
Implementation of Similarity Measures for Event
Sequences in myCBR

Eduardo Lupiani1, Christian Sauer2, Thomas Roth-Berghofer2,
Jose M. Juarez1, and Jose Palma1

1 University of Murcia, Spain
{elupiani,jmjuarez,jtpalma}@um.es
2 The University of West London, UK

{Thomas.Roth-Berghofer,Christian.Sauer}@uwl.ac.uk

Abstract. The computation of the similarities between event sequences
is important for many fields because many activities follow a sequential
order. For instance, an industrial plan that triggers different types of
alarms due to detected event sequences or the treatment sequence that a
patient receives while he/she is hospitalized. With the appropriate tools
and techniques to compute the similarity between two event sequences we
may be able to detect patterns or regularities in event data and so be able
to perform predictions or recommendations based on detected similar
sequences. The present work is intended to describe the implementation
of two event sequence similarity measures in myCBR, with the purpose
of creating a similarity measurement approach for complex domains that
employ the use of event sequences. Besides, an initial experimentation is
performed in order to study if the proposed measures and measurement
approach are able to predict future situations based on similar event
sequences.

1 Introduction

Using event sequences is useful for many scenarios, particularly for those where
it is necessary either to detect patterns in the occurrence of events or to retrieve
past event sequences that are similar to a current one. Examples of event-based
data include medical records and procedures, data in a temporal context such
as historical, biographical and career path data, internet session data, traffic
incident data, process control data, and administrative process data [8].

In those scenarios a CBR system may play an important role. For instance,
assume the problem of an industrial plant being monitored to supervise its proper
functionality. With a CBR system using event sequence similarity measures rep-
resenting sequence of measurements or alarms (from sensors in the plant), it is
possible to retrieve previous sequences of measurements/alarms that indicated
an imminent failure of the processing plant. If these sequences can be detected
early enough, then it could be possible to set up a maintenance work to fix the
problems, so the plant may be kept operational.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UWL Repository

https://core.ac.uk/display/46597916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

While there are approaches to compute the similarity between two event se-
quences [1,4,5,7,8,10], only very few or almost none of these approaches were ever
implemented in a software, making it difficult to select the most suitable event
sequence similarity measure to a specific system. For this reason our work in this
paper is the implementation of similarity measures between event sequences so
a CBR system can be enabled to be employed in the problem domains described
before. For this purpose we are extending the myCBR development tool to im-
plement the event sequence similarity measures. The main reason for our choice
is that the myCBR software is intended for building prototypical CBR appli-
cations in teaching, research, and small industrial projects with low effort [6].
Furthermore, it is designed for being easily extended with new functionalities.

After the implementations of the new similarity measures we also were in-
terested to study whether they were able to detect similar event sequences in a
proper way, especially if it was possible to build a CBR system able to predict
future situations based on the recognition of similar event sequences. To study
these aspects we have conducted initial experiments with a case-base with event
sequences that represent risky situations in an industrial furnace.

The remainder of this work is as follows: in the next section we review the
background of this work. We review the definitions of event sequences and simi-
larity between events, as well as details of two similarity measures. In this section
we describe the myCBR too. Later, in 3 we describe in details how the similarity
measures have been implemented in myCBR. The section 4 corresponds to an
initial experimentation performed using an artificial case-base with cases that
contain event sequences. Finally, in section 5 we present our conclusions and
future work.

2 Background

Insight into the formalization of an event, event type and event sequence is es-
sential to understand in depth the problems related to find similarities between
sequences of events and to recognise the differences between them.

2.1 Event Sequences

The following definition of event is based on the definitions given in [4], [7] and
[5], which give similar explanations of what an event is and are unified here into
one definition that encompasses them all.

Definition 1. An event is a tuple with a label representing an action or activ-
ity and a time-stamp that represents the moment when the action occurs [4,7].
Formally we can define an event e as following:

e = (a, t) ,

with e ∈ E, being E the domain of all the possible events, a as the taken action
or activity, and t ∈ R as the time-stamp of the event.

The activity a can be represented as a simple value of the following data-
types: integer, string or symbol. However, complex representations are possible as
well, by defining event types [5]. The event type determines the data structure
of each activity in the problem domain and this does not affect to the time-
stamp of the event. Furthermore the amount of the set of event types to define
is determined by the domain of the problem to resolve [4], so the values of this
set relies on the application itself.

Definition 2. An event sequence is a partially ordered set of events:

S = 〈(e1, t1), (e2, t2), . . . , (en, tn)〉

where ei are the possible event types in the problem domain, and it holds that
ti ≤ ti+1∀i = 1, . . . , n− 1 [4].

Example 1. Assume a processing plant that may trigger four types of alarms
from sensor readings of temperatures LL,L,H,HH. From the definition given
for event sequence it is possible to represent a sequence e of alarms as follows:

e = 〈(L, 1), (H, 2), (HH, 3), (HH, 5), (LL, 6)〉

2.2 Similarity Measures for Event Sequences

There are different ways to compute the similarity between two event sequences.
When two event sequences have the same number of events it is possible to use
a lock-step measure [9]. The basis of this type of measure is to compare the i-th
event in both sequences and establish the (local) similarity of this event pair and
at the end to compute a global similarity measure of the two sequences based
on their local similarities of event pairs. However this similarity measure is not
suitable when the length of the two sequences differ, in this case it is convenient
to employ other types of similarity measures. The Edit Distance measures the
cost of transforming one event sequence into another. Therefore, the similarity
between the two sequences is given by the number of used transformation op-
erations. The lower the number of needed operation, the higher the similarity
between the two event sequences is.

Prior to showing the event sequence distance measures, we propose the fol-
lowing definition of distance and similarity. Given the space of possible events E,
the distance function between two event sequences is defined as d : E× E→ R.

Additionally, in some cases it is useful to normalise the distance between two
event sequences in the interval [0, 1], thus d : E× E→ [0, 1]. This is possible by
dividing the resulting distance between two sequences by the maximum observed
value. When the distance function is normalised, defining the similarity between
two event sequences ex, ey is possible as follows:

sim :E× E→ [0, 1]

sim(ex, ey) =1− d(ex, ey)

The following subsections are based on the state of the art for computing the
similarity between two event sequences.

Edit distance between two Sequences The edit distance measures the re-
lated cost of transforming an event sequence into another, using operations of
insertion, deletion or alignment/movement. This measure is also known as Lev-
enshtein distance because of the last name of the author who proposed it [2].
Although the Levenshtein distance measure only involves strings. In the works of
[3,4] it is proposed to use a modification of the edit distance to manage event se-
quences, where the alignment/movement involves the temporal distance between
two events. This algorithm requires that given two events of the same type, the
distance between their timestamps must be lower than the cost of any other
operation. If this requirement is not met the cost of aligning two events with
the same event type can be higher than the inserting and removing operations.
Formally, it can be defined as following:

Definition 3. Let Sx = 〈(ex1 , tx1), . . . , (exn, t
x
n)〉 and Sy = 〈(ey1, t

y
1), . . . , (eym, tym)〉

be two even type sequences. The edit distance between Sx and Sy is the number
of operations to transform the sequence Sx into Sy [4].

So to normalise the edit distances in the interval [0, 1], it is necessary to
divide the resulting distance by the maximum necessary effort to transform one
sequence into the other, where the maximum effort is the maximum number of
operations needed to build the longest event sequence from scratch.

Match & Mismatch Similarity [9,10] The Match & Mismatch (henceforth
M&M) is a measure based on the idea of edit distance, thus it measures the cost
of transforming one event sequence into another. This measure splits each event
sequence into several event sub-sequences, sorting them into lists for each event
type [9]. Using this approach the algorithm can compute the distance between
sequences that contain the same event type, which is a simpler sub problem [10]
than the initial problem.

For each event type the algorithm computes an edit-distance matrix. From
all the built matrices, four different measures are calculated: the time difference
between the events (TD), the missing events (NM), the extra events (NM) and
the number of swamping events (SN). These measures are the basis an overall
score that measures the similarity between the two event sequences. Unlike the
Edit Distance, which is a distance, the M & M returns a similarity score in the
interval [0.01, 0.99].

2.3 myCBR Software Development Kit

The key motivation for implementing and further developing the open source
software myCBR was and still is the need for a compact and easy-to-use tool for
building prototypical CBR applications. The use of the myCBR tool especially
aims for the sectors of teaching, research and small industrial projects with low
initial development effort. To allow for the rapid prototyping of CBR systems,
myCBR Workbench provides comfortable graphical user interfaces for modelling
attribute-specific similarity measures and for evaluating the resulting retrieval

quality in an in-built retrieval interface. In order to further reduce the develop-
ment effort of CBR systems, especially the built up of a case-base, after defining
an appropriate case representation, myCBR Workbench includes tools for gen-
erating the case representation automatically from existing raw data as well as
importing cases from CSV data files. The accompanying Software Development
Kit (SDK) allows for the integration of the developed CBR systems into other
applications and allows for extension to specific requirements such as additional
similarity calculations, as it is demonstrated in the present research work.

2.4 Building structural knowledge models with myCBR Workbench

myCBR provides a workbench, the myCBR Workbench, that supports the cre-
ation and maintenance of the vocabulary and similarity measures used within
a CBR system and thus provides control over the knowledge model of a CBR
system developed or maintained using myCBR. The myCBR Workbench is im-
plemented as using the Rich Client Platform (RCP) of the Eclipse JDE. myCBR
Workbench offers two different perspectives on a CBR system being developed
- a perspective for the knowledge modeling and another perspective to develop
and maintain the case-base(s). Figure 1 provides an overview of the modeling
perspective within the myCBR Workbench. The conceptual idea behind the mod-

Fig. 1. The modeling perspective of myCBR Workbench with the case structure (left),
a list of available similarity measures (left bottom) and a view of their structure (center)

eling perspective is that a case structure is created first being followed by the
definition of the vocabulary and the creation of individual local similarity mea-
sures for each attribute defined. See for example the attribute ’CCM’ in figure 1
and the global similarity measure for a concept ’Car’ in figure 1). A description

of a concept can contain one or more attribute descriptions as well as references
to other concepts as well thus allowing the user to create object-oriented case
representations. A description of an attribute can be formulated using one of
the following data types: Boolean, Double, Integer, Interval, String or Symbol.
For each data type myCBR provides a default similarity function that supports
their definition and individual functionalities to further define more sophisti-
cated similarity functions with regard to the specific data types chosen for an
attribute. To ease the prototyping of CBR systems one single attribute descrip-
tion can have more than one similarity measure, allowing for rapid testing and
experimentation to find the most suitable similarity functions.

As already described the modeling of the similarity measures in myCBR
Workbench takes place first on the attribute level, defining the local similarity
measures and then moves on to the concept level to define the global similar-
ity measure(s) of a case representation. When the attributes are defined, the
data types and value ranges are also given in the process. Depending on the
chosen data type of an attribute the myCBR Workbench provides graphically
supported modeling of: Numerical data, providing predefined distance functions
along with predefined similarity behaviour (constant, single step or polynomial
similarity decrease). For the definition of similarity measures for symbolic values,
myCBR Workbench provides table functions and taxonomy functions. A table
function allows defining for each value pair the similarity value, while a taxon-
omy subsumes similarity values for subsets of values. Depending on the size of
a vocabulary, table similarity measures are hard to maintain and taxonomies
allow an easier overview. For symbolic values, also set similarities are provided
in order to compare multiple value pairs [6]. The aim of the research presented in
this paper was it to further implement within myCBR the new functionality to
provide similarity measures for the new data type of event sequences. Therefore
the highly modularised code structure of the myCBR project was extended to
allow for the new attribute and the computation of similarities for its new data
type being event sequences.

3 Implementation of the Similarity Measures in myCBR

The major goal of myCBR is to minimize the effort for building CBR applica-
tions that require knowledge-intensive similarity measures[6], so the structure
and design of the myCBR software is ready for being extended with new func-
tionalities. The software is implemented in Java, so it follows an object oriented
approach. In this work we are only showing the set of classes that are related
with the representation of the case-base and the processes to retrieve cases. The
figure 2 depicts the class diagram of the classes realising the retrieval process
and the case representation in a case-base.

Where each class has its own role:

Project: A Project consists of a concept that defines the vocabulary of a project
domain and one or more case bases storing problem cases from the domain.

* *

1

*1

*
*

1*

*1

*1

*

*

*

*
*

�interface�

ICaseBase
Instance Attribute

RetrievalEngine

Similarity

Project

Range

Concept AmalgamantionFct

AttributeDesc

SimpleAttDesc

�interface�

ISimFct

Fig. 2. Main classes of myCBR SDK related to the similarity computation process.

Instance: Represents values occurring in either query and cases. It contains a
set of attributes that conforms to the case structure.

Attribute: This is an interface with the basic operations of all types of at-
tributes. Each attribute must have an implementation of this class. For in-
stance, DoubleAttribute, StringAttribute, etc.

ICaseBase: An interface that represents the set of retained cases.
RetrievalEngine: Implementation of the process to retrieve the most similar

cases to a query.
Concept: Vocabulary of the problem domain.
Range: Possible values of a particular implementation of an attribute.
AttributeDesc: Contains details about the description of one attribute of the

case. For instance, there are descriptions for numbers, symbols, dates, etc.
SimpleAttDesc: This class extends the AttributeDesc class with new fields

and methods for being used by a ISimFct.
ISimFct: Implementation of the similarity between two attributes with the

same description, i.e. between attributes of the same data-type.
AmalgamationFct: Implementation of the global similarity function to com-

pute the similarity between two instances / cases, considering all the existing
ISimFct to create a Similarity object.

Similarity: The value that represent the similarity between two instances.

Our approach was it to create a new attribute that represents event se-
quences. From the definitions given before in section 2, we have set the following
string representation:

sec =< (concept, timestamp) . . . >

The figure 3 depicts the new classes that we have implemented. With them
we can represent an event sequence within as an attribute of a case which allows
myCBR to compute the similarity between two different event sequences.

*1 **Attribute Range SimpleAttDesc
�interface�

ISimFct

EventSeqAtt EventSeqRange EventSeqDesc EventSeqFct

Fig. 3. Sequence of operations to compute the similarity between two cases.

EventSeqAtt: Contains the information of particular event sequence.
EventSeqRange: Contains the possible values of event sequences. It is respon-

sible of creating new EventSeqAtt.
EventSeqDesc: Contains the details about how the event sequences are imple-

mented.
EventSeqFct: This corresponds to the implementation of the similarity mea-

sures that we have worked on in the present paper. When an object of this
class is created it is mandatory to specify with type of measure it should
employ.

The implementations of the measures are expressed in algorithms 1 and 2.
The algorithms are in pseudo-code to ease their comprehension; however they
are implemented using Java.

4 Initial Experiments

For our experiments we have created a synthetic case-base that represents the
knowledge related to the operation of an industrial furnace. The purpose of the
evaluation was to analyse whether the CBR system was able to predict unsafe
situations from cases that represent the operation of the furnace. Thus, the
cases consisted of event sequence describing the event data of a whole day of
furnace operation and a label to classify the event sequence as a “normal” or
“not normal” with reragrd to the final safety situation of the event sequence.
Each event sequence had up to four different event activities: LL, L, H and
HH, that represented the temperature of the furnace, where the activity type
HH meant an unsafe situation that must be avoided. Figure 4 details three
different cases: two cases describing normal operations and one describing an
unsafe situation.

Algorithm 1 Calculate the edit distance dS(Sx, Sy) between two sequences
Sx, Sy

Input: Two event sequences Sx =
〈(ex1 , tx1), . . . , (exn, t

x
n)〉 and Sy =

〈(ey1 , t
y
1), . . . , (eym, tym)〉, with ex, ey ∈

E, the costs w(ex), w(ey) of the inser-
tion and deletion operations.

Output: Edit distance dS(Sx, Sy) be-
tween the two given sequences.

1: r ← matrix of n×m dimensions
2: r(0, 0)← 0
3: for i← 0 to m do
4: r(i, 0)← r(i− 1, 0) + w(ex)
5: end for
6: for j ← 0 to n do
7: r(0, j)← r(0, j − 1) + w(ey)
8: end for

9: for i← 1 to m do
10: for j ← 1 to n do
11: updateSx ← r(i− 1, j) + w(ex)
12: updateSy ← r(i, j − 1) + w(ey)
13: align← r(i− 1, j − 1)
14: if ex = ey then
15: align← align+(0.5×|txi −tyj |)
16: else
17: align← align+w(ex)+w(ey)
18: end if
19: r(i, j)← min

(
updateSx , updateSy , align

)
20: end for
21: end for
22: return r(n,m)

Algorithm 2 Calculate the M&M distance MM(Sx, Sy) between two sequences
Sx, Sy

Input: Two event sequences Sx =
〈(e1, tx1), . . . , (en, t

x
n)〉 and Sy =

〈(e1, ty1), . . . , (em, tym)〉.
Output: Match & Mismatch similarity

between the two given sequences.
1: TD ← 0, NM ← 0, NE ← 0, NS ← 0

2: for e ∈ Tε do
3: secex ← the set of events of type e

in Sx
4: secey ← the set of events of type e

in Sy
5: if |secex| ≤ |secey| then
6: NE ← NE + |secex| − |secey|
7: aux← secex
8: secex ← secey
9: secey ← aux

10: else
11: NM ← NM + |secex| − |secey|
12: end if
13: n ← |secex|,m ← |secey|, diff ←

n−m
14: c← matrix of n×m

15: c(0, 0)← 0
16: for j ← 0 to m− 1 do
17: for i← 0 to diff do
18: cost← |txj+i − tyj |
19: if j > 0 then
20: cost← cost + c(i, j − 1)
21: end if
22: if i > 0 then
23: c(i, j) ← min(cost, c(i −

1, j))
24: else
25: c(i, j)← cost
26: end if
27: end for
28: end for
29: TD ← TD + c(difference,m− 2)
30: end for
31: NS ← number of swamping events
{L}os autores no dicen como hacerlo

32: return 4 − wTDTD − wnmNM −
wneNE − wnsNS

05:00 06:00 08:00 10:00 19:00 21:00 23:00

05:00 06:00 08:00 10:00 19:00 21:00 23:00

05:00 06:00 08:00 10:00 19:00 21:00 23:00

normal =
LL L L H H H H H L LL LL

normal =
LL L L H H H H L LL

not normal =
LL L H H H HH

Fig. 4. Examples of three event sequences

The case-base contained 1000 cases, where each case contained an event se-
quence of one day duration. In order to analyse if the system predicted unsafe
situations correctly, we built a test set with different event sequences that may
appear during the operation of the furnace within a window of time. The size of
this window or in other word the duration of the ’partial’ query sequence was
always smaller than any entire event sequence in any case.

The modified myCBR system which we experimented with uses a K-Nearest
Neighbours to retrieve the most similar case to an input case. As adaptation
mechanism, the most common solution between the nearest neighbours is the
returned solution to the input event sequence. The system is evaluated using
a Cross-Validation approach, with the number of neighbours (k) within the set
{1, 3, 5, 7, 9}. The values that the evaluation computes are the error rate, the
false positives of “non normal” event sequences and the number of times that the
CBR system predicted unsafe situations in advance. Detecting unsafe situations
in advance meant that the retrieved case contained the event sequence of a “non
normal” or unsafe situation and was detected (retrieved) before the risky HH
event arised.

Edit M&M Edit M&M Edit M&M

Neighbours Error rate False Positives Predicted

1 0.3200 0.2060 0.0145 0.0290 0.7536 0.7391

3 0.0220 0.0190 0.0435 0.0290 0.5942 0.5942

5 0.0020 0.0040 0.0290 0.0580 0.5942 0.5942

7 0.0030 0.0040 0.0435 0.0580 0.5942 0.5942

9 0.0060 0.0060 0.0870 0.0870 0.5942 0.5942

Table 1. Results of the experiments with the Edit Distance and M&M measures. The
best results are highlighted in bold.

The best results for each measure are highlighted in bold. Regarding the
results, it seems that for this particular experiment the Edit Distance achieved
better results. Besides having only one neighbour results into the worst error
rate for both measures, in this configuration the number of false positives and

the number of predicted “not normal” situations are the highest. Consequently,
the experiments with one neighbour were the most suitable configuration choice
while the main interest was to predict and thus avoid unsafe situations. Further-
more a higher number of neighbours means a worsening of the false positives,
although it seems that values over three or more neighbours do not affect the
ability of predicting unsafe situations.

5 Conclusions

In this paper we have introduced the implementation of two similarity measures
for event sequences within the myCBR software. Our objective was to provide the
necessary functionalities to enable myCBR to develop CBR systems in problem
domains where event sequences are of importance. Those domains often contain
activities that follow sequences, such as work flows or sensor data logs. For now
we have implemented two similarity functions in the myCBR software: the Pirjo’s
Edit Distance and the Match & Mismatch measures for event sequences. In order
to demonstrate the usefulness of these measures, we have built a synthetic case-
base that contained cases representing the “normal” and “not normal” activities
of an industrial furnace. We then performed a set of experiments on this case-
base which showed low error rates with both measures. Furthermore, despite
the fact that this initial experimentation is based on synthetic data, the results
showed that it is possible to predict unsafe situations in advance, employing
either the Edit distance or the Match & Mismatch measures.

However, even though getting good results in our experiments, the remaining
future work has to use data from real scenarios, such as surveillance of elderly
people at home or monitoring of patients in the hospital to predict the his/her
future health status. Next to these testing of our approach on real world data
it is also still necessary to compare the results from our approach with those
achieved by other technologies, such as for instance rule-based systems.

Acknowledgements. This work was partially funded by the Seneca Research
Foundation of the Region of Murcia under project 15277/PI/10, and by the
Spanish Ministry of Science and Innovation+European FEDER+PlanE funds
under the project TIN2009-14372-C03-01.

References

1. OddErik Gundersen. Toward measuring the similarity of complex event sequences
in real-time. In Case-Based Reasoning Research and Development. Springer Berlin
Heidelberg, 2012.

2. Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics Doklady, 10:707–710, 1966.

3. Heikki Mannila and Pirjo Moen. Similarity between event types in sequences. In
DataWarehousing and Knowledge Discovery. Springer Berlin Heidelberg, 1999.

4. Pirjo Moen. Attribute, Event Sequence, and Event Type Similarity Notions for
Data Mining. PhD thesis, University of Helsinki, 2000.

5. H. Obweger, M. Suntinger, J. Schiefer, and G. Raidl. Similarity searching in se-
quences of complex events. In Research Challenges in Information Science (RCIS),
2010 Fourth International Conference on, 2010.

6. Armin Stahl and ThomasR. Roth-Berghofer. Rapid prototyping of cbr applications
with the open source tool mycbr. In Advances in Case-Based Reasoning. Springer
Berlin Heidelberg, 2008.

7. Katerina Vrotsou. Everyday mining: Exploring sequences in event-based data. PhD
thesis, Department of Science and Technology Linkoping University, 2010.

8. Katerina Vrotsou and Camilla Forsell. A qualitative study of similarity measures
in event-based data. In Human Interface and the Management of Information.
Interacting with Information. Springer Berlin Heidelberg, 2011.

9. K. Wongsuphasawat and B. Shneiderman. Finding comparable temporal cate-
gorical records: A similarity measure with an interactive visualization. In Visual
Analytics Science and Technology, 2009. VAST 2009. IEEE Symposium on, 2009.

10. Krist Wongsuphasawat, Catherine Plaisant, Meirav Taieb-Maimon, and Ben Shnei-
derman. Querying event sequences by exact match or similarity search: Design and
empirical evaluation. Interact. Comput., 24:55–68, 2012.

	Implementation of Similarity Measures for Event Sequences in myCBR

