameters and produces an m-
bit LIT. The input parameters are the following:

• Some in-packet content-based information, I (e.g. flow
ID or RID)

• Periodically changing time-based secret key, K(t).
• Port numbers of incoming/outgoing interfaces, In and

Out, respectively.
• The optimization index, d, for mitigating false

positives.

That is, LIT = Z(I, K(t), In, Out) . Hence, the LITs become
dynamic and bound to a specific flow, path, and time
period. The key K is used when creating the
corresponding LITs of the path. Therefore, the Z-
formation approach essentially assigns a finite lifetime to
zFliters. As a consequence, it provides better protection
against replay and computational attacks. However, it
does not have any impact on the brute-force attacks.
Therefore, in the following we propose an enhancement of
the Z-formation technique, which performs well in
protecting against brute-force attacks.

III. BRUTE FORCE ATTACK PROBABILTY

As discussed in Section II.C, the brute force attack is
launched by causing some false positives over a path.
Hence, this type of attack depends on the false positives
probability of (2). Therefore, to attack a target h hops
away, the attacker would use a random maximally filled
zFilter and the probability of this attack is given by:

 	 . (3)
It is also possible to find the number of expected attack
attempts to reach a target and this can be calculated by:

 	 1 (4)

where pr is the probability of obtaining at least one zFilter
after x attempts. Full calculations of attack probability and
number of expected attempts can be found in [20].

In [20], it has been demonstrated that, with a given
scenario used in [17], an attacker is able to reach a victim
5 hops away in approximately 23s, using brute force
attack with 50% probability of success. This scenario
requires having an attacking node capability of 106
packets/s which we call attacking rate ar, and also using a
zFilter with the parameters ρm = 0.5, k = 5 and m = 256-bit.
Therefore, the authors have proposed a solution that gives
some improvements of reducing the attack probability and
subsequently increasing the time required for the attacker
to successfully guess a valid zFilter with a certain
probability pr. This required time is called safe window,
and the aim is to make the safe window as long as
possible. To achieve a longer safe window would require
using a lower value of the fill factor ρ when creating the
zFilter. However, this restricts the number of 1s to be
inserted into the zFilter and subsequently a limited
number of LIDs can be supported. This is a negative
impact as the lengths of supported delivery paths become
shorter.

To mitigate this issue, the authors of [20] have suggested
using the parameters ρm = 0.48, k = 6 and m = 256-bit as
optimal values in terms of making a balance between
security and scalability perspectives. These parameters
support a delivery path containing up to 24 LIDs, and in
the same time give a safe window of approximately 60
min. This is considered a significant improvement in
terms of the safe window which makes the brute force
attack much harder. In the same study, it also has been
suggested that LIDs are changed every ∆t = 40 min using
Z-formation technique. More details of updating LIDs
can be found in [21].

However, here we show that it is more likely that an
attack can be successful within ∆t of 40 min. In practice,
when using the same suggested parameters of k, m, ρm and
same assumed attacking rate, ar, the probability of
successful attack pr within 40 min is calculated from (3)
and (4), and as follows:

40 60 10 2.4 10 attempts.

	 . 0.48 0.00535

			 1 1 0.4815	

This probability is considered unacceptable, and this is
because an attacker could reach a victim before the
coming LIDs update takes place. 	

From the above, it can be seen that there is still a high
possibility of successfully launching brute force attacks.
Changing the LIDs more frequently, for instant every 10
min or reducing ρm further, may help decreasing this
attack probability within a certain ∆t. However, this
would increase the load on the network entities as well as
the traffic overhead when updating LIDs very frequently.
Moreover, reducing the maximum fill factor may help
mitigating the attack but this would negatively impact the
network scalability. Recall that the results in [20] can
support up to 24 LIDs, and it has been demonstrated that
such size of delivery paths can perform well in small and
medium realistic network topologies. However, it fails to
support multicast communications in relatively large
networks (e.g. a network size of |V|= 113, |E|= 183), hence
reducing the fill factor further is not an efficient option.

Therefore, a possible solution is to increase the current
size of the zFilter, m = 256-bit, used in the literature. This
is because having larger size of zFilters allows a higher

number of LIDs to be inserted and also keeps the
maximum fill factor as small as possible. This would
improve the security in the network by significantly
decreasing the probability of launching brute force attacks
within a certain period.

In this work, we analyse the impact of the parameter m
on attack probability, safe window and also the network
scalability in terms of maximum number of supported
LIDs. We also compare the scalability performance of the
forwarding plane when using larger m with the current
used one. For each size of m, we also investigate the effect
on the traffic overhead. This is because using larger sizes
of zFilter requires more space to be dedicated in the
packet header, which increase the traffic utilization.

IV. BRUTE FORCE ATTACK ANALYSIS

A. Simulation Setup
When comparing zFilters of different sizes, one of the

aspects is to investigate the capacity of maximum allowed
fill factor. This is done by observing how many LIDs, n,
the zFilter can support. We experimentally investigate this
by running a simulation with 2×106 iterations. In each run
we select the parameters m, k, and n, and in each iteration
we create a zFilter z. Then we observe the number of
unique positions of 1s, s, which tells us how many 1s are
included in z. Then we calculate ρm according to the
following:

				 (5)

After running the experiment, we record the maximum
value of ρm found among the results and consider it as the
maximum allowed fill factor for the given parameters. The
experiment is performed for different sizes of m while
keeping the other parameters fixed.

Another important factor to look at is the impact of the
delivery path size on the safe window when using
different values of m and k. According to the results of ρm

and n obtained from the experiment, and using the same
attack scenario explained in Section III, we calculate the
number of the attack attempts, x, using (4). Then, with the
attacking rate ar which in this paper is assumed to be 106

packet/s, we find the safe window by:

 	 (6)

B. Results
Figure 2 shows the maximum capacity of ρm for different

values of n. Each curve represents a different size of
zFilter. We consider the following sizes: m = {256, 384,
512, 768}. Generally, it can be noticed that when using
larger zFilters, a smaller value of ρm can support longer
delivery paths containing n LIDs. For example to support
a delivery path of 23 LIDs with the case of using a zFilter
of m = 256-bit, the maximum fill factor ρm has to be at
least 0.429, whereas for same n but with larger m of 512-
bit, we can support the same path with smaller value of ρm

and is equal to 0.224. Recall that small values of ρm are
desirable to mitigate brute force attacks. Also it can be
seen that as n increases, the difference of ρm between each
m increases.

In Fig. 3 we present the safe window for different n.
Note that the safe window scale is logarithmic to allow
fitting the results into one plot, so the difference between
the results seems less, at first site, than it actually is. The
results are presented for two sizes of the zFilter m = {256,

Figure 2. Impact of increasing the number of LIDs on the maximum

fill factor for different size of m and k = 5.

512} and three different numbers of hash functions, k =
{4, 5, 6}. Overall the safe window decreases as n
increases for both sizes of m. Also it can be seen that
when using m = 512-bit, the safe window becomes in the
magnitude of approximately 106 longer than that when m
= 256-bit. For instance, when using a zFilter of (m=256,
k=5 and n=23), this gives a safe window of approximately
103s whereas in a zFilter with same parameters but larger
m of 512-bit the safe window increases to approximately
6×109s. This is because in the larger zFilter, 23 LIDs can
be accommodated with a smaller ρm, and this makes the
attack time longer to be achieved.

One advantage of using a larger zFilter is the ability to
achieve a longer delivery path than possible with a small
zFilter while keeping the safe window almost same. For
example, in the figure, a safe window of approximately
103s can be gained when using a zFilter of (m=256, k=6,
n=23), whereas it also can be obtained with a larger zFilter
of (m=512, k=6, n=49). This is a significant improvement
of almost a double in the number of LIDs to be inserted in
the zFilter. This is applied to the other sizes of m.

Therefore, a network setup with the optimal parameters
as suggested in [20], which uses a 256 bits zFilter and k =
6 can support up to 24 LIDs for a safe window of
approximately 60 min. However, a network that uses 512-
bit zFilters and same parameters of k and n, can resist up
to 76×107 min before a successful attack. Moreover, in the
later network if we change the LIDs every 40 min then the

Figure 3. Impact of increasing n on the safe window for different m

and k with number of hops (h) = 5 and pr = 0.5.

20 30 40 50 60 70 80
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of LIDs (n)

M
a
xi

m
u
m

 F
ill

 F
a
ct

o
r
(

m
)

BF m=256

BF m=384

BF m=512

BF m=768

20 30 40 50 60 70 80
10

-10

10
-5

10
0

10
5

10
10

10
15

Number of LIDs (n)

S
a
fe

 W
in

d
o
w

 (
se

c)

BF m=256, k=4
BF m=512, k=4

BF m=256, k=5

BF m=512, k=5

BF m=256, k=6
BF m=512, k=6

Figure 4. Impact of s on the safe window for different m, k, when

attacking a victim 5-hop away with probability (pr) of 0.5.

probability pr that the attacker gets succeed within this
period is 0.001 whereas it is 0.481 in the network using
256-bit zFilters. This significant reduction in the attack
probability helps to discover an attack in progress by
observing the number of packets dropped at ingress due to
non-matching zFilters.

In Fig. 4, we show the relation between the number of
positions set to 1 in the zFilter, s, and the safe window for
two sizes of zFilter m = {256, 512} and each with k = {4,
5, 6}. Generally, it can be noticed that as the number of 1s
increase the safe window decreases. This is because
having more 1s increases the probability of false positives
which helps the attacker to reach a victim in short time.
For example, using a large zFilter of 512 bits, we can
insert more 1s and subsequently accommodate more LIDs
with an acceptable safe window. This can be seen from
the figure when using a zFilter with the parameters (m =
256-bit, k = 5, s = 142), the safe window is approximately
2 min whereas for zFilter of (m = 512-bit, k = 5, s = 141)
the safe window is around 7×106 min.

In Fig. 5, we present the probability of a successful
attack within 40 min, against the maximum fill factor. We
show how ρm and pr may be traded off against each other
to achieve desired network design goals. The results are
based on the attack scenario assumed in this paper (i.e. an
attacker is 5 hops away from his victim and the attacking
rate is 106 packets/s). For instance, to have an attack
probability as low as 1.2×10-9 using any size of zFilter
with k = 7, ρm should not exceed 0.3. We can also see that
a zFilter with k = 4 is not secure to be used when ∆t = 40
min, especially when ρm ≥ 35 as pr becomes almost 1.

Using a large zFilter does not only improve the network
security, but it also keeps the false positives rate, f,
sufficiently low. This can be seen in Fig. 6, where the
influence of increasing the number of LIDs on the false
positives is presented. In this figure, we show the average
false positives rate when using different sizes of zFilter m
= {256, 512} with k = {4, 5, 6} and h = 5 using (1).
Generally it can be noticed that when m is 512-bit, the
false positive rate is significantly lower than when m is
256-bit. Also in this figure, while the performance of f is
almost the same when using m of 256-bit for all values of
k, it gives the best performance when using the parameters
m = 512 bits and k = 6, and especially for higher n.

Figure 5. Impact of increasing the fill factor (ρm) on attack probability

to reach a victim 5-hop away using any size of m.

Figure 6. False positives rate (f) as function of the number of LIDs (n),
for 5 subsequent hops.

C. Discussion
One of the negative impacts of using large size zFilters

(e.g. m = 512), is the introduction of extra traffic in the
network. Therefore, in this section we compare the total
network utilisation, including the actual useful data sent
and traffic overhead, for two different sizes of zFilter, m =
{256, 512}. To do so, we calculate the header size of the
ICN packet assuming basic fields are used as shown in
Fig. 7. Using larger zFilters comes at the expense of actual
data required to send per packet. This is because the
current maximum transmission unit is 1500 bytes
including data, zFilters and the other fields. Therefore,
when using zFilters with sizes of 256 bits and 512 bits, the
maximum actual data to be included in the payload are
1404 and 1372 bytes, respectively. The traffic overhead
when using a specific zFilter size depends on the
distribution of Internet packets size. Therefore, we use an
Internet traffic trace collected on March 2014, and
containing 91×106 packets [30]. For each packet, we
deduct the zFilter size from the packet length in order to
find the useful utilised data. Using the traffic distribution
from this data set we find that there is a total overhead of
31.2% when using a 256-bit zFilter and 38.3% when using
a 512-bit zFilter. For the equivalent IP based transport
there is 14.2% and 21.3% overhead for IPv4 and IPv6, re-

50 100 150 200 250 300 350
10

-10

10
-5

10
0

10
5

10
10

10
15

Number of Positions Set to 1 in the zFilter

S
a
fe

 W
in

d
o
w

 (
se

c)

BF m=256, k=4

BF m=512, k=4

BF m=256, k=5
BF m=512, k=5

BF m=256, k=6

BF m=512, k=6

0.3 0.35 0.4 0.45 0.5
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

Maximum Fill Factor (
m

)

A
tta

ck
 S

u
cc

e
ss

 P
ro

b
a
b
ilt

y
(p

r)

K=4

K=5

K=6

K=7

20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of LIDs (n)

F
a
ls

e
 P

o
si

tiv
e
 R

a
te

 (
f)

BF m=256, k=4

BF m=512, k=4

BF m=256, k=5
BF m=512, k=5

BF m=256, k=6

BF m=512, k=6

Figure 7. Basic fields on ICN packet header

spectively. While the larger 512-bit zFilter has a small, but
significant, increase in overhead it comes with the
advantage that it provides good mitigation against brute
force attacks and with reduced false positive rate. With the
use of the zFilter security mechanism we have an increase
in the overhead compared to IP. However, this has the
significant advantage that it is very difficult (or unlikely)
for an attacker to send unauthorised traffic to an arbitrary
end host, effectively stopping attacks such as DoS which
are common in IP networks.

V. CONCLUSION

In this paper, we analyse the LIPSIN ICN forwarding
mechanism and reveal its security vulnerabilities. In
particular, we reveal that the Bloom-filter forwarding
approach used in LIPSIN can be used for launching brute-
force attacks to end users and network infrastructure. We
study the impact of various LIPSIN parameters, such as
Bloom filter size and maximum fill factor, from the
security viewpoint. Next, we propose efficient solutions
that increase the safe window and decrease the attack
probability. Our proposed security enhancements are
verified by simulation studies.

REFERENCES
[1] A. Feldmann, "Internet clean-slate design: what and why?", ACM

SIGCOMM Computer Communication Review, vol. 37, pp. 59-
64, 2007.

[2] M. Handley, "Why the Internet only just works", BT Technology
Journal, vol. 24, pp. 119-129, 2006.

[3] J. Choi, J. Han, E. Cho, T. Kwon, and Y. Choi, "A survey on
content-oriented networking for efficient content delivery", IEE
Comm Mag, vol. 49, pp. 121-127, 2011.

[4] G. Xylomenos, et al., "A survey of information-centric
networking research", IEEE Comm Surveys & Tutorials, no. 99,
pp. 1-26, July 2013.

[5] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B.
Ohlman, "A survey of information-centric networking", IEEE
Comm Mag, vol. 50, pp. 26-36, 2012.

[6] T. Koponen, et al., "A data-oriented (and beyond) network
architecture", in Conference of Applications, Technologies,
Architectures, and Protocols for Computer Communications, pp.
181-192, Kyoto, Japan, 2007.

[7] V. Jacobson, D. K. Smetters, J. D. Thornton, M. Plass, N. Briggs,
and R. Braynard, "Networking named content", Communications
of the ACM, vol. 55, pp. 117-124, 2012.

[8] SAIL: Scalable and Adaptive Internet Solutions. Available at:
www.sail-project.eu, accessed on (20-02-2014).

[9] COntent Mediator architecture for content-aware nETworks
(COMET). Available at: http://www.comet-project.org/, accessed
on (20-02-2014).

[10] N. Fotiou, P. Nikander, D. Trossen, and G. C. Polyzos,
"Developing information networking further: From PSIRP to
PURSUIT", in The 7th International ICST Conference on
Broadband Communications, Networks and Systems, Athens,
Greece, Oct. 2010.

[11] P. T. Eugster, P. A. Felber, R. Guerraoui, and A. M. Kermarrec,
"The many faces of publish/subscribe", ACM Computing
Surveys (CSUR), vol. 35, pp. 114-131, 2003.

[12] P. Nikander and G. Marias, "Towards understanding pure
publish/subscribe cryptographic protocols", Security Protocols
XVI, pp. 144-155, 2011.

[13] B. Gajic, J. Riihijarvi, and P. Mahonen, "Intra-domain topology
manager for publish-subscribe networks", in 18th International
Conference on Telecommunications (ICT), pp. 394-399, 2011.

[14] P. Jokela, A. Zahemszky, C. E. Rothenberg, S. Arianfar, and P.
Nikander, "LIPSIN: line speed publish/subscribe inter-
networking", in ACM SIGCOMM Conference on Data
Communication, Barcelona, Spain, 2009.

[15] P. Gasti, G. Tsudik, E. Uzun, and Z. Lixia, "DoS and DDoS in
Named Data Networking", in 22nd International Conference of
Computer Communications and Networks (ICCCN), 2013.

 [16] C. Seungoh, K. Kwangsoo, K. Seongmin, and R. Byeong-Hee,
"Threat of DoS by interest flooding attack in content-centric
networking", in International Conference on Information
Networking (ICOIN), pp. 315-319, 2013.

 [17] C. E. Rothenberg, P. Jokela, P. Nikander, M. Sarela, and J.
Ylitalo, "Self-Routing Denial-of-Service Resistant Capabilities
Using In-packet Bloom Filters", in European Conference of
Computer Network Defense (EC2ND), pp. 46-51, 2009.

[18] B. Alzahrani, M. Reed, and V. Vassilakis, "Enabling z-Filter
updates for self-routing denial-of-service resistant capabilities",
in 4th Computer Science and Electronic Engineering Conference
(CEEC), 2012, Colchester, U.K., pp. 100-105, Sept. 2012.

[19] B. Alzahrani, V. Vassilakis, and M. Reed, "Securing the
Forwarding Plane in Information Centric Networks", in 5th
Computer Science and Electronic Engineering Conference
(CEEC), Colchester, U.K., Sept. 2013.

[20] B. Alzahrani, V. Vassilakis, and M. Reed, "Mitigating brute-
force attacks on Bloom-filter based forwarding", in Conference
on Future Internet Communications (CFIC),, pp. 1-7, 2013.

[21] B. H. Bloom, "Space/time trade-offs in hash coding with
allowable errors," Communications of the ACM, vol. 13, pp.
422-426, 1970.

[22] L. Carrea, A. Vernitski, and M. Reed, "Optimized hash for
network path encoding with minimized false positives,"
Computer Networks, vol. 58, pp. 180-191, 2014.

[23] N. Fotiou, G. F. Marias, and G. C. Polyzos, "Fighting spam in
publish/subscribe networks using information ranking", in 6th
EURO-NF Conference of Next Generation Internet (NGI), 2010.

[24] M. Särelä, C. Rothenberg, T. Aura, A. Zahemszky, P. Nikander,
and J. Ott, "BloomCasting: security in Bloom filter based
multicast", ed: Springer, NordSec, Lecture Notes in Computer
Science, 2010.

[25] M. Särelä, C. Rothenberg, T. Aura, A. Zahemszky, P. Nikander,
and J. Ott, "Forwarding anomalies in Bloom filter-based
multicast", in INFOCOM, IEEE, pp. 2399-2407, 2011.

[26] S. Lumetta and M. Mitzenmacher, "Using the power of two
choices to improve Bloom filters", Internet Mathematics, vol. 4,
pp. 17-33, 2007.

[27] F. Hao, M. Kodialam, and T. Lakshman, "Building high accuracy
bloom filters using partitioned hashing", in ACM SIGMETRICS
Performance Evaluation Review, pp. 277-288, 2007.

[28] J. Tapolcai, A. Gulyas, Z. Heszbergery, J. Biro, P. Babarczi, and
D. Trossen, "Stateless multi-stage dissemination of information:
Source routing revisited", in IEEE Global Communications
Conference (GLOBECOM), pp. 2797-2802, 2012.

[29] B. Alzahrani, V. Vassilakis, and M. Reed, "Key management in
information centric networking," International Journal of
Computer Networks & Communications (IJCNC), vol. 5, no. 6.
pp. 163-166, Nov. 2013.

[30] Measurement and Analysis on the WIDE Internet (MAWI).
Available at: http://www.mawi.wide.ad.jp/mawi/samplepoint-
F/2014/201403091400.html, accessed on (20-02-2014).

32 bytes zFilter 32 bytes RID 32 bytes SID

Payload 1404 bytes

Payload 1372 bytes

64 bytes zFilter 32 bytes RID 32 bytes SID

Using a zFilter of 512-bit:

Using a zFilter of 256-bit:

