
A Self-Organizing Algorithm for Community
Structure Analysis in Complex Networks

Hanlin Sun∗, Wei Jie†, Christian Sauer†, Sugang Ma∗, Gang Han‡ and Wei Xing§
∗Big Data Research Centre, Xian University of Posts and Telecommunications, China

†School of Computing and Technology, University of West London, UK
‡Department of Electronic Science and Technology, Northwestern Polytechnical University, China

§CRUK Manchester Institute, University of Manchester, UK

Abstract—Community structure analysis is a critical task
for complex network analysis. It helps us to understand the
properties of the system that a complex network represents,
and has significance to a wide range of real applications. The
Label Propagation Algorithm (LPA) is currently the most popular
community structure analysis algorithm due to its near linear
time complexity. However, the performance of the LPA has proven
to be unstable and the correctness of community assignment
of nodes is unsatisfactory. In this paper a Self-Organizing
Community Detection and Analytic Algorithm (SOCDA2) based
on swarm intelligence is proposed. In the algorithm, a network is
modeled as a swarm intelligence system, while each node within
the network acts iteratively to join or leave communities based
on a set of pre-defined node action rules, in order to improve the
quality of the communities. When there is not a node changingits
belonging community anymore, an optimal community structure
will emerge as a result. A variety of experiments conducted on
both synthesized and real-world networks have shown results
which indicate that the proposed algorithm can effectivelydetect
community structures and the performance is better than that
of the LPA. In addition, the algorithm can be extended for
overlapping community detection and be parallelized for large-
scale network analysis.

I. I NTRODUCTION

A variety of real-world systems could be modeled as
mathematical complex networks. Social networks, protein-
protein interaction networks, the WWW, and the Internet,
etc. are just some examples of such systems. These networks
usually show some interesting properties such as high network
transitivity, power-law degree distribution, the existence of
community structure, and much more. The study of community
structure can help us to understand those systems at a middle-
scope level, just between the macroscopic level in which the
whole system is considered and the microscopic level in which
each node is analyzed individually. Actually the analysis of
community structure has significance to many applications.For
example, community structure analysis can be used in a social
community or network (e.g. Facebook) which presents rela-
tionships between community members. The analysis of such
networks will help to design reliable friend recommendation
systems. As another example, community structure analysis
can be used in detecting communities of customers with similar
purchasing interest in e-business network. This can lead toset
up efficient recommendation system and thus improve business
opportunities for product retailers.

An exact definition of community depends on the under-
lying problem and its application. For example, the definition

could be based on degrees of node [1], k-cliques, k-clans, k-
clubs [2], etc. Intuitively, a community is a group of nodes in a
network that has more edges (connections) among its members
but comparatively has less edges between its members and the
rest of network nodes. This simple concept is the core of nearly
all community definitions.

Community structure analysis of complex networks has
attracted much interest and a number of algorithms originating
from different fields, such as physics, statistics, data mining,
and evolutionary computation, etc., have been proposed. There
are many different strategies behind these community detection
algorithms, such as divisive hierarchy, agglomerative hierarchy,
random walking, information diffusion, spectrum analysis,
statistical inference, and much more. A comprehensive review
of these methods has been conducted, for example, a survey
of community discovery methods was provided with a special
focus on techniques designed by statistical physicists [3]. The
meta definitions of a community in a complex network was
given, and the majority community discovery methods was
summed up based on their own definitions [4]. However,
most of these traditional algorithms are incapable of working
in large-scale network community structure analysis mainly
because of their heavy computational cost or model limitations,
e.g., requiring priori information of community structure, data
structure representation of community structure, etc.

The Label Propagation Algorithm (LPA) [5] is currently the
fastest algorithm for community structure analysis, with anear-
linear time complexity. In LPA, each node is assigned a label
(community identifier) indicating the community to which it
belongs. The community structure is exposed by iteratively
propagating labels among neighboring nodes. During label
propagation, each node reserves the label that most of its
neighbors hold. However, the result of LPA is unstable and the
precision of correct node community detection is unsatisfacto-
ry due to the inner randomness of the algorithm: (1) as there
are several labels with the same number of neighbors holding, a
node will take one of them randomly; (2) the sequence of node
label updating is random, but the updating sequence of these
nodes at the edge of communities has a considerable impact
on the final results. Many improved LPA-based algorithms
for community detection have emerged. Some algorithms [6],
[7] improve the unstableness problem, while some algorithms
[8]–[10] are extended LPA to detect overlapping communities
(a node may belong to several communities simultaneously).
But further analysis shows that in all of these algorithms, the
instability is inevitable.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UWL Repository

https://core.ac.uk/display/46597701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In this paper, we propose a Self-Organizing Community
Detection and Analytic Algorithm (SOCDA2) based on the
idea of Swarm Intelligence (SI). SI is the collective behavior
of decentralized and self-organized systems, either natural or
artificial. The expression was introduced in the context of
cellular robotic systems [11]. Generally, in an SI system,
there is a large number of simple individuals who can only
perform simple actions and interact with nearby neighbors
locally as well as with the environment. Intelligence emerges
as a consequence of the sum of these simple actions and
interactions. It is believed that SI seems not to be a coin-
cidence but rather a property of a variety of systems. We
treat an analyzed network as a SI system, in which each node
decides its own actions, i.e., leaving its original community
(communities) or joining into new communities, depending
on whether the action could improve the quality of the related
community. Obviously, a node can only form a community (or
communities) with its neighbors, thus the communities thata
node acts to join are those its neighbors are belonging to also.
The community (communities) a node is staying and those of
its neighbors belonging to, form the environment a node makes
its own decision. An optimal community structure will finally
emerge as each node acts iteratively, until no node changes its
community anymore. Due to the fact that nodes make actions
by referencing a whole community rather than just one hop out
of labels as in LPA, the quality of the community structure that
emerges is more likely to be better.

In fact, SI covers a number of algorithms inspired by
natural bio-systems including the Genetic Algorithm (GA) and
the Ant Colony Optimization (ACO) algorithm. Both of the
two algorithms were used for community structure analysis
[12], [13]. However, due to the limitation of the representation
method for evolutionary individuals, the GA based algorithm
cannot be used for large scale network analysis. As for the
ACO based algorithm, it has a number of parameters to be
set which introduces great complexity. Instead, our algorithm
does not imitate any specific bio-system, and it is an artificial
swarm system built on the basic idea of SI. Our algorithm is
free of parameters except two simple ones in initializationand
post processing.

The rest of this paper is structured as follows. In section II,
we formally describe our algorithm and discuss its advantages
and limitations. Then in section III, we show the evaluation
results of our algorithm on both synthesized and real-world
networks. Finally, section IV concludes the paper.

II. A LGORITHM DESCRIPTION

In this section, we will describe our proposed SOCDA2

algorithm in detail, including community structure represen-
tation, community structure initialization, community assess-
ment, node evolution, post process and more.

1) Community Structure Representation:In our algorithm,
each node needs to know communities of its own and its
neighbors’ for evolution decisions. It is straightforwardto let
each node remember the members of the community to which
it belongs. However, when a node changes its community
belonging, it is difficult to notify the related nodes of the
changes if there is not a convenient communication way
between the nodes. Here the related nodes include the members
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Fig. 1. An example of SNR in a community structure

of the community from which the node leaves and the members
of the community to which the node joins. Since our focus is
on node action rules, the community structure and the graph
topology are stored in central data structures, in particular, we
propose a Sequential Node Representation (SNR) to remember
the community structure of a network in our algorithm. The
SNR is inspired by the Locus-based Adjacency Representation
(LAR) [14], which is usually used in evolutionary community
detection algorithms (such as genetic algorithm based) for
individual representation.

In LAR, a community structure is encoded in anN -
dimensional vector whileN is the number of network nodes.
Each component of a vector represents a node of the network,
and the value of a component is a neighbor identifier of
the corresponding node. These nodes linked together by their
neighborhood connections form a community. For example, in
a network with seven nodes partitioned into two communities
as shown in Fig.1 (a), a possible LAR community structure
representation is depicted in Fig.1 (b), in which each compo-
nent is a neighbor of a corresponding node. By sequentially
decoding the LAR representation, i.e. finding the connected
node groups, the community structure of the graph could be
extracted, as shown in Fig.1 (c).

Our SNR representation method denotes the community
structure of a network in aN × 2-dimensional matrix, or a bi-
linked list. For the network in Fig.1(a), its SNR representation
is shown in Fig.1 (d). In SNR, member nodes of a community
are required to order sequentially according to their identifiers.
Then, in the first row of the matrix, the component value of a n-
ode is its next adjacent node belonging to the same community
in the ordered community member sequence, and in the second
row, the component value is its previous adjacent node. We
call the first rowforward-link and the second rowbackward-
link. The values of the last node in forward-link and the first
node in backward-link are recorded as the end of links. Note
that the link relationship in SNR is not connections between
nodes as in LAR, but a new relationship introduced among
nodes merely indicating community memberships. With this
community structure representation, it is easy to extract the
community members for any given node. For example, to get



ALGORITHM 1 : community initialization
INPUT : graph adjacent matrix ’G’; ratio ’p’
OUTPUT: community structure ’C’ in SNR

1: calculate Jaccard similarity of each node with its each neighbor.
2: for each node n not belonging to any community (in degree descending

order)do
3: if n’s most similar neighbor belongs to a communitythen
4: n joins into the community.
5: else
6: n forms a new community with its most similar p% neighbors

that belong to none community.
7: end if
8: update community structure in C.
9: end for

Fig. 2. Core community structure initialization algorithm

the members of the community to which node 3 belongs, from
the third column, along the forward-link, node 4 is found, and
along the backward-link, nodes 2 and 1 are recognized. Note
that it is also simple to update a community, i.e., to add a
node into or delete a node from a community. The addition or
deletion is simply bi-linked list insertion or deletion operations.

2) Community Structure Initialization:The initialization is
the first step in SOCDA2. The initialized core community
structure has impacts on node evolution performance and
the quality of the finally obtained community structure. The
initial communities are built based on the structural similarity
between nodes defined as

S(i, j) =
|N(i) ∩N(j)|

|N(i) ∪N(j)|
, (1)

whereN(i) andN(j) are the neighbor node sets of nodei
and j, respectively. Apparently, the more common neighbors
two nodes have, the more similar they are. In the initialization
procedure, at first, we calculate similarities between eachnode
and all of its neighbors. Then, a node which is not part of any
community will have two choices: (1) it joins the community
to which its most similar neighbor belongs if the community
exists, and (2) it forms a new community with its most similar
p% neighbors who do not belong to other communities yet. If
the first choice is impossible, then the second is employed.
The node with large degrees is processed preferentially as
it has more chance to form a better core community. The
designed core community structure initialization algorithm is
summarized in pseudo code in Algorithm 1 as shown in Fig.
2.

3) Community assessment:A node evolves its community
belongings depending on the impacts of its actions on the
related community. That means it needs a community quality
measure method. We use the Normalized Conductance (NC)
[15] as the community quality assessment function in our
algorithm. Denote the member node set of a community as
A, and the rest node set of the network asB, then the NC is
defined as follows:

C(A) =
eAA

eAA + eAB

−
eAeA

eAeA + eAeB
, (2)

while eAA is the number of edges withinA and eAB is the
number of edges betweenA andB. The eA = eAA + eAB

andeB = eBB + eAB.

4) Node evolution:Node evolution is the key step of the
algorithm. Network nodes are considered as a swarm and each
node in the swarm aims to act to create a better community
structure. The community structure and the network topology
are the environment in which the swarm lives. A node can
only communicate with the environment and get the local
information that includes: (1) the community to which the node
belongs, (2) its neighbor nodes, (3) each neighbor’s communi-
ty, and (4) the connections between these nodes, i.e., the partial
topology related to nodes belonging to these communities.
The node can decide its actions based on assessment of these
communities.

Nodes can be classified into two categories, the inner
node and the boundary node. An inner node has neighbors
that all stay in the same community as the inner node itself
(i.e., it has no connection with the rest nodes outside of the
community), while a boundary node has some neighbors in the
community it belongs to, and some neighbors who belong to
other communities. Obviously, an inner node does not need to
change its community attribution, while a boundary node will
evolve to make better communities.

In general, there are two main types of questions a node
needs to answer: (1) ”Should I leave the community in which
I’m staying?” To answer this, the node compares the quality
score of the community before and after it (potentially) leaves.
If the former is greater, then the node does not leave its
original community, else the node will leave. (2) ”For each
neighbor’s community, should I join into it?” It is worthwhile
mentioning that: (a) some neighbors may coincidently stay in
the same community as the node, and it is not necessary to join
into the community the node already stays in, and (b) some
neighbors themselves may stay in a same community, thus the
node only needs to decide once that if it should join to the
community. We refer these unique communities of neighbors
as independent communities, therefore a node only needs to
decide whether joins to these independent communities. To
answer this, likewise the first question, the node compares the
quality score of the community before and after (potentially)
joining and makes a decision based on the comparison result.
The objective of deciding on the leave or join action is to
make the related community become better. Therefore, we say
a node has ”good-will” or ”aims to” improve the community
structure.

Most possibly, a node may join into several communities
simultaneously. It is necessary to merge some communities if
the quality of the merged community is better than the sum of
each quality. The merging action will induce acceleration of
community growth. If there areK communities a node belongs
to, then there will be(2K−K−1) candidate merging strategies.
If K is a large number, it is time consuming to try all possible
strategies. Unfortunately, initiallyK is usually large. For
simplicity, now we only try to merge two possible communities
for which the mergence will induce the maximum increment of
quality score. The members of other communities that should
be merged could be finally added into the community gradually
in later evolution steps.

If it is not the goal to merge all communities, then the node
can be an overlapping node, i.e. it belongs to these remaining
communities simultaneously. To record the multiple belong-
ings, the SNR in this work should be improved. Currently we



ALGORITHM 2 : node evolution
INPUT : node id ’n’; graph adjacent matrix ’G’; current community structure
’C’ in SNR
OUTPUT: updated community structure ’C’

1: get n’s neighbors from G.
2: get n’s current community from C.
3: if n is an inner nodethen
4: return
5: end if
6: for each n’s neighbor, get its current community.
7: remove duplicated communities.
8: assert if n should leave its original community.
9: for each independent neighbor community, assert if n should join to.

10: if n joins to no communitythen
11: joins to the one with minimum quality reduction.
12: else if n joins to multi communitiesthen
13: if exist optimal merging strategythen
14: merge some communities.
15: n joins into the merged community.
16: else
17: n joins into the community with the maximum score.
18: end if
19: end if
20: update community structure in C.

Fig. 3. Community structure evolution algorithm

assume a node can only belong to one community at a time.
If a node aims to joins multiple communities by its actions,
the node will select the one with the greatest quality score to
actually join it. In addition, we assume there is no isolated
node, i.e. a node must belong to a community. If a node joins
no community after its actions, it will then join the community
with the minimum quality score reduction. The pseudo node
evolution algorithm is illustrated in Algorithm 2 as shown in
Fig. 3.

5) Post Processing:Once there is no node changing it-
s community belonging anymore, the algorithm assumes a
community structure that is considered as the best, though
the best outcomes of different runs of the algorithm may
be different as a result of the randomness of the algorithm.
Due to the quality measure function, the obtained community
structure may contain some small sized communities which
have only a few members. These small size communities are
very possibly a part of a larger size community, that is to
say, the algorithm could find fine-grained communities. We
introduce a post process to merge small size communities
below a threshold into an appropriate larger community. The
criterion is that a small size community should be merged
with the community which has the maximum neighbors of
nodes in small size community as its members. The merging
is carried out in the ascending order of the size of merged small
communities. Note that if the communities to be merged are
in the same size, they will be merged in a random order. The
pseudo code of post processing is shown in Algorithm 3 as
shown in Fig. 4.

The framework of our proposed SOCDA2 algorithm is
summarized in Algorithm 4 as shown in Fig. 5. The maximum
evolution generation is a measure employed to make sure the
algorithm terminate. Mostly, node evolution will end in a few
generations. We will show this in later experiment. Note that
in each generation, the nodes evolve in a new random order.

ALGORITHM 3 : post processing
INPUT : detected communities ’dcoms’; merging threshold, ’TH’
OUTPUT: improved communities

1: sort communities according to their size in ascending order.
2: for each detected communitydo
3: if community size is less than or equal to ’TH’then
4: get all neighbors of each member.
5: merge the community with the one having the maximum

neighbors as its members.
6: remove this community.
7: end if
8: end for

Fig. 4. Community structure post processing algorithm

ALGORITHM 4 : community detection
INPUT : graph adjacent matrix ’G’; evolution generation ’E’
OUTPUT: community structure ’C’ in SNR

1: call ’community initialization’(Algorithm 1).
2: while evolution generation is lesser than ’E’do
3: generate a random node evolution order sequence.
4: call ’node evolution’ (Algorithm 2) for each node according to the

sequence.
5: if no node changes its community belonging anymorethen
6: break
7: end if
8: increase evolution generation.
9: end while

10: call ’post processing’ (Algorithm 3).

Fig. 5. Framework of the algorithm

This will introduce randomness into the algorithm. If no node
evolves or the maximum number of generations is reached, the
algorithm starts the post processing.

Comparing with LPA, the algorithm could be more likely
to quickly find better community structure since its node action
referencing the whole community. In LPA, a node selects its
label mainly depending on the one-hop labels, which may
have lost some network topology information. In addition, the
quality assessment of a community (the evolution objective
of community structure) in the SOCDA2 algorithm could be
any one that relates with the definition of a community in the
network, while in LPA a node can only join to the community
of the definition that a node has more edges (connections)
with those nodes in the same community, i.e., the node adopts
the label that the most of its neighbors hold. Therefore,
the SOCDA2 algorithm could be potentially used in wider
scenarios.

Similar to LPA, randomness is also inevitable in the
SOCDA2 algorithm as nodes update their community joining
in a random order in each evolution generation. However,
the impact of the randomness is much less than that of LPA
because in the SOCDA2 algorithm, a node can much likely
leave a community it has joined previously by mistake. The
experiment described in next section will back this.

The SOCDA2 algorithm, however, still faces certain lim-
itations. For example, before making a decision, a node has
to evaluate whether its action will improve the community
quality. This is a more complex task compared to a simple



label selection used in the LPA algorithm. Additionally there
is the task of merging tries while a node joins into multiple
communities simultaneously during evolution, for the space of
candidate merging strategies may be huge. Moreover, as the
algorithm is running, there will be more stable communities
of which members will not change, i.e., these nodes having
neighbors in such stable communities may repeatedly, but
unnecessarily, re-compute the quality scores of such com-
munities. This computation burden could be alleviated by
remembering each community’s current score, and therefore
the re-computation can be avoided.

III. E XPERIMENT AND EVALUATION

We used a variety of synthesized networks and real-world
networks to check the ability of our approach to successfully
detect the community structure of a network. We employed
the modularity [16] and the Normalized Mutual Information
(NMI) [17] to evaluate the quality of community structure.
In addition, to depict more details about results, we calculated
the statistics such as number of communities containing wrong
members, incorrect assignment number of nodes, and maxi-
mum number of mistakenly included members of communities.
We implemented the SOCDA2 algorithm on MATLAB and ran
it on a virtual server with 8G memory. For comparison, we
implemented the LPA algorithm on MATLAB as well.

A. Synthesized network experiment

For the synthesized networks we use the LFR model [18],
which is popular in community detection algorithm perfor-
mance evaluation. LFR network is characterized by a mixing
parameterµ = zout/((zin+zout)) that gives the ratio between
external degree of a node and its total degree. Thezin andzout
are the internal and external degree of a node with respect toits
community, respectively. Asµ < 0.5, the community structure
is well defined. The parameters setting of the model used are:
(1) average node degree, 20, (2) maximum node degree, 50,
(3) exponent of degree distribution, -2, and (4) exponent of
community size distribution, -1. We generate networks forµ of
0.3 and 0.4 with node number from 1000 to 10000, increment
by 1000. The ratio parameter in initialization is 30% and the
threshold in post processing is 10.

Due to the random property of both SOCDA2 and LPA
algorithms, for each network we ran both algorithms 30 times
and computed the average quality score (and associate standard
deviation) for each network. The modularity and NMI results
are shown in Fig. 6 and Fig. 7, respectively.

These two figures indicate that: (1) in most cases, the
results of the SOCDA2 algorithm are better than those of LPA,
either in modularity or in NMI, and the modularity scores of
the SOCDA2 algorithm are closer to the real ones; (2) the
standard deviations of the SOCDA2 algorithm are smaller than
those of LPA, indicating the former is more stable; (3) in some
cases, the conclusion from modularity disagrees the one from
NMI, e.g., asµ = 0.4 and network size is 1000, 4000 or
6000, the modularity score states the SOCDA2 algorithm is
better, while the NMI score declares LPA; and (4) though in
most cases, the quality of the community structure discovered
by the SOCDA2 algorithm is better than that of LPA, the
absolute difference of values is not much significant. The third

and fourth phenomena can be explained by the fact that the
modularity and NMI values are statistic and thus expose the
quality of the community structure as a whole. Both values
are affected by the factors such as the number of communities
containing wrong members, the number of nodes assigned into
incorrect communities and its distribution, and so on. Table
I shows the statistics of some factors. (Due to space limit,
we only give out results of networks withµ = 0.4. Those
of networks withµ = 0.3 are similar.) Note that we put 30
runs of generating community structures together to get these
statistic.

From this table, it is clear that: (1) the numbers of com-
munities detected by both algorithms are equivalent; (2) in
most cases, the number of communities including incorrect
member nodes found by the SOCDA2 algorithm is more than
that of LPA; (3) always the number of nodes of LPA joining
a wrong community is much more than that of SOCDA2

algorithm; and (4) the maximum number of incorrect members
contained in a community determined by LPA is much greater
than that of SOCDA2 algorithm e.g., as can be seen, that
number of the SOCDA2 is just several, while that of LPA is
comparable with the size of a community (50 nodes). The first
phenomenon indicates that the followed statistics is meaningful
in that the situation is avoided that communities found by the
SOCDA2 algorithm are fine-grained, i.e., found communities
have a small number of members and thus consequently
these small size communities very possibly contain less wrong
members. The second and the third phenomenon state the
incorrect joining nodes of the SOCDA2 distributes dispersedly
in more communities, while those of LPA concentrate in a
number of communities. The fourth phenomenon backs this
conclusion as well. As there are more communities with
incorrect member nodes, though the number of which is quite
small, the accumulated difference between these communities
and the corresponding real ones may overrule the difference
between a community structure which has a lesser number of
communities but containing more incorrect members and the
real community structure. This can explain the phenomenon
that the community structure detected by the SOCDA2 algo-
rithm is sometimes worse than that of LPA from modularity
or NMI view. In fact, in the community structure obtained
by the SOCDA2 algorithm, both of the number of incorrect
members within each community and the total number of
nodes joining into incorrect community are less, therefore,
from the application point of view, the quality of community
structure by the SOCDA2 algorithm is better. Fig.8 compare
the frequency distribution of the number of nodes joining
into incorrect community.(Due to space limit, only resultsof
networks withµ = 0.4 are given. Those of networks with
µ = 0.3 are similar.) Note that there is no number 0. The figure
further indicates the performance of the SOCDA2 algorithm is
better. Therefore, it can be concluded that SOCDA2 algorithm
is a better method for community structure in synthesized
networks.

B. Real-world experiment

We further tested our algorithm on three real-world net-
works whose real community structures have been established
already, to evaluate the algorithm’s performance. These three
real-world networks are the Zachary’s karate club network
[19], the bottlenose dolphins network [20], and the American
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TABLE I. PRECISION STATISTICS OF SYNTHESIZED NETWORK ANALYSIS

network # of detected communities # of communities containing wrong
members

# of nodes joining to wrong com-
munities

maximum # of wrong members

µ size LPA SOCDA2 LPA SOCDA2 LPA SOCDA2 LPA SOCDA2

1000 852 870 213 450 1201 542 58 3

2000 1829 1862 211 290 1706 367 81 4

3000 2630 2654 237 370 1393 470 50 9

4000 3673 3720 240 415 1993 659 58 5

0.4 5000 4845 4838 343 370 2256 490 71 4

6000 5546 5555 417 717 2123 887 41 4

7000 6357 6390 511 597 3036 765 57 5

8000 7228 7232 315 471 2402 640 44 4

9000 8189 8194 438 653 2923 908 63 5

10000 9116 9098 548 748 3257 1044 62 6

college football games network [21]. The properties of the
three networks are listed in Table II.

We ran the SOCDA2 algorithm 30 times for each network
as well. The ratio parameter in initialization is 30% while
the threshold of community merging in post processing is 5.
We found in all runs our algorithm could effectively expose
the community structure of the three networks. For example,

two type community structures are detected for both the
karate club network and the dolphins network, and both of
the structures are very close to the real one. For the karate
club network, in the first type structure, two communities
are detected and only node 10 is assigned to an incorrect
community, and in the second, two communities are discovered
as well and the node 9 and 31 join an incorrect community.
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Fig. 8. Distribution of the number of nodes joining to incorrect community,µ = 0.4.

TABLE II. PROPERTIES OF REAL-WORLD NETWORK

network # of nodes # of edges # of communities

karate club 34 78 2

dolphins 62 159 2

football games 114 613 19, with 8 contain

only 1 team.

Fig. 9. The real community structure of the karate club network. Node
shapes represent community attribution. The pink nodes aremis-assigned by
SOCDA2 in two types of community structure.

The results for dolphins network are similar: two communities
are detected, and in the first node 40 (label ’SN89’) joins a
wrong community, and in the second node 37 (label ’SN100’)
and 40 join an incorrect community. Fig.9 and Fig.10 show
the real community structure of the karate club network and
the dolphins network, respectively. Intuitively, the node9 and
31 of the karate club network and the node 37 of the dolphins
network are hard to be assigned to an incorrect community
since all of them have more connections with the correct
community. The results stem from the randomness of the order
of communities merging during post process when there are
several merged communities of the same size.

The detected community structure of the football games
network is shown in Fig.11. Each box (including the dash-
line box) represents a detected community. Two types of

Fig. 10. The real community structure of the bottlenose dolphins network.
Node shapes represent community attribution. The pink nodes are mis-assigned
by SOCDA2 in two types of community structure.

community structure were discovered in the 30 runs of the
algorithm. The difference between them is the members of
the ’Mid- American’ conference (community) are split into
two finer communities in several runs. Since our algorithm
assumes there is no singleton node community, the eight inde-
pendent teams (NotreDame, Navy, Connecticut, CentralFlori-
da, MiddleTennesseeState, LouisianaTech, LouisianaMonroe,
and LouisianaLafayette) will join into incorrect communities,
as shown in the figure. Essentially, the detected community
structure is very close to the real TSE conference assignments.
In summary, the SOCDA2 algorithm is stable and it can,
as shown here, effectively detect communities on real world
networks.

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed a self-organizing community
structure detection and analysis algorithm called the SOCDA2

algorithm. The algorithm is based on the idea of swarm
intelligence. We treat the analyzed network of nodes as a
swarm intelligence system, and each node as an individual
who can make its own decision to join or leave communities.
A node joins or leaves a community simply because its action
can improve the quality of the related community. By having
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Fig. 11. The detected community structure of the football match network.
Node shapes and fill colors represent community attributionexcept the
’independent team’ that is one of the eight independent teams.

all nodes iteratively making these decisions over a number of
generations, an optimal community structure is emerging. The
algorithm first forms a core community structure depending on
the nodes structure similarities. Then each node acts to make
related communities become better. When no node acts any-
more, the algorithm terminates as it is assumed that an optimal
community structure is reached, eliminating the need of further
actions of any node in the community structure. A variety of
experiments on both synthesized and real-world networks show
that the performance of the SOCDA2 algorithm is much better
than that of LPA, and additionally, SOCAD2 algorithm can
effectively discover network community structures.

Overlapping communities are common in real systems.
The self-organizing algorithm inherently supports overlapping
community detection by simply allowing a node joining mul-
tiple communities simultaneously. As future work we aim
to extend our algorithm to support overlapping community
detection. In addition, the node view computation of the
algorithm makes it easily to parallelize the algorithm. We will
implement a parallel version of the self-organizing algorithm
using Giraph++ [22], which is an open source large-scale graph
processing platform that utilize Apache Hadoop’s MapReduce
implementation to process big graphs for large-scale network
analysis. The execution and experiment of our parallel algo-
rithms for large-scale social network analysis demands massive
computing and storage resources. We will leverage Amazon
Web Services (AWS) which provides massive and elastic cloud
based computing and storage resources to run and benchmark
the performance of our algorithm.
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