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Abstract 

There is a discernible need for a holistic, long-term-sustainability approach in decision-making 

in water and wastewater utilities around the world. Metabolism-based modelling, which can 

quantify various flows within an urban water system (UWS), has shown its effective usability 

for a more comprehensive understanding of the impacts of intervention strategies and can be 

used by any water utility for future planning of UWS. This study presents the main principles 

of a holistic Sustainability Assessment Framework which can be simulated by using two 

analytical, conceptual, mass-balance-based models to quantify relevant key performance 

indicators (KPIs) associated with the metabolic flows of the urban water cycle. These two 

models are WaterMet2 (WM2) and Dynamic Metabolism Model (DMM), developed recently 

under the aegis of the EU TRUST (Transitions to the Urban Water Services of Tomorrow) 

project. There are clear differences between the two models which make them useful in 

different contexts and circumstantial situations. DMM is a mass-balance consistent model 

which quantifies and presents annually-aggregated performance values for system wide energy 

consumption, emissions, environmental impacts and costs for the entire UWS though it is also 

possible to derive corresponding indicators for individual sub-systems (e.g. water distribution 

and wastewater transport). Opposite of this, WM2 is a distributed metabolism model which 

simulates water related and other resources flows throughout the UWS components with a 
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higher resolution both spatially (e.g. multiple water resources and service reservoirs) and 

temporally (e.g. daily and monthly), and thereby is useful in contexts where utilities would like 

to focus on further details of the UWS metabolism with the aim to understand and solve specific 

problems. Overall, these two complementary metabolism-based approaches enable any water 

utility to quantitatively explore and understand the influences of different external drivers and 

intervention strategies on future performance profiles linked to any physical, environmental and 

economic criteria.  

Keywords: Urban water services, sustainability assessment, key performance indicators, 

WaterMet2, Dynamic Metabolism Model (DMM). 

 

Introduction 

The decision-making process based on multiple objectives using appropriate decision support 

tools has become an increasing need for urban water utilities (Makropoulos et al. 2008). The 

objectives include elements such as water safety, climate change adaptation and mitigation, 

environmental life cycle assessment (LCA) and total cost efficiency. However, water utilities 

today often aims at covering a wide set of performance objectives (environmental, economic 

and social) in response to sustainability policies of cities and society in general. For instance, 

based on the Brundtland report cited in three references, i.e. IISD (2014), Milman and Short 

(2008), and Constanczak (2014), the principle of sustainability has several definitions in 

literature, and is applied to many different types of systems. The first reference has famously 

defined sustainable development as development that meets the needs of the present without 

compromising the ability of future generations to meet their own needs; while stressing on the 

essential needs of the world’s poor and the limitations imposed by the state of technology and 

social organisation on the environment’s ability to meet present and future needs (IISD 2014). 

The second reference has stated that it is widely agreed that any conception of sustainability 

must account for the interconnections of environmental, economic, and social factors; consider 

both the local and global resource base; and be attentive to the long-term needs of future 

generations environment's ability to meet present and future needs (Milman and Short 2008). 

The author in the last reference has defined sustainable development as ‘development that meets 

the basic needs of all people and preserves, protects and restores the health and integrity of the 
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ecosystem of earth, without jeopardizing opportunities to meet the needs of future generations 

and without exceeding the limits of its long-term capacity’ (Constanczak 2014). Milman and 

Short (2008) has also considered the urban water sector as a case to investigate and recommend 

a number of sustainability indicators such that their selection remains flexible and they render 

reliability to the decision-making process. Venkatesh and Brattebø (2013), while focusing only 

on environmental sustainability indicators, have recommended that the selection of these for a 

water-wastewater utility needs to be based on concerns specific to the utility and city in 

question. They have also recommended the classification of cities into city-types based on 

specific attributes and identification of relevant environmental sustainability indicators, from a 

pool of 13 indicators, for these different city-types. Brattebø et al. (2011) and Brattebø et al. 

(2013), as parts of the EU7FP TRUST (TRansition to sustainable Urban Systems of Tomorrow) 

project are important recent references in this regard, which examine opportunities for strategic 

long-term transitions towards sustainability in urban water services. According to Brattebø et 

al. (2013), “Sustainability in urban water cycle services (UWCS) is met when the quality of 

assets and governance of the systems is sufficient to actively secure the water sector’s necessary 

contributions to social, environmental and economic sustainability in the urban system as a 

whole”. Sustainability assessment of UWCS should be transparent, valid and holistic, and must 

include the dimensions of social, environmental, economic, asset and governance sustainability. 

The sustainability assessment can be done by carefully examining the estimated effects of 

alternative interventions, and how the performance of the UWCS develops over time, using a 

predefined set of performance metrics or indicators. These metrics or indicators should 

correspond to the sustainability objectives and criteria that are important and considered 

meaningful for the given water utility. Brattebø et al. (2013) recommends the use of a life-cycle 

assessment and metabolism modelling approach in UWCS sustainability assessments, where 

annual emissions, environmental impacts and costs are quantified as a consequence of the 

physical flows (water, materials, chemicals, energy carriers, wastes) within the system, which 

is again a consequence of technologies, service levels, urban growth, intervention opportunities 

etc.  The assessments methods must necessarily be inclusive and flexible with respect to 

stakeholder involvement and decisions regarding target-setting and trade-offs.  

The TRUST project concludes a set of 13 sustainability objectives based on the five dimensions 

of the sustainability framework shown in Figure 1 (Brattebø et al. 2013) as follows: Social 

sustainability (3; S1-S3), Environmental sustainability (2; En1-En2), Economic sustainability 
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(1; Ec1), Governance sustainability (4; G1-G4) and Asset sustainability (3; A1-A3). When 

performing a sustainability assessment for an urban water utility, the use of the TRUST 

framework shown in Figure 1 entails the identification and selection of one or more assessment 

criteria for each of the 13 objectives. Alegre et al. (2012) suggested 23 performance criteria 

associated with the sustainability framework in water system. Seven criteria out the 23 defined 

criteria are directly related to the water service coverage, the environmental and/or the 

economic performance of the urban water system. Furthermore, for each criterion, one or more 

measurable (quantitatively or qualitatively) performance metrics must be identified, and these 

can be further normalised in relation to desired performance levels.  A framework such as the 

one referred to above may be applied differently, according to what the actual objective of the 

assessment is and what the particular challenges of a given city are. This will influence the 

scope (spatial and temporal boundaries) of the assessment, the choice of sustainability 

objectives and performance indicators/metrics, and the choice of analytical models and 

methods. These choices must reflect the fact that sustainability assessment should address long-

term strategic changes and sustainability qualities, in contrast to a focus on more short-term 

operational and/or tactical interests. Leeuwen et al (2011) using the city of Rotterdam in the 

Netherlands as a practical example, have used a set of 24 dedicated indicators to assess the 

sustainability of the water cycle in the city. Van der Steen (2011), describes the steps that a 

local government or utility could take in order to select and implement a set of indicators to 

monitor, plan and manage the urban water system. Venkatesh et al (2009) and Venkatesh & 

Brattebø (2011a, 2011b, 2012c, 2012a, 2012b, & 2014) focus on the environmental aspect of 

sustainability for different sub-systems of the urban water system in Oslo, which incidentally 

is also the case considered in the current paper.   

An innovative framework for assessment of water systems has been suggested by using the 

concept of urban metabolism (UM) (Venkatesh et al 2014). The UM, first introduced by 

Wolman (1965), involves quantification of the inflows, outflows, storage and production of 

energy and materials within the bounds of an urban setting. Such data can serve a variety of 

purposes, - inputs to carbon footprint analysis, determination of urban ecological footprints, or 

sustainability assessment in specific areas such as water use, air pollution, waste handling, 

resources management and etc. Recent researches have been extending UM analysis by 

including upstream and/or downstream environmental lifecycle impacts associated with flows 

into or out of urban regions (Ramaswami et al. (2008), Schulz (2010), Chavez and Ramaswami 
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(2011), Chester et al. (2012)). According to Kennedy et al. (2011), the 20-odd relatively-

comprehensive UM studies published thitherto in academic literature have practical 

applications to urban designers and planners as an adaptive approach to technological and 

socio-political solutions, and their consequences. The UM method basically uses static, quasi-

stationary or dynamic material flow analysis (MFA) models (Cencic and Rechberger (2008); 

Baccini and Brunner (2012)). Furthermore, having determined the (metabolic) flows of a given 

urban system, it is also possible to estimate their corresponding potential life cycle 

environmental impacts, by use of life cycle assessment (LCA) methods or environmentally-

extended input-output analysis (EE-IO) methods.    

Integrated modelling of urban water systems has been developed extensively in the recent 

decade, as evidenced by conceptual models such as Aquacycle (Mitchell et al. 2001), UWOT 

(Makropoulos et al. 2008; Rozos and Makropoulos 2013), UVQ (Mitchell and Diaper, 2010) 

and CWB (Mackay and Last, 2010). These models are able to quantify water related flow and 

fluxes in complex urban water systems.  As a supplement these models, the UM approach has 

recently been applied to integrated urban water system (Behzadian et al. 2014b; Behzadian and 

Kapelan 2015b). It can be considered that the metabolism modelling of urban water services is 

a subset of UM modelling. This gives opportunities for generating extensive information on the 

potential life cycle environmental impacts associated with the processing of the physical flows 

(water, materials, chemicals, energy carriers, wastes, recovered resources and etc.), in addition 

to information on the quantities of the physical flows themselves, in order to construct, operate 

and maintain the urban water system to provide services. Performance indicators can also be 

applied to the domain of economic performance. Model results covering the domains of 

physical, environmental and/or economic performance can therefore be generated, and reported 

on an absolute basis or on a per-cubic-metre or per-capita basis. 

Methods 

The metabolism of urban water services have been examined and modelled under the UM 

research framework, aiming at quantifying biophysical patterns of urban systems and 

infrastructures at different spatial and temporal scales. The methods of Material Flow Analysis 

(MFA) and Life Cycle Assessment (LCA) form the basis for the models applied in this study. 

Every urban water system (UWS) is characterized by infrastructures fulfilling the needs of 

water supply and wastewater collection/treatment. The UWS can be studied in-depth with 
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respect to its inflow-outflow metabolic characteristics. It can be broken down into its 

component parts (sub-systems and if need be, sub-sub-systems) and the metabolism (inflows 

and outflows over time) of each of these can be studied individually, before an aggregation is 

done in order to understand the metabolism of the system taken as a whole.  

A mass-balance-based approach has been adopted to understand how material masses flowing 

into a sub-system are partitioned (converted physically or chemically or not) into stocks and 

outflows. A time period of one year has been chosen, for instance, to aggregate the daily flows 

and net addition to stocks if any. Every inflow is associated with environmental impacts 

upstream (indirect impacts attributed to the needs of the system), and every outflow to the 

environment (hydrosphere, atmosphere, lithosphere and pedosphere) potentially leads to 

different kinds of environmental impacts (direct from the system). Outflows to the 

anthroposphere (cases where by-products and wastes are reused and recycled) may lead to 

avoidance of environmental impacts. These, for each sub-system and the time period chosen, 

are determined using LCA.  Figure 2 illustrates the stocks and flows in a UWS; five sub-systems 

of which have been identified, in addition to the source and the sink. As mentioned above, these 

sub-systems can be split up further into sub-sub-systems. For example, the Wastewater 

Subsystem (component 3 in Figure 2) can be further split up into the wastewater collection-

and-transport unit and the wastewater treatment unit. The UWS operates within certain pre-

existing geographic, climatic and socio-economic conditions which may determine its 

limitations as regards the extent of sustainability it can attain to. Charting the physical flows 

and environmental impacts, provides one with valuable information about performance, risk 

and the cost of operation (Ugarelli et al. 2014). The schematic sketch of the UWS in Figure 2 

has been used to develop two UM models, namely WaterMet2 (WM2) and Dynamic 

Metabolism Model (DMM) in the TRUST project. These two UM models are briefly described 

in the next section in order to critically compare with each other in the following sections. 

Description of the UM models 

Both UM models (i.e. WM2 and DMM) are conceptual, simulation-type, mass-balance-based 

and integrated UWS model which quantifies metabolism-related key performance of UWS. 

They both use recorded data and convert them into suitable metrics / indicators, some of which 

can subsequently be fed into a Decision-Support-System (DSS) which enables utilities in their 

decision-making by factoring sustainability considerations into the mix. The stress here is on 
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‘some’. We are referring to the intersection set of the quantitative outputs of either model which 

are used as the input requirements for the DSS, as far as indicators are concerned. Some of the 

sustainability criteria especially qualitative ones such as public participation and acceptance of 

UWCS, as defined by Brattebø et al. (2011), are not addressed in the DMM and WM2 but they 

need to be addressed by other qualitative tools. Therefore, it should be noted that neither of 

these two UM models are able to calculate the entire performance indicators related to the 

sustainability framework in Figure 1 and thus provide a comprehensive and holistic assessment 

in the real sense. More specifically, the ‘Social’ and ‘Governance’ aspects cannot be addressed 

by these two models. As far as ‘Assets’ are concerned, DMM does facilitate the calculation of 

some indicators (Refer to Appendix I). The ‘Economic’ and ‘Environmental’ aspects (and 

thereby the ‘Physical’ aspect to which these two are related), can be quite comprehensively 

modelled using both DMM and WM2. The main UM flows quantified in UWS by both models 

include various water related flow, direct and indirect (embodied) energy, greenhouse gas 

emissions, chemical and material used for operation and maintenance, acidification and 

eutrophication potential and etc. Distinguishing features for either of the models are described 

here in further details.  

Here, though, it would suffice to say that the DMM is a simple, flexible and modifiable, user-

friendly MS-Excel-based model which accepts user-inputs in one single user-friendly file, uses 

inbuilt formulae, constants and ‘intermediate’ Excel files, and enables the end-user to test the 

impacts of changes expected/planned/imagined in the future, on key performance indicators 

(KPIs) defined under the categories: Social, Economic, Environmental, Functional and 

Physical. DMM presents 30 indicators which are on both per-capita and per-unit-volume-water-

supplied bases (Refer Appendix I). The DMM modelling principles are based on Material Flow 

Analysis (MFA) and Life Cycle Assessment (LCA) methods, today widely recognized and used 

internationally in the fields of Industrial Ecology and Environmental Systems Analysis (Ayres 

and Ayres 2002, Baccini and Brunner 2012). This offers a mass-balance consistent 

quantification of resource inputs (materials, chemicals, energy carriers) and waste and emission 

outputs (greenhouse gases, nutrients, sewage sludge, etc.) per unit of water, wastewater and 

stormwater through flow in the system, which later are used as a basis for calculating the 

potential life cycle environmental impacts and costs. Readers may refer to Venkatesh et al. 

(2014) for more information about the structure of DMM. 
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WM2 is a distributed model which is constructed based on an arbitrary number of UWS 

components. Simulation of the principal flows and processes in WM2 is conducted in four 

spatial area scales (system, subcatchment, local and indoor) with different processes supported 

at different scales. System area scale in WM2 enables defining the main typical components of 

the UWS infrastructure (i.e. water resources, water supply conduits, WTWs, trunk mains, 

service reservoirs, distribution mains, subcatchments, and sewer networks, WWTWs and 

receiving water bodies) (Behzadian et al. 2014a). Subcatchment areas in WM2 serve as 

'collection points' in both simplified water supply and separate/combined sewer subsystems. 

Further, each subcatchment area in WM2 represents a group of neighbouring local areas, each 

of which is defined as a group of similar typical households (i.e. indoor area) with a surrounding 

area. Water demand modelling and rainfall-runoff modelling are handled at the local area scale. 

Water recycling schemes including rainwater harvesting and grey water recycling can be 

defined at local area and subcatchment scales (Behzadian et al. 2014d). The collection of 

wastewater/stormwater from local areas is handled in subcatchment area. Using this structure, 

WM2 requires the key functional characteristics of each component as input data such as 

storage and transport capacity, energy and cost per unit volume of water (Behzadian et al. 

2014a). Water demand profiles as well as their temporal variations over the planning horizon 

need to be defined to consider seasonal and annual fluctuations. The WM2 spatial scales (e.g. 

number of subcatchments /local areas) can be used to represent a relatively large (or small) 

spatial area depending on the size and type of the urban area being analysed and also on the 

level of spatial resolution required and the available data in different scales. WM2 simulates 

the performance of UWS through tracking down all the modelled flows/fluxes using a daily 

simulation time step for typically up to a long-term period of time over the defined planning 

horizon. 

Hence, whilst WM2 strives to embody the main functionality and complexity of the previous 

conceptual models for simulations of water related services (e.g. UVQ, UWOT and CWB), it 

quantifies other metabolism based flows/fluxes in the UWS as well. These distinguishing 

features enable WM2 to quantify other environmental impact categories along with water 

related flows. This enables water utilities which require understanding a ‘big picture’ of the 

future UWS performance under different prospective intervention strategies. WM2 as a useful 

simulation model can also be used for other applications in UWS such as risk analysis (Ugarelli 

et al. 2014), scenario-based analysis (Nazari et al. 2014a), optimisation model (Nazari et al. 



9 

 

2014b) and intervention strategies Morley et al. (2014 & 2015). Readers are referred to 

Behzadian et al. (2014b) and Behzadian and Kapelan (2015a) for further details of WM2. 

Model comparison in Oslo VAV case study 

Although both models are based on UM framework, there exist some structural differences 

between them, which make them useful in different contexts, situational, circumstantial 

conditions. Table 1 outlines the main points of difference between DMM and WM2 for a 

comparative overview. Recounting these differences here is to make a clear picture of both 

models to the readers and end-users that neither of the models is superior and can substitute the 

other, per se, but, depending on what the end-users’ needs, goals, objectives and constraints 

are, one of the models would be preferable. More specifically, ‘Usability’ of each of these two 

models, in the context of their application to a case study, refers to understanding the impact of 

interventions on selected indicators in target year and subsequent selections which the relevant 

water utility will make depending on its priorities, targets and benchmarks. 

 

Table 1: Points of difference between DMM and WM2  

Specifications  Dynamic Metabolism Model WaterMet2 model 

Basic structure  Lumped model inspired by 

industrial-ecology models 

Detailed, spatially and temporally distributed 

simulation model inspired by a combination of 

metabolism and conceptually based approaches.  

Interface  User friendly interface in MS-

Excel 

MS Windows-based software tool with a 

standalone GUI which enables defining an UWS 

model by entering the data, running the 

simulation and displaying results in Window 

forms 

Source code/ 

Modifiability 

Open source using interactive 

formulas in MS-Excel/ Easily 

modifiable by the end-user who 

is familiar with Excel 

Written in C# visual Studio/ WM2 is 

encapsulated in an executable tool. The end-user 

is only able to change the input data in the 

relevant form. However, any major changes can 

only be done by either an expert familiar with the 

software code or WM2 developers. 

Time scales of 

simulation 

Annual trends only and can be 

used for a long-term horizon 

Daily time step simulation which can be 

aggregated to weekly, monthly, annually and up 

to a long-term planning horizon. 

Input data Relatively simpler and requires 

data pertaining primarily to the 

inflows of materials, money and 

energy along with some 

constants which are needed for 

In addition to all data for DMM, WM2 needs 

some more data such as time series of 

weather/rainfall/ inflow to water resources and 

material database for simulation of seasonal 

fluctuations in water demand, water supply, 
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Specifications  Dynamic Metabolism Model WaterMet2 model 

transforming the raw data into 

the final processed output 

stormwater and wastewater generated plus the 

environmental impact of materials flow. 

Spatial scales City-scale (lumped) analysis 

only for main subsystems and 

entire UWS 

Four scales including system/city, subcatchment, 

local area and household. An arbitrary number of 

the main UWS components can be modelled at 

spatial scales 

Capital costs Modelled as a sum of 

depreciation and annual interest 

payments 

Capital investments of new intervention options 

modelled in WM2 can be calculated in the DSS 

that is linked directly to the WM2 

Climate change effects Not modelled  Modelled using time-series of weather data and 

inflows to water resources 

Water demand 

modelling 

Modelled as aggregated annual 

consumption 

Modelled by defining various fittings and 

appliances at the household scale and per capita 

water consumption 

Water reuse/recycling Not modelled Modelled through decentralised/semi-

decentralised rainwater harvesting and greywater 

recycling schemes (Behzadian et al. 2014d) 

Water quality modelling Not modelled Simplified and mass balance based modelling by 

tracking down daily flux of pollutants within 

wastewater and urban drainage subsystems 

Modelling interventions Interventions can be directly 

incorporated into the Excel 

file/s 

Intervention options can be modelled using the 

built-in library in the DSS tool (Morley et al. 

2014 & 2015) which is linked to the WM2  

Indicators Expressed in per-unit-volume-

water-supplied and per-capita 

terms, as required. Grouped 

under economic, environmental, 

functional and physical.  

Expressed in either absolute amount per unit of 

time (i.e. day, week, month, year, planning 

horizon) or specific amount (e.g. capita or of 

supplied water) for each UWS components and 

entire UWS. Indicators can be aggregated 

spatially and temporally 

 

The Oslo water utility (Oslo VAV) is a model city in the TRUST project which is used here as 

a case study. Oslo VAV has been considering a set of possible interventions to combat 

challenges (or risk factors) in the future (over the period to year-2040). These challenges 

include essentially population growth, asset deterioration over time, climate change and rise in 

industrial water consumption. Possible water scarcity would thus be the fallout of any or all of 

these acting in concert. Apart from these, energy efficiency improvement and thereby a 

truncation in the associated carbon footprint figure prominently on the agenda. Figure 3 is a 

self-explanatory sketch mirroring the generic sketch of Figure 2 loosely and applied to the city 

of Oslo. It charts the flow of raw water extracted from lakes to the water treatment plants, the 

flow of treated water to the water distribution system, the fulfilment of demand exerted by the 

consumers (which comes at the cost of leakage in the water pipelines), the discharge of 

wastewater (sewage and some stormwater) to the wastewater treatment plants through sewage 
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collection and transport sub-system, and final outflow of untreated overflows and treated 

wastewater to the receiving water body which is Oslo fjord in this case.  

The interventions or rather the goals which Oslo VAV is pondering over, are listed briefly 

hereunder (Hem, 2014). Readers are requested to refer to Venkatesh et al. (2014) for more 

details about the same. 

The upstream interventions (water supply sub-system) are as under:  

a. Reduction in per-capita water demand (all demand excluding leakage) supplied by the 

water treatment plants from the current value, at a uniform rate of 1% per year, till 2040. 

b. Reduction in leakage from the network, at a rate of 1% per annum for the first 3 years 

of the time-period being studied.  

c. Installation of micro-turbines on the upstream to utilise the pressure head energy in the 

water flowing downhill to the water treatment plants.  

d. Sourcing raw water from Holsfjorden – a source located to the west of the city, 

necessitating the setting up of a facility close to it, and associated piping and pumping.  

e. Testing different rates of rehabilitation of the water pipeline network (1%, 1.25%, 1.5%, 

2%, 2.25% and 2.5%). This has been labelled as ‘g’ as this was the most recent addition 

to the set (Hem, 2014) 

The downstream interventions (wastewater handling sub-system) are as under: 

f. Raising the rehabilitation rate of wastewater pipelines which is 1.3% in year-2013, rises 

to 1.6% in year-2016 and maintaining it at that level till 2040.  

g. Upgrading the wastewater treatment plant at Bekkelaget. 

 

The DMM and WM2 models were applied to the Oslo utility to model these interventions (and 

combinations of the same). While strategizing for each of the risk factors (or sets of risk factors), 

the utility would ideally have to draw up concrete long-term plans regarding not just what 

interventions would be adopted, but also how they would be adopted. The greater the level of 

detail and accuracy in the data (related to the interventions) which can be provided by the utility 

to the DMM and WM2, the more reliable and robust the outputs of these models will be. Having 

said that, of course, the models can also perform ‘what-if’ analyses to aid the utility in 

understanding the best course of action (or combination of actions) to take.  For detailed results 
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of these tests carried out using the two models mentioned, readers may please refer to Venkatesh 

et al. (2014), Behzadian et al. (2014a). The next section in the current paper presents some 

gleanings from the papers referred to, and highlights the usefulness of the models in different 

contexts and for different purposes. It is to be reiterated here that this is not an attempt to 

compare the models per se, but rather to contrast them, contextually. 

Results and discussion  

As referred to in the previous section, three dimensions (or aspects) of sustainability can be 

effectively addressed by the two models – Physical, Economic and Environmental. The first-

mentioned, it must be pointed out though, is not one of the five defined in Figure 1. The tests 

yielded results for all the relevant indicators defined in the models, for all the interventions 

tested. Venkatesh et al. (2014) and Behzadian et al. (2014a) present some of these. In this 

section, however, the authors have chosen one indicator each for the three dimensions named 

above - Direct energy consumption (Physical; Figures 4 and 5), Systemic greenhouse gas 

emissions (Environmental; Figures 6 and 7) and Annual capital costs (Economic; Figures 8). 

Energy efficiency and reduction in GHG emissions figure prominently on Oslo VAV’s agenda, 

as has been pointed out before.   

Figures 4 and 5 plot the forecast of energy consumption in the Oslo water utility for intervention 

‘d’ over the 30 year planning horizon. More specifically, WM2 is able to depict a monthly 

temporal resolution in Figure 4 (the flexibility of WM2 in choosing the temporal resolution is 

noteworthy here) while DMM represents normalised per-unit-water-demand of annual energy 

consumption in Figure 5. In addition to the total energy (indicated with the blue line), the 

components of the same (indicated with the red, violet and green lines) have also been indicated. 

WM2 includes the embodied energy in the chemicals and materials used in the calculation. The 

embodied energy, just to point out, is the energy expended in the production and transport of 

the chemicals and materials demanded by the operations within the system. DMM on the other 

hand, does not include this while calculating the total energy consumption in the urban water 

system. This becomes clear from the use of the adjectives ‘direct’ and ‘indirect’ in the Figure 

captions. In other words, in WM2, total energy is defined as ‘direct’ + ‘indirect’, while in DMM, 

it is just the total ‘direct’ energy consumption (electricity within the system and fossil fuel 

consumption if any). DMM normalises the indicator values, with respect to the start-year (in 

other words, divides the indicator value for given year by the corresponding value for the start 
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year), and thereby the values would oscillate on either side of 1. In Figure 5, though, they are 

consistently less than 1. Note that the normalised value for 2014 (i.e. 0.982) deviates somewhat 

from the reference value in 2013 (i.e. 1.0) since the chosen intervention (here‘d’) is assumed to 

have been implemented during 2013 before calculating the results for 2014. Visual inspection 

of WM2 – and ignoring the embodied energy – does reveal that the trend depicted by both the 

models is more or less the same – a gradual but perceptible drop over the study-period. This 

can be explained intuitively by realising that water demand fulfilled keeps increasing in 

absolute amounts over time, and though the energy consumption which is more or less 

proportional to the water volumes handled, would also increase likewise, other energy demand 

drivers like rehabilitation for instance are totally independent of the water volumes treated and 

supplied. 

Electricity is needed to treat raw water and wastewater, and to pump the same, while chemicals 

(the main reason for embodied energy demand) are consumed in water and wastewater 

treatment. In Oslo, fossil fuel consumption is associated with diesel use in standby generators 

in one of the water treatment plants, and in the pipeline network rehabilitation and maintenance 

phases. The spikes coincide with the spring and summer months in Oslo, when water demand 

(largely driven by garden-watering needs) rises. It is also in spring that snow melts and the 

loading on the wastewater treatment plants is higher. From Figure 7 (DMM), one can read the 

normalised aggregated annual per-capita GHG emissions. For that matter, one can also choose 

the ‘per-unit-volume-water-demand’ with either of the two models. Normalisation directly 

provides the analyst with an idea of the impact of the intervention on this indicator from the 

start of the test period over to its end. Due to the same reason in Figure 5, the normalised value 

for 2014 (i.e. 0.802) in Figure 7 deviates somewhat from the reference value in 2013 (i.e. 1.0). 

WM2, however, also provides the option of changing the temporal scale from daily to weekly 

or annual. It is also easy to obtain from WM2, graphs corresponding to Figure 6, for any sub-

system one wishes to delve into. However, the general trend in both the cases (Figures 6 and 

7), is a very gradual increase in the indicator value. In Figure 6, again, one would have to 

consider the sum of the blue and the green lines only in order to facilitate a proper comparison 

with the curve in Figure 7. 

In Figure 8, the per-capita capital investments into the system in Intervention ‘d’ are depicted 

in the year in which they are committed for the purpose of bringing the new water source on-

stream. These are, in sooth, ‘capital investments’ and the information provided by WM2 has 
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only a value for the amount and the timing of the investment (i.e. ~720 Euro per capita in year 

10). However, DMM provides capital costs (annual depreciation + interest payments; 

accumulated) on a per-capita basis as depicted in Figure 8. It is clearly seen that the investment 

committed in year-2022 introduces a spike in the graph which peaks in 2023 (as the depreciation 

starts from the year after the one in which the investment is made), before tapering down to a 

value 10% higher than the one in the start-year of the study period. Of course, here, both WM2 

and DMM provide useful information. The former points to the timing and amount of the 

investment, and the latter gives an idea of how cumulative annual capital costs vary with time 

for the intervention selected.  

It is of paramount importance to identify what are the indicators of relevance the utility wishes 

to work with and how the utility personnel would like to rank/weight these. It is a matter here 

of considering indicators of different types – functional (rehabilitation rate, leakage rate), 

environmental (GHG emissions, acidification etc., on a per-capita basis), physical (possibly 

pipeline material mass per capita, if lightening the network in this regard could be an objective) 

and economic (capital costs and O&M expenses expressed as appropriate indicators). With 

regard to all the results presented above, it needs to be emphasized that if the utility has specific 

targets / benchmarks for a host of indicators, then the impact of different interventions or sets 

of interventions (which may necessarily have to be carried out), can be analysed, vis-à-vis these 

targets (Behzadian et al. 2014c). However, just having targets will not be enough. The different 

objectives may need to be prioritized or weighted, in order to arrive at an optimum solution (or 

a set of solutions), based on distance from the targets set for each of the indicators (Behzadian 

et al. 2014b). Top-priority concerns (generally from a politico-legal perspective) will inevitably 

trump the others during the decision-making process. The PLAN method which is being 

developed as part of the DSS in the EU project TRUST offers the possibility to perform the 

trade-offs among different interventions, including the use of weighting (Morley et al. 2015; 

Behzadian et al. 2015).  However, this is beyond the scope of this particular study.  If this had 

to be done, one would have needed the input of specific target values and threshold values from 

Oslo VAV, which have not been provided to the authors by the utility. While this unfortunately 

cannot be tried out for this very reason now, utilities would need to be trained to think on these 

lines, in order to benefit optimally from the use of these models. The importance or rather the 

indispensability of weighting and prioritising has been communicated to the Oslo VAV 
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personnel; and quite understandably, there is an initial reluctance to do so, which hopefully will 

be overcome with time. 

The DMM and WM2 are two UM models with different structures for representing urban water 

system (refer Table 1) although they both are have been developed based on the same urban 

metabolism approach. While the DMM is a simple, user-friendly, flexible Excel-based model, 

with limited capabilities, WM2 is a more sophisticated, Window-based model with a user-

friendly GUI and a wider range of capabilities in different UWS components. However, neither 

of the two is a silver-bullet solution to all the data-management and decision-making challenges 

faced by utilities. Different utilities, at different points in time, for different purposes, would 

possibly find either of the two useful. What unites the two models however, is the basic premise 

on which they have been developed – the metabolism approach. Talking of usability in different 

contexts and for different purposes, it must be pointed out that for a general ‘systemic’ 

overview, on a year-to-year basis, which strategic managers could benefit from, and apply to 

decisions at the strategic level, the DMM, with its systemic outlook is suitable (recognition 

phase). If further decisions are to be taken, and utilities seek a tool to guide them onward, the 

WM2 is apt although WM2 is not the final step. More specifically, for further analysis of the 

strategic-level planning of the future UWS for new intervention options (feasibility study) in 

which the level of detail modelled may not be able to provide the detailed list of interventions 

to be implemented a WM2 model would be suitable. The WM2 model will definitely help 

identify the most promising transition path(s) into the longer-term future. The 'big-picture' type 

information generated in this way can then be used as an input to the next (tactical/detailed) 

level of planning (design phase). Hence, the next phase of WM2 modelling would need to use 

more sophisticated models of specifically-selected intervention options. Thus, one model 

complements the other.  

At this juncture, it would be apt to present an extract from the feedback solicited and elicited 

from personnel at Oslo VAV, about their experiences with using and opinions about the two 

models (bearing in mind that DMM was developed in close collaboration with Oslo VAV with 

developers located in the same city whereas WM2 was developed in the UK). Lars Hem and 

Jadranka Milina from Oslo VAV tell the authors (in an e-mail correspondence received by G 

Venkatesh, on the 6th of August 2014) that both the DMM and WM2 models were used to 

evaluate the sustainability for various alternative strategies for water supply in the city in the 

future. According to them, the development of a metabolism model for the entire urban 
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water/sanitation system using real data is a complex task involving efficient teamwork on the 

methodological approach, data acquisition and the verification of the model. Such models, 

invariably require considerable volumes of data; and the quality of the output depends on the 

quality of the input (which includes cost estimates for the alternative strategies one would like 

to test). In their opinion and rightly so, the use of cost estimates calculated from different 

sources or countries are likely to give erroneous results. They also stress on the fact that the 

quality of the output certainly would depend on trust, good communication and understanding 

between utilities and researchers/analysts. The fact that WM2 was developed in the UK, 

according to the developers of WM2, made communication a little difficult. Hem and Milina 

believe that the WM2 model requires more data than the DMM model; and the latter was found 

to be relatively simpler and more transparent (one of the points also brought out in Table 1).  

To be reiterated here is the fact that DMM and WM2 provide a host of indicators, some of 

which are valid and useful inputs to the DSS (Morley et al. 2014). Those which are beyond the 

scope of the indicator-list propounded by the International Water Association, may be availed 

of by utilities which would need to tailor-make the decision-making process to their own 

specific contexts, needs and goals. The DSS thus needs to avail of other sources of input for 

indicators and metrics which the DMM and WM2 cannot provide (Morley et al. 2015). In other 

words, the sources of data for the DSS would thus be varied, with DMM and WM2 being two 

of them. 

Conclusions 

In this paper, the need for adopting a holistic outlook when it comes to sustainability assessment 

was stressed upon. Metabolism-modelling was advocated as an efficient approach to include 

the physical, economic and environmental aspects of infrastructural sustainability; in this 

instance, urban water systems. Thereafter, the two metabolism models – Dynamic Metabolism 

Model and WaterMet2 – developed under the aegis of the EU-TRUST project, with references 

to earlier publications in which they have been described in greater detail, were compared to 

each other and the fundamental differences were highlighted. The water and sanitation utility 

in Oslo, Oslo VAV was presented as a case study for testing these two models; and interventions 

which Oslo VAV have in mind for the future to counter risks related to population growth, asset 

deterioration, climate change etc., were referred to, again with references to earlier works by 

the authors. 
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Based on the comparison of the two UM models, the following can be concluded: 

1. Both DMM and WaterMet2 models can be used for effective quantification of ‘the key 

aspects of technical, economic, and environmental UWS performance’. This can be 

especially useful when assessing the strategic level UWS performance assuming 

different long-term intervention strategies when addressing a range of future challenges. 

The models offer novel approaches on how to quantify and evaluate how alternative 

interventions in the UWS system over time may contribute to improve the system wide 

performance on key sustainability objectives and criteria. The novelty of these 

approaches is related to a user-friendly and flexible access to sets of predefined metrics 

and indicators that may be analysed at different resolution in time and space, aggregated 

for the overall UWS system or disaggregated for upstream or downstream subsystems. 

2. DMM and WaterMet2 models can be used as complementary models to support 

decision-making at different phases of intervention strategic planning. The comparison 

in this paper suggests that DMM, with a lesser level of input data required may be more 

suitable for the initial, scoping and baseline type analysis while the WaterMet2 model 

can be more useful for further, more detailed analysis requiring additional data input for 

improved spatial and temporal representation of an UWS and quantification of its 

performance based on the simulation of different intervention strategies. 

3. The outputs of both models are quantitative performance indicators which can be 

facilitated by availing of a suitable ‘integration tool’ (i.e. a decision support tool). 

Qualitative performance indicators representing other aspects of sustainability criteria 

need to be first quantified by other tools and then can be fed into the DSS.  
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 128 

Figure 1: TRUST project framework for sustainability assessment of urban water services 129 
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Figure 2: Urban water cycle system with metabolic flows 131 
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 139 

Figure 3: UWCS in Oslo – from surface water sources to the sink (Oslo fjord) 140 
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 150 

Figure 4: WM2 - Direct and indirect systemic absolute monthly energy consumption, in 151 

Intervention ‘d’  152 
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 160 

Figure 5: DMM – Annual, per-unit-water-demand, direct systemic energy consumption 161 

normalised with respect to year-2013, in Intervention ‘d’; note that value 1.00 is 100% of 162 

reference year value in 2013. 163 
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 172 

Figure 6: WM2 – Absolute daily GHG emissions in Oslo urban water system, under 173 

Intervention ‘d’. 174 
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 184 

Figure 7: DMM – Annual per-capita GHG emissions in Oslo urban water system, under 185 

Intervention ‘d’; note that the values were normalised with respect to year-2013 and thus 186 

value 1.00 is 100% of reference year value in 2013. 187 
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 197 

Figure 8: DMM – Annual per-capita capital costs, normalised with respect to year-2013, in 198 

Intervention ‘d’ (calculated as annual cumulative depreciation + annual interest payments); note 199 

that value 1.00 is 100% of reference year value in 2013. 200 
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