
Unified GUI Adaptation in
Dynamic Software Product Lines

Dean Matthew Kramer

A thesis submitted in partial
fulfilment of the requirements of the

University of West London
for the degree of Doctor of Philosophy

September 2014

2

To the memory of my mother,
Lynn Kramer, 1956-2015

Whose eternal smile and love will always be remembered

i

Acknowledgements

I have to confess, when I embarked on this PhD, I was only interested in what I felt
was the goal, and how best to get it. One of my supervisors always said “It’s not the
end that is important, it’s the journey”. At the time, I could not really understand how
the journey could be more important than the end. However, having completed this
PhD, I now understand that message. On this journey, as all great journeys, important
people always help shape it. For this, I feel deep gratitude is required.

Firstly, I wish to thank Dr. Samia Oussena, Prof. Peter Komisarczuk, and Prof. Tony
Clark. A special thanks to Samia, for all the opportunities, guidance, and continual
useful critiques of my research. Many thanks to Peter, your advice, suggestions and
positivity have always been important. A big thanks to Tony, for being my external
supervisor and your invaluable feedback and support.

I would like to thank all my fellow PhD students, particularly Dr. Anna Kocúrová and
Malte Reßin. You both were so important during the good times, and the bad. Thank
you for making this journey more fun, and in many cases, bearable. Thank you also
to Antonio Khierkhazadeh, Jiva Bagale, and Christian Sauer for the great research
discussions and advice.

I wish to express my thanks to all members of the School of Computing and Tech-
nology at the University of West London. I especially wish to give my deep thanks and
respect to the late Prof. Andy Smith for his support, and encouragement at the begin-
ning of my PhD. I also wish to give thanks to Prof. Thomas Roth-Berghofer for all the
valuable input, and idea inspiring research discussions. Thank you also to Dr. John
Moore for always being a positive role model during my time as a research assistant
and PhD student.

I would also like to thank all my non-academic friends back on Canvey Island.
Thank you for always being behind me through the years!

Finally, I would like to thank my family. First my parents, for your sacrifices and
selfless love. I know I have not always been an easy son. My brother, Grant, for
his constant words of encouragement, and for always being a great brother. To my
partner, Katarı́na, thank you for your love, support, and always being there for me.
Lastly, I would like to give a special thanks to my Mum for everything she ever did for
me. I really could not have asked for a better Mother. There is an old proverb that
says “God couldn’t be everywhere, so He created mothers”, which for me, could not
be more true.

ii

Abstract

In the modern world of mobile computing and ubiquitous technology, society is able
to interact with technology in new and fascinating ways. To help provide an improved
user experience, mobile software should be able to adapt itself to suit the user. By
monitoring context information based on the environment and user, the application
can better meet the dynamic requirements of the user. Similarly, it is noticeable that
programs can require different static changes to suit static requirements. This program
commonality and variability can benefit from the use of Software Product Line Engi-
neering, reusing artefacts over a set of similar programs, called a Software Product
Line (SPL). Historically, SPLs are limited to handling static compile time adaptations.
Dynamic Software Product Lines (DSPL) however, allow for the program configuration
to change at runtime, allow for compile time and runtime adaptation to be developed
in a single unified approach. While currently DSPLs provide methods for dealing with
program logic adaptations, variability in the Graphical User Interface (GUI) has largely
been neglected. Due to this, depending on the intended time to apply GUI adaptation,
different approaches are required. The main goal of this work is to extend a unified
representation of variability to the GUI, whereby GUI adaptation can be applied at
compile time and at runtime.

In this thesis, an approach to handling GUI adaptation within DSPLs, providing
a unified representation of GUI variability is presented. The approach is based on
Feature-Oriented Programming (FOP), enabling developers to implement GUI adapta-
tion along with program logic in feature modules. This approach is applied to Document-
Oriented GUIs, also known as GUI description languages. In addition to GUI unifica-
tion, we present an approach to unifying context and feature modelling, and handling
context dynamically at runtime, as features of the DSPL. This unification can allow for
more dynamic and self-aware context acquisition. To validate our approach, we im-
plemented tool support and middleware prototypes. These different artefacts are then
tested using a combination of scenarios and scalability tests. This combination first
helps demonstrate the versatility and its relevance of the different approach aspects.
It further brings insight into how the approach scales with DSPL size.

iii

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Challenges of Dynamic Software Product Lines 3
1.1.2 A Scenario Application . 4

1.2 Problem Statement . 5
1.2.1 User Interface Variability . 5
1.2.2 Other issues . 5
1.2.3 Research Aim and Objectives . 6
1.2.4 Research Questions . 7

1.3 Contribution . 8
1.3.1 Publications . 9

1.4 Research Methodology . 10
1.5 Thesis Roadmap . 10

1.5.1 Part I: State of the Art . 10
1.5.2 Part II: Contribution . 11
1.5.3 Part III: Validation . 11
1.5.4 Part IV: Conclusion . 11

I State of the Art 12

2 Background 13
2.1 Introduction . 13
2.2 Software Product Line Engineering . 13

2.2.1 Software Product Lines . 14
2.2.2 SPL Approaches . 15
2.2.3 SPL Processes . 15
2.2.4 Feature-Oriented Software Development 17
2.2.5 Implementing Product Lines . 21

2.3 Context-Aware Adaptive Applications . 25
2.3.1 Context . 25
2.3.2 Context Acquisition & Adaptation 26

2.4 Graphical User Interfaces . 27

iv

CONTENTS

2.4.1 Model-View-Controller . 27
2.4.2 View Implementation . 28
2.4.3 Dynamic GUIs . 31

2.5 Summary . 33

3 Dynamic SPLs and Adaptive GUIs 35
3.1 Introduction . 35
3.2 Dynamic Software Product Lines . 36

3.2.1 Configuring a DSPL . 36
3.2.2 Implementation Approaches . 37
3.2.3 Summary of DSPLs . 40

3.3 Graphical User Interface Adaptation . 41
3.3.1 Design Time Adaptation . 41
3.3.2 Dynamic Variability . 43
3.3.3 Mixed Variability . 46
3.3.4 Summary . 47

3.4 Context-Awareness . 49
3.4.1 General Purpose Approaches . 49
3.4.2 Context and DSPLs . 50
3.4.3 Summary . 52

3.5 Research Goals . 53
3.5.1 GUI Variability Unification . 53
3.5.2 Context as a Feature . 53

3.6 Summary . 54

II Contribution 56

4 GUI Variability 57
4.1 Introduction . 57
4.2 Types of Variability . 58

4.2.1 Presentation Units . 59
4.2.2 UI Elements . 60
4.2.3 Properties of UI Elements . 60
4.2.4 Dialogue of UI Elements . 61
4.2.5 Layout . 61

v

CONTENTS

4.2.6 Visual Appearance . 62
4.2.7 Orientation . 62
4.2.8 Behaviour & Interaction . 62
4.2.9 Compound Variability . 63

4.3 Static and Dynamic Adaptation . 63
4.3.1 Timing . 63
4.3.2 Adaptation Isolation . 64
4.3.3 GUI State . 64

4.4 Conclusions . 65
4.5 Summary . 65

5 Design Phase 66
5.1 Introduction . 66
5.2 Domain Engineering . 68

5.2.1 Feature Models . 68
5.2.2 Context Model . 69
5.2.3 Context Event Rules . 73
5.2.4 GUI Document Variability . 74
5.2.5 Source Code Variability . 77
5.2.6 GUI State Retention Templates 80

5.3 Application Engineering . 81
5.3.1 Configuration . 81
5.3.2 GUI Document Composition . 84
5.3.3 Code Generation and Transformation 87
5.3.4 Language Preprocessor/Compiler 89

5.4 Summary . 89

6 Runtime Phase 90
6.1 Introduction . 90
6.2 Application Architecture . 91
6.3 FeatureDroid . 92

6.3.1 Middleware Architecture . 93
6.3.2 Context-Acquisition Engine . 93
6.3.3 DSPL Management . 99

6.4 GUI Adaptation Manager . 102

vi

CONTENTS

6.4.1 Reconfiguration . 103
6.5 GUI Variant Manager . 107

6.5.1 Variant Retrieval . 108
6.6 Summary . 108

III Validation 109

7 Implementation 110
7.1 Introduction . 110
7.2 Design Phase Tools . 110

7.2.1 Feature Modelling . 111
7.2.2 GUI Document Composition . 112
7.2.3 Runtime Composition . 113
7.2.4 Source Generation & Transformation 116

7.3 FeatureDroid . 120
7.3.1 ContextEngine . 121
7.3.2 DSPL Management . 125
7.3.3 Deploying FeatureDroid . 126

7.4 Summary . 127

8 Evaluation 128
8.1 Introduction . 128
8.2 Scenario-Based Evaluation . 129

8.2.1 Scenario SPLs . 130
8.2.2 Variability Categories . 130
8.2.3 Summary of Scenarios . 140

8.3 Scalability Evaluation . 140
8.3.1 Results . 142

8.4 Discussion . 145
8.4.1 Unification . 145
8.4.2 Scalability . 146
8.4.3 Extensibility . 147
8.4.4 Previous Approaches . 148

8.5 Summary . 150

vii

CONTENTS

IV Conclusion 151

9 Conclusions and Future Work 152
9.1 Introduction . 152
9.2 Thesis Summary . 152
9.3 Thesis Contributions . 154
9.4 Future work . 156

Appendix A Implementation specific scripts 159

Appendix B Scenario Feature Models 161

Appendix C Scalability Data 163

Bibliography 166

viii

List of Figures

2.1 Example Feature Model . 19
2.2 Model-View-Controller . 27
2.3 A GUI tree from the Android Wordpress Application 30

4.1 Presentation Unit Variability . 59
4.2 UI Element Variability . 60
4.3 UI Element Property Variability . 60
4.4 Dialogue of UI Elements Variability . 61

5.1 Overview of the DSPL Approach . 67
5.2 Feature Model Meta Model . 68
5.3 An Example Context Model . 70
5.4 Feature Model Aggregation . 73
5.5 Product Derivation Phases . 81
5.6 Composition of Home screen . 85

6.1 Application Architectures . 91
6.2 FeatureDroid Architecture . 92
6.3 A Context Component . 94
6.4 Context Engine Manager . 95
6.5 Runtime Deployment of Context Components 97
6.6 The DSPL Manager . 99
6.7 A DSPL Application Instance . 100
6.8 Reconfiguration Process . 103
6.9 Map of features and main screen document variants 108

7.1 FeatureIDE Feature Attribute Extension 111
7.2 Source Generation & Transformations 114
7.3 Generated Support Classes . 119

8.1 Screenshots of the main screen . 132
8.2 Screenshots of the main screen . 136
8.3 Generation Time (log) . 143
8.4 Installation Size Inc. (log) . 144
8.5 .apk File Size Inc. (log) . 144

ix

LIST OF FIGURES

8.6 Adaptation Time . 145

x

List of Listings

2.1 Adding support for support for tweeting new events (SocialNetworks) . . 23
2.2 An Android GUI document . 31
5.1 An Android GUI Document refinement 75
5.2 Refinement Ordering Tags . 76
5.3 Initialisation Method Refinement . 78
5.4 An example onGUIConfiguration Method 79
5.5 Code Template for some Android Widgets 80
5.6 Code transformation of an Android method 88
6.1 Interface for reconfiguration call backs 102
7.1 FOP-COP Transformation . 115
7.2 Reconfigure method template . 117
7.3 GUI Document Variant Retrieval Method 120
7.4 ContextEngine Interfaces . 121
7.5 SendNotification and setupMonitor Implementations 123
7.6 DSPL Service Interface . 125
8.1 Activity main screen Document Refinement 133
8.2 MainScreen class Refinement . 134
8.3 GUI Document Refinements . 137
8.4 GUI Document Initialisation Refinement for ContentDetails.java class in

Feature NoUserReview . 138
8.5 Auxiliary files needed for scenario . 138
8.6 The “Swipe to Delete” Gesture . 139
8.7 GUI Refinement for Feature 1 . 142
A.1 Ant build.xml target alterations to create context deployable jar 159
B.1 ContentStore Context Feature Model XML 161

xi

List of Tables

3.1 Summary of GUI adaptation approaches 48

C.1 Scalability Data for <1KB and 2KB GUI Documents. 164
C.2 Scalability Data for 4KB and 8KB GUI Documents. 165

xii

1
Introduction

Contents
1.1 Motivation . 1

1.2 Problem Statement . 5

1.3 Contribution . 8

1.4 Research Methodology . 10

1.5 Thesis Roadmap . 10

1.1 Motivation

The high proliferation of mobile computing devices including smart phones and tablets
displays a shift in how people interact with computers, realising Weiser (1991) vision
of ubiquitous computing. This shift is allowing people to stay connected and active
without needing to be in a fixed location. These mobile computing devices are het-
erogeneous in different ways, including their physical hardware specifications, and the
software that executes on them.

Along with this high mobile device market penetration brings a boom in the number
of mobile applications being developed and sold to users. Applications developed for
modern smart devices are often highly responsive, and include a rich user interface
using different graphical user interface (GUI) design techniques, and physical gesture
support. These together help provide the user with a quicker, and more intuitive tool
for working, and leisure. Because these applications are consumed by people from
different countries, cultures, and possible handicaps, some form of personalisation
is required. This personalisation includes internationalisation, and localisation which

1

1.1. MOTIVATION

can require language changes, and other non trivial visual changes (Russo and Boor,
1993). Without useful and appealing GUIs, applications are likely to be purchased and
used less by users.

A benefit of mobile computing devices, and their applications includes the ability to
continue to be active in dynamic conditions, including one’s physical location. While
different hardware elements of the device can and do differ, it is very common for these
devices to include different sensors to monitor the changing conditions of the user and
device. These sensors include accelerometers, GPS, light sensors etc. Using these
sensors and different available internet resources can allow the mobile applications
to gain a far better understanding of the current situation of the user, and potential
intentions and requirements. Intelligent applications that take into account situation
of the user, defined as context, are known as context-aware applications (Daniele
et al., 2009). Examples of these applications include mobile tour guides (Abowd
et al., 1997), reminder systems (Dey and Abowd, 2000), and interruption manage-
ment systems (Avrahami and Hudson, 2006). Using context-awareness, application
GUIs can adapt to suit the new context the user or device is in. These adaptations can
include background logic in the application, which are not always explicitly noticeable
to the user. Other adaptations can include the GUI using adaptive GUIs.

Adaptive GUIs though have seen much research activity over the years, whereby
the GUI can be automatically adapted to suit changing runtime requirements, or to suit
a particular user context. This can assist the user, and improve application usability.
A problem however with adaptive GUI approaches is that they do not follow SPL ap-
proaches, and therefore adaptation can only be made at runtime. This consequently
means that depending on the time of adaptation, GUI variability will need to be de-
signed and implemented differently. Other issues includes the ability for tailoring these
adaptations for different users. Tailoring applications without systematic reuse leads
the developer towards developing different program assets more than once.

Developing software products is often expensive and time intensive. Due to highly
variable nature of mobile computing devices, and user requirements, developing and
maintaining products to accommodate this variability is a difficult task. By using Soft-
ware Product Line Engineering techniques, this variability can be handled in a far more
efficient and reusable way. Recent work has also highlighted how variability within the
GUI including its design and behaviour can be high (Pleuss et al., 2012b). These can
be to deal with static GUI requirements, including branding for enterprises, and can
be to handle different cultural requirements for example right-to-left and left-to-right

2

1.1. MOTIVATION

designs for different cultures and languages. Using SPLs to handle GUI variability
enables the developers achieve higher asset reuse.

As described earlier, while developers need to develop applications that can be
statically applied to different user groups and requirements, they also often need to
deal with changing dynamic conditions of the user and device. In essence, these two
types of variability carry out the same objective: to adapt the application in a particular
way to suit a new user requirement. Therefore, it is ideal for the developer if static and
dynamic adaptations need only one implementation, which can be statically or dynam-
ically applied. To fit this ideal, Dynamic Software Product Lines (DSPL) have been
proposed (Hallsteinsen et al., 2008). DSPLs can be driven both by manual product
reconfiguration, or also automatically using context-awareness (Parra et al., 2009).

1.1.1 Challenges of Dynamic Software Product Lines

The ability of a SPL to reconfigure at runtime is what defines it as a DSPL. As such,
program adaptations and logic can be applied at different points, depending on dy-
namic user requirements. Historically, DSPLs have concentrated on source code logic
adaptation, whereby different program logic in a given operation is executed based on
the current configuration. The Graphical User Interface (GUI) however, and what adap-
tations that maybe needed, have largely been neglected. For a developer to implement
a GUI that can be adapted statically, and dynamically, this can require the implemen-
tation of GUI variability using a combination of approaches. Approaches for handling
GUI variability in static SPLs have been proposed (Hauptmann, 2010), in addition
to a number of dynamic approaches (Criado et al., 2010; Sottet et al., 2008; Hanu-
mansetty, 2004). This presents a problem when certain variability might be required
statically and dynamically in different final products, as it requires the implementation
of adaptation twice. This can add considerable time and complexity to the product
development and maintenance, which a single unified approach can avoid.

Furthermore, in recent years, the use of Document-Oriented GUIs (DOGUI) (Draheim
et al., 2006; Kim and Lutteroth, 2009) has became an adopted and encouraged ap-
proach for GUI implementation in mainstream mobile platforms. These documents are
predominantly in markup languages. This is to help encourage the separation of GUI
design from rest of the program logic using design patterns including the Model-View-
Controller. While DOGUIs have became a popular approach to designing GUIs, there
is yet an approach that accommodates them in either a SPL, or an adaptive GUI. This

3

1.1. MOTIVATION

has the effect where the developer needs to program manually all GUI visual proper-
ties. This process is far longer to undertake as these GUIs can often not be designed
in a visual tool.

This research aims to investigate how to effectively handle static, and dynamic
changes to the UI in a single unified approach using DOGUIs. Next, to help the reader
and to illustrate the research contribution, we introduce a scenario application for use
in this thesis.

1.1.2 A Scenario Application

Let us consider a mobile content store application as a scenario application, like the
Google Play store. Alice is a 10 year old girl in the United Kingdom that takes her
tablet to school as an education tool. The application on her tablet is designed to suit
children in school by providing a more fun and appealing GUI. While at school, she
downloads different books to her tablet for her to read including children’s story books,
and educational books. When she gets home, she can practice her different acquired
skills and knowledge applications to test her, and help her improve. Alice also enjoys
watching videos from the content store. However, because her tablet lacks a large
amount of storage space, videos can only be streamed to her device when she has a
good data connection including wifi, 4G or 3G.

Tomás̆ is a 34 year old man from Slovakia that uses the content store on his mobile
phone to download games, applications and books. He would like to also download
and stream music and video, but currently this is not available to Slovakia due to li-
censing restrictions from content owners. However, when travelling to some countries
in the EU including France, and the United Kingdom he can buy and download this
content. As he has the adult version of the content store, the GUI of the application is
more suited to older audiences using a minimalistic design. As Tomás̆ has an expen-
sive new phone with a large amount of storage space, when he is in other countries,
he downloads this content so he can access it when he returns home.

As introduced with these different use scenarios, we can see that there are static,
and dynamic user requirements.

The remainder of this introduction chapter is structured as follows: Section 1.2
we motivate the problems for which this thesis tackles. In Section 1.3 we summarise
the main contributions of this dissertation. Next, Section 1.4 describes the research
methodology of this work. Finally, Section 1.5 presents the overall thesis structure.

4

1.2. PROBLEM STATEMENT

1.2 Problem Statement

Dynamic Software Product Lines have shown to the ability to provide a unified solution
to tackle the need for both compile-time and runtime adaptation. There are still existing
issues that remain regarding these types of systems including user interface variability,
and context design, and management.

1.2.1 User Interface Variability

The GUI just like the rest of the software system can exhibit variability (Pleuss et al.,
2012b). This means different features of the system may crosscut the user interface
in terms of its representation and/or functionality. When developing GUIs using docu-
ments or GUI description languages, there are multiple artefact types that can contain
this variability. Dealing with this variability at design time can be handled using current
SPL techniques and tools. However, for runtime adaptation, this has yet to be achieved
with SPLs, and is only tackled in using adaptive GUI approaches.

Adaptive GUIs though, are not conventionally developed using SPL techniques
and often lack the ability to apply the adaptation statically. As a consequence, the
developer is then required to use different approaches for developing GUI variability,
be it static, or dynamic. While the adaptation is being applied at different times, they
both have the same objective, which is to modify the GUI by adding, removing, or
altering particular aspects of the GUI.

Because this adaptation focusses on the same objective, there should be a single
unified development of this adaptation, whereby the developer need not use different
techniques to achieve adaptation. By enabling unified development of GUI adapta-
tions, the developer can choose after implementation where that adaptation should
be applied, statically, or dynamically at runtime. This added flexibility can then pro-
vide higher feature cohesion, as adaptation binding times can be applied both to GUI
adaptation and logic simultaneously.

1.2.2 Other issues

Context Design and Management

When modelling variability in a SPL, feature modelling is a very common notation. With
context modelling, many different notations have been proposed in the past. Histori-

5

1.2. PROBLEM STATEMENT

cally, DSPL methodologies have predominately used different notations for modelling
context and the features of the system. This requires two different notions to be used,
and requires a method of bridging context with the system it affects. By modelling both
context and the features of the system using a single notation, the developer can then
express the context-aware system in a unified model.

Not only should context be modelled in a unified way, it should be handled this
way also. Context acquisition that is separated from the system is often static, and is
therefore not context-aware. Depending on a given context, it might be applicable for
different contexts to be acquired, or not. By considering context as a feature of the
system, its acquisition can then be treated like other software features in the system,
enabling static, and dynamic binding.

1.2.3 Research Aim and Objectives

This research aims to bring GUI variability realisation to DSPLs, targeting the chal-
lenges discussed in the problem statement. By bringing GUI variability to DSPLs, GUI
adaptation should be able to be viewed and realised in a single unified way. This adap-
tation then should be able to be used either at compile time, or at runtime. We also
look at how context, which is often used in DSPLs, can be reused over many DSPLs at
runtime, allowing for context sharing over applications. With this research aim in mind,
our main research objectives can be described as:

1. To investigate and extend current source code refinement approaches to include
GUI representation in GUI documents.

2. To investigate and design a runtime mechanism to be capable of runtime adap-
tation of the GUI using GUI documents.

3. To extend current variability models to include context information, and allowing
for dynamic context acquisition.

4. To implement development tool support for variability modelling, and product
derivation.

5. To implement a centralised DSPL management system on a mobile platform.

6

1.2. PROBLEM STATEMENT

1.2.4 Research Questions

Based on the aim of this research, this thesis attempts to answer the following research
questions:

Reseach Question

How can compile time and runtime GUI adaptation be unified within a
DSPL?

By unifying compile-time and runtime GUI adaptation, the developer can then im-
plement the given adaptation once. Following this, the decision on where to apply
this adaptation can be chosen, and changed, without the need for reimplementation.
Chapter 4 provides a high level view of adaptation, with different types of adaptation.
In Chapter 5, a description to how GUI adaptation is defined and implemented, with its
runtime behaviour being described in Chapter 6.
Subquestions

• How can GUI adaptation be applied dynamically at runtime?

After GUI adaptation has been implemented, support is needed to allow for the
adaptation to be applied on reconfiguration. In Chapter 6, this question is ad-
dressed, showing how GUI adaptation can be applied using variants produced in
Chapter 5.

• How can context be modelled, and treated by the system as a feature of the
DSPL?

Context modelling is carried out in feature modelling, described in Chapter 5.
This enables the developer to use a single modelling notation for the system.
Runtime context handling as a feature is then addressed in Chapter 6, enabling
contexts to become context aware.

• How can contexts be reused by multiple running DSPL applications? Con-
text reuse is described in Chapter 6. Contexts can be used both by multiple
DSPLs and other applications on the system. A description of how at runtime
new contexts can be deployed to the context management system, and then be
used by other applications.

7

1.3. CONTRIBUTION

1.3 Contribution

By answering the stated research questions, this thesis makes a number of contribu-
tions including:

• An extended modelling approach to handle system variability and context:
When designing a DSPL, both the system and context that can affect the con-
figuration need to be model. To avoid supplementary models, we use extended
feature models, allowing the developer to design their system and context model
within a single notation.

• A Feature-Oriented approach to GUI adaptation: We propose an approach
for implementing GUIs in Dynamic Software Product Lines. GUI variability is im-
plemented within refinements, following Feature-Oriented Programming (FOP).
Within each refinement, we propose a hooking method to assist in refinement
placement. Compile-time composition is handled using superimposition, in a
stepwise fashion. Along side GUI document refinements, we describe an ap-
proach that enables other source code GUI adaptations that require execution
on reconfiguration, using FOP.

• A mechanism for runtime GUI adaptation: After the developer implements
GUI adaptation, this can be applied dynamically at runtime. To facilitate visible
runtime GUI adaptation, a mechanism is proposed. This mechanism handles
automatic adaptation of the GUI, updating only widgets requiring adaptation. It
also handles widget state retention to ensure no important state data is lost in
the adaptation. This adaptation can be applied at two stages in a GUIs lifecycle,
allowing for greater control of when an adaptation is suitable. The architecture,
components, and algorithms needed to apply adaptation from GUI documents is
defined in this thesis.

• A centralised DSPL management system: To assist in managing each of the
DSPLs that might be running on a mobile device, a management system is pro-
posed. This management system can manage multiple running DSPLs simulta-
neously, and allows the reuse of runtime system components over multiple ap-
plications. Along with this system, we include a context management system for
handling context acquisition and sharing. Using the context model, contexts can
become active or inactive dynamically at runtime, just like any another feature.

8

1.3. CONTRIBUTION

• Tool support and developed prototypes: In the process of validating the con-
tribution of this dissertation, several implementation deliverables have been cre-
ated. First, we provide tool support as an extension to an open source SPL tool
for context modelling, and context rule formulation. This tool support also sup-
ports the auto generation of components needed for runtime GUI adaptation, and
software composition for the DSPL. Second, a complete software middleware for
managing DSPL application configurations was developed for the Android mobile
platform. This middleware includes a context management system which allows
for context acquisition, and reconfiguration based on context.

The designed technology and methods intends to extend DSPLs to not just pro-
gram logic, but to GUI representation.

1.3.1 Publications

During the development of this thesis, the author has published in international confer-
ences and workshops, numbered in chronological order:

1. Kramer D., Oussena, S., Komisarczuk, P., Clark, T. (2013) Document-Oriented
GUIs in Dynamic Software Product Lines. In the Proceedings of the 12th Inter-
national Conference on Generative Programming: Concepts and Experiences.

2. Kramer D., Sauer, C., Roth-Berghofer, T. (2013) Towards Explanation Generation
using Feature Models in Software Product Lines. In the Proceedings of the 9th
Workshop on Knowledge Engineering and Software Engineering.

3. Kramer, D., Oussena, S., Clark, T., Komisarczuk, P. (2013) Graphical User Inter-
faces in Dynamic Software Product Lines. In the Proceedings of the 4th Interna-
tional Workshop on Product Line Approaches in Software Engineering.

4. Sauer, C., Kocurova, A., Kramer, D., Roth-Berghofer, T. (2012) Using canned
explanations within a mobile context engine. In the Proceedings of the 7th Work-
shop on Explanation-aware Computing.

5. Kramer, D., Kocurova, A., Oussena, S., Clark, T., Komisarczuk, P. (2011) An
extensible, self contained, layered approach to context acquisition. In the Pro-
ceedings of the 3rd International Workshop on Middleware for Pervasive Mobile
and Embedded Computing.

9

1.4. RESEARCH METHODOLOGY

1.4 Research Methodology

Design Research (DR) and Software Engineering Research (SER) function differ-
ently to traditional scientific research, by which traditional science studies existing
phenomena, while DR and SER study how to do things and how to create things
(Marcos, 2005). This research can be broken down into a number of phases:

• Within phase 1, exploration of the research area is carried out, with an analysis
of the current methods for creating DSPLs for mobile systems. This primarily
conducted via literature survey, and by experimentation with current methods
in the new setting. This phase should end with a final research definition with
questions and boundaries being set.

• In phase 2, using a iterative process of implementation and testing, investigation
into how GUI elements of a program can be handled within a DSPL are carried,
along with how context can be more easily modelled, and used within a DSPL.
This research can be viewed as observing a constructivist view, by which that
truth and meaning is constructed from our engagement with the world, instead
of it being objectively discovered (Feast and Melles, 2010).

• Finally, in phase 3, an evaluation of the outputs from phase 2 is carried out using
a combination of scenarios, and scalability tests. These scalability tests will be
used to judge how applicable our approach can be for different SPL sizes.

1.5 Thesis Roadmap

In this thesis, there are four main components, State of the Art, Contribution, Validation
and Conclusions. These components are broken down into the following chapters:

1.5.1 Part I: State of the Art

• Chapter 2: Background. This chapter introduces Software Product Lines, Context-
Awareness, and Graphical User Interface Engineering. In this chapter, we at-
tempt to give a foundation of understanding to some of the concepts and tech-
nologies used throughout this piece of work.

10

1.5. THESIS ROADMAP

• Chapter 3: Dynamic SPLs and Adaptive GUIs. This chapter surveys, and
discusses the state of the art and related works of this dissertation. We introduce
Dynamic Software Products as an approach for developing adaptive software,
and their properties. Next we discuss research related to context-awareness
and its use in DSPLs, and lastly we consider adaptive GUIs, and how GUIs
are handled in SPLs. Finally we set out a concrete set of objectives for this
dissertation, based on gaps in knowledge found in the reviewed work.

1.5.2 Part II: Contribution

• Chapter 4: GUI Variability. Within this chapter, we define different types of
variability that can exist within the system. Following this an abstract specification
of the system is proposed, along with requirements for runtime adaptation.

• Chapter 5: Design Phase. In this chapter we define the design time stages of
the DSPL development, including variability design, implementation, and deriva-
tion.

• Chapter 6: Runtime Phase. This chapter presents the runtime architecture of
the DSPL applications. We present how context is acquired and used for system
reconfiguration. Following this, the process of GUI reconfiguration is presented.

1.5.3 Part III: Validation

• Chapter 7: Implementation. This chapter presents implementation details of
the tool support and middleware software prototype implemented for the Android
platform.

• Chapter 8: Evaluation. In this chapter, we evaluate the proposed approach
using the implementation presented before using scenario SPLs and scalability
tests.

1.5.4 Part IV: Conclusion

• Chapter 9: Conclusions and Future Work. This chapter presents the final
conclusions of the work featured in this thesis. We lastly present motivated work
that should be further researched within the field.

11

Part I

State of the Art

12

2
Background

Contents
2.1 Introduction . 13

2.2 Software Product Line Engineering 13

2.3 Context-Aware Adaptive Applications 25

2.4 Graphical User Interfaces . 27

2.5 Summary . 33

2.1 Introduction

In this chapter we introduce several aspects related to the work within this dissertation.
The main goal of this chapter is to introduce a base of knowledge, that can be used
throughout this thesis.

The structure of the chapter is as follows: Section 2.2 introduces Software Product
Line Engineering. In Section 2.3, we introduce context-aware and adaptive applica-
tions. Finally, in Section 2.4, we introduce engineering concepts and methods used for
implementing Graphical User Interfaces in applications. Finally, we finish the chapter
summarising the different presented approaches.

2.2 Software Product Line Engineering

Software engineering traditionally involves developing singular and individual software
systems. In practice though, there are often needs for variation in software to help

13

2.2. SOFTWARE PRODUCT LINE ENGINEERING

suit different requirements when developing for different customers. Because of this
variability, it has been viewed that it is beneficial to study common properties of pro-
grams (Parnas, 1976). Product lines in other industries for example car manufacturing
help give greater choice to the customer, where different requirements of the product
e.g. colour, number of doors etc can be handled without a car needing to be designed
from scratch. Software Product Lines aim at achieving this level of customisation in
software systems.

2.2.1 Software Product Lines

Software product lines (SPL) focus on the development of similar software systems us-
ing common artefacts. In this thesis, we use Clements and Northrop (2001)’s definition
of a Software Product Line as:

a set of software-intensive systems sharing a common, managed set
of features that satisfy the specific needs of a particular market segment
or mission and that are developed from a common set of core assets in a
prescribed way.

Using SPLs can bring multiple benefits including cost reduction and short time to
market, when carried out over multiple products (Pohl et al., 2005). Cost reduction is
achieve through the systematic reuse of common artefacts within each product. After
each SPL artefact has been produced, they can be reused in a number of other prod-
ucts. When considering each individual application developed traditionally requires
every artefact to be developed from scratch, and each artefact has an attached cost
to its development, being able to reuse this can gradually lower the total cost of de-
velopment of a product. Time to market is also reduced because of the reduction of
implementation effort required to develop a new product variant because of artefact
reuse. For these benefits theough using an SPL, a certain number of products need to
be produced, because up front costs can be seen to be higher than individual devel-
opment. Empirical studies have shown cost break even point, the point where using
an SPL costs no more than individual development, is usually around three systems
(Weiss and Lai, 1999). This though does depend on many factors of the organisation
and products involved.

Success stories of using SPLs instead of traditional software development have
been documented (Clements and Northrop, 2001; Pohl et al., 2005). Examples of

14

2.2. SOFTWARE PRODUCT LINE ENGINEERING

improvements caused by the use of SPLs include Nokia being able to produce 30
different phones per year, instead of 4; Motorola realising a productivity improvement of
400 %; and HP reporting a factor of seven time to market, and factor of six productivity
increase (Bass et al., 2003).

2.2.2 SPL Approaches

There are several approaches for developing a software product line including (Krueger,
2002):

• Proactive SPL development involves the analysis, design, and implementation
of the full SPL at once. All foreseeable features requirements are analysed,
designed, and implemented. This approach involves heavy initial investment
and time, which can prove difficult by small for medium sized companies (Alves
et al., 2005).

• Reactive SPL development involves the incremental growth of the product line,
in light of new requirements and product demands. Features are designed, and
implemented when needed. This approach can offer a faster and more agile
approach to an SPL. Also, because of its ability to implement features when
needed, this can enable much lower initial costs, as discussed easier.

• Extractive SPL development involves the extractions of commonality and vari-
ability within existing software and either develop it into an SPL, or adding to an
existing product line. With this approach, existing legacy systems can be decom-
posed into more reusable assets, which may improve overall system extensibility
and maintenance.

While these approaches suit different development circumstances, they can be
combined. When considering common software evolution, it may be popular to use
a proactive/extractive approach initially, but then move to a reactive approach after-
wards.

2.2.3 SPL Processes

Software Product Lines aim to produce mainly similar products using common assets.
As such, this means that the development methodology while having some similarities
to single product development, still will have differences. While there are some minor

15

2.2. SOFTWARE PRODUCT LINE ENGINEERING

discrepancies in different proposed methodologies, there is a common understanding
of two engineering processes involved in SPLs, domain and application engineering
(Clements and Northrop, 2001; Czarnecki and Eisenecker, 2000).

Domain Engineering

Domain engineering specifically is aimed at the design, realisation, and testing of a
re-usable platform. This process is broken up in three distinct parts; analysis, design,
and implementation (Czarnecki and Eisenecker, 2000).

Domain Analysis This process aims to develop and document the domain re-
quirements. This process includes the analysis of domain commonality and vari-
ability, that is, what will be reused across multiple applications, and what is likely
to differ in those applications. Different modelling techniques for expressing this
commonality and variability of an application domain include the feature-oriented
domain analysis (Kang et al., 1990) and variability models (Pohl et al., 2006; Pohl
et al., 2005). Using feature-oriented domain analysis, the domain is modelled in
terms of system features.

Domain Design. The aim of this process is to develop the domain/reference
architecture.

Domain Implementation Within this process, the reusable assets are imple-
mented by the SPL engineer. Many different implementation techniques have
been used to implement the SPL variability including feature-oriented program-
ming, aspect-oriented programming, components, and service-oriented architec-
ture.

Application Engineering

As stated earlier, the aim of application engineering is to derive a distinct product from
the platform developed in the domain engineering. Just like domain engineering, this
process features three distinct parts; analysis, design and implementation.

Application Analysis This process aims to develop the requirement documents
for a given application. Within this process, as much of the requirements from
the domain requirements engineering are reused.

16

2.2. SOFTWARE PRODUCT LINE ENGINEERING

Application Design. In this process, the domain/reference architecture de-
signed in the domain engineering phase is specialised. The application archi-
tecture is altered according to the application requirements.

Application Implementation. Application implementation is the process of de-
riving the reusable software artefacts developed in the domain realisation pro-
cess. A final product is then generated or composed of these software artefacts.
Finally, any specific product changes that maybe required are handled here, for
example, final customisations of the GUI (Pleuss et al., 2012a).

Commonality and Variability

SPLs are made up of product commonality and variability. Commonality of the product
has been described as features that are found in each application from the SPL. Vari-
ability on the other hand is what makes each product unique in that variable features
are not found in every application. Variability has been shown to exist in time, and in
space. (Pohl et al., 2005) has defined variability in time as “the existence of difference
versions of an artefact that are valid at different times” and variability in space as “the
existence of an artefact in different shapes at the same time”.

2.2.4 Feature-Oriented Software Development

Within this dissertation, we concentrate on the use of Feature-Oriented Software De-
velopment (FOSD) for developing SPLs (Apel and Kästner, 2009). FOSD is a set of
different modelling tools, language techniques, centred around the concept of a Fea-
ture.

Feature

As FOSD aims at modularising and viewing a product as a collection of features, it is
useful for us to have a clear understanding of what a feature actually is. In the past,
several definitions of a feature have been proposed, and have been surveyed by (Apel
and Kästner, 2009) (ordered from abstract to technical):

• “a prominent or distinctive user-visible aspect, quality, or characteristic of a soft-
ware system or systems”. (Kang et al., 1990)

17

2.2. SOFTWARE PRODUCT LINE ENGINEERING

• “a distinctively identifiable functional abstraction that must be implemented, tested,
delivered, and maintained” (Kang et al., 1998)

• “a distinguishable characteristic of a concept (e.g., system, component, and so
on) that is relevant to some stakeholder of the concept” (Czarnecki and Eise-
necker, 2000)

• “a logical unit of behaviour specified by a set of functional and non-functional
requirements” (Bosch, 2000)

• “a product characteristic from user or customer views, which essentially consists
of a cohesive set of individual requirements” (Chen et al., 2005)

• “a product characteristic that is used in distinguishing programs within a family of
related programs” (Batory et al., 2004)

• “a triplet, f = (R, W, S), where R represents the requirements the feature satisfies,
W the assumptions the feature takes about its environment and S its specifica-
tion” (Classen et al., 2008)

• “an optional or incremental unit of functionality” (Zave, 2003)

• “an increment of program functionality” (Batory, 2005)

• “a structure that extends and modifies the structure of a given program in order
to satisfy a stakeholder’s requirement, to implement and encapsulate a design
decision, and to offer a configuration option” (Apel et al., 2008)

These definitions of feature though do not help explain exactly what a feature can
be. Features can be a range of different items that are important to that product.
Research into SPLs has predominately centred around features that contain source
code, but features can encapsulate many more types of artefacts. Other types of
considered artefacts include documentation (Rabiser et al., 2010). In this thesis, we
mainly consider features as used for modularising software, and context. With software
related features, Myers (1988) categorised features relating to capability into three
areas:

• functional. (features that provide a service).

• operational. (features related to application interaction).

• presentation. (features related to how information is presented).

18

2.2. SOFTWARE PRODUCT LINE ENGINEERING

Figure 2.1: Example Feature Model

Feature Models

While there have been different modelling notations to model variability e.g. Orthog-
onal Variability Models (Pohl et al., 2006; Pohl et al., 2005) and Covamof (Sinnema
et al., 2004), feature models have become the de facto technique, with an example in
Figure 2.1.

The origins of the feature model can be traced back to Kang et al. (1990), who
proposed the Feature-Oriented Domain Analysis method (FODA). FODA included the
modelling concepts of aggregation/decomposition, generalisation/specialisation, and
parameterisation. Feature models are modelled using hierarchical trees of features,
with each node representing commonality and variability of its parent node.

Feature Relationships

As said before, feature models comprise of features and the relationships between
them. There are different relationships that can be applied to features, including:

• Mandatory. A child feature is defined as mandatory when it is included in all
products where its parent is also contained.

• Optional. A child feature defined as optional when it optionally can be included
or excluded when its parent is contained in a product.

• Or. A set of feature children exhibit an or-relationship when at least one or more
children are selected along with the parent of that set.

• Alternative (XOR). A set of feature children exhibit an xor-relationship when only
a single child can be selected when the parent is included in that product.

19

2.2. SOFTWARE PRODUCT LINE ENGINEERING

Relationships among features are not only expressed within the tree, but also by
cross-tree constraints, written commonly using propositional formula. These cross-
tree constraints typically apply feature inclusion or exclusion statements.

Propositional Formula

Feature models can be encoded in propositional logic, which then can be reasoned
over for configurations (Batory, 2005). Propositional logic can be viewed as a logical
representation of the feature model. By the use of logical connectives including ∨,
∧, ¬, ⇒, and ⇔ with primitive variables (Boolean values), a formula can be deter-
mined to be either satisfiable, or non-satisfiable. Formula satisfiability is determined
by whether the formula evaluates to true, given a set of variable assignments. Evalu-
ating these formulas is usually carried out using SAT Solvers, BDD Solvers, Alloy, or
SMV (Benavides et al., 2010). To use SAT solvers, the propositional formula has to
be encoded into Conjunctive Normal Form (CNF). To evaluate a feature model then
requires being mapped to propositional formula, normally using these following steps
(Benavides et al., 2010; Czarnecki and Wasowski, 2007; Batory, 2005):

• Firstly, the feature model encoding is carried out by first assigning a variable to
each feature.

• Secondly, each feature relationship within the feature model is encoded in to
smaller formulas.

• Finally additional feature constraints added to the feature model are added to the
formula.

Feature Model Extensions

Since the inception of feature models, a number of extensions have been proposed.
First type of extensions includes the ability to add cardinalities to features (Czarnecki
et al., 2005a; Czarnecki et al., 2004). In cardinality based feature models, cardinalities,
similar to multiplicities in UML, can be added to features and groups. A cardinality
attached to a feature states the number of instances that feature can be presented in
a product, by stating the lower and upper bounds of a range. Group cardinalities on
the other hand are used to denote the number of subfeatures that can be present in a
product.

20

2.2. SOFTWARE PRODUCT LINE ENGINEERING

Other extensions to feature models include feature types. It was noted by Thum
et al. (2011) that some features are not always used to distinguish program variations
but used more to structure the feature model. It was proposed that features can be
either:

• Abstract. A feature contains no implementation artefact, and is used primarily
to help structure the feature model.

• Concrete. A feature that has at least one concrete implementation associated
with it.

Binding attributes to features has also been a proposed extension (Benavides et al.,
2010). Feature Models including attributes have been called extended feature model.
Extended feature models give the ability to tag extra information to features. Feature
attributes normally contain a name, a domain, and a value. This modelling extension
is used later in this thesis for use with our context models.

2.2.5 Implementing Product Lines

Different software development technologies and paradigms have been used to en-
gineer SPLs including Aspect-Oriented Software development and Service-Oriented
Architecture. FOSD extends FODA by providing technologies to enable development
and implementation of software systems in a feature oriented fashion.

Separation of Concerns

Separation of concerns is not a concept just regarding SPLs but a fundamental prin-
ciple of software engineering (Apel, 2007). While a software concern can be seen as
any matter of interest in a software system (Sutton and Rouvellou, 2004), because
this variation in behaviour can affect different parts of the software, it is considered
a crosscutting concern. Crosscutting concerns are non modular concerns, that are
found scattered across multiple pieces of software modules (Bruntink et al., 2007). A
concern can be any part of the system and be realised as a feature in SPLs, aspects
in AOP, or class in OOP. It has been recognised that concerns cannot always be sep-
arated at the same time, known as the tyranny of the dominant decomposition (Tarr
et al., 1999). Concerns that can not be modularised separately normally equate to
scattered, tangled, or replicated in code (Apel, 2007). Code scattering occurs when

21

2.2. SOFTWARE PRODUCT LINE ENGINEERING

concerns can be found to be implemented or scattered across multiple source code
modules, for example classes in OOP. Code that is tangled can be found when more
than a single concern are implemented together within a single source code module. In
SPLs, features can be seen as different concerns of the system that can be separated.

The are two primary approaches to dealing with separation of concerns in source
code including annotations, and composition.

Annotative and Compositional Approaches

Annotative and compositional approaches provide two different solutions to separat-
ing concerns. Annotative approaches focus around the use of virtual separation of
concerns (Kästner and Apel, 2009). Examples of tools that support annotative ap-
proaches include the C preprocessor, and CIDE tool (Feigenspan et al., 2010). Using
these tools, the developer can annotate parts of the source code that are part of each
feature in the SPL. This approach can allow very fine grained adaptation including ex-
tra statements to methods, and parameter alterations in method declarations. Product
derivation is carried out by negative variability. Using negative variability, parts of the
system are removed based on which features are present in the product configuration
(Voelter and Groher, 2007). This causes code to be removed from the final variant of
the source code if its associated feature is not included in a product.

Compositional approaches on the other hand focus around physical separation of
concerns. By physically separating code into multiple modules, these can be com-
posed into different variants at configuration (Kästner et al., 2009). This approach
normally makes use of positive variability because elements that are variable to the
product are added to the base product (Voelter and Groher, 2007). Many languages
supporting software composition exist include Aspect-Oriented Programming, Delta-
Oriented Programming, and Feature-Oriented Programming. In this thesis, we con-
centrate on the use of Feature-Oriented Programming in implementing SPLs.

Feature-Oriented Programming

Feature-oriented programming (FOP) is a programming paradigm that modularises
software according to features (Batory et al., 2004). Two prominent FOP languages
include Jak for Java (Batory et al., 2004), and FeatureC++ for C++(Apel et al., 2005).
In FOP, classes are implemented as standard classes within the base language. To
implement a change to already defined classes within a feature, refinements are used.

22

2.2. SOFTWARE PRODUCT LINE ENGINEERING

Refinements contain the adaptation for a particular class. A refinement is declared
using the keyword refines in the refinement class declaration. Within these refine-
ments, extra class members, methods, and method extension can be added. Method
extensions function by overriding the method being extended, adding extra instruc-
tions, and using the keyword Super to call the overridden method. The position of the
Super keyword can then dictate when in execution should the extensions take place,
in regards to the overridden method. In Listing 2.1, we depict an example from a
program for events management. In lines 2-15, we declare the base version of the
class ManageEvents, and a refinement for the SocialNetworks feature in lines 18-30. In
the refinement, functionality related to sending twitter status updates for new events is
added.

Listing 2.1: Adding support for support for tweeting new events (SocialNetworks)
1 //Base implementation

2 public class ManageEvents extends Activity {

3 public void onCreate(Bundle savedInstanceState) {

4 super.onCreate(savedInstanceState);

5 setContentView(R.layout.manageeventlayout);

6 ...

7 }

8 private void addNewEvent(Event e) {

9 ...

10 events.add(e);

11 db.insertEvent(e);

12 updateMenuList();

13 ...

14 }

15 }

16
17 //Refinement for Feature SocialNetworks

18 refines class ManageEvents {

19 TwitterClient mTwitter;

20 public void onCreate(Bundle savedInstanceState) {

21 Super.onCreate(savedInstanceState);

22 mTwitter = new TwitterClient(getApplicationContext());

23 }

24 public void addNewEvent(Event e) {

25 Super.addNewEvent(e);

26 String t = getResources().getString(R.string.tweet_new_event) + e.name;

27 if (mTwitter.isLoggedIn())

28 new SendTweetTask().execute(t);

29 }

30 }

Two common techniques for software composition in FOP include jampack, and
mixin:

23

2.2. SOFTWARE PRODUCT LINE ENGINEERING

• Jampack based composition involves composing classes into a single com-
pound class of the base class and each of it refinements. Each of these com-
pound classes then include a union of all member variables, and one method
for each method refinement chained together. This method has advantages over
mixin based composition through its ability to create smaller and more scalable
codebase (Rosenmuller, 2011).

• Mixin based composition involves recreating an inheritance chain from classes
in each feature. Using this approach, each refinement is added as an abstract
class, with the bottom declaration a public class. Each of these refinements then
extends the previous refinement class in the inheritance chain. This method has
advantages over jampack based composition through the ability to keep feature
boundaries and ease of refactoring changes in generated code back into feature
increments (Batory et al., 2004).

In FOP, modules play a role in facilitating separation of concerns, known as feature
modules. Feature modules encapsulate program refinements for that specific feature,
which increments program functionality (Batory et al., 2004). In terms of their use, they
are used via folders within an operating system to separate source code of different
features. Feature modules are applied to a base program by a program generator,
which then uses the modified program as the input for the following composition. This
is commonly carried out using superimposition (Apel et al., 2009; Batory et al., 2004;
Apel, Kastner and Lengauer, 2009)

Superimposition involves a given artefact being superimposed by their refinements,
contained within feature modules. Apel and Lengauer (2008) proposed that to super-
impose one program structure over another, each feature module is broken down into
a tree, called a Feature Structure (FST) model. Within a FST model, different FST
nodes represent different elements of a given artefact, for example package imports,
classes, and methods. There are specifically two types of nodes, nonterminal, the
inner nodes of the tree with recursively further nodes and terminal, the leaves in the
tree. During composition, the base program and refinement FST trees are composed
by recursively copying FSTNodes from the refinement tree that do not exist in the base
tree. When composing two terminal nodes of the same identifier, different composition
rules are needed to correct compose the two nodes. An example rule includes how to
compose the bodies of two Java class methods.

24

2.3. CONTEXT-AWARE ADAPTIVE APPLICATIONS

This general purpose superimposition technique was used in the composition tool
FeatureHouse (Apel, Kastner and Lengauer, 2009). Different languages can added
to FeatureHouse by the use of a language BNF, and specific annotations marking
different elements in the grammar as Feature terminals and non terminals. This al-
lows for different levels of refinement granularity. FeatureHouse also has an altered
syntax used for implementing class refinements. Firstly, unlike other FOP languages,
the refines keyword is not used. Depending on the order of composition, when the
classes are read, if a class declaration for the same type already exists, it is then as-
sumed to be a refinement of the previously read class declaration. This then means
the refines keyword is not required. Secondly, instead of the keyword Super for call-
ing the overridden method in other FOP languages, FeatureHouse uses the keyword
original.

2.3 Context-Aware Adaptive Applications

Software is being used in increasingly mobile environments. Because of this, condi-
tions of the user, device and other factors are often changing. This change in condi-
tions can cause problems with traditional static applications. For example, how does
an application requiring data from an internet source deal with connection loss? These
events can be handled by context-aware adaptive applications. Context-aware appli-
cations have been described by Daniele et al. (2009) as:

...intelligent applications that can monitor the users context and, in case
of changes in this context, consequently adapt their behaviour in order to
satisfy the users current needs or anticipate the users intentions.

2.3.1 Context

Context-aware applications are driven by context, whereby, given a particular context,
the application adapts itself. Because of this, it is useful for us to define and discuss
what context actually is. This thesis will use the definition of context as given by Dey
(2001):

Context is any information that can be used to characterise the situation of
an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
the application themselves

25

2.3. CONTEXT-AWARE ADAPTIVE APPLICATIONS

Context data can be acquired from a range of sources. Because of this, contexts
sources can be broadly categorised as one of the following:

• User. These types of contexts represent different characteristics of users. This
includes the person using the application directly, or could refer to other people
of interest. Examples of user contexts can include user preferences, their current
activity, if they are available etc.

• Device. This context category refers to the current environment in which the ap-
plication is being executed. In our case, we refer to mobile devices. Examples
of contexts can include changing values like battery level, network connectivity,
storage space. We can also include more static characteristics of the system in-
cluding what hardware exists, or what software is on the device e.g. the operating
system version.

• Environmental. These contexts refer to external conditions of the device. As
smart devices are typically equipped with different sensors like GPS/GLONASS,
digital compass, and gyroscopes, different characteristics of the external envi-
ronment can be determined. This type of information can be used for retrieving
location based information for example.

This data is can be heterogenous in nature, which requires abstracting to more
meaningful information. In this dissertation we consider how context is used to drive
dynamic feature binding, whereby different features are only needed when a particular
context is active.

2.3.2 Context Acquisition & Adaptation

The first part in context-ware adaptive applications includes the acquisition of context.
Context acquisition can be described as the process of collecting data from various
sources, and then interfering the context in which a particular entity is in. This data
can be either purely in a raw format from electronic sensors e.g. GPS, accelerometers
etc, or can also be inferred by the reasoning on a collection of contexts together.

The second part to context-aware adaptive applications is the adaptation. The soft-
ware adaptation can be described as the change that the application makes when a
particular context has been found to exist. McKinley et al. (2004) described two main
types of software adaptation, Parameter and Compositional. Parameter adaptation re-
lies on the modification of program variables. Compositional adaptation in comparison

26

2.4. GRAPHICAL USER INTERFACES

Figure 2.2: Model-View-Controller

alters the system logic to adapt itself. Context adaptation is defined at design-time,
and then realised at runtime.

2.4 Graphical User Interfaces

An important aspect to software includes the Graphical User Interface (GUI). In this
section, we focus on how graphical user interfaces are engineered and implemented.
GUIs can be traced back to the Xerox Star Interface, which lead to the WIMP model.
The WIMP model was a type of interface that comprised of windows, icons, menus,
and pointers. This model of interface became dominant in the desktop era of comput-
ing. With the emergence of smart devices e.g the iPhone and Android, GUIs moved
away from the WIMP model, and embraced touch. This included sets of different
touch gestures including pinch and pull for enlarging/zooming on particular content.
GUI development can be carried out from scratch, but is often carried out by the use
of different software frameworks available to different platforms.

2.4.1 Model-View-Controller

In mobile and web application development, it is common to not have the entire ap-
plication developed using a single language or technology. Because of the heteroge-
neous nature of mobile devices, it is suggested that GUIs should not be programmed
along with business logic. This is to help alleviate some of the difficulties resulting from
tailoring to suit multiple device screen sizes and device capabilities. Also, when devel-
oping user interfaces along with business logic, code is less maintainable and is harder
to reuse when interface elements can be reused in multiple places of an application.

To improve this maintainability and reuse, different design patterns have been pro-
posed, particularly the Model-View-Controller pattern.

27

2.4. GRAPHICAL USER INTERFACES

The Model-View Controller (MVC) design pattern (Krasner and Pope, 1988) aims
to improve development of graphical applications by separating information from its
representation, and its interaction. It was originally introduced in Smalltalk-80, and
since been used in web applications, and mobile application development. The MVC
pattern is driven by three aspects including:

• Model: Encapsulation of data, and behaviour relating to its state.

• View: The representation of the model, visually displayed to the user.

• Controller: Handles events from the user and or device, causing view and model
changes if necessary.

There are various benefits of using the MVC pattern. Particularly, UI design and
implementation can be carried out separately to the software controlling it, allowing
for different types of developers to develop different elements of an application easier,
while improving software reuse and maintainability.

2.4.2 View Implementation

As said above, the View is the representation of the model, displayed to the user. In
terms of a GUI, a View is not a single entity, but more formed of other views. Each
view corresponds to different elements of the GUI. Examples of GUI elements include
the following:

• Textfields: Elements that are designed for text input and output. These textfields
are normally used within forms, for example a page for editing contact details
within a contacts application.

• Buttons: Elements that are pushed/clicked on by the user, which normally cor-
respond to some particular application behaviour. Buttons can be used with a
range of appearances. Particularly, image buttons can be used as a way of mak-
ing static images of a GUI clickable, for example clicking on a contact photo,
which then can prompt the user if they wish to change the image for the contact.

• Checkboxes: Elements that are designed for binary on and off decisions. Within
a group of checkboxes, any number of them can be manipulated, unlike radio
buttons.

28

2.4. GRAPHICAL USER INTERFACES

• Radio Buttons: Elements that are designed for the user to select a single option
only. Radio buttons are used in groups of two or more, whereby each button
corresponds to a single option.

• Text Labels: Elements designed to help label and explain different widgets and
or groups of widgets. Labels can be used to help the user know what data is
expected within input widgets. If many text fields are on a single form without
labels, it can be hard for the user to know what data is expected in each. By
using labels, the user can know what type of data is expected.

• Layout Widgets: Elements designed to aid the developer in the layout of other
widgets, usually by their use as View containers. GUIs can be designed with ex-
act positioning where each widget is placed in a static position, but these perform
badly when a GUI is used on different screen dimensions. By using layout wid-
gets, GUIs can be made to support a wide range of screen dimensions, through
more relative placements of widgets.

When creating a View, by using these different elements together, a tree structure
of nodes and branches is formed (Kramer et al., 2011). These trees can be therefore
created by the aggregation of other small GUI trees, creating more complex GUIs,
while allowing for re-use in multiple windows. The GUI tree for adding new blogs in
the Wordpress Android application has been depicted in Figure 2.3. This tree has a
number of different layout widgets for relative and linear positioning. There are also
different text fields, labels and buttons in the GUI.

Document-Oriented GUIs

GUIs have often been implemented through code statements in general purpose lan-
guages e.g. C++, Java, Objective-C. Different elements of the GUI including visual
properties and controls are created using program statements. This approach requires
programming knowledge from the developer creating the GUI.

Within recent years, we have seen the emergence of GUI representation being
implemented using documents instead of code (Draheim et al., 2006). Using this ap-
proach, GUI representation is implemented in a more declarative fashion, commonly
in markup based languages (Kim and Lutteroth, 2009). Other names for this type of
GUI declaration include GUI description languages (Limbourg et al., 2005). Examples
of these languages include Mozilla XUL, QML used in QT, Microsoft XAML, Apple Nib,

29

2.4. GRAPHICAL USER INTERFACES

Figure 2.3: A GUI tree from the Android Wordpress Application

and Android XMLBlock. For performance reasons, during compilation, many of these
formats are preprocessed into formats for use in the final application.

By using a document oriented approach, there are many advantages discussed
in Draheim et al. (2006) including separation of concerns, compatability, editability,
and non-universality and abstraction. Furthermore, with many of the platform develop-
ments, WYSIWYG editors are included, where a GUI can be built using drag and drop
of widgets. This then means that the GUI can be previewed by the developer, without
the need for compiling and running the application.

An excerpt of a GUI document for displaying blog posts in the Wordpress Android
1 application is shown in Listing 2.2. This document defines the layout for each row
of a list of blog posts, and also is an example of how documents do not define an
entire GUI, but can define smaller reusable fragments. This layout is a collection of
TextViews that act as labels for displaying important summary information of a post,
including title, and date in which it was published etc. The LinearLayouts are used as
layout widgets, which help to position the TextViews.

GUI documents in different platforms, while achieving similar goals, can differ in
what and how elements are expressed. In iOS development for example, Interface
Builder files take a far more close to metal approach to what is expressed, whereby
the GUI document contains an XML representation of the runtime object graph. Be-
cause of this, to avoid errors, the developer should keep the graphical tools of the SDK
for editing these documents. Other platforms do not always take this approach, and

1http://android.wordpress.org/development/

30

2.4. GRAPHICAL USER INTERFACES

instead use GUI documents that are far easier to edit by hand.

Listing 2.2: An Android GUI document
1 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

2 android:id="@+id/row_post_root"

3 android:layout_width="fill_parent"

4 android:layout_height="fill_parent"

5 android:orientation="vertical"

6 style="@style/WordPressListRowBackground"

7>

8 <TextView

9 android:id="@+id/title"

10 android:layout_width="wrap_content"

11 android:layout_height="wrap_content"

12 android:textColor="#464646"

13 android:textSize="18sp" />

14 <LinearLayout

15 android:layout_width="fill_parent"

16 android:layout_height="wrap_content"

17 android:orientation="horizontal"

18>

19 <TextView

20 android:id="@+id/date"

21 android:layout_width="wrap_content"

22 android:layout_height="wrap_content"

23 android:textColor="#777777"

24 android:textSize="12sp" />

25 ...

26 </LinearLayout>

27 </LinearLayout>

GUI documents are primarily designed for defining the visual representation of the
GUI. This means that other aspects of the GUI including event listeners need to be
defined within a view controller, or similar. In these controllers, GUI documents are
instantiated in code, whereby GUI objects are created based on the documents. These
objects are then displayed to the user and can be manipulated in code.

2.4.3 Dynamic GUIs

So far, we have discussed development of predominantly static GUIs. Nowadays
though, as discussed earlier, the conditions in which the user and the application run
is often changing with mobile devices. This has given a rise to more dynamic GUIs
that can be adapted at runtime.

When discussing non static GUIs, two popular approaches have been proposed,
Adaptable and Adaptive (Stuerzlinger et al., 2006). When a GUI is described as being

31

2.4. GRAPHICAL USER INTERFACES

adaptable, it means that the GUI can be altered by the user at runtime to suit their
own needs. Alternatively, a GUI that is adaptive is not altered by the user, but by the
system automatically based on different events or usage patterns. Many examples
of adaptive GUIs exist, for example, the Eclipse2 development environment can be
considered as having an adaptive and adaptable GUI, due to additional buttons and
controls being added to a users environment on installation of additional plugins. This
GUI also allows the user to alter certain aspects of the GUI. In this dissertation our
focus is centred around adaptive applications only.

Types of Changes

Using Adaptive GUIs (AGUI), the GUI can be subject to a number of changes. Here
we attempt to look at the dynamic changes used in previous work to help understand
the sort of changes we expect in a dynamic GUI, which will be used in the rest of this
thesis:

• Alteration in layout based on visible widgets. This type of alteration can be
based on the inclusion or deduction of widgets from a given layout. Depending
on the condition, it may be right to add or remove different widgets on the screen,
to help the user. An example of this includes removing buttons for unused func-
tionality in a program, making the software more well suited for a usage pattern
(Findlater and McGrenere, 2010).

• Alteration in widget visual properties. This alteration is primarily aimed at
the alteration of widgets already on the screen. This can mean altering size and
dimensions, or just give visual appearance (background image/colour) of the wid-
get. An example of this includes indicating to the user that sound output is now
muted by the alteration of the widget showing system sound volume (Paymans
et al., 2004).

• Alteration in widget behaviour. Widget behaviour alteration encompasses
changes in how the widget acts, or logic the widget invokes when clicked/pushed.

Usability of Adaptive GUIs

When considering GUIs that can be adaptive, one must always consider the usability
effects. Several studies have considered the effects of adaptive GUIs on usability. In

2http://www.eclipse.org/

32

2.5. SUMMARY

Paymans et al. (2004), the authors acknowledge that AGUIs can cause users to feel
a lack of control, due to the interface being unpredictable and incomprehensible. As
an experiment, it was considered that helping to build greater mental models of the
system would increase the usability of the system. This study was carried out with
17 students from the Utrecht University, of which 8 were male, and 9 were female.
The authors measured learnability and ease of use while simulated context changes
were carried out using the tasks of watching video streams. Before and after watching
the video streams each user had to complete a usability questionnaire. The study
found that an improved mental model was not always needed. It was suggested that
depending on the domain, to achieve ease of use, it may not be necessary to have an
understanding of the system’s design.

Later studies including Lavie and Meyer (2010) examined the usability effects of
adaptive GUIs within the context of in-vehicle systems. Within this study, four different
factors were observed, including different tasks, routine and non-routine situations,
age groups, and different levels of adaptivity. Different age groups were handle via two
separate experiments, one for younger users using 64 participants with an average
age of 25.7, and for older users using 24 participants with an average age of 58.6. The
users were asked to carried out various takes, both routine and non routine, including
reading a SMS message and sending a reply, reading an email message, reading
news updates, and changing cd. It was found that intermediate level of adaptivity may
be more beneficial to the user and that adaptivity does not benefit every condition.
Fully adaptive systems were found to be more beneficial on routine user tasks.

2.5 Summary

In this chapter, the foundations of the subject areas in this thesis have been intro-
duced. Firstly we introduced Software Product Lines as a software engineering ap-
proach. Following this, context-aware adaptive applications were introduced. Finally,
we introduced foundations in to GUIs, including adaptive GUIs.

In the next chapter, works that are closely related to our approach are surveyed
and discussed. We firstly explain how SPLs can handle dynamic behaviour. Next, we
discuss how context has been used in previous work, by adaptive applications, and
dynamic SPLs. Also, variability of GUIs is considered, both statically and dynamically.
This will allow the contributions of this thesis to be compared, and positioned con-
cretely. Following this, our contribution can be described and discussed later in the

33

2.5. SUMMARY

thesis.

34

3
Dynamic SPLs and Adaptive GUIs

Contents
3.1 Introduction . 35

3.2 Dynamic Software Product Lines . 36

3.3 Graphical User Interface Adaptation 41

3.4 Context-Awareness . 49

3.5 Research Goals . 53

3.6 Summary . 54

3.1 Introduction

In this chapter we discuss the state-of-the-art regarding research in Dynamic Soft-
ware Product Lines (DSPL), Graphical User Interface (GUI) Adaptation, and Context-
Awareness. In Section 3.2, we introduce Dynamic Software Product Lines, discussing
the properties of a DSPL, and surveying many of the proposed approaches. Tech-
niques to handle static and dynamic adaptation of the GUI is then surveyed in Sec-
tion 3.3. Section 3.4 discusses different approaches to context-awareness, and their
involvement in DSPLs. We then revisit and outline our research goals in Section 3.5,
and conclude the chapter in Section 3.6.

35

3.2. DYNAMIC SOFTWARE PRODUCT LINES

3.2 Dynamic Software Product Lines

Until the last few years, SPLs were traditionally used for the creation of static software
systems. These products were normally statically bound before the software is exe-
cuted, and therefore cannot adapt at runtime. Lately the need for dynamic binding and
the ability to alter a programs configuration at runtime has become a reality. Dynamic
SPLs (DSPL) have been proposed as SPLs that bind variation points at runtime, which
can exhibit the following properties (Hallsteinsen et al., 2008):

• dynamic variability: configuration and binding at runtime

• changes binding several times during its lifetime

• variation points change during runtime: variation point addition (by extending one
variation point)

• deals with unexpected changes (in some limited way)

• deals with changes by users, such as functional or quality requirements

• context-awareness (optional)

• automatic decision making (optional)

• individual environment/context situation instead of a ”market”

DSPLs have shown to bring benefits in ubiquitous environments, particularly in
the mobile market, where device capabilities are highly heterogeneous (Kaviani et al.,
2008). At the heart of a DSPL lies its ever changing configuration.

3.2.1 Configuring a DSPL

DSPLs like SPLs get configured, but not every feature in DSPL may require dynamic
binding. While some features binding needs to be carried out at runtime, some fea-
ture binding can be carried out at compile time. This means the configuration of the
DSPL is not always configured within a single step or process. This can be viewed
as staged configuration or SPL specialisation (Czarnecki et al., 2005b). By having a
staged configuration, complete product configuration is not carried out within a single
step, but more across multiple steps, or stages. With each step, the variability of a

36

3.2. DYNAMIC SOFTWARE PRODUCT LINES

SPL is reduced, also known as a specialisation, until the SPL is fully specialised with
the configuration being complete. In static SPLs, staged configurations can be carried
out by multiple actors, each only configuring a part of the SPL. For DSPLs, the runtime
contexts that are acquired at runtime can be considered the actors of the final configu-
ration/specialisation. In DSPLs, it has been shown by Rosenmüller et al. (2011a) that
carrying out a stage configuration by aggregating features together statically can im-
prove not only runtime performance, but also reduce compositional overhead needed
for each dynamic bound feature. Unlike static SPLs, a DSPL can be reconfigured,
binding new features in the place of others, in a continuous process.

3.2.2 Implementation Approaches

Several implementation approaches have been proposed for DSPLs, including lan-
guage extensions, and components and services. Here, we aim to review the different
approaches taken for implementing DSPLs, firstly looking at language support through
language extensions, before looking at the use of components and services.

Language Support

Different approaches in the form of language support and extensions has been an
area of interest in the area of dynamic software product lines. These language ap-
proaches attempt to consider the problem of cross cutting logic, and how logic can be
added or removed at runtime. As discussed in the earlier chapter, Feature Oriented
Programming (FOP) languages like FeatureC++ (Rosenmüller et al., 2008) have been
proposed. In FeatureC++, logic within the dynamic feature modules is modularised
using the decorator pattern. Using this pattern, decorators wrap classes at runtime
to alter the behaviour of an application. For each feature, a class is generated, to
which on feature binding, all decorators needed are loaded and the base classes are
wrapped. This method was found to help reduce functional overhead, caused by un-
used features within a product variant. Later, Rosenmüller et al. (2011a) applied a
generative approach to FeatureC++, whereby, in situations that multiple features are
used together, it is beneficial to statically compose several features together into com-
posite features, named Dynamic Binding Units (DBU). This is handled by manually
grouping features into DBUs, to which the feature model is then automatically reduced
and DBUs are checked to avoid invalid compositions. This method was found to help
balance the need for reducing functional overhead without merely replacing it with

37

3.2. DYNAMIC SOFTWARE PRODUCT LINES

compositional overhead.
Another programming paradigm to deal with feature style crosscutting concerns

includes Delta-Oriented Programming (DOP), particularly DeltaJava (Schaefer et al.,
2010) and its dynamic form, Dynamic Delta Oriented Programming (DDOP) (Damiani
and Schaefer, 2011). In DOP, feature refinements are implemented in Delta Modules.
A delta module though similar to feature modules in that it can increment a base pro-
gram functionality, it can also remove functionality. Other interesting features of DDOP
is the promise of altering application state, by applying stack changes when a delta
is applied. Delta Modules are implemented as single files, instead of each class re-
finement being a class file as in FOP. Currently, only semantics of DDOP have been
proposed, and a working prototype is yet to be proposed.

Other language extensions that while are not explicitly defined as being used in
implementing DSPLs includes Context-Oriented Programming languages. These lan-
guages crosscut programs based on different contexts by the use of layers (Hirschfeld
et al., 2008). Layers can be defined with OOP classes, or in their own self contained
layer (Appeltauer et al., 2010). At runtime, layers are then activated or deactivated.
Java based COP languages have primarily been implemented on top of AspectJ. COP
languages though only normally consider dynamic software composition, which has
been found in FOP (Rosenmüller et al., 2011a) work to be very useful in lowering
compositional overhead when a particular adaptation is required statically in a pro-
gram. While this programming paradigm is largely proposed to differ from FOP by
its concentration purely on runtime adaptation, it is still possible to use this approach,
along with static composition using other tools, for example, Featurehouse (Apel, Kast-
ner and Lengauer, 2009).

Components and Services

Components and services have also been proposed as a method to producing DSPLs.
Service Oriented Architectures (SOA) recently has been a popular domain for DSPL
research. Parra et al. (2009) first proposed CAPucine, a usable method for using SOA
and Service Component Architecture (SCA) for creating a DSPL. This methodology
also incorporated the use of context to drive its derivation process, which is discussed
later. For realisation, the authors use the FraSCAti SCA platform (consortium, n.d.).
The approach was broken down into two phases, the initial, and the iterative phase.
The initial phase encompasses the structural and business modelling, behaviour mod-

38

3.2. DYNAMIC SOFTWARE PRODUCT LINES

elling, and implementation. Implementation of the DSPL of this phase is carried out
by the composition of feature assets, and a number of transformations from the ap-
plication metamodel to source code. For model transformation and code generation,
Kermeta for generating Java and SCA elements from the application model, with the
Acceleo language used for generating Java and SCA source code. Within the iterative
phase, FPath and FScript domain specific languages are used for handling the runtime
adaptation of the system. FPath is used for stating what components will be adapted
at runtime, with FScript being used for unbinding, and binding the new components to
the system in using transactions, ensuring a consistent state.

A SOA approach has been proposed within the domain of mobile computing (Marinho
et al., 2010). The proposed approach was applied to the development of context-aware
mobile guides. This methodology was proposed to be carried out over three stages,
two of which were within the domain engineering stage. Firstly, all meta components
required for the dynamically adapting the system were analysed in stage 1. Then in
stage 2, all commonality and variability for the mobile guide domain was analysed.
Finally in stage 3, the domain requirements for the Great Tour mobile guide was anal-
ysed. Transitions between stages was carried out by considering what features from
the previous stage are needed, and then moving them to a more specialised feature
model. For feature and context modelling, UbiFex (Fernandes et al., 2011) was used,
which is discussed later. Different problems encountered in the process were pre-
sented, grouped into the areas of domain, theory, project management, and tools.
Interestingly, while the main context middleware was created in the first two stages
of the development, all components and services used in the final application were
created only for that application. It was further claimed that the components could be
rewritten to a more reusable solution, but no method was proposed or cited.

A further SOA adaptation approach and platform was proposed by Gomaa and
Hashimoto (2011). This approach built on from a previously proposed evolutionary
process model for software product lines. The platform proposed builds on top of the
SASSY framework (Malek et al., 2009). The platform takes the form of a 3 tier architec-
ture including Goal management, change management, and component control. The
goal management tier primarily deals with SPL feature selection when feature binding
needs to change. The change management tier has two service, gauge service which
checks if a configuration change is needed, and change management service which
maintains the mapping between features and components, and determines what com-
ponents need adding/removing. Lastly, the component control tier handles two ser-

39

3.2. DYNAMIC SOFTWARE PRODUCT LINES

vices including a monitoring service for monitoring the running system, and adaptation
services for the system adaptation.

Quality of Service (QoS) in SOA based SPLs includes the work of Lee et al. (2012).
This work work proposes a QoS specification that is used to manage system quality
in the monitoring and negotiation process. A QoS framework is used which includes
systems for brokerage, reputation and service rating, and monitoring. The brokerage
system includes the ability to compare the proposed renegotiation with other providers
to. The reputation system is used by consumers to rate the quality of different service
providers. Finally, the monitoring system monitors the quality of negotiated services,
checking for SLA violations and runtime failures. For reconfiguration, a reconfigurator
is proposed to trigger reconfigurations based on the current status of service.

Other service areas where DSPLs have been used include Web Services (Alferez
and Pelechano, 2011). During the Domain Engineering stage, several models are cre-
ated including a Feature model, a Compositional model, a Weaving model, a Context
model, and a feature model for measure instruments. The compositional model makes
use of a UML Activity diagram, as a method of describing the business logic and the
workflow of the system. Secondly, the weaving models are used for mapping features
within the feature model to the different elements in the composition models. Thirdly,
the context model is carried out using Web Ontology Language (OWL), enabling con-
text sharing and reasoning. Lastly, the feature model for measure instruments is cre-
ated for enabling reuse of instruments for monitoring various service compositions.
For the Application Engineering stage, an initial configuration of all the models created
in the domain activity is defined, including the product specific context rules and their
system resolutions. For runtime reconfiguration, the authors proposes an extension
to their Model-based Reconfiguration Engine (MoRE) (Cetina et al., 2009) for Web
Services which follows a MAPE-K loop (IBM, 2003) approach.

3.2.3 Summary of DSPLs

Currently, DSPLs have became a useful approach for dealing with static and dynamic
variability in software systems. For this, different approaches have been proposed
including language extensions and component/service based systems. We can see
those that why these approaches help deal with variability in program logic, they fail to
consider the GUI explicitly. While GUI changes can be defined in program logic, these
logic extensions are only executed when the base methods are invoked. Therefore,

40

3.3. GRAPHICAL USER INTERFACE ADAPTATION

GUI adaptations may or may not be carried out after a reconfiguration. It is for this
reason, we explore different approaches to handling static and dynamic GUI variability
in the following section to review the current approaches adopted outside of the DSPL
spectrum.

3.3 Graphical User Interface Adaptation

Software is developed for various situations, whether it is for some backend function-
ality, or for the end user. Much of the software developed for mobile devices today can
be described as end user applications, whereby the application is mixed with a rich
GUI that the user interacts with. As we have discussed how general software variabil-
ity is handled, equally, in many cases, a GUI can be crosscut by different features of
a system, and should be handled in a reusable way. While we have surveyed existing
approaches to DSPLs, they all focus primarily on logic adaptations, and do not ad-
dress how variability in the GUI are handled. It is therefore in this section, we survey
approaches proposed for dealing with variability that is static and dynamic regarding
GUIs.

3.3.1 Design Time Adaptation

In this subsection, we survey approaches that deal with design time adaptation of
GUIs within a product. These adaptations are applied statically during the develop-
ment/derivation of the product, and can therefore be considered static variability. While
different ad hoc solutions can be used for dealing with GUI personalisation, here we
only consider approaches that propose a well defined approach or technology.

Handling static variability and supporting reuse of GUIs in a systematic way can be
traced back to Schlee (2002) who adopted generative programming techniques and
applied them for generating GUIs. This method was carried out by modelling abstract
parts of the GUI within a conventional feature model. To derive a GUI variant, the
authors propose to use the tool, ANGIE-Based GUI Generator (ABA), which takes an
xml specification of the GUI, generated from a dialog-based graphical-interactive DSL.

SPLs using Model-Based UI Development (MBUID) have been a particularly pop-
ular method for handling UI variability. MBUID Hauptmann (2010) firstly applied this
approach to web applications. In this approach the author proposed a methodology for
handling UI within domain and application engineering. In the domain engineering, two

41

3.3. GRAPHICAL USER INTERFACE ADAPTATION

types of artefacts are created, a feature model, and domain artefacts. Domain arte-
facts created include the application core, which is expressed in models for platform
independence including a data model & operations, and an Abstract User Interface
(AUI) models. Each AUI model can be seen as a combination of task model, and ab-
stract user interfaces from model-based UI development. AUI models are structured in
tree hierarchies of different nodes, along with relationships between them using tem-
poral operators. Next, elements in the AUI model are mapped to feature in the feature
model, and linked with the application core using a linking element. In the application
engineering, the processes of product configuration and derivation is carried out. Prod-
uct configuration involves the picking of what features should be added to a specific
product. Product derivation produces a product model, made up of a UML based Web
Engineering (UWE) content model, a UWE user model, a UWE process model, and
AUI model. These are then transformed using a semi-automatic stepwise approach
using model-based user interface development. This methodology was then applied
to web applications creating JSP pages and some limited form of business logic of the
application. This work was then described by Pleuss et al. (2012a). The authors also
considered the need for manual customisation with automatic UI variant generation.
This problem is caused by the need for manual modifications by of an applications UI
after product derivation by customers of the system. The authors describe different
aspects of MBUID commonly requiring customisation, how these different aspects can
be customised.

The problem of creating UI for different devices and appliances has been ap-
proaches by Nicols (2006), who proposed a method for automated UI generation.
Generation was carried out in two stages. The first stage took an appliance spec-
ification, written in a DSL, and produces an abstract user interface (AUI). Following
this, interface modifications are carried out to ensure consistency among other inter-
faces created for that device. These modifications can be functional, or structural.
From here, a concrete UI (CUI) is created, using platform specific UI objects. This is
carried out by traversing the AUI tree, applying CUI rules. Lastly, the CUI is modified
for consistency by the use of rules.

Other work concentrating on GUIs within an SPL considers how to re-engineer con-
figurators (Boucher et al., 2012). In this work, the authors present challenges regarding
the reverse engineering of existing configurators analysing GUI, webpage source, and
code base to extract variability information. It is proposed that variability information
can be extracted by searching for variability and constraint patterns in the GUI, with a

42

3.3. GRAPHICAL USER INTERFACE ADAPTATION

few patterns already supported. a TVL model is generated after the user is satisfied
with the extracted data in a post-processing step.Additionally, the challenge regarding
forward engineering and generating a tailored GUI and codebase is discussed. It is
suggested this can be handled by

Summary of static GUI variability

We can seen that design time adaptation of the GUI, with systematic reuse has been
of interest. These methods have considered how GUIs can be customised, using
reusable adaptations. Different methods have been show to have been used, including
generative methods, and model based methods.

Having said this, considering they only tackle the need for design time adaptation,
they are not adequate solutions for DSPLs. This is primarily because they do not sup-
port runtime GUI adaptation. When considering GUI adaptation in a DSPL, adaptation
should be able to be applied both at design time, and at runtime. Next, we consider
how dynamic GUI variability has been addressed in previous work.

3.3.2 Dynamic Variability

Dealing with dynamic variability have yet to be addressed using SPL approaches.
Currently approaches have been predominantly from the adaptive GUI community, to
which we will survey some of the most prominent works.

Adaptive GUIs have been addressed using a middleware approach (David et al.,
2011). The authors make use of the Context-Oriented Programming language Con-
textJ (Appeltauer et al., 2009) for implementing UI changes in the application. When
evaluating the middleware against developing the application using standard Android,
the proposed solution allowed for a reduction in development time, testing time, while
also being implementable with less lines of code.

A model-based GUI approach to context-aware AGUIs was proposed by Hanu-
mansetty (2004). Proposed is a framework for handling web applications involving
context processing and interface adaptation off device. Client side contexts are col-
lected from the device and are sent to a context server, where with sensors and other
system contexts are aggregated, and interpreted. Context events, are then sent to the
business components and interface server. Based on different task model adaptation
rules specified, the task model is regenerated for the GUI. Once the task model is up-
dated, the abstract UI is generated using the dialogue model, and then the concrete

43

3.3. GRAPHICAL USER INTERFACE ADAPTATION

UI is generated using the presentation model. Generated UIs using approach were
XHTML documents.

A stepwise composition approach to adaptive GUIs has been proposed by Savidis
and Stephanidis (2010). This approach helps bring adaptivity to previous static GUIs
using a refactoring process. This approach was proposed to handle interfaces imple-
mented in OOP languages including C++. The approach is broken down into three
distinct steps. In the first stage, user requirements are analysed, with roles and re-
quirements identified. Then, the interface profiles is modelled, expressing variations
of the user-interface behaviour. This step ends with adaptation decision logic being
identified, where context events and their adaptation rule are specified. In the second
stage, adaptation alternatives are encapsulated, by use of a general superclass, and
each alternative component being a subclass. Dynamic replacement is handled by
the termination of a component, and the activation by a substitute. During the com-
ponent replacement, state is parsed from the original component to the constructor of
the substitute.

Model-driven software engineering (MDSE) approaches have been proposed for
dynamic GUI adaptation (Rodrı́guez-Gracia et al., 2012). GUI specifications are de-
scribed using architectural models, which are altered runtime due to context changes.
Adaptation is carried out by the use of model to model transformations, carried out at
runtime, using rule models. Other MDSE approaches include the work of Criado et al.
(2010). In this approach is broken down into two distinct processes. The first process
is a model-to-model transformation of interface architecture models. Each interface
architecture model is made up of abstract GUI components, and the M2M process is
driven by user or application events, producing abstract GUI models. Model transfor-
mations were implemented using ATLAS Transformation Language (ATL), a Domain
Specific Language for describing model transformations. Transformations are handled
in two stages, first producing a intermediate model by taking the original model and
the system event. The final transformation involves executing specific component ac-
tions with the state of the original model. In the second process of the approach, the
abstract GUI models are then instantiated by getting the appropriate widgets from a
widget repository.

A toolkit for handling transparent GUI migration and adaptation was proposed by
Grolaux (2007). This approach was designed to be used with the Mozart Program-
ming System1, based on the Oz language providing declarative, object oriented, and

1http://www.mozart-oz.org/

44

3.3. GRAPHICAL USER INTERFACE ADAPTATION

constraint programming. Dynamic adaptation of the GUI is carried by each widget
having different representations, that can be switched at runtime depending on a given
context. Each of these representations is supported by individual renderers, which in
turn represent a variant of that widget. These renderers can be distributed and trans-
ferred between applications, and even devices over an network interface. Granularity
of adaptation supported ranges from the entire screen, to single widgets, and to an
arbitrary pixel area.

Other approaches proposed include rule-based approaches (Paskalev, 2009). Us-
ing this approach, GUI descriptions are stored within database tables, that are loaded
and transformed into object hierarchies. These objects are then converted to CLIPS
facts for a engine proposed in previous work (Paskalev and Nikolov, 2004). The CLIPS
facts are script files that describe different GUI parameters. Two processes are han-
dled by the specified rules, first reconfiguring the UI for a given event, and then adapt-
ing the UI. Currently, only rules for hiding an removing certain GUI elements have been
realised.

The need for scaling the GUI on mobile devices based on variable screen sizes was
presented by Behan and Krejcar (2012). To help graphical scaling, the author propose
the use of Scalable Vector Graphics (SVG). By using SVG graphics for different UI
elements on the screen, these can be scaled to suit the screen size more easily, while
retaining image quality. To use vector graphics instead of the default raster graphics,
the authors propose to override the standard widget drawing methods. These override
methods then instead translates the vector graphics to a drawable that can be used by
the widget, scaling to suit the given display size.

Summary of dynamic GUI variability

Many approaches offer solutions to supporting dynamic GUI variability. Of these so-
lutions, source code and MDSE have been the two most popular methods. While the
need for dealing with device variability has been approached, this only considered
scaling the same GUI, and not altering what UI elements are on the screen. Some
of the approaches allow for context rules to be defined, causing a reconfiguration on
context change. While these approaches provide solutions to dealing with dynamic
GUI variability, they do not provide a method of handling static GUI variability.

45

3.3. GRAPHICAL USER INTERFACE ADAPTATION

3.3.3 Mixed Variability

Next, we consider work that considers GUI variability that can be handled statically
and dynamically. In this category, we consider Plastic User Interfaces (PUI) (Calvary
et al., 2001). Calvary et al. recognised both the need for dealing with both variability in
devices in which an application many run on, and the need to deal with environmen-
tal changes of the device. The level of plasticity of a user interface is defined as its
ability to adapt to different contexts, whereby the more contexts the UI can adapt to,
the higher the plasticity. PUIs have been proposed as method for handling both adap-
tive, and adaptable UIs. A reference framework for plasticity was proposed, adopted
from model-based UI development. Lastly a tool named ARTStudio was developed for
developing all models except the environment and evolution models.

Plasticity has been proposed to be modelled as finite state machines, using mealy
machines (Collignon et al., 2008) to handle UI resizing operations. Each state in a
mealy machine is a resizing operation, with each transition being composed of source
and destination of the GUI. This approach then uses UsiXML, a language for defining
the final GUI, and is expanded for adaptivity and multi-presentation UIs. The specifica-
tion language is expanded by adding different concepts including a set of plasticitydo-
main. This set of plasticity domains includes the different different conditions that are
required for a particular variant of the UI. These conditions include characteristics of
the platform, user and/or environment. Each plasticity domain is mapped to a specific
GUI representation using inter-model relationships.

Coutaz et al. (2007) proposed an approach using MDE and SOA for developing
PUIs. This approach is based on two principles. The first principle is that an interac-
tive system is a graph of models. These models while developed at design time, still
should be available at runtime, and linked by mappings. Concrete UI interactors should
be mapped to the platform input and output devices, whereas task and concepts are
mapped to the functional core entities. Transformations and mappings are models
too, which are expressed in ATL. The second principle is that close-adaptiveness and
open-adaptiveness cooperate. This is based around the need for self-contained and
sometimes runtime extendable adaptation. Context use and UI adaptation is handled
by services in the Distribution-Migration-Remolding middleware. Context observers
gather contextual information that is processed by the situation synthesizer. New situ-
ations are then sent to the evolution engine to start adaptation. Adaptation can target
either a section of, or the whole UI, using a mix of specifications, defined by the de-

46

3.3. GRAPHICAL USER INTERFACE ADAPTATION

veloper. The evolution engine then provides the configurator with what components
need to be replaced and/or suppressed. These components then are then retrieved
from the storage space if needed. Further work by Vanderdonckt et al. (2008) pro-
moted a third principle of the keeping the user in the loop. This principle is based on
the proposition that the user should remain in control of the UI, even if the UI opera-
tion is automatic. To support this, three types of adaptation are suggested including
automated, semi-automated, and manual transformations. Designers and users can
perform manual and semi-automated transformations. In semi-automated transforma-
tions, the designer can adjust the transformation target models at runtime.

Summary of mixed GUI variability

In this section we described approaches that propose solutions to dealing with static
and dynamic GUI variability. Most of the approaches use context-awareness to drive
GUI adaptation, and use MDE for implementation. These approaches proposed mostly
fall in the category of PUIs. These approaches provide an interesting solution to deal-
ing with different screen sizes, allowing the UI to better fit the screen. They do however
have shortcomings. First, these approaches appear to concentrate on just screen
sizes and resolution. This means that other runtime factors including location, can-
not affect the presentation. We believe that UI changes should not be confined to
particular contextual changes. Furthermore, there is no indication that other non pre-
sentation UI changes can be made for example behaviour. Particularly, when handling
users from different regions of the world and platforms, different user gestures might
be required. It is possible that because PUIs appear to have not been used in mod-
ern mobile platforms, different gestures are not required, or supported. However, for
many modern mobile apps, gesture support is an important issue as discussed in the
following chapter.

Other shortcomings of these approaches is that lack of a refinement or feature-
oriented approach to handling these adaptations. Adaptations are handled as whole
configurations, which do not allow for the same amount of reuse found using SPL
approaches.

3.3.4 Summary

In Table 3.1, we summarise the different related work in the area of GUI adaptation
in chronological order. We consider different characteristics to evaluate each of the

47

3.3. GRAPHICAL USER INTERFACE ADAPTATION

Reference Representation Adaptation

C
od

e

M
od

el
B

as
ed

D
O

G
/G

D
L

D
es

ig
n-

Ti
m

e

R
un

tim
e

S
P

L
Va

ria
bi

lit
y

C
on

te
xt

-A
w

ar
en

es
s

Calvary et al. (2001) - x - x x - -
Schlee (2002) - - x x - x N/A

Schlee and Vanderdonckt (2004) - - x x - x N/A
Hanumansetty (2004) - x - - x - x

Nicols (2006) - x - x - - N/A
Coutaz et al. (2007) - - x x - x N/A

Grolaux (2007) x - - - x - -
Collignon et al. (2008) - - x x - x N/A

Vanderdonckt et al. (2008) - - x x - x N/A
Paskalev (2009) - - - - - - -

Criado et al. (2010) - x - - x - -
Hauptmann (2010) - x - x - x N/A

Savidis and Stephanidis (2010) x - - - x - -
David et al. (2011) x - - - x - x

Behan and Krejcar (2012) - - - - - - -
Boucher et al. (2012) - - x x - - N/A
Pleuss et al. (2012a) - x - x - x N/A

Rodrı́guez-Gracia et al. (2012) - x - - x - -

Table 3.1: Summary of GUI adaptation approaches

48

3.4. CONTEXT-AWARENESS

works. These characteristics include variability representation, including source code,
model based, or using Document-Oriented GUIs/GUI description languages. We also
consider whether the adaptations can be used at compile time or runtime. Lastly,
we consider if the variability is handled using SPL techniques, and whether context-
awareness is supported.

We see that while GUI variability has been considered within SPLs statically and by
non SPL approaches, but then dynamic variability of GUIs has only been considered
within the adaptive GUI work. This means that the static and dynamic adaptations
have to be realised using independent methods and processes, which makes reuse
increasing difficult. Also, if the binding time of the feature is changed, this would require
a reimplementation of that particular feature.

Since previous work helps show how crosscutting features can apply to GUIs as
well as program logic, this then should be capable of being handled at runtime. GUI
changes in previous approaches have to be carried out by logic increments. This
not only avoids the ability to use modern document-oriented GUIs, but it also re-
stricts changes to when a particular method is called. This is because in previous
approaches, concentration was on logic changes. Unless an adapted method is in-
voked, that adaptation is not called. GUI adaptations may need to be carried out
immediately, and therefore needs to be invoked on feature-reconfiguration.

3.4 Context-Awareness

Context-Awareness as introduced in the previous chapter has, with many general
frameworks and libraries being proposed. In this section, first we review general pur-
pose context management and modelling approaches. Next, we discuss how context
has been used in regards to DSPLs. Finally we end this section with a summary of the
approaches proposed, any gaps in knowledge, and issues that should be addressed.

3.4.1 General Purpose Approaches

Approaches for aiding development of context-aware applications goes back many
years. One of the earliest and notable works includes the Context Toolkit (Dey et al.,
2001). The Context Toolkit is a framework for rapid context-aware application proto-
typing. This framework is developed around components including context widgets for
context information retrieval, interpreters for abstracting context information, aggrega-

49

3.4. CONTEXT-AWARENESS

tors for combining multiple related context information, services for executing actions
e.g altering activator states, and discoverers which maintain a registry of framework
existing capabilities.

Other notable context management frameworks include COSMOS (Conan et al.,
2007). At the heart of COSMOS are context nodes, which are singular monitoring
units, and uses software components and design patterns within its architecture. Con-
text nodes contain several properties include whether they are passive/active, to ob-
serve/notify, and if they are blocking/not. Context aggregation to obtain high level con-
text information is handled via context policies. Context policies contain a hierarchy
of context nodes, allowing context nodes to be used across multiple context policies,
sharing context information.

Different modelling approaches have been proposed for modelling context. Of the
most notable work include the Context Modelling Language (CML) (Henricksen and
Indulska, 2006). The CML is an extension of modelling concepts from Object-Role
Modelling (ORM), due to its high formality and expressiveness. A mapping from ORM
to a relational representation of CML fact types is used for different runtime context
management tasks including persisting to a database, application querying, and con-
straint enforcement. In addition, a preference model is suggested as a method of
assisting the decision-making process by allowing the user to set his or her own re-
quirements. Two programming models are also proposed including Branching, for use
when deciding over competing alternative context choices; and Triggering, which in-
vokes different actions on context change.

Feature-Oriented Domain Analysis (FODA) has also inspired context modelling with
the proposed Context-Oriented Domain Analysis (CODA) (Desmet et al., 2007). It is
possible to see this a method for modelling DSPLs, except there are some fundamental
differences. Firstly within this modelling notion, only context can be an actor in the
configuration of the product, whereas in DSPLs, context and people in different stages
of the stage configuration can be actors.

3.4.2 Context and DSPLs

While context-awareness has been used in adaptive applications, Lee and Kang (2006)
proposed to use SPL principles in making adaptive applications by making SPLs
reconfigurable after deployment. Since this work, there have been numerous mod-
elling techniques used for the design, modelling, and implementation of context-aware

50

3.4. CONTEXT-AWARENESS

DSPLs.
Because context-aware systems rely on the use of context to determine its run-

time behaviour, it has been highlighted in Fernandes et al. (2011) that context should
be modelled along side feature modelling. Fernandes et al. proposed an extension
to Odyssey-FEX feature modelling notation, named UbiFEX to represent context in-
formation and context rule specification. Within this notation context information is
modelled using a context feature model. A context feature model is made up of two
feature types, context entity and context information features. A context entity feature
represents a specific domain context entity e.g. user, and mobile device, which has a
name, and a description property. Context information features store the raw data that
is needed to describe a context entity. These features require a name, description,
whether they are static or dynamic, their type e.g. string, integer etc, initial value, and
source. Following this, context definitions need to be defined according to a BNF no-
tation. Lastly context rules are defined using the context feature, and the feature that
needs to be activated separated with an implication operator. This modelling notation
has been used in a mobile DSPL case study by Marinho et al. (2010).

Pure feature modelling has been used before for context models. Particularly,
Acher et al. (2009) proposed to use multiple feature models to model context and its
adaptation for dynamic adaptive systems. The context model is modelled as a single
feature model using the FM hierarchy structure for context granularity. Context rules
that cause feature selection changes are then expressed in cross model constraints,
which are written the same as inter-model features constraints. Then, both the system
and context feature models are aggregated into a larger feature model. This enables
the inter-model constraints to function as constraints in singular feature models.

Specification Languages have been proposed for specifying reconfiguration rules.
In Rosenmüller et al. (2011b) a DSL was proposed for specifying context rules, and
what features should be bound/unbound in a given configuration. Events are not han-
dled via context managers but proposed using monitoring code in the host language,
in this case C++. Instead of handling changes directly on the configuration of the
product, adaptations are handled by reasoning over features selected by the user,
contained within a requirement containership. From the required features, the configu-
ration is derived by then including features required according to feature relationships
e.g. parent features, feature dependancies. One large drawback to this method is it
unlike application features, context features are static within an application.

General purpose context-management systems have been used in DSPL to pro-

51

3.4. CONTEXT-AWARENESS

vide context. COSMOS as presented above has been used in the work of Parra et al.
(2009). To use COSMOS, the authors proposed to model context-aware assets and
map clauses to context nodes using context conditions against observables. Sys-
tem reconfiguration is handled by receiving COSMOS context notifications, which are
linked to observables. If the cause is evaluated to be true, then the body of the clause
including the change, the actually action to be taken; and the place, where the adap-
tation will take place, are realised.

Mostly these approaches only consider environments where single applications are
running. When we consider modern mobile computing, its common to have multiple
applications installed, and sometimes running on the device.

3.4.3 Summary

While context has been used in DSPLs before, we find several shortcomings of the pre-
vious approaches. Firstly, many of the approaches treat context as a different entity
entirely of the system. This is usually carried out by using the context-aware managers
as just an input into the DSPL for what features should be activated/deactivated. Be-
cause of this, many contexts are considered only in a static fashion, whereby if they
are in the product, they are always active and being used. This causes two downfalls.
Firstly, it makes the assumption that for every product, that context will be required.
Just as discussed earlier, through stage configurations, not every feature may be in-
cluded in a deployed DSPL application. This can make it harder to specialise the
DSPL, as the context is not considered part of the DSPL directly, and therefore config-
ured alongside it. Secondly, its possible that depending on context, it maybe useful to
alter what contexts are being used. For example, if the battery on a device is getting
low, it probably is not suggestible to keep sensing for the device’s location using GPS.

A second issue is that, of the approaches that treat context as a feature, these do
not exhibit the DSPL property of variation point changes during runtime as defined by
Hallsteinsen et al. (2008). Because this, only foreseen contexts can be taken into ac-
count. Furthermore, Parra (2011) recognised the need for runtime context extensions.
The authors discussed that in their approach context observables not defined in the
initial aspect model cannot be added at runtime. Also, there is lack of runtime reuse
of contexts across multiple products. This then can equate to several duplicate con-
texts running at once. It would be more useful if contexts can be added to the context
manager that can also be used by other products.

52

3.5. RESEARCH GOALS

3.5 Research Goals

From the literature review carried out above, we can conclude that SPL approaches
have be used only for static GUI variability. We can also conclude that while there have
been some proposed approaches to tackle both types of adaptations there are issues.

With the previous work in mind, and their shortcomings, we can therefore specify
the goals of this thesis. In this thesis, our goal is to extend DSPLs to handle GUI
variability, and also to treat context in the system as a standard feature.

3.5.1 GUI Variability Unification

In this thesis we investigate how variability in graphical user interfaces can be unified
in DSPLs. In existing DSPL approaches there has been a focus on support runtime
logic changes, normally within a single language or technology. While a GUI can be
implemented within a single language, our research considers how this variability can
be handled when the GUI is implemented using GUI documents.

Enabling the use of GUI documents within the DSPL process can offer advantages.
Firstly, it should provide a unified representation of GUI adaptation. This unification
has been an aim for previous work on program logic, and should also apply to GUI
documents. By unifying adaptation, GUI adaptation can be applied either statically at
compile-time or dynamically at runtime depending on the specific needs of that project.

Next, there are many considerations that need to be taken to in to account when
considering GUI adaptation in DSPLs. One such consideration is configuration tim-
ing. Logic adaptations are applied when a DSPL reconfiguration occurs. With GUI
changes, depending on the granularity of the changes, it may not be best for every
refinement to be added at anytime. Within the lifecycle of a GUI, there are two main
phases in which a refinement should be applied, on inflation or while it is active. The
inflation of a GUI can be regarded as when the GUI is being constructed during the
transition from one screen to another. In contrast, the active phase of a GUI is while
the screen or GUI is currently active and visible to the user.

3.5.2 Context as a Feature

Additionally we claim in this thesis that context within a DSPL can, can be unified as
a feature of the DSPL, both at the modelling stage, and how it is handled at runtime.
Hinchey et al. (2012) recognise that on going DSPL research is attempting to enlarge

53

3.6. SUMMARY

variability modelling approaches to capture context descriptions and decision making.
If context is considered a completely different element to the system, it requires differ-
ent modelling techniques, and lacks the benefits that a DSPL can bring to the rest of
the product. In previous work, DPSLs are driven by context by that the system recon-
figures depending on what contexts are active. When considering context as a feature
of the system, we not only consider context as state, but also the implementation that
acquires infers is state. This means that each context should be capable of dynamic
binding, just as other features in the system. By using dynamic binding with contexts,
these components can then be used dynamically, allow the system to adapt its own
context retrieval.

By considering context as feature we believe that benefits can be found. Firstly
a benefit is that we can use a unified modelling language to represent context, the
system in which it operates, and the changes it makes. This is beneficial as it allows
it allows the developer to be able consider the relationships between the contexts on
a conceptual level, but also implementation level. Another modelling benefit is be able
to need only to understand one modelling syntax and semantics.

A second benefit, is that like other features of the system, these features should by
able to be static and dynamic. In previous work, contexts are defined and deployed at
compile time, making them unable to change at runtime. Particularly with mobile de-
vices, if context is used to help improve an application, that should not just be confided
to rest of the system, but also to it context retrieval and reasoning. By enabling the
contexts to be dynamic and not just statically added to a product, we believe benefits
to the system can be achieved.

3.6 Summary

In this chapter we have explored several existing approaches related to the work in
this dissertation. Firstly we describe and discuss existing DSPL approaches. These
approaches though do not concentrate any attention on GUI changes, and instead
only consider program logic adaptation. Next, we considered how GUI variability has
been handled in the past statically, and dynamically. While plastic UIs have been
proposed to handle static and dynamic adaptation, these are strictly outside of an SPL
approach. Lastly we considered how context is used in DSPLs and other context-
aware applications. It is show that within DSPLs, context is normally handled as a
static issue, which is restrictive.

54

3.6. SUMMARY

With this, the state of the art of this thesis is concluded. In the following part, the
contributions of this thesis are presented for both GUI variability and context handling.

55

Part II

Contribution

56

4
GUI Variability

Contents
4.1 Introduction . 57

4.2 Types of Variability . 58

4.3 Static and Dynamic Adaptation . 63

4.4 Conclusions . 65

4.5 Summary . 65

4.1 Introduction

A central issue to adaptive GUIs and SPLs is variability. It is this variability that allows
applications to be tailor made, and make dynamic changes to the application GUI
at runtime. In this chapter, we wish to explore the different types of variability that
can exist within the space of GUIs in mobile applications. As these GUIs can be
implemented using a mixture of GUI documents and programming logic, we consider
GUI variability that can be applied to both implementation approaches.

Also, because we are attempting to handle GUI variability both statically and dy-
namically, it is necessary to analyse the different issues that require attention. To-
gether, this chapter aims to define the different requirements of our proposed approach
in the next chapters.

This chapter is organised as follows: In Section 4.2, we describe different types of
variability that can exist in the GUI of a mobile application. Then in Section 4.3, we
discuss the different issues that need to be handled when dealing with both static and
dynamic GUI adaptation. We then conclude the chapter in Section 4.4.

57

4.2. TYPES OF VARIABILITY

4.2 Types of Variability

Variability can affect the GUI in a number of different ways. GUI variability can occur
to suit different localisation/internationalisation and design needs. Particularly in the
instance of internationalisation and localisation, it has been proposed that products
translated for new cultures become entirely new products (Nielsen, 1990; Russo and
Boor, 1993).

While it is the case that this variability can adapt the GUI in an almost arbitrary way
on an implementation level, this understanding can leave a very ambiguous view on
the types of adaptation that can occur. We therefore attempt to analyse what types
of variability can exist within the GUI for both static, and dynamic mobile applications.
We do not attempt to consider all HCI variability types, including different framework-
s/architecture, methods of input etc, but instead try to keep within the immediate area
of the GUI including its look and feel.

Variability of GUI in SPLs has been previous investigated by Pleuss et al. (2012b).
Authors analysed a university management web application by measuring the variabil-
ity across the following concepts:

• Presentation Units. Variability of this concept was mapped to different screens
e.g. HTML pages.

• Dialogue of Presentation Units. This concept considers the navigation of the
web applications, considering the order of HTML pages.

• UI Elements. This considers the different HTML elements. For the variability,
the authors extracted the elements from the HTML, and CSS documents.

• Properties of UI Elements. This concept represents the different logical proper-
ties of each element including default selection etc. This variability was extracted
via attributes that are currently selected in a HTML page.

• Dialogue of UI Elements. In this concept, different input validations are in-
cluded. These were extracted checking for a specific attribute in each HTML
node.

• Layout. Spatial properties and structuring of HTML elements are part of this
concept. In HTML files, the order of different elements and their size attributes
were extracted.

58

4.2. TYPES OF VARIABILITY

• Visual Appearance. This includes the different visual properties of the HTML
elements. For this concept, HTML element labels including div with id were col-
lected.

The presented elements can form a solid basis for GUI variability of many different
systems. We wish to take these different concepts and expand on them in the context
of mobile applications. Furthermore, unlike many desktop web applications, mobile
applications take advantage of different user gestures, and different screen sizes. This
dimension of variability should be considered along with the other presentation related
GUI variability.

4.2.1 Presentation Units

A presentation unit can be described as a collection of UI elements. Presentation
units can differ in the amount of screen real estate they utilise, covering the complete
screen, or alternatively occupy just a certain fragment of the screen. While when using
GUI documents, it is possible to declare only single UI elements, more often it is the
case that each document represents a presentation unit.

In the context of implementing GUIs using programming logic, we define a presen-
tation unit as a single programming module e.g. a class in OOP used for implementing
a view. These views similar to GUI documents can be used for implementing a single
UI element, or a tree of UI elements.

Figure 4.1: Presentation Unit Variability

If we take an example content store application, on the home page, content rec-
ommendations can be advertised to help indicate content they might be interested in.
Since it is possible that not all types of content will be available, due to geographic
position, recommendations for videos should only be be show if videos are available
to buy and view.

59

4.2. TYPES OF VARIABILITY

4.2.2 UI Elements

A GUI is made up as a tree of different widgets, or UI elements. Widgets can take on
either input, output, or both roles. Examples of these widgets can include buttons, ed-
itable textfields, labels, and checkboxes. Not all widgets have to be a visual element,
but can also be used to help shape the GUI. We call these type of widgets, container
widgets, as they are used for containing other widgets. Containment widgets can be
used to shape the GUI by allowing widgets to be arranged in different ways including
linear layouts, that is placing widgets either vertically or horizontally after each other,
and relative layouts, that place widgets in relative positions in the container.

Figure 4.2: UI Element Variability

If we take for example an email application, the ability to sign and encrypt emails is
not a feature many users need and use. Therefore, only in cases when the feature is
needed, are the checkboxes included in the GUI.

4.2.3 Properties of UI Elements

A property of a UI element corresponds to different logical settings of that element.
When considering certain UI elements like checkboxes, and radio buttons, there can
be default selections, also textual hints in text fields to add the user.

Figure 4.3: UI Element Property Variability

60

4.2. TYPES OF VARIABILITY

Taking the same screen as before, particular customers may want the email appli-
cation to sign and encrypt by default. The application should still allow for non signed
and encrypted emails when communicating with clients external to an organisation.
This is then handled by having the signed and encrypted checkboxes checked by de-
fault.

4.2.4 Dialogue of UI Elements

By dialogue, we include reactions that require intervention by a user. This can be
for input validation, or verification of data. Examples of these include maximum input
lengths, and character types in text fields.

Figure 4.4: Dialogue of UI Elements Variability

In the example screen for adding and editing event information in an events man-
agement application, there may be a maximum limit to the amount of attendees that
the event may have. When the user enters the capacity of the event, if the capacity is
above the maximum an error can be shown requiring remedy.

4.2.5 Layout

The layout of a GUI primarily applies to the positioning and sizes of the different UI
elements in the GUI. This also includes ordering of widgets, when contained in order
dependant layouts. Layout variability can be used for a number of reasons. For in-
stance it can be used for ensuring input fields are constant across different corporate
applications. It can also be used for handling different localisation issues, for example
dealing with left-to-right and right-to-left reading users (Russo and Boor, 1993). Lastly,
due to the diverse sizes of mobile devices, and how users hold the devices can drive
the user interface that enable easier interaction different aspects of the GUI.

61

4.2. TYPES OF VARIABILITY

4.2.6 Visual Appearance

For a UI element to be visible, visual properties are needed. Depending on the type
of GUI element, different visual properties can be used to set the visual appearance.
Examples of these include colours, text font type, borders, background images etc.
Variability on this level can be used for enabling a level of visual consistency with other
software systems or themes. These different systems or themes can include having a
consistent look across multiple corporate applications (Brummermann et al., 2011), or
with a given platform.

4.2.7 Orientation

Mobile applications typically run on a range of different screen sizes including phones,
and tablets. Depending on the horizontal and vertical requirements of the GUI, dif-
ferent orientations can be used. These orientations can often either be set, that is,
permanently in portrait or landscape, or can also allow for both orientations. In the
cases where both orientations are enabled, it might be necessary to also alter the
orientations of different UI elements, or alter their position to enable easier handling.

4.2.8 Behaviour & Interaction

Behaviour and interaction is an important aspect of a mobile GUI. GUIs carry out dif-
ferent tasks for the user, including intercepting gestures from the user, and completing
actions when particular events occur. Just like layout, interactions can be related to
localisation issues. For instance, if a slide out menu is to be displayed on the left of
the screen, for left-to-right reading users, it makes sense to intercept sliding actions
from the left edge of the screen to the right. Alternatively, if a menu is to be displayed
to the right of the screen, for right-to-left reading users, it then makes sense to instead
intercept a sliding action from the right edge to the left of the screen.

As an example if we consider the email client application, different gestures can be
used to signal different quick actions to carry on to each email e.g. deletion, or move
to junk. In this application then, depending on the direction of swipe, left or right, a
different action can take place.

62

4.3. STATIC AND DYNAMIC ADAPTATION

4.2.9 Compound Variability

These variability types can be used in isolation, or also compounded and used to-
gether. In some cases, to ensure a consistency across a GUI, variability in the GUI can
encompass more than a single dimension of variability. For instance, when handling
variability to enable a consistent look and feel for corporate applications, it is reason-
able to assume that not only the visual appearance of UI elements will be adapted, but
possibly the layout also.

4.3 Static and Dynamic Adaptation

GUI variability in DSPLs, as proposed in this thesis, should be capable of being ap-
plied both statically at compile time, and dynamically at runtime. Runtime GUI adapta-
tion can be triggered by a combination of automatic e.g. context changes, or manual
changes e.g. switching by the user. When considering adaptation at runtime, there
are a number of different issues that need to be addressed to help ensure the GUI
remains usable by the user.

4.3.1 Timing

During the reconfiguration of a DSPL, the running application is adapted instantly.
While logic adaptations can be applied instantly, this might not be desirable for all
GUI adaptation. Particularly when considering the usability of the GUI, it can become
increasingly confusing to the user when UI elements appear and disappear on the
screen (Holzinger et al., 2012). It could still be the case that updating the properties
of already existent UI elements on the GUI may not cause this issue. Therefore, we
propose that the developer should be capable of applying GUI adaptation at different
times to suit different adaptations.

To support different GUI adaptation times, we consider two different phases where
adaptation in a dynamic GUI may be applicable:

1. On Inflation. The inflation of a GUI can be regarded as when the GUI is created,
either when the application first starts, or during a GUI transition from one screen
to another. It is possible that large amounts of adaptation e.g. presentation units,
may be best suited for this time in the GUI lifecycle.

63

4.3. STATIC AND DYNAMIC ADAPTATION

2. While Active. We consider that a GUI is active when it is currently visible to
the user in the foreground of the device. During this stage in the GUI, smaller
adaptation e.g UI element properties could be more suitable e.g. deactivating a
download button in the situations where an internet connection is not present.

4.3.2 Adaptation Isolation

A GUI can require different amounts of adaptation ranging from a UI element property
alteration to whole presentation units. These adaptations should be carried out only
on the GUI widgets requiring adaptation. Widgets in the GUI can take many different
roles, and can carry out tasks for example video playback. If during an adaptation
video playback is stopped, or affected by pausing, this could potentially be frustrating
to the user. Therefore, unless a widget is being adapted, it should be left to func-
tion normally, even during adaptation. This should lead to less noticeable adaptation
transitions. While for many adaptive approaches, this isolation can be straight forward
to handle, for GUI documents this is less trivial. Existing GUI frameworks commonly
parse each GUI document at runtime when it is required by the system. These are
parsed whole and create the GUI from all the properties that exist in that document.
There is often no ability to parse fractions of these documents, applying only what
properties need to be changed. We therefore need to ensure that despite reading
variants of the GUI as a whole document, we still only adapt the UI elements that
require adaptation.

4.3.3 GUI State

GUIs in a mobile application are rarely stateless. State in the GUI can be altered
directly by user input for example text in a editable textfield, or can be altered indirectly
for example the position of a video playing in a video container. When an adaptation
occurs, we need to ensure that state of the different UI element remains. State in a
GUI during adaptation can be retained in a number of ways. The first method is that
adaptations of UI elements only update the properties of an instance, leaving the rest
of the properties the same. The second is to store the state of the widget, carry out
the adaptation, and copy the state back. In the context of using GUI documents, the
second option will have to be used. Having said this, it may not always be possible
to store all UI state data, due to different platform constraints. If this the case, the
developer will have to decide if the variability will have to remain static.

64

4.4. CONCLUSIONS

4.4 Conclusions

Concluding this chapter we consider the different design decisions that have to be
taken due to the different aspects discussed earlier. Firstly, we can see that there are
many different types of variability that should be supported in the proposed approach.
As discussed, consideration is needed for adaptation to be applicable at different times.
This should be part of the project configuration, thus allowing the issue of timing to be
customisable on a per product. Timing can be applied either to the GUI document
itself, or to the GUI controller that uses the GUI document. To ensure GUI state is
retained, we need to enable the developer to easily handle state transfer between old
and new widget variants. This can be handled by allowing the developer to declare
and reuse fragments of logic for transfering state between any arbitary widget types.

4.5 Summary

In this chapter, different variability types in mobile GUIs were introduced and de-
scribed. Next, different issues relating to the application of the different variability types
statically and dynamically were presented. Finally we consider some of the design de-
cisions required for the proposed approach based on the different adaptation issues
specified. The approach for defining and implementing GUI variability is described in
the following chapter.

65

5
Design Phase

Contents
5.1 Introduction . 66

5.2 Domain Engineering . 68

5.3 Application Engineering . 81

5.4 Summary . 89

5.1 Introduction

DSPLs have provided a method for applying SPL techniques for the development of
adaptive software, which can allow for a unified development of adaptation. There
are still a number of challenges that exist with DSPLs. Firstly, the types of adaptation
focussed by DSPLs has concentrated around program logic. A unified approach for
the GUI however has been neglected. Secondly, context has largely been treated as a
different entity to the system. Consequently, context has required separate modelling,
and is often handled differently to the rest of the system at runtime. Dealing with these
challenges is a primary focus on our DSPL development approach, which is presented
in this chapter.

We present our approach following the Domain Engineering, and Application Engi-
neering processes used in typical SPLs, as depicted in Figure 5.1. Domain engineer-
ing refers to the design and development of the product commonality and variability.
Application engineering on the other hand refers to the creation of software products,
reusing artefacts defined and implemented in the domain engineering process.

66

5.1. INTRODUCTION

Figure 5.1: Overview of the DSPL Approach

Within the domain engineering stage, there are two distinct phases, domain analy-
sis, and domain implementation. For the domain analysis, we introduce an approach
for modelling system variability and context using extended feature models. Domain
implementation is made up of many elements including a Feature-Oriented approach
to handling variability in GUI documents, and GUI related source code variability.

Next, in the application engineering stage, we have the application analysis, and
application implementation phases. During the application analysis phase, we con-
figure the product using static and dynamic composition. Included is the ability to
control when different GUI adaptations can be applied. Application implementation
encompasses the derivation process that produces a product based on the assets
implemented in the domain engineering phase.

This chapter is broken down in the following sections: Section 5.2 presents the do-
main engineering process of the DSPL, introducing the method of variability modelling,
and implementation. Section 5.3 then describes how an application is derived from the
SPL, including code transformation and generation. Finally, the chapter is summarised
in Section 5.4.

67

5.2. DOMAIN ENGINEERING

Figure 5.2: Feature Model Meta Model

5.2 Domain Engineering

In this section, we describe the domain engineering process of our approach. Within
this process, we focus on domain analysis, and implementation. For the domain anal-
ysis, we focus on the need to model the variability of the DSPL, and the different
contexts that the system needs to recognise at runtime. These models are modelled
using extended features, which allow us to model the application and context without
the need for supplementary models.

Following the domain analysis, we can implement the commonality and variability.
In our approach, we apply Feature-Oriented Programming concepts to enable the abil-
ity to implement GUI document variability. We handle this variability using document
refinements.

5.2.1 Feature Models

Feature modelling has become the de facto modelling language for SPLs, whereby
system commonality and variability is modelled in terms of features. One issue with
using plain feature models is that while the domain engineer can express feature re-
lationships, it does not allow for more information about features to be expressed.
Because of this, our work is based around the use of extended feature models. Ex-
tended feature models allow for extra information to be attached to features (Benavides
et al., 2010). Extended feature models add the concept of feature attributes, which are

68

5.2. DOMAIN ENGINEERING

attached to features. Feature attributes commonly are formed of a name, a domain,
and a value (Benavides et al., 2005).

In Figure 5.2, we present a meta model of our feature model incorporating feature
attributes, which is an extension of the GUIDSL feature model, used in FeatureIDE
(Kastner et al., 2009). Our extension has been added onto the meta model presented
in (Thüm, 2008). In the meta model, all compound (including the root feature) and
primitive features contain a unique name, whether the feature is optional or not, and if
the feature is abstract. Abstract features are features that contain no implementation
artefacts, and have been proposed as being used purely to help structure the model
and make it more readable (Thum et al., 2011). Compound features are parent fea-
tures, that contain a number of subfeatures, using a group relationship of Or, And, or
Alternative. Each feature can contain any number of feature attributes, each containing
a name, domain, and value, following previous proposals (Benavides et al., 2010).

The feature model also can contain any number of constraints. Constraints are built
recursively, allowing for constraints to be formed of other existing constraints. Connec-
tives such as Not, And, Or, and Choose1 can be used. The Choose1 connective is
used when only a single constraint is true while the rest are false.

Using this meta model, we can model the main application. Following the modelling
of application, we need to express the context model for the running DSPL application.

5.2.2 Context Model

The context model is used to help represent the different conditions that can cause a
change in the application. By using a context model, different raw context data can be
abstracted to form high level situations. When modelling context, Bettini et al. (2010)
identified considerations that should be considered, some of which are the following:

• Heterogeneity and mobility. Contexts are not all the same, and can differ in a
number of ways. These different ways include the rate in which they update, the
type of data they obtain, and the method in which they obtain the context data.
Context acquisition should be adaptable to a changing environment, especially
when in mobile applications.

• Relationships and dependencies. Different relationships can exist between
contexts. Particularly when dealing with higher level context data, changes in
lower level context information can call a value change in dependant higher level
contexts.

69

5.2. DOMAIN ENGINEERING

Figure 5.3: An Example Context Model

• Reasoning. Different higher level context information should be able to be ob-
tained by lower level atomic contexts. This can be broken down into two parts.
Firstly, context information should be able to be derived by raw context data, by
binding context definitions to specific context data values. Secondly, higher level
contexts should be able to reasoned over, by the combination of other contexts,
producing compound contexts.

• Usability of modelling formalisms. Context models are created by developers,
and then used in context management systems. Because of this, context models
should provide an easy method of modelling real world concepts to constructs in
the model.

Based on these requirements we propose to model context using the feature model
meta model presented in Figure 5.2. In Figure 5.3, an example context model has
been depicted. This model captures the different states that can exist for 5 different
context types, Battery, WIFI, Telephony, Internet and DataSync. These contexts can
then have each of their values defined in terms of the raw data necessary for such a
context value.

To specify different elements of the model, three categories of features are used in
the context model including:

• Group. Group features are those designed to aid in readability of the model. This
means that they do not relate to any specific context, but can be used for grouping
appropriate contexts together in specific categories. These feature types are
represented as abstract features, and therefore are shown in the feature diagram

70

5.2. DOMAIN ENGINEERING

as a lighter colour. As an example in the context model, the five contexts that are
visible are regarding the context of the device. Therefore we can put all these
contexts within a group called device.

• Context. Context features correspond to atomic contexts. For example in Fig-
ure 5.3 you can find there is a context for Battery, Wifi, and Telephony. These
features can either point to concrete context implementations used later for sens-
ing that specific context, or they may be empty, using an already present imple-
mentation in the middleware. By using the feature relationships including manda-
tory, optional, Or, and Alternative, the developer can control what contexts must
always be active, or not. Taking the context model as an example, the battery
context has a mandatory relationship, so it should be always be active. The other
contexts though can be switched on or off because of their optional relationships.

• ContextValue. These feature types are found as the terminal nodes of the fea-
ture model. A context value is a particular high level value that can be deduced
from the context engine. These values can be seen as abstracted values based
on raw context data, or other context values. These abstracted values can aid
in defining understandable context rules and aggregations, and allow the context
acquisition engine only to report when those values are found. In our model, con-
texts can only have a single state at any given time, and this is expressed using
the alternative feature relationship with the context feature. Finally, to express
the actual raw context data that is abstracted by the particular context value, we
use feature attributes. In the feature attribute we define the type of raw data
that needs to be handled, including a name, the type of data, and the raw data
value(s) to check against. As an example, we have a ContextValue feature called
BatteryLow representing when there is little charge remaining in the battery. This
ContextValue has a feature attribute describing what raw data represents a bat-
tery with low charge, which is a range of zero to 10 percent.

In a context model, the hierarchical structure of the model is important in expressing
different constructs of the model. When modelling atomic contexts, there are a set of
constraints that need to be observed. Firstly, ContextValue features must have at
least one feature attribute. Secondly, Context features are always direct parents of
ContextValue features. Lastly Group features are either parents of Context features,
or other Group features.

71

5.2. DOMAIN ENGINEERING

Context Aggregation

Contexts discussed so far are those that we describe as atomic contexts. Atomic con-
texts are those that deal with a single source of context information that can function
in isolation. There are times however when a context is not based on a single piece of
data or situation. We call these aggregated contexts, composite contexts. A composite
context is one that is based on the conditions of a collection of other contexts. A com-
posite context can be made up of a collection of atomic, or other composite contexts,
to form higher level knowledge of a given situation.

As an example of context aggregation, let us consider the composite contexts in
the context model in Figure 5.3. In this model we have two composite contexts called
Internet and DataSync. The Internet context allows us to monitor if the device currently
has an internet connection over either the Wifi, or telephony connection. The DataSync
context allows the device to know what situation is best to synchronise data for an
application, based on the internet connection and battery life.

To model composite contexts in the context model, these are defined in a similar
fashion to atomic features, but with some differences. Composite contexts can be de-
fined using Context features, with ContextValue features being used to specify each
state of the context. How the definition of composite contexts differs is that feature at-
tributes are not required, as they are with atomic contexts. After the composite context
has been added to the feature model tree, aggregation rules are needed. These rules
are expressed using propositional constraints.

If we take the current composite example, first we can express the composite con-
text internet connection context as:

Tele3G ∨ Tele4G ∨WifiConnected⇒ InternetOn

Next, to write the aggregation rule for the DataSync composite context, we can express
this as:

(BatteryHigh ∨BatteryMedium) ∧ InternetOn⇒ DataSyncOn

Once the context model is complete, the context events can be modelled.

72

5.2. DOMAIN ENGINEERING

Figure 5.4: Feature Model Aggregation

5.2.3 Context Event Rules

DSPLs allow for dynamic reconfiguration, which can be driven by context changes. To
enable this reconfiguration, it is necessary to model these context events that cause
a configuration change. Reconfiguration of the DSPL can include the activation/de-
activation of application features, and contexts. By changing the activation status of
application features, the application can be adapted to behave or be visually different.
Changing the status of Context features on the other hand can define if a context is
needed or not by the system.

Context events are expressed much in the same way as context aggregation rules,
using propositional constraints. These rules are used to bridge features in the appli-
cation feature model, with features in the context feature model, acting as intra-model
constraints (Acher et al., 2009). By using this method, we can control what applica-
tion features are activated when a feature is activated in the context model, e.g. a
ContextValue feature.

To model these intra-model constraints, we create an aggregate feature model.
This aggregated feature model is formed of the application feature model, and the
context feature model. Each model becomes a mandatory child of a larger model as
depicted in Figure 5.4, proposed by Acher (2011). This aggregation is carried out
automatically. The developer can then define these intra-model constraints on the
aggregated feature model. Taking our scenario application into consideration, videos
and music should only be able to be downloaded providing there is enough storage
space on the device. If there is not enough space, the content is streamed instead.
This then requires a context for monitoring the amount of storage on the device, which
can be used to adapt the application to only allow content streaming. We could express
this rule as:

StorageLow ⇒ Streaming

Also, as described earlier, context events can be used for defining whether a context

73

5.2. DOMAIN ENGINEERING

is required by the application or not. As an example, in an application that is running
low on battery power, it could be beneficial to stop monitoring the current location of
the device. This can be express as:

BatteryLow ⇒ ¬GPS

This modelling approach shares many of the same ideas proposed by (Moisan et al.,
2012). Where we differ is that we use extended feature models instead of basic feature
models. By using extended features models, we can attach context values to the con-
texts using feature attributes. If basic feature models are used however, these context
values need to be defined elsewhere in a separate model or definition. Also, other
works have shown, reasoning on feature models including feature attributes increases
computation complexity (Cordy et al., 2013). Instead of reasoning using the feature at-
tributes, our approach uses feature attributes to just store the context values required
for the context acquisition system. Reasoning is therefore only carried out over the
features, making the model easier to reason over.

5.2.4 GUI Document Variability

Following domain modelling, domain realisation can take place. We start this process
by implementing the GUI variability. As our focus is on use of GUI documents in GUI
development, we look at how we can express this variability in this type of artefact. In
our approach, variability is handled using positive variability, whereby different variable
elements are added to a common base based on what features are present (Voelter
and Groher, 2007). Variable elements of GUI documents are expressed using GUI
document refinements, and are applied in a stepwise fashion.

Document Refinements

To implement variability in GUI documents, we propose to follow the approach used in
FOP. Refinements to GUI documents bring about changes to the GUI they represent.
Within a refinement, widgets displayed to the user can either be added, or can be
altered to have a different property e.g. colour, shape, or size. Document refinements
are implemented using physical separation of concerns, whereby each refinement is
held within its own file. These refinements are contained in feature modules, along
with other source code refinements, and documentation for feature cohesion.

74

5.2. DOMAIN ENGINEERING

Within each GUI document, nodes in the GUI tree are expected to have a unique
identifier. These identifiers can then be used for searching and identifying nodes within
the tree. This is needed when specific ordering is needed, as described later. In List-
ing 5.1, we depict a GUI refinement that refines the home page of a content store
application to add GUI elements to allow the user to browse video content types.
As shown, we see that for Android applications, GUI element identifiers are defined
with the android:id node attribute. When adding additional widgets to the GUI tree,
all parent nodes are needed. In the example we can see that a button named with
@+id/videos has been added to the tree. To add or override a node attribute, the at-
tribute and its value is needed in the refinement node. If that attribute is then found to
exist during composition, it value is overridden, otherwise it is added as an additional
attribute. Within a refinement, the only attribute that can not be overridden are node
identifiers.

Listing 5.1: An Android GUI Document refinement
1 <FrameLayout

2 android:id="@+id/mainFrame">

3 <LinearLayout

4 android:id="@+id/mainlayout">

5 <LinearLayout

6 android:id="@+id/contenttypes">

7 <Button

8 android:id="@+id/videos"

9 android:layout_width="160dp"

10 android:text="@string/videos" />

11 </LinearLayout>

12 </LinearLayout>

13 <LinearLayout

14 android:id="@+id/adverts">

15 <LinearLayout

16 android:id=@+id/videoAd

17>

18 <TextView

19 android:id="@+id/TopMovies"

20 android:text="@string/TopMovies"

21/>

22 </LinearLayout>

23 </LinearLayout>

24 </LinearLayout>

25 </FrameLayout>

75

5.2. DOMAIN ENGINEERING

Refinement Ordering

Ordering can be an important issue when handling GUI document refinements. Gen-
erally in GUI documents, the relative position of GUI elements is defined by the docu-
ment structure. Therefore, if a button in a vertical part of the GUI is defined before a
text field in a GUI document, it will also be placed this way on the GUI. Ordering can
partially be accomplished by composing features in a particular order, but this does
not help when a UI element needs to be placed before an element in the base feature.

Tools for composing non source code assets, for example XAK (Anfurrutia, Dı́az
and Trujillo, 2007), partially reduced this problem with the ability to place items either at
the beginning (prepend) or at the end (append) of the parent node. This is sometimes
not enough, and the issue of ordering can still be difficult to achieve with shallow trees.
In order to alleviate this issue, we propose a set of keywords that be used for node
hooking. We propose the ability to insert nodes either before, or after a given node
within a shared parent node. This can be achieved on multiple nodes, by placing the
list of nodes within that particularly keyword block.

Because many software development kits (SDKs) allow for graphical editing of GUI
documents, it is good to avoid parsing errors caused by using tags/keywords that may
try to be read by that SDK. To do this, our keywords are used within source code
comments, which should allow for the GUI documents to be read by SDKs without
parsing errors. In Listing 5.2, we depict two examples of placing a button both before,
and after a particular widget in an Android GUI document. In our scenario application,
we would use the after mode for both Music and Video buttons to make sure each
button is underneath the Applications menu button. Each set of widgets that need to
be placed before or after a widget need to be placed within a @start and an @end

comment. In each comment, the type of position needs to be specified, before or
after, followed by the identifier of the widget. If no widget identifier is specified, or
widget specified does not exist in the same parent node on both trees, the keywords
serve the same purpose as XAK, whereby the set of widgets will be placed either at
the beginning or end of the parent nodes set.

Using these keywords and a relative composition order, widgets can be more pre-
cisely placed within a GUI document. The relative composition order is the order in
which features should be composed together. This order does not just affect the com-
position of GUI documents, but all artefacts in the feature module, including source
code.

76

5.2. DOMAIN ENGINEERING

Listing 5.2: Refinement Ordering Tags
1 <!-- @start before android:id="@+id/btnApps" -->

2 <Button

3 android:id="@+id/btnVideos"

4 android:layout_width="match_parent"

5 android:layout_height="59dp"

6 android:contentDescription="@string/videos"

7 android:text="@string/videos" />

8 <!-- @end before android:id="@+id/btnApps" -->

9
10 <!-- @start after android:id="@+id/btnApps" -->

11 <Button

12 android:id="@+id/btnVideos"

13 android:layout_width="match_parent"

14 android:layout_height="59dp"

15 android:contentDescription="@string/videos"

16 android:text="@string/videos" />

17 <!-- @end after android:id="@+id/btnApps" -->

5.2.5 Source Code Variability

While static visual properties of the GUI are important, other elements of the GUI,
handled in source code, may also exhibit variability that needs implementing. Vari-
ability can include adaptation to the behaviour of the GUI or any arbitrary part of the
application. This source can refer to the controller and/or the model, in the MVC. Each
controller handles the different events from the GUI, and can update the model or alter
the view in the application. Here we discuss how the developer can handle GUI related
variability implemented in the main source code.

In this dissertation, we do not propose a new approach for modularising source
code. Instead we use existing language approaches, like Feature-Oriented Program-
ming (FOP). By using this language based approach, the developer can realise source
variability using refinements, allowing for a single method for realising product variabil-
ity. How refinements are handled though are not always suitable for GUI adaptation.
Method refinements for example are only executed when the refined method is in-
voked. These methods may or may not be executed, but GUI adaptation often needs
to be executed straight away. Therefore, we need an approach to modularise GUI
adaptation that will require execution when the DSPL reconfigures.

We support this GUI adaptation by structuring our GUI controller class to use two
specific methods. The first method is to handle all GUI initialisation operations relating
to the GUI document, with the second dealing with other arbitrary GUI adaptation.

77

5.2. DOMAIN ENGINEERING

GUI Document Initialisation

GUIs are created at runtime by parsing a GUI document into a tree of GUI widgets,
a process that has been called inflation (Kramer et al., 2013). These GUI documents
can either contain the entire GUI, or can contain a reusable fragment that maybe used
several times within the same GUI. An example of a reusable fragment includes the
GUI layout for a single row in a scrollable list.

When displaying a GUI tree or subtree, inflating the GUI document may not be
the only operation needed. There can be a number of initialisation operations that
need to be executed. Examples of these operations include adding onClickListeners
to buttons for handling user touch events, setting class fields to widget object instances
etc. These operations are only typically required when a new GUI screen is created,
normally when a particular controller class is instantiated. With dynamic adaptation
however, some initialisation operations may need to be carried out during adaptation,
due to GUI tree changing.

Executing the same set of operations on every adaptation is not a good option.
A single screen can be built using multiple GUI documents, therefore there can be
multiple portions of the screen adapting independently. It is also possible that within
a GUI, there are several instances of the same GUI document in a single screen. It
would be better if only the operations required for an adapted portion of the GUI are
executed. This can be handled by separating these operations into separate class
methods, one for each GUI document. These methods are then only invoked if that
GUI document has been inflated during a screen transition or adaptation.

Listing 5.3: Initialisation Method Refinement
1 public void onCreate_homescreen(ViewGroup vg) {

2 original();

3 Button btnVideo = (Button)vg.findViewById(R.id.btnVideo);

4 btnVideo.setOnClickListener(new OnClickListener() {

5 public void onClick(View v) {

6 gotoVideoStoreScreen();

7 }

8 });

9 }

Each of these methods should be named onCreate_ followed by the name of the
GUI document it initialises, with the GUI tree passed as an input. In Android the GUI
tree passed is a ViewGroup object. As different widgets are added to the GUI docu-
ment in different features, refinements to this method can be defined to initialise those

78

5.2. DOMAIN ENGINEERING

widgets added. In Listing 5.3, we depict a refinement of the initialisation method for the
GUI document homescreen.xml for our scenario application. In this method, we are
adding a onClickListener to the button for Videos, named btnVideos. As you can see,
because this method is not a base method, but a refining method, we use keyword
original as used in FeatureHouse to specify when the statements should be exe-
cuted, either after the last refinement or before. This ensures that other intialisations
in the refinement chain are invoked first.

These initialisation methods are not just used for dynamic adaptation, but can be
reused within the class. The developer can then use these methods for initialising the
GUI when it is created in the first place.

Other GUI Adaptations

GUI adaptations can encompass a number of different types of changes. Not all adap-
tations to the GUI may be visual, or implemented using GUI documents. Examples
described earlier in this thesis include gestures that may be used within an applica-
tion. These operations may need to be carried out both when a GUI is created, or later
on during a reconfiguration.

For these operations, we propose these be placed within a method named
onGUIConfiguration. This method can be refined in class refinements to modularise
these operations according to specific features. We can also call the method within
the class constructor, if the operations are needed when the GUI is created. We depict
an example in Listing 5.4. In this example, we are adding a gesture that removes a
given element from a list. This gesture is activated when the user swipes a list element
from one side of the screen to the other. The operations within a onGUIConfiguration

method are not automatically reversed when a given feature becomes inactive. To
avoid issues where changes become irreversible, statements to set that property to its
default value should be defined as the base version of this method.

Listing 5.4: An example onGUIConfiguration Method
1 public void onGUIConfiguration() {

2 SwipeDismissListViewTouchListener touchListener =

3 new SwipeDismissListViewTouchListener(

4 listView,

5 new SwipeDismissListViewTouchListener.OnDismissCallback() {

6 public void onDismiss(ListView listView, int[] reverseSortedPositions) {

7 for (int position : reverseSortedPositions) {

8 adapter.remove(adapter.getItem(position));

9 }

79

5.2. DOMAIN ENGINEERING

10 adapter.notifyDataSetChanged();

11 }

12 });

13 listView.setOnTouchListener(touchListener);

14 listView.setOnScrollListener(touchListener.makeScrollListener());

15 }

5.2.6 GUI State Retention Templates

It is important that the state of the GUI is retained during an adaptation. GUI state can
encompass many different values for example text contained in an editable text field,
or whether a checkbox is checked or not. Because updated widgets are effectively
swapped from the current to the new widget variants, it is therefore necessary to move
state from the old to the now current widgets.

To handle state transfer, we use code templates for each widget which can be used
for handling state transfer between old and new widget variants. A template sample
for TextField widgets is depicted in Listing 5.5, with the old and new widget variant
references being contained within “<>” brackets. Each template is contained within
it own file, with the filename being the name of the widget class it handles. During
product derivation, templates are then used on the basis of what widget types are
adapted at runtime. If a widget type is not being adapted, that template is therefore
not used.

Listing 5.5: Code Template for some Android Widgets
1 //Template for Label and TextField Widgets

2 <NEW_WIDGET>.setText(<OLD_WIDGET>.getText());

3
4 //Template for ImageView Widgets

5 <NEW_WIDGET>.setBackground(<OLD_WIDGET>.getBackground());

6
7 //Template for Checkbox Widgets

8 <NEW_WIDGET>.setChecked(<OLD_WIDGET>.isChecked());

Because each of these templates are created for each widget, they can be reused
easily over multiple SPLs. These templates for many developers then may only need
to be defined once, and are then reused many times over different DSPL projects.

80

5.3. APPLICATION ENGINEERING

Figure 5.5: Product Derivation Phases

5.3 Application Engineering

In this section we describe our application engineering process, used to derive soft-
ware products. This process is illustrated in more detail in Figure5.5. First the prod-
uct configuration needs to be defined. Following the configuration, the process splits
based on if the product is dynamic or static. If the product is a static configuration,
only the GUI documents require static composition. A dynamic product however re-
quires the different GUI document variants to be generated. These variants are then
used to handle the runtime variability of the GUI documents. Following this step, code
generation and transformations are required to enable runtime adaptation of the GUI.
Finally, for both types of product, static, and dynamic, the source code will need to be
preprocessed using the appropriate language preprocessor.

5.3.1 Configuration

The first step in product derivation is configuration. When creating a configuration for
a DSPL, the developer needs to select what features are present in the final DSPL
application. These features can either be static, whereby they are bound at all times
in the runtime application, or dynamic, whereby they are included with the application,
and bound only when needed. This means that some features which should never
be bound in a running instance of the DSPL can be not included in the application.
Features that are then not included in the application are no longer needed.

81

5.3. APPLICATION ENGINEERING

Compound Features

In a SPL, a product can be made of many features. While DSPLs give the ability
to bind features at runtime, in many cases, not all features require dynamic bind-
ing. Dynamic binding can be used for every feature, however this has been shown
to have a penalty in terms of compositional overhead (Rosenmuller, 2011). To help
minimise compositional overhead while keeping necessary runtime flexibility, Rosen-
muller (2011) proposed combining static and dynamic composition, using dynamic
binding units. Dynamic binding units (DBU) are essentially compound features that
are created by statically composing features together. These compound features are
then used at runtime for dynamically binding feature refinements. By using DBUs, the
runtime variability of the system is reduced, requiring the aggregated feature model to
be refactored.

We refactor the aggregated feature model using the steps proposed by Rosenmüller
et al. (2011a):

1. Remove all dead features that can not be selected in the runtime configuration.
Dead features include others features in an alternative variant point. These fea-
tures should then also be removed from existing constraints with other features
in the model.

2. Compound features are added to the feature model. This is accomplished by
creating a feature for every dynamic binding unit declared. These features then
replace the containing feature closest to the root feature. Next, that replaced
feature is added as a mandatory child of the compound feature. In the instances
where the root feature is included in a compound feature, the compound feature
is then added as a mandatory child of the root feature.

3. All features contained within a dynamic binding unit including their subtrees are
moved to become mandatory children of the appropriate compound feature. This
causes all features to be selected when a compound feature is selected.

4. Lastly, constraints that are no longer needed are removed.

Following the feature model refactoring, it is possible to reduce the feature model
by removing mandatory features. If mandatory features are removed from a compound
feature, the constraints of the feature model will need to be updated by replacing the
removed features with their compound feature.

82

5.3. APPLICATION ENGINEERING

As we described earlier, features that are not a configuration are not present in
the final DSPL system. This is based on the existence of each feature in a DBU. All
features that are not in a dynamic binding unit can therefore be considered not part of
the product.

Adaptation Timing

Adaptation Timing in an important issue as discussed in Chapter 4. We proposed that
GUI adaptation should be applied during two different phases in the lifecycle of a GUI,
on inflation, and while active.

By default, all dynamic GUI variability is handled at inflation. To enable adaptation
to an active GUI for a DBU, explicit declaration is required. We declare every GUI
controller class that can be adapted while currently active. This declaration applies to
all types of GUI adaptation, including operations placed in the onGUIConfiguration

method.

Static Products

A configuration can lead to both a static and dynamic product. As the product con-
figuration is based on DBUs, the product can be understood to be static if only a
single DBU has been declared. If the configuration is for a static product, only static
composition is required. Also, as there is no dynamic variability in the system, context-
awareness and runtime reconfiguration is not needed. With this in mind, runtime DSPL
middleware, context model, and context rules are not needed for this running applica-
tion.

The first step required is GUI document composition, as shown in Figure 5.5. This
example is taken from our scenario application showing the menu adaptation for dif-
ferent content. This step takes the different refinements in composition order, and
superimposes each refinement in a stepwise manner, as explained later. Following
this step, the product is left with single variants of the different GUI documents in the
SPL. After all GUI documents have been composed, composition of the main applica-
tion source code needs to take place.

Composition of the main application source code is handled by the appropriate lan-
guage preprocessor/compiler. These preprocessors include the FeatureC++ compiler
(Apel et al., 2005) for C++ code, rbFeatures preprocessor (Günther and Sunkle, 2012)
for Ruby code, and JAK (Batory et al., 2004) and FeatureHouse (Apel, Kastner and

83

5.3. APPLICATION ENGINEERING

Lengauer, 2009) for Java code. These approaches often use superimposition as their
composition technique. Following this, the application can then be compiled for the
appropriate platform.

To compose variants of GUI documents, we rely on superimposition using the ap-
proach proposed by Apel and Lengauer (2008). To superimpose GUI documents, each
document is represented as trees. These trees mimic the GUI tree of widgets that ex-
ist in the runtime system. In each tree, widgets are always parent nodes, with their
properties as terminal nodes of the tree. When these trees are composed, nodes are
composed from the same level. If the same widget is found in both trees, then the child
nodes of both trees are then recursively composed. If a widget node in the refinement
is not found in the base program tree, it is copied across with its child nodes to the
base program. Widget properties are handled in a similar way in that they are copied
to the base tree if they do not exist. If two properties of the same type are found, then
the value of the property in the base program is replaced by the property value in the
refinement.

When parent nodes are composed, if child nodes are found to be within a before

hook, we look for the node defined with the hook. If that node is found, all of the
nodes within the hook are placed at before that node. If the hook block is specified
as an after hook, the different nodes contained in the hook are placed after the node
specified in the hook declaration.

5.3.2 GUI Document Composition

In Figure 5.6, we illustrate how GUI trees are superimposed, producing a composite
tree. With the opening screen of the content store, various buttons are used for adverts
and specific content types e.g. video, music etc. In the base document we have
several UI elements including the application button, and advertisements. In the Video
refinement, we have a button for videos, and a block showing popular movies.

Variant Generation

For runtime adaptation we need to consider a composition approach that can handle
dynamic variability of GUI documents. To handle this variability, there are two different
approaches that can be used.

The first is to dynamically compose the GUI documents at runtime in the DSPL
system. To enable dynamic composition, the base version of the GUI documents,

84

5.3. APPLICATION ENGINEERING

Figure 5.6: Composition of Home screen

85

5.3. APPLICATION ENGINEERING

and refinements need to be deployed with the product. Then depending on the given
configuration, the GUI documents are composed at runtime, when they are needed.
For runtime composition, all composition tools need to be integrated with the main
DSPL application. This approach is often impractical because of constraints of the
target platforms. These constraints include the need for GUI document preprocessing
tools, which can not always be included in the runtime application, and read/write
restrictions for applications.

The second approach is to compose all foreseeable variants at compile time. Then
at runtime, when a GUI document is required, the correct variant is chosen, based on
the DSPL configuration. By following a compile time approach, no composition and
preprocessing tools are required. The approach therefore can be applied more uni-
versally, as most platform constraints do not interfere with the approach. We therefore
use a compile time approach to dealing with the GUI document runtime variability.

Algorithm 1 Generate all GUI variant configurations
Require: A set of relative ordered Features

Guis← GETALLGUIREFINEMENTS(Features)
for Gui ∈ Guis do

combinations← GETREFINEMENTCOMBINATIONS(Gui)
for comb ∈ combinations do

config ← NEWCONFIGURATION(comb)
config.propagateFeatures()
valid← config.isV alid()
if valid = true then

ADDCONFIGURATION(Gui, Config)
end if

end for
end for

To compose all variants, we first need to generate all needed runtime variants, as
depicted in Algorithm 1. When considering variant generation, it is important to pro-
duce only unique documents. If variants are generated by every possible configuration
of the system, it is likely that there will be many document duplicates. Duplicates can
be occur because it is unlikely that a document will be refined in every single feature,
leading to more than one feature configuration for a given variant. We avoid this by
only generating unique and valid GUI variants.

We therefore find all GUI refinements (line 1). Refinements are found by transvers-
ing through each feature module in composition order. Composition order is a relative

86

5.3. APPLICATION ENGINEERING

order that can be set by the user to specify in which order should each feature be
composed in a stepwise fashion. This step ends with a two way mapping between
which features refine each document. Next, for each GUI document name (line 2),
we compute all combinations of features that refine that document (line 3). By car-
rying this out, we get every unique variant of the document, in terms of features in a
configuration.

While all document variants must be unique in their content, they must also be
valid in terms of the feature model. Currently, we only compute all combinations of
features for each dynamic document. We then need to filter all variants that contain
an invalid configuration, in terms of the feature model. For each combination (line 4),
we then create a configuration that can be tested for validity. To do this, we initialise
a new configuration, manually selecting every feature in the combination (line 5). This
is followed by propagating all automatic feature selections (line 6). Automatic feature
selections includes feature selections based on either model structural relationships, or
using model constraints. An example of this includes selecting any feature parents of
manually selected features. The step should end with features being selected explicitly,
or implicitly. We then check the given configuration for satisfiability (line 7), using a
SAT Solver. The configuration is checked by encoding it into conjunctive normal form
(Thüm, 2008; Benavides et al., 2010), creating a SAT problem that can be reasoned
over by a off-the-shelf SAT solver, for example SAT4J1.

5.3.3 Code Generation and Transformation

To support runtime reconfiguration of the GUI at runtime, a number of source transfor-
mations and generation need to take place. First we generate the components needed
to handle runtime adaptation. The first component is the GUI variant manager, whose
purpose is described later in Section 6.5. We generate this component using data
returned from the GUI document variant process.

Next, we generate classes to handle runtime feature composition. We adopt this
idea from FeatureC++ (Rosenmüller et al., 2008). In FeatureC++, feature classes
are generated to handle composition of the different class refinements. We generate
feature classes to hold information on what widgets that particular dynamic binding
unit affects, and to interface with the underlying language extension for source code
composition. A feature class is generated for each dynamic binding unit of the DSPL,

1http://www.sat4j.org/

87

5.3. APPLICATION ENGINEERING

which contains the following methods:

• getAllAlteredWidgets(). This method returns a collection of all the widget iden-
tifiers that are to be adapted by the dynamic binding unit.

• addSourceRefinements(). This method is used to compose the current system
with the source code refinements. We can do this by making the appropriate
calls to the underlying language API or language keywords.

• removeSourceRefinements(). This method is used to to remove the current re-
finements from the current system. Just like the previous method we make the
appropriate calls to the underlying language API or language keywords.

Following the generation of these components, source transformations are needed.
First, for all classes that require GUI adaptation while the GUI is active, declared ear-
lier, additional methods are required. We generate a method to handle the adaptation
of every GUI document which that class uses, which we describe in more detail in Sec-
tion 6.4.1. Each of these methods handles the inflation and composition for a particular
GUI document.

Also references to GUI documents need to be updated so that the correct variant
of that document is used. For example in the Android platform, different methods
including setContentView and inflate use the GUI document as a parameter. The
inflate method takes a GUI document, parses it, and returns a GUI tree that can
be applied to the screen. If the setContentView method is used, this inflates and
applies the GUI tree to the screen automatically. These methods therefore need the
correct document variant when they are invoked. If these method calls are found within
classes or class refinements, they are altered to get the correct variant first, before then
parsing it to the invoking method, as shown in Listing 5.6.

Listing 5.6: Code transformation of an Android method
1 //Original Implementation of onCreate() method

2 @Override

3 protected void onCreate(Bundle savedInstanceState) {

4 super.onCreate(savedInstanceState);

5 setContentView(R.layout.activity_main);

6

7 }

8
9 //Implementation after transformation

10 DSPLResourceGetter dsplrg = (DSPLApp)getApplicationContext(). getDSPLRG();

11 @Override

88

5.4. SUMMARY

12 protected void onCreate(Bundle savedInstanceState) {

13 super.onCreate(savedInstanceState);

14 setContentView(dsplrg.getResourceVariant(R.layout.activity_main));

15 ...

16 }

5.3.4 Language Preprocessor/Compiler

Language approaches including FOP allow for modularisation of adaptation, which is
then preprocessed at compile time. Depending on the language approach used, differ-
ent transformations are carried out. For example with FeatureC++, class refinements
for runtime adaptation are transformed using the decorator pattern.

We, therefore, following the code transformations proposed earlier, preprocess and
compile the source code using the appropriate tools, to get the final DSPL product.

5.4 Summary

This chapter presented an approach for designing and implementing a DSPL that in-
cludes GUI variability. We have shown how the application and context can be mod-
elled using a single modelling notation. Next we described how variability in GUI doc-
uments can be realised allowing for static and runtime adaptation. This approach
requires different derivation processes to handle these two adaptation strategies.

In the following chapter, we describe how the DSPL can continue to modify itself at
runtime, using the assets created in the domain engineering phase of developement.
Attention is paid to the centralised management system, and the different components
that assist in adaptation of the GUI.

89

6
Runtime Phase

Contents
6.1 Introduction . 90

6.2 Application Architecture . 91

6.3 FeatureDroid . 92

6.4 GUI Adaptation Manager . 102

6.5 GUI Variant Manager . 107

6.6 Summary . 108

6.1 Introduction

So far we have discussed the different development phases involved with the SPL. Un-
like a conventional SPL, a DSPL continues to reconfigure and adapt at runtime. This
adaptation can be caused by manual feature selection, or by context changes. We
therefore require a management system to manage the different context events, and
to handle the automated system reconfiguration. Because it is possible to have more
than a single mobile DSPL running simultaneously, it would be beneficial if such a sys-
tem was not packaged with each application. By having a single DSPL management
system on the device, we can get greater runtime reuse of this component.

The rest of this chapter is organised as follows. First, we describe the architecture
of DSPL application, which is an output of the activities carried out in the last chapter
in Section 6.2. Next in Section 6.3, we present the DSPL middleware designed to
manage the contexts and configurations of each DSPL. Following this, in Section 6.4,
we describe the GUI Adaptation Manager component, responsible for managing the

90

6.2. APPLICATION ARCHITECTURE

Figure 6.1: Application Architectures

adaptation of the GUI and its business logic. Next in Section 6.5, a description of the
GUI Variant Manager component is presented. This chapter is finally summarised in
Section 6.6.

6.2 Application Architecture

Following the derivation process, a mobile DSPL is produced. The main components
of the application are the following:

• DSPL Middleware named FeatureDroid facilitates context acquisition, and prod-
uct configuration management.

• Application Source is the main source code of the application, that can be
adapted based on the changing product configuration.

• GUI Adaptation Manager invokes the adaptation in the GUI when a reconfigu-
ration takes place.

• GUI Variant Manager provides the ability to manage what GUI document vari-
ants are appropriate for the current configuration.

Two different architectures are depicted in Figure 6.1. These two architectures illus-
trate the two different usage scenarios of the DSPL middleware. The first architecture
illustrates the middleware being used as a separate entity, running isolated from the
DSPL application. By running the middleware in isolation to the application, the mid-
dleware can provide the same support to multiple running DSPL applications on the

91

6.3. FEATUREDROID

Figure 6.2: FeatureDroid Architecture

device. This can improve runtime context reuse, as contexts can be used to monitor
for multiple applications. It also means that on mobile platforms where applications
have set memory limits, the memory required for the middleware can be removed from
the DSPL application. This can also save memory on the device, as multiple instances
of the middleware are therefore not required.

The second architecture depicts the DSPL application being completely standalone.
This scenario entails that the DSPL middleware is bundled with the main application
and the other components. In this approach, this can allow for greater security, as all
product feature and configuration data, along with context components can be part of
the same application sandbox as the main application.

6.3 FeatureDroid

As part a DSPL, runtime management code is required for managing the features
and contexts at runtime. In this section, we discuss our proposed DSPL middleware,
named FeatureDroid designed to carry out this role.

92

6.3. FEATUREDROID

6.3.1 Middleware Architecture

The middleware can be seen to be made up of three main components as shown in
Figure 6.2 including:

• Context-Acquisition Engine. This component primarily controls and handles
all acquisition of context data, reasoning for higher level context information, and
context component life cycles.

• SPL Management. This component controls and handles the main SPL man-
agement. This includes feature management for the different running feature
models, and their configurations.

• Middleware Management. This component brings the two previous compo-
nents together. It also acts as the agent for providing communication between
the other two components, and also the running application using the middle-
ware.

6.3.2 Context-Acquisition Engine

Context can be used to monitor the current situation of the user and/or device, and
then alter the DSPL configuration. To monitor each context, a context management
system is required. Here, we introduce the context management component of the
DSPL middleware.

Context Component

A context component is self-contained, and manages a particular context. Context
components are implementations of the atomic contexts defined in the context model,
back in Section 5.2.2. Each context component has its own lifecycle that is managed
by the context manager.

In Figure 6.3, we outline the structure of a context component. Each context com-
ponent is described with a name. The name of the context component should match
the context it implements in the context model. Context components are designed to
allow for different context value definitions in context models. We enable this ability
by the use of ContextValueSets. A ContextValueSet is a collection of values that are
used to infer particular contexts. Each application using the context engine has its
own ContextValueSet, allowing multiple context definitions to be handled by a single

93

6.3. FEATUREDROID

Figure 6.3: A Context Component

instance of that context component. By using context components, more meaningful
context information can be inferred from raw context data. By inferring higher level
information about the context, we need not inform the application about every change,
but only relevant ones. For example, battery level in devices is numerical. It is proba-
ble that not every change in percentage is required by larger changes for example, if
the battery level is high, medium, or low. This type of data is handled by ranges. Each
ContextValueSet has an ApplicationKey, which acts as an identifier to what applica-
tions do to these context values below. This then allows each application to define its
own context values, which can all be reasoned over together.

Context Engine Manager

Context components are managed by a centralised context manager, as shown in
Figure 6.4. All context component life cycles are managed by the manager to suit
the needs of all applications using contextual information. The ContextManager is
designed to handle static and dynamic context deployment, and to handle all commu-
nications back to applications subscribed to context updates.

94

6.3. FEATUREDROID

Figure 6.4: Context Engine Manager

Context Component Database

The context acquisition system should be able to handle many different context com-
ponents deployed from different applications. With the context components, some
deployed components may be intended to be usable by other applications on the de-
vice, while some may be intended for private use only. It is also possible that different
context components are implemented in different package names, which need to be
known for dynamic loading. To keep track of this information, a database all contexts
that are available is needed, which can seen in Figure 6.4. In the database the follow-
ing information is stored for each context:

• id. A unique identifier for the context component, stored as an integer.

• name. This is the name of the context component, used in the class definition of
the component, stored as a String. An example of this include ”BatteryContext”,
and this should match the name of the actual implementation class.

• owner. The owner of the context component is the application that deployed the
context component. This is stored as a String. The owner identifier specified
should be identical to what is used in the DSPL instance or with the context
engine separately.

• permission. The permission of the context component corresponds to whether
the context component is private or public. By a context component being public,
it can be used by any application id, compared with just the owner being able
to use a private context component. This is stored as an integer, where zero
equates to a public context, and one equates to a private context component.

95

6.3. FEATUREDROID

• dex file. The dex file is the compiled unit that contains the context component.
Because our implementation is based in Android, context components are com-
piled to .dex files. Using other platforms and languages, these units could be
dynamically bound libraries for example Jar, DDL, or SO. Multiple context com-
ponents can be contained in a single compiled unit, or in their own units.

After the database is populated, it can be queried by the Context Engine Manager.
Queries to the database can be for internal and external use. External queries include
giving the end applications the ability to request which contexts are currently available
for use, and which contexts are owned by that application. Internal queries are used
by the manager to request the information required to dynamically load and instantiate
the different context components. This is carried out by invoking the method getLoad-
ComponentInfo(String, String). This method returns all data required to first check that
the context can be used by the requesting application according to its permission set-
tings. If the requesting application can use the context component, the data returned
is then used by the dexloader and classloader.

Context Deployment

Deployment of context components can be carried out either at compile time or at
runtime. Compile time deployment is carried out in the situation of the packaging the
middleware with a single application. When compile time deployment is handled, the
only task needed is that all context components are added to the database when the
application is first used.

Because of the many different context components that may be needed by appli-
cations, it is likely not all contexts that may be required in the future by an application
will be deployed with the middleware. Furthermore, some applications may require
specialised context components that interact with online services, for example, social
networks. Therefore, by deploying context components at runtime, each application
can add the context components that it needs, which can then be shared with other
applications as shown in Figure 6.5. As mobile devices typically run applications within
their own sandboxes with private storage, for security reasons, it is therefore prohib-
ited to deploy executable code into an arbitrary application. Also when using platforms
such as Android whereby applications are compiled to a single executable by default,
runtime deployment is even harder.

To deploy context components at runtime, first at compile-time, the components are

96

6.3. FEATUREDROID

Figure 6.5: Runtime Deployment of Context Components

separated, and compiled into their own executable. This executable is the packaged
with the rest of the application as a separate library. Then at runtime, because there
are restrictions of inserting executable code into another application, the components
are copied to a mutually shared storage space, for example, a SD card (1). Once the
executable code is copied over, the application can call the middleware to deploy the
executable, with its temporary location (2). Next, the middleware can then copy the
executable into its own private storage for execution (3). Finally, the component is then
added to its database containing information on its owner, and usage permissions (4).

Context Use

Once a context component has been deployed to the middleware, it then can be used
to form the running context model of the system using methods in the ContextEngine-
Manager class, shown in Figure 6.4. Contexts are started when context values are
added by an application e.g. adding a LOW range to represent a battery level of 0% to
20%. This can be handled using the methods newContextValue, newContextValues,
and newRange in the ContextEngineManager. If the context component is already
running, then the engine attempts to add the new context values to that component
for reasoning. If the component is deemed a private context component for a different

97

6.3. FEATUREDROID

application, then those context values are not added.
If the context needs to be started for the new context values to be added, then firstly,

like a running context component, the permissions of that component are checked. If
the component can be used by that application, then the location of the executable
code, and component package/namespace are queried by the database. These de-
tails are then used by the class loader to load the context component, which then is
added to a container of running contexts.

When contexts are no longer needed by applications, the applications cannot just
stop the context component from running. This is because the context component
may also be needed by other applications. Allowing a single application to stop con-
text components would lead to unpredictable behaviour of other applications. Because
of this, instead, we allow an application to inform the context manager that it does not
require the use of a context anymore. Like an application can add contexts by adding
context values, removing contexts is handled by removing context values. When con-
text values are removed, the manager first checks if the values exists for that compo-
nent. If the values are currently running on the component, it is consequently removed.
Following this, the manager checks if that context component is needed by other ap-
plications. This is handled by checking the number of context value sets that exist
in the context component. Based on this, if the number of ContextValueSets is zero,
the component is no longer needed, and is therefore stopped, and removed from the
running lists of components.

Context Checking

Each context component is responsible for checking and reasoning over its own con-
text data. As described earlier, each application can use a context component by
specifying their own higher level context values. This checking can be handled when
new low level context data is acquired, for example when a light sensor receives a new
value for the number of lumens it senses. This new low level data is then checked by
firstly updating the current low level context data value. The new context data is then
checked over all ContextValueSets to check for newly inferred higher level context val-
ues.

To check for new context values using the higher level context information is inferred
differently, depending on the type of low level context data. For ranges, this is handled
by checking the low level value against the predefined lower and higher bounds of a

98

6.3. FEATUREDROID

Figure 6.6: The DSPL Manager

range. If a value is found within a particular range, that context information, is then
returned.

Finally, if the new context information is different from the currently set value, it
is therefore updated, and the component broadcasts to the context engine the new
context value with the application id that the context value is related to.

6.3.3 DSPL Management

The second part of the middleware includes the components for handling the feature
models, and configurations of the DSPL instances. In Figure 6.6, we show the struc-
ture of the DSPL Manager, which carries out all centralised management tasks. The
DSPL Manager has a ContextManager associated with it. As a method of decreasing
coupling between the context-acquisition engine and the DSPL manager, we create an
extended class called DSPLContextManager. In this extended class, instead of broad-
casting context changes in the setupContextMonitor method, we update the feature
configuration of the application in question.

99

6.3. FEATUREDROID

Figure 6.7: A DSPL Application Instance

DSPL Instance

As this middleware is designed to handle multiple applications, it needs to handle mul-
tiple DSPL instances. Therefore each DSPL application running has its DSPL instance
associated with it, shown in Figure 6.7. These instances are self contained units, that
each manage the configuration of their associated application. These instances then
can send reconfiguration notifications to the application through the middleware. Each
running DSPL instance has a unique application identifier, a feature model, and a con-
figuration associated with it. Furthermore, we store separately a list of what contexts
are currently being monitored as part of the context acquisition. When applications
make interface calls to the middleware, the application identifier is required to ensure
the correct instance is manipulated. At runtime, each DSPLApp class instance rep-
resents a DSPL application running on the mobile device. Context updates from the
context-acquisition are sent to each DSPLApp instance through the DSPLManager.

Instance Initialisation

As described earlier, each DSPL instance has a feature model, and a configuration.
These files are bundled with each DSPL application at compile time. Depending on
the usage scenario of the middleware, the files are read from different locations. If the
middleware is bundled with the application, the middleware can read the files directly
from the application bundle. On Android, these files can be stored in the application
assets folder. If the middleware is used externally from the application, these files then
cannot not be read directly from the application. Instead, they need to be moved to a
mutually readable storage area, for example an SD card on a device.

Once in a readable location, the application can call the middleware to read the files
and add them to a new DSPL instance. This then loads the feature model, and reads

100

6.3. FEATUREDROID

the initial configuration of the system. This is then followed by its first reconfiguration
using the features in the configuration.

Reconfiguration

When a context event is acquired in a specific context, the context manager gets the
new context values. Depending on what context values have been changed, the ap-
propriate features in the context model representing context values are either added
or removed from the running configuration.

When a feature is required to be active. Firstly, the engine checks if a reconfigu-
ration is required. This is carried out by checking all currently active features. This is
because a feature may already be active, not directly because of a requirement, but
indirectly due to a feature model constraint. If the feature is already active indirectly,
the feature is just added to the list of required features, with no reconfiguration needed.

If that feature is not already active, the list of required features is updated, and a re-
configuration is required. A reconfiguration firstly begins with the current configuration
being reset, and all required active features being added to the configuration.

Next, after all selected features are added to the configuration, other features that
require being selected automatically because of a feature relationship, or constraint are
selected. An example of such automatic selection includes the selection of all parent
features from a selected feature back to the root. This is because all subfeatures
included in a configuration must have its parent.

Finally, the configuration is analysed for its satisfiability. This check is carried out by
a SAT solver by encoding the configuration into conjunctive normal form (Thüm, 2008;
Benavides et al., 2010) which can be reasoned over, using standard off the shelf SAT
solver like SAT4J1.

If the new configuration is tested to be valid, then it is added to the DSPLApp as
the current configuration, with the old being discarded.

Then depending on changes of which context features are active/inactive, the mid-
dleware will either need to add another context to the running application or remove
a running context. Additional contexts are added by requesting new context values to
be monitored by the context management. The context management then will either
start a new context component and add the new context values, if one is inactive, or
will add the additional context values if the component is already running. Contexts

1http://www.sat4j.com

101

6.4. GUI ADAPTATION MANAGER

that need removing are removed by requesting the contexts values to be removed by
the context management.

Reconfiguration Notification

When there is a reconfiguration, the application is notified of the change that needs to
be carried out.

Because of the two different usage scenarios of the middleware, there are two
different approaches in which the DSPL applications can be notified of this change.

The first method of notification can be handled using an object callback. Using
this method of notification is only possible when the middleware is packaged with a
DSPL application, running inside of a single sandbox. This approach is handled by
the use of an Interface, shown in Listings 6.1, that is implemented in a specific class
of the application to receive the feature changes. When a reconfiguration then takes
place, this method is called, passing the list of features that are now active back to
the application. Following this, the application can make the approach reconfiguration
based on this new configuration.

Listing 6.1: Interface for reconfiguration call backs
1 public interface IDSPLApplication {

2 public void updateApplicationFeatures(Object[] features);

3 }

The second method of notification can be handled via interprocess communication
(IPC). This method is used when the middleware is used centrally outside of any single
DSPL application, and is used as a method of communication between application
sandboxes. For this approach, the application registers and listens for notifications
from the middleware fitting a particular signature.

Once the application has received the notification of the configuration change, dif-
ferent changes to the application can commence.

6.4 GUI Adaptation Manager

In this section, we describe the GUI adaptation manager, which orchestrates the adap-
tation of the application and its GUI according to the new configuration.

102

6.4. GUI ADAPTATION MANAGER

Figure 6.8: Reconfiguration Process

6.4.1 Reconfiguration

Reconfiguration of the DSPL is carried out by the GUI Adaptation manager. This com-
ponent handles the visual adaptation of the GUI, and other elements that have been
defined in source code that may require reconfiguration, for example, gestures. The
overall process of reconfiguration is depicted in Figure 6.8. The component intercepts
the reconfiguration notifications from the DSPL middleware using IPC (1).

Firstly, the manager needs to be aware of what dynamic binding units are now ac-
tive/inactive (2). To do this, the manager checks the new configuration against the last
configuration. This activity allows us to know what features need to be added and re-

103

6.4. GUI ADAPTATION MANAGER

moved from the running system, which can include sourcecode and GUI refinements.
As described earlier, for each dynamic binding unit, or compound feature present

in the compile application, a Feature class is generated. Firstly, dynamic binding units
that are no longer active in the configuration are dealt with (3). This begins by the com-
ponent first calling the feature class for all the widget names it adapts. The returned
set of widgets are then added to a global list of altered widgets for that adaptation
transaction. Next, all source adaptations associated with a dynamic binding unit are
removed. These adaptation are removed by making the appropriate calls to the lan-
guage meta-level program, or language specific reserved terms.

Secondly, when a new configuration requires a previously inactive dynamic binding
unit to be active, firstly that feature class is instantiated (4). Following this, like the
last step, all widgets names associated with that dynamic binding unit are added to
the global list. Lastly, the feature class, as in the last step make specific calls to
the language meta-level program, or language keywords to activate the source code
adaptations.

After all the widget names that have to be adapted in the reconfiguration have been
collected, adaptation of the GUI can take place. To do this, the GUI manager iterates
over all GUI controller instances currently open, calling each to reconfigure parsing the
set of altered widgets (5). This set of altered widgets can be just concerning a single
GUI document for a single controller, or can even effect multiple GUI documents across
multiple controllers. As discussed earlier, single GUIs can be made up of more than a
single GUI document. For this reason, the controller needs to distinguish firstly what
widgets are associated with that controller, and what GUI documents are affected in
the adaptation (6).

In each generated controller, a generated map of widgets that can be altered is
stored. This map also references which GUI document they are associated with. This
allows the controller to firstly remove from the set the widgets that are not related
to it. It also then allows the controller to identify which GUI documents need to be
reloaded. The controller handles this by sequentially looking up every widget in that
set of altered widgets. If the widget name is not found in the map, it can be removed
from the set. But, if the widget is found, that widget is retained and the GUI document
it is associated with is returned. This is then used to call the appropriate reconfigure
method, generated for each GUI document in the application engineering phase of the
development (7).

GUI documents can be used to represent portions of the GUI. This allows for the

104

6.4. GUI ADAPTATION MANAGER

same layout and styling to be applied to multiple parts of the GUI without the need
for duplication, for example with lists. This means that in a GUI, there can be multiple
instances of a single GUI document. As a consequence, we need to make sure that
every instance of the GUI document in the GUI tree is adapted. When the specific
reconfigure method for a GUI document is executed, we first get all instances of that
GUI document (8). This is carried out by transversing the GUI tree, searching for
widget identifiers that match the root node in that GUI document. The root of each
GUI document is gathered during the product derivation stage described in the last
chapter.

Once all instance GUI subtrees have been found, for each instance, a new variant
of the GUI document is inflated, and composed with the GUI subtree (10).

GUI Tree Composition

Composition of two GUI subtrees is shown in Algorithm 2. This method recursively
composes each GUI subtree. As described earlier, a list of widgets that require alter-
ation is created by the GUI manager when each source code refinement is applied.
For each of the widgets that are in the list, we check if that widget is in the new GUI
tree. If the widget does not exist in the new tree, we can safely assume that the widget
needs removing from the current GUI tree. If the widget is in the new tree, it needs to
be moved from the new tree, to the current tree. Before this can happen, it needs to
be checked if itself is a container of other widgets. In the event that it is, the set of child
widgets from both trees need to be composed. This is carried out by checking if any
of the child widgets of the current widget are those that need altering. If a child does
not require alteration, the recursive method is called, with the child, its parent, and the
new widget as input. However, if that child does require alteration, it is therefore not
moved, and that widget can be removed from the list of altered widgets, followed by
transfer of state from the old child to the new child.

State transfer is handled by a component generated in the design phase, using the
state transfer templates. To copy the state from one widget to another, the two widgets
are checked if they are the same type. Following this, depending on the old widget’s
object type, the corresponding generated method is called. Each generated method
then contains the transformed source code defined in each state transfer template.

105

6.4. GUI ADAPTATION MANAGER

Algorithm 2 GUI Tree Composition
Require: A set of altered widgets Widgets, the current GUI tree curTree, and the new

GUI tree newTree
1: for Widget ∈ Widgets do
2: procedure MOVEWIDGET(Widget, curTree, newTree)
3: if Widget ∈ newTree then
4: newWidget← newTree.get(Widget)
5: parent← newWidget.getParent()
6: oldParent← curTree.get(parent)
7: if Widget ∈ curTree then
8: curWidget← curTree.get(Widget)
9: if curWidget.children 6= ∅ then

10: for Child ∈ curWidget do
11: if Child /∈ Widgets then
12: MOVEWIDGET(Child, newWidget, curWidget)
13: else
14: Widgets.remove(Child)
15: if Child ∈ newWidget then
16: newChild← newWidget.get(Child)
17: TRANSFERSTATE(Child, newChild)
18: end if
19: end if
20: end for
21: position← oldParent.indexOf(curWidget)
22: TRANSFERSTATE(curWidget, newWidget)
23: else
24: position← parent.indexOf(newWidget)
25: end if
26: curParent.addWidget(newWidget, position)
27: end if
28: else
29: curTree.remove(Widget)
30: end if
31: end procedure
32: end for

106

6.5. GUI VARIANT MANAGER

Other GUI Adaptations

Following adaptation of the visual properties of the GUI, adaptations defined in the
onGUIConfiguration methods are executed. These methods are executed in order of
feature composition order, whereby the base and each refinement is executed before
the next. As discussed in the previous chapter, the properties that may be adapted
need to be set to their default values in the base version of the class. Following this,
each refinement is executed, updating the properties of the GUI according.

6.5 GUI Variant Manager

The GUI adaptation manager component does not function independently, but relies
on a separate component designed to manage the different GUI document variants.
This variant manager does not manage variants in terms of files or physical resources,
but by references. These references can then be used much the same way static GUI
documents are used in the rest of the system.

The variant manager is generated automatically in the application engineering
phase presented earlier, using output data created when generating each GUI doc-
ument variant. Within the component, for every GUI document that contains runtime
variability, there are the following data structures:

• Feature-Variant Map. Because we generate all valid unique variants for each
GUI document requiring runtime adaptation, we therefore need to know what
variants are needed for a given configuration. This structure is a key-value struc-
ture, with the collection of active features as the key, and the variant reference as
the value. To avoid duplicate variants across different configurations, each key
only contains the active features from a configuration which actually adapt that
GUI document. An example of this map is depicted in Figure 6.9. This map is for
the main home screen of the scenario application in this thesis.

• Feature Array. This array compliments the feature-variant map, by listing what
features are associated with a particular GUI document. During variant retrieval,
this list is used to remove unrelated features from the key looked up in the feature-
variant map.

With these data structures also includes a generated method designed to use the
correct GUI document specific feature-variant map, and feature array during variant

107

6.6. SUMMARY

Active Features Variant
Applications main screen 1

Applications,Music main screen 2
Applications,Video main screen 3

Applications,Music,Video main screen 4

Figure 6.9: Map of features and main screen document variants

retrieval, which is explained next.

6.5.1 Variant Retrieval

When a GUI document variant is needed, in the case of GUI adaptation, or when the
GUI is first inflated, it is requested via a single method. This entry point takes the name
of the GUI document in question, and then invokes the specialised method needed for
that GUI document name. If the GUI document for that name has only a single variant,
and is therefore not managed by the manager, the original reference is returned and
can be used as before.

If a specialised method is invoked, first we copy the list of active features in the cur-
rent configuration. Next, all features not associated with the GUI document in question
are removed from that list. To remove the unassociated features, we use the GUI doc-
ument feature array, and remove features from the configuration list that are not in the
feature array. Next, we sort the features into alphabetical order, and output the list as
a single string. But ensuring the different features are in alphabetical order, we ensure
that a single configuration can only produce a single string. Lastly, a map lookup us-
ing the string of features as the key, with the resulting GUI document reference being
returned.

6.6 Summary

In this chapter, a description of the compile application architecture, the supporting
middleware, and components needed for GUI adaptation. This chapter concludes the
final half of the approach this dissertations proposes. Following this is the validation
part of the thesis, where validate and evaluated the proposed approach.

108

Part III

Validation

109

7
Implementation

Contents
7.1 Introduction . 110

7.2 Design Phase Tools . 110

7.3 FeatureDroid . 120

7.4 Summary . 127

7.1 Introduction

In Chapters 5 & 6, we described the development activities, and components proposed
to enable compile time and runtime GUI adaptation in DSPLs. As part of our valida-
tion, tool support, and supporting middleware prototypes were implemented. These
prototypes were developed primarily for the Android platform, and for the Eclipse IDE.
In this chapter, we describe more of the technical details of the prototypes.

This chapter is organised as follows: In Section 7.2, we present the tool support
developed to assist the developer while undertaking the main engineering tasks of the
SPLs, including modelling, implementation, and composition. Then in Section 7.3, we
present the supporting middleware developed to take care of context management,
and configuration management. Finally, in Section 7.4 we summarise the chapter.

7.2 Design Phase Tools

Tool support was implemented on top of FeatureIDE (Kastner et al., 2009) to handle
DSPLs for the Android platform. In this tool, we implemented components to handle

110

7.2. DESIGN PHASE TOOLS

Figure 7.1: FeatureIDE Feature Attribute Extension

variant generation and code transformation. Currently the tool support is design to
handle Android GUI layout documents. In Android, other XML documents can be used
e.g for defining list menus, application wide styles, and language related text. It is
possible that the tool support can be extended to handle these types of documents,
but because each document type is handled different, supporting logic will be required
for dynamic adaptation.

The first component extended was the feature modelling tool.

7.2.1 Feature Modelling

To assist in feature modelling, we developed additional tool support for our type of
feature models in FeatureIDE. This firstly included the ability to add feature attributes
as shown in Figure 7.1. Each feature can contain any number of feature attributes,
made up of a name, domain, and value.

Second, the ability to model the context, and the context rules was added. To
model the different aspects, each FeatureIDE project is now given three feature model
files, one for the main application, one for the context model, and an automatically
aggregated feature model used for defining context rules. By separating each part into
different models, the context model can then be reused over possibly many different
DSPL projects.

111

7.2. DESIGN PHASE TOOLS

7.2.2 GUI Document Composition

GUI document composition was implemented on top of the general purpose composi-
tion tool, FeatureHouse1 (Apel, Kastner and Lengauer, 2009). In FeatureHouse, tree
composition is carried out by superimposing FSTTree nodes, both nonterminal and
terminal. To enable the composition of Android GUI documents, different XML ele-
ments have to be mapped to these FSTNodes. In our implementation, all XML nodes
in the tree are mapped to FSTNonTerminal nodes. The attributes within each XML
node however are mapped to FSTTerminal nodes. During composition, when two ter-
minal nodes of the name identifier are found, we replace the base attribute with the
new value.

To extend FeatureHouse with our implementation, there are two main packages
that need to be extended, builder and printer. The builder package contains the logic
used to used to process each source file with a particular filename suffix. Most builders
then reference the correct language parser to parse that source code into FSTNodes.
In our extension, we have our XML parser, which parses each XML document to
FSTNodes. The printer package however contains all the logic needed to print the
FSTNodes back to source code.

Hooking Mechanism

As in Section 5.2.4, a method of describing hooking points was described. This hook-
ing method was also implemented for FeatureHouse. To do this, we created an addi-
tional node type in the XML tree, called FSTHook. A FSTHook is a nonterminal node,
which is used to contain all the individual nodes and subtrees that require composition
in a specific place. If when parsing an XML file the begin comment is found, we set
the properties of the FSTHook to contain the identifier of the XML node this hook is
associated with and whether it will be applied before, ore after that XML node. All
XML nodes that are found between the begin and the end comments are then added
as child nodes to the FSTHook.

Once we have FSTTree structure prepared, we need to make composition alter-
ations to enable hooking. This extra functionality was added to the main composition
method in FSTGenComposer. During normal composition, when two nonterminal are
to be to composed, each of the compatible children are then recursively composed.

1https://github.com/deankramer/featurehouse

112

7.2. DESIGN PHASE TOOLS

However, if the node being superimposed is a FSTHook, all the children nodes of that
hook are then either added before or after the specific widget in the that base node.

For composition, nodes have to be checked for their compatibility. In FeatureHouse,
this is carried out by checking the type and name of the FSTNode. In normal program-
ming languages, this can normally be easy to map e.g. a method declaration and its
signature. With XML nodes this is more difficult, as XML document do not always use
the same node attributes. Therefore, during XML parsing, we need to make some
assumptions on which attributes should be used to map to the FSTNode name. If a
name is not added to each FSTNode, this can cause composition errors in XML docu-
ments that contain many instances of the same XMLNode type. In our implementation,
we currently consider the following attributes to be appropriate names: android:id,
android:name, name, key, and id. Nodes that do not have one of those attributes are
likely to cause composition errors. In future work, we hope to design an approach
to automatically finding appropriate XML attributes at runtime, to enable it work over
more general XML documents.

7.2.3 Runtime Composition

In this dissertation, we do not propose a language solution to support static or runtime
composition. We propose to use existing language solutions that exist already. As
we are targeting the Android mobile platform, we need to use a language that have a
Java basis. FOP language extensions for Java for example JAK (Batory et al., 2004),
FeatureHouse (Apel, Kastner and Lengauer, 2009) currently only support compile time
variability. Also, while there has been some work on other similar language languages
e.g. DynamicDeltaJ (Damiani and Schaefer, 2011), there is yet to be an available
implementation. For this reason, for runtime variability, we use a similar language
extension, the Context-Oriented Programming language (COP), JCOP (Appeltauer
et al., 2010).

In COP, runtime variability are implemented as layers (Hirschfeld et al., 2008). Each
layer represents a specific runtime concern that can be activated or deactivated dy-
namically. These layers crosscut different source code modules with partial methods,
which like FOP, refine methods to include additional executable logic. These layers
can be within a class, whereby all adaptations for a given class are contained with that
class. Alternately, in some COP languages e.g. JCOP, layers can be declared outside
a class, whereby all adaptations for that particular concern are contained within their

113

7.2. DESIGN PHASE TOOLS

Figure 7.2: Source Generation & Transformations

114

7.2. DESIGN PHASE TOOLS

own first class entity.
The similarity between FOP and COP means that automated source code transfor-

mation are feasible. However, for this work, we currently transform FOP code to JCOP
manually. We accomplish this in a number of steps. First, we get the final compound
source code refinements by statically composing all features within each dynamic bind-
ing unit. This is carried out using FeatureHouse (Apel, Kastner and Lengauer, 2009).
Following this, we can check every dynamic binding unit for class refinements. If there
is a class refinement in a dynamic binding unit, a layer for that binding unit can be
added to the base version of that class. Following this, the different class refinement
methods can be added to that layer. Finally, we need to alter calls to previous re-
finements of that method. In FeatureHouse these method calls are declared with the
keyword original, followed with the method arguments, similar to the Java super call.
In JCOP, to continue the execution to the following partial method definition, the key-
word proceed is used. This means, we just need to swap the original keyword for
proceed.

We have depicted this transformation in Listing 7.1, using the scenario application.
In this example, we can see a base version of class ContentDetails, a class refinement
in the dynamic binding unit, and the final transformed class. In the transformed class,
there is a nested layer for the feature containing that refinement, named NoUserReview.
This layer contains the method refinement, with the original keyword changed to
proceed.

Listing 7.1: FOP-COP Transformation
1 //Base Class

2 public class ContentDetails extends Activity {

3 ...

4 public void onCreate_contentreviews(ViewGroup vg) {

5

6 }

7 ...

8 }

9
10 //Class Refinement in feature ‘‘NoUserReview"

11 public class EditEventActivity extends Activity {

12 ...

13 public void onCreate_contentreviews(ViewGroup vg) {

14 original();

15 btnSaveReview = (Button) vg.findViewById(R.id.btnSaveReview);

16 btnSaveReview.setOnClickListener(new OnClickListener() {

17 @Override

18 public void onClick(View arg0) {

19 Toast toast = Toast.makeText(mContext, R.string.error_cantsendreview,

115

7.2. DESIGN PHASE TOOLS

20 Toast.LENGTH_LONG);

21 }

22 }

23 }

24 }

25
26 //Transformed JCOP Class

27 public class EditEventActivity extends Activity {

28 public void onCreate_contentreviews(ViewGroup vg) {...}

29 public layer NoUserReview {

30 public void onCreate_contentreviews(ViewGroup vg) {

31 proceed();

32 btnSaveReview = (Button) vg.findViewById(R.id.btnSaveReview);

33 btnSaveReview.setOnClickListener(new OnClickListener() {

34 @Override

35 public void onClick(View arg0) {

36 Toast toast = Toast.makeText(mContext, R.string.error_cantsendreview,

37 Toast.LENGTH_LONG);

38 }

39 }

40 }

41 ...

42 }

43 ...

44 }

Special consideration has to be taken to ensure method refinements are executed
in the correct order. This is due to feature compositions being generally not commuta-
tive (Apel et al., 2010). As a consequence of this, when combining static with dynamic
composition, method refinements can be applied in the wrong order. To solve this, we
create hook methods as proposed by (Rosenmüller et al., 2011a).

7.2.4 Source Generation & Transformation

For runtime adaptation, many components of the system need to be generated, out-
lined in Figure 7.2. While these have been described previously in some detail, here
we present more implementation detail. We first start by reading the dynamic binding
unit (DBU) and runtime GUI adaptation configuration files (1). The first describes the
different DBUs or compound features to be featured in the product, each listing the dif-
ferent SPL features that will be contained within each DBU. The second configuration
file is a list of different GUI classes e.g. Android Activities and Fragments, that may
require the GUI to adapt once it is visible to the user. We then have to transform and
refactor the feature model using the steps presented in Chapter 5 (2). Next in (3), we
statically compose source code required for each DBU in the configuration. We then

116

7.2. DESIGN PHASE TOOLS

carry out GUI document variant generation (4). This produces all the different GUI
document variants required to enable runtime adaptation.

Next, we need analyse the complete program, including source code, and GUI
documents. In FeatureIDE similar to FeatureHouse, a FSTModel of the complete SPL
can be created which we use for analysis in the source generation and transformation
steps. We next get the complete structure of the project from FeatureHouse in the
form of a simple tree of FSTNonTerminal and FSTTerminal nodes, called a FSTModel
(5). We parse this to a model we can more easily manipulate, and transform. Next, we
can firstly carry out the code transformations on the GUI classes.

GUI Controller Transformations

To adapt the GUI once it is visible to the user, a method to handle the adaptation
is required. We know what GUI controllers require this type of adaptation from the
configuration files parsed earlier. For each GUI controller in the configuration file (6),
we need to carryout the appropriate source transformations (7). Each of these meth-
ods is copied over from a source code template file. The first is that a reconfigure_

method is required for each GUI document that GUI controller handles, with the tem-
plate shown in Listing 7.2. Each instance of this method handles the adaptation for
parts of the screen handled by a particular GUI document. We therefore need to
change each instance to include the name of the GUI document in the method signa-
ture name, and update the elements surrounded in $$ with the appropriate information
using the FSTModel including the root widget id.

Listing 7.2: Reconfigure method template
1 public void reconfigure_() {

2 ViewGroup root = (ViewGroup) this.findViewById(android.R.id.content);

3 ArrayList<View> instances = findAllDocumentInstances(root, $$DOCUMENTWIDGETREF$$);

4 int cases = instances.size();

5 ArrayList<Set<Integer>> alteredWidgetsArray = new ArrayList<Set<Integer>>();

6 for (int i = 0; i<cases;i++) {

7 alteredWidgetsArray.add(new HashSet<Integer>(alteredWidgets));

8 }

9
10 for (int i = 0; i<cases;i++) {

11 localalteredWidgets = alteredWidgetsArray.get(i);

12 ViewGroup instance = (ViewGroup) instances.get(i);

13 ViewGroup newUI = (ViewGroup) this.getLayoutInflater().inflate(

14 dsplrg.getResourceVariant($$DOCUMENTFULLNAME$$), null);

15 onCreate_$$DOCUMENTNAME$$(newUI);

16 if (widgetIndexes.isEmpty()) {

17 getPositionIndexes(newUI);

117

7.2. DESIGN PHASE TOOLS

18 }

19 for (Integer widget : localalteredWidgets) {

20 moveWidget(widget.intValue(), newUI, instance, null);

21 }

22 newUI.removeAllViews();

23 }

24 instances.clear();

25 alteredWidgetsArray.clear();

26 localalteredWidgets.clear();

27 widgetIndexes.clear();

28 }

Next in (8), we need to generate the support classes, as described next.
Different support classes are generated as part of the source transformation and

generation process. The generation of classes is outlined in Figure 7.3. First, we need
to generate the state transfer class (1). This class is responsible for transferring widget
state between the widget instances being replaced. Based on the analysed FSTModel,
we can establish which types of widgets will be getting replaced at runtime. Based on
these different types, we generate the state transfer class by copying the required GUI
state retention templates, described in Section 5.2.6 into the state transfer class.

Next, for every DBU in the product configuration (2), we need to generate a Feature
class (3). Each Feature class contains the methods described in Section 5.3.3. We use
the addSourceRefinements and removeSourceRefinements methods to call the JCOP
specific keywords for activating specific layers. The other responsibility is to return
to the GUI Manager the list of widgets that need adapting because of that dynamic
binding unit. We can find all widgets that require adapting by checking each GUI
XML file within each feature that is part of a dynamic binding unit. As we described
in Chapter 5, in a GUI document refinement, when a refinement is added, all parent
nodes need to be present in the tree. These parent nodes should only have their
widget identifiers in the node attributes. Because of this, we can scan each XML to
see what nodes have more than one attribute. Therefore if a node is found to have
more than a single attribute, we can assume it is either a new node, or has a new or
altered attributes. We then get the identifier for this node, and add it to a list. When all
GUI documents have been checked, we can add the list to the getAllAlteredWidgets

method.

118

7.2. DESIGN PHASE TOOLS

Figure 7.3: Generated Support Classes

119

7.3. FEATUREDROID

Generated Classes

The last three steps include generating the GUI manager (4), the IDSPL controller in-
terface class (5), and DSPLApp singleton. These classes are static files that require
no further changes to them. The GUI manager is a unspecialised class for the project
that receives the configuration updates from FeatureDroid. The IDSPL controller inter-
face is an interface that all Android classes e.g. Fragments and Activities that require
adaptation need to implement.

Variant Manager

The variant manager is created to manage the GUI document variants, by way of
returning the correct variant when requested. The manager is generated as a single
class and contains a single public method used by rest of the application to request
the correct variant for a specific GUI document. In Android, GUI document references
are stored as static integers. Therefore, to invoke the correct GUi document retrieval
method, this can be accomplished with a switch, as depicted in Listing 7.3.

Listing 7.3: GUI Document Variant Retrieval Method
1 public int getResourceVariant(int resourceName) {

2 int resource;

3 switch(resourceName) {

4 case R.layout.mainscreen: resource = get_mainscreen();

5 break;

6 ...

7 default: resource = resourceName;

8 break;

9 }

10 return resource;

11 }

7.3 FeatureDroid

This section describes the DSPL middleware named FeatureDroid, a middleware for
handling runtime context acquisition, and DSPL configuration management. This mid-
dleware was not developed completely from scratch, but uses various components
from FeatureIDE, including feature model and configuration classes. The system can
be used both as a single central entity as its own application, or as part of another ap-
plication as library, described in Chapter 6. This system can be broken down into two
systems, ContextEngine, and DSPL Management. First we describe ContextEngine.

120

7.3. FEATUREDROID

7.3.1 ContextEngine

The ContextEngine is a general purpose context acquisition engine for context-aware
applications (Kramer et al., 2011)2. It has been developed as a self contained system
that can be used for other context-aware applications. ContextEngine can be used
as a library by a single application, or can be used as a separate centralised context
management system.

ContextEngine is made up of three main components including a context manager,
a database, and a set of atomic context components. The main context manager
is designed to handle the lifecycle of each component, and be an interface point by
applications and the DSPL management component. The manager can be interfaced
in two ways:

• Object Calls: When ContextEngine is packaged with an application, calls to the
engine can be made directly with standard Java object method calls.

• AIDL Services: Context-Engine also publishes its services through two inter-
faces declared using Android Interface Definition Language (AIDL) as shown in
Listing 7.4. This then allows applications in different sandboxes to communicate
with the manager. The first interface is designed for context requests and tasks
not requiring a response. This includes tasks e.g. requesting new contexts to be
acquired, or deploying new contexts. The other is for requests requiring instant
response for e.g. the context value of a specific context.

Listing 7.4: ContextEngine Interfaces
1 //Interface 1: Context Requests

2 interface IContextsDefinition {

3 void setupContexts(String path);

4 boolean addContextValues(in String appKey, in String componentName, in String[] contextValues);

5 boolean addContextValue(in String appKey, in String componentName, in String contextValue);

6 void addSpecificContextValue(in String appKey, in String componentName, in String contextValue, in

String numericData1, in String numericData2);

7 void addRange(in String appKey, in String componentName, in String minValue, in String maxValue, in

String contextValue);

8 boolean newComposite(in String appKey, in String compositeName);

9 boolean addToComposite(in String appKey, in String componentName, in String compositeName);

10 void addRule(in String componentName, in String[] condition, in String result);

11 boolean startComposite(in String compositeName);

12 void copyDexFile(in String appKey, in String newDex, in String[] contexts, in String packageName, int

permission);

2Source code available at: https://github.com/deankramer/ContextEngine

121

7.3. FEATUREDROID

13 }

14 //Interface 2: Synchronous Requests

15 interface ISynchronousCommunication {

16 List<String> getContextList();

17 String getContextValue(in String componentName);

18 boolean isComponentDeployed(in String appkey, in String component);

19 }

The context manager manages the lifecycle of all context components in the sys-
tem. This is carried out by only having contexts that have been requested by appli-
cations active in the system. Applications make requests for contexts by adding new
context value definitions to a context component. If the component is not currently
active, it is then started. When application no long requires a context, it can remove its
context-value definitions. Context components that have no context-value definitions
are then shutdown. This ensures that contexts only execute while they are required.

Context Types

Depending on the context being monitored, different types of context components will
be needed. Particularly with the Android platform, there are multiple sources for con-
text data, that may need to be acquired differently. For this we have a set of four
different context component types to suit these different requirements:

• ListenerComponent. This component type captures raw sensory data. Sen-
sor data is received by the component from a sensor event. Examples of sen-
sors that are used with this component include light level, ambient temperature,
gravity, proximity, gyroscope, and magnetic field3. To receive sensory data, this
component type implements the Android SensorEventListener class interface,
receiving sensor updates using onSensorChanged method. This method is called
by the Android SensorManager, and passes a float array of values. Depending
on the sensor, this value can relate to different sensor values e.g. light lumens in
the light sensor.

• MonitorComponent. This component type captures data that is not considered
sensory. These context types are instead broadcasted globally, which can be
listened for. Examples of the type of contexts this component can be used for
include device battery level and WIFI status. To capture these events, we use
BroadcastReceiver objects to listen for specific system broadcasts, also known

3If the hardware support also exists

122

7.3. FEATUREDROID

as intents. Each context component registers for a particular intent action e.g.
Intent.ACTION_BATTERY_CHANGED for battery changes.

• PreferenceChangeComponent. This component type captures data from ap-
plication preferences. The implementation shares similarities to the Listener-
Component, whereby it implements a listener interface. In this case, the On-
SharedPreferenceChangeListener is implemented, with updates being received
using the onSharedPreferenceChanged method. Preferences are essentially key-
values, each having a specific name or identifier, and a value which can be a
number of different types.

• LocationContext. This component type captures location data from the loca-
tion services e.g. GPS/GLONASS. This component provides an abstraction of
different location data, and provides means to compute if the device is nearby
particular locations.

Each of these context component types extend an abstract base class named Con-
textComponent. This class provides the basic data structures and logic required by
contexts. To use composite contexts, we created a component called CompositeCom-
ponent. This context component functions similarly to the MonitorComponent, in which
it listens for global context broadcasts. The differences lie in that it holds the context
values for more than a single context, and it also runs rules over the values to deduce
higher level context information.

Context Broadcasts

Context changes are broadcasted asynchronously, to each application, and compos-
ite context listening for changes. This is handled using Intent Broadcasts. Intent
Broadcasts allow for IPC to multiple applications, whereby interested applications
listen for these broadcasts using Broadcast Receivers. Within a broadcast, several
pieces of information are added including the intent action, the name of the context,
the date and time of the context change, and the new context value itself. Intent ac-
tions act a method of filtering all system messages that are broadcasted e.g. battery
status. These broadcasts are sent and received using the sendNotification and
setupMonitor methods as depicted in Listing 7.5.

Listing 7.5: SendNotification and setupMonitor Implementations
1 //The listening intent needed for the intentfilter

123

7.3. FEATUREDROID

2 public static final String CONTEXT_INTENT = "uk.ac.mdse.contextengine.CONTEXT_CHANGE";

3
4 public void sendNotification() {

5 Intent intent = new Intent();

6 intent.setAction(CONTEXT_INTENT);

7 intent.putExtra(CONTEXT_NAME, name);

8 intent.putExtra(CONTEXT_DATE, Calendar.getInstance().toString());

9 intent.putExtra(CONTEXT_INFORMATION, contextInformation);

10 sendBroadcast(intent);

11 }

12
13 IntentFilter intFilter = new IntentFilter(CONTEXT_INTENT);

14 private void setupMonitor() {

15 contextMonitor = new BroadcastReceiver() {

16
17 @Override

18 public void onReceive(Context c, Intent intent) {

19 String contextname = intent.getExtras().getString(CONTEXT_NAME);

20 String contextValue = intent.getExtras().getBoolean(CONTEXT_INFORMATION);

21 ...

22 }

23 };

24
25 context.registerReceiver(contextMonitor, intFilter);

26 }

Runtime Component Deployment

In Android, application source code is compiled into a single .dex file. To enable the
ability to copy context components from one application to the middleware, the appli-
cation needs to be compiled into multiple .dex files.

This can be carried out by using a customised Ant build script, which can be found
in the appendix of this thesis. Within the script, we extend the target name ”-dex” that
contains the different tasks related to source compilation and its conversion to .dex. In
this target, we need to separate the code for the deployable contexts from the rest of
the application. For this reason, it is suitable to have all the contexts within their own
java package, as this can then be more easily separated. We can then compile each
directory separately into its own dex file. After the compilation has taken place, the
.dex file containing the context components is then packaged within a jar file. Finally,
the jar file is added the applications assets folder, so it is then included as a movable
asset in the application.

When the application starts up, the application needs to check if the contexts have
been deployed previously. This can be carried out either by storing a value in the

124

7.3. FEATUREDROID

application storage, or the application can query the management system to see if the
context(s) exist. The application can query the management system through the use
of the isComponentDeployed method in the ContextEngine interfaces.

Once deployed, context components are loaded from .dex files dynamically using
dynamic class loaders (Liang and Bracha, 1998). In the ContextEngine, necessary
information needed to load component e.g the package name, and what dex file con-
tains the class are stored in the ContextEngine database. Multiple components can
be contained within a single .dex file, but are loaded individually based on the require-
ments of the system. These files are copied over to the SD card, and the copied to
the private application area of the ContextEngine when components are deployed at
runtime.

7.3.2 DSPL Management

The main DSPL manager handles the management of DSPL applications, by support-
ing feature model, and configuration management. As mentioned earlier, this manager
was created using altered components from FeatureIDE.

The main DSPL management has been implemented to function as either a Service
when in the case of an shared middleware, or as a single set of classes, when part
of a single application. Service APIs are defined similar to ContextEngine using AIDL
interfaces as shown in Listing 7.6. This interface allows new DSPL instances to be
started using the setupDSPL method. For this a unique application identifier, and a
path is required. This path should point to a specific folder in the device filesystem
e.g. the SD card, containing both the feature model and the initial configuration file.
If FeatureDroid is packaged with the DSPL program, both files are taken from the
Android application assets folder. The user can also change the DSPL configuration at
runtime by either setting a configuration file using the setConfiguration method, or by
changing the selection state of individual features using the changeFeatureSelection

method. The return values of the methods correspond to the successful execution
of themselves. Particularly when attempting to change the selection state of different
features, the program can only be reconfigured if the resulting configuration is valid.

Listing 7.6: DSPL Service Interface
1 interface IDSPLManager {

2 void addFeatureModel(String applicationid, String path);

3 void setupDSPL(String applicationid, String path);

4 List<String> getActiveFeatures(String applicationid);

125

7.3. FEATUREDROID

5 boolean setConfiguration(String applicationid, String path, String config);

6 boolean changeFeatureSelection(String featureName, boolean state, boolean force);

7 }

Notifying external applications of configuration changes is handled using Intent
Broadcasts, similarly to ContextEngine. In these broadcasts, the application identi-
fier, and all features that are now active are broadcasted.

Interfacing with ContextEngine

As we described earlier, ContextEngine is a separate component for acquiring and
managing context information. When context information changes, the feature config-
urations of each DSPL need to be updated. In our current implementation, we package
ContextEngine as an internal component of FeatureDroid. We therefore do not need
to use intent broadcasts, which are more computationally expensive, and instead can
use object calls in the same application sandbox. This is carried out by creating a
new class which extends main ContextEngineCore manager class. In this extended
class, we override the method setupContextMonitor, responsible for receiving context
events and forwarding them, which now instead updates the feature configuration for
each application.

7.3.3 Deploying FeatureDroid

FeatureDroid can be used in two scenarios: as part of a DSPL application, or as a sep-
arate entity. To use FeatureDroid as part of a DSPL application, the developer needs
to include it in the compilation of their application. To do this, the developer needs to
compile the FeatureDroid source code as an Android library project. This can then be
included into the main application using two methods. The first is that the developer
manually copies the compiled FeatureDroid.jar archive into the application’s lib folder,
and link it in the Java builder. The second approach is to add the FeatureDroid ap-
plication as an Android library dependency. Then when the main application is being
compiled, FeatureDroid will also be compiled and added during the build process.

When FeatureDroid is used as a separate entity, FeatureDroid needs to be de-
ployed as any other application on Android. First, the FeatureDroid application needs
to be compiled, this time not as a library but as a standard application. During the
compilation, this application can be then signed, and uploaded to a mobile app store
including the Google Play Store. If this is not wanted, that compiled app can then be in-

126

7.4. SUMMARY

stalled to devices directly from their development machine, or via a website by sharing
the application installer .apk file. To install this application outside of the Google Play
Store, the developer/user will need to ensure they have altered their system settings
to allow this.

7.4 Summary

In this chapter, we presented the implementation details of the different prototypes
created for both phases of the DSPL, the design stage, and runtime phase. For the
design phase, feature modelling and composition tools were implemented to assist in
the development of a DSPL with runtime GUI support. For the runtime phase, the
middleware FeatureDroid for handling the configuration of each DSPL application is
presented. This is includes the ContextEngine for context acquisition and manage-
ment. These prototypes were developed as open source software, and are available
to download.

127

8
Evaluation

Contents
8.1 Introduction . 128

8.2 Scenario-Based Evaluation . 129

8.3 Scalability Evaluation . 140

8.4 Discussion . 145

8.5 Summary . 150

8.1 Introduction

In this thesis so far, an approach to enable unified GUI adaptation in DSPLs has been
proposed, with details of developed tools and prototypes given. In this chapter, focus is
given on a final evaluation of the proposed approach, using the prototypes presented
in the last chapter. The goal is to validate that the approach actually meets the goals of
this thesis, and to evaluate the extent to which it scales. To validate the approach, we
use two different scenario DSPLs. We further carry out different scalability experiments
to help assess the feasibility of our approach over different cases.

This chapter can be broken down into the following: Section 8.2 describes our
validation using scenario DSPLs, with details of the variability categories tested. Next
in Section 8.3, we describe the scalability experiments and present our results. Final
discussion based on our validation and scalability experiments is given in Section 8.4.
This chapter is then summarised in Section 8.5.

128

8.2. SCENARIO-BASED EVALUATION

8.2 Scenario-Based Evaluation

The first half of this evaluation is scenario-based. A full and complete evaluation
of our approach will require extensive testing. In Chapter 4, we described and dis-
cussed 9 different categories of variability in the GUI, and different runtime adaptation
requirements that should be met by the approach. Therefore, to fully evaluate our
approach would require testing each permutation of these variability categories and
requirements. Furthermore, this will need to be carried out over many different types
of GUIs, with different GUI structures, and on screen widgets. To reduce the evalua-
tion effort, we carry out a number of scenario based examples for our validation. Using
these different scenarios, we attempt to ensure a good coverage of validation testing
by combining different variability categories, and adaptation requirements. We use the
following subjects as description and discussion areas:

• System and Context Models. Due to the size of the system and context feature
models, we will describe the different application and context features added to
these models, including the context rules. The full models can be found in the
Appendix.

• GUI adaptation using Feature-Oriented Programming. We illustrate and de-
scribe how we implement the scenario variability using both FOP for GUI docu-
ments, and source code.

• Runtime GUI adaptation. We describe how the scenario will behave at runtime,
and where full runtime adaptation is required, describe and explain the additional
auxiliary configuration, and source code required to enable it.

This evaluation while concentrating on validating the proposed approach, can also
allow us to understand more qualitative issues. The first of these includes understand-
ing the strength and weaknesses of the approach. Secondly, we also discuss the issue
of GUI adaptation unification, and what insights we have learnt from carrying out this
evaluation. This, including the scalability tests later on in the Chapter, should provide
us with an appropriate level of evaluation and final discussion. Next, we describe the
different SPLs we use for our scenarios.

129

8.2. SCENARIO-BASED EVALUATION

8.2.1 Scenario SPLs

To evaluate our approach we use two different scenario SPLs for mobile devices. In
this evaluation, we use two different SPLs that differ in size and complexity. Particularly,
one of the SPLs is a made of synthetic GUI screens, and the other is a real world
application. Due to these vastly different SPLs, we can claim that our approach can
function in both synthetic and real world applications.

The SPLs used are the following:

• ContentStore. A content store application is a small application based on a few
different scenario GUI screens. This store can distribute different content e.g.
applications, video, and music, and can support different age groups. The type
of content the store can distribute depends on the location of the device, due
to different possible distribution licenses. Content can be retrieved by the user
either by downloading or by streaming. This scenario application is the one we
introduced in Section 1.1.2, and have used throughout this thesis.

• K-9 Email. A popular opensource email client available for Android1. This appli-
cation has over 110,000 lines of code, and was refactored into an DSPL with 33
features. This email program can be used for viewing, managing, and sending
email. Particular dynamic features we focus on include how to deal with con-
nectivity and storage limitations for downloading attachments, and gestures to
support email deletion.

An important aspect to reiterate is the rationale behind the choice of these two
scenario SPLs. These scenarios are not intended to display, or justify the scalability
of our approach. Scalability of our approach is handled next in Section 8.3. These
scenarios are used for validating our approach can handle the different types of GUI
variability, which we outlined and discussed in Chapter 4.

Using these scenario SPLs, we can test the different GUI variability categories, as
explained next.

8.2.2 Variability Categories

Back in Chapter 4, we introduced 9 different categories of GUI variability. These cat-
egories of variability are based on different aspects of the GUI. Many of these cate-
gories however are often implemented in the same way. As an example, if we consider

1https://code.google.com/p/k9mail/

130

8.2. SCENARIO-BASED EVALUATION

the categories properties of UI elements and visual appearance, they are both imple-
mented on Android by either adding or refining different XML node attributes. As a
result, to test all categories of GUI variability, we do not need to test every category in-
dividually. Instead, we can test each of these GUI variability categories based on their
method of implementation. In a GUI document, GUIs are described in a set of tree
nodes, with each node having a set of properties. This means that we can generalise
our GUI variability into the following categories of implementation variability:

• GUI Elements. This type of variability includes adding and removing whole GUI
elements e.g. buttons, and text fields. These GUI elements can be singular, or
can be containers of other GUI elements. This implementation variability can
be used for implementing presentation units, UI element, and layout variability
described in Chapter 4.

• GUI Element Properties. This type of variability encompasses alterations to
different properties of GUI elements. When considering GUI documents, this
means altering what attributes exist, and or, the attribute values. This imple-
mentation variability can be used for UI element property, dialogue, and visual
appearance variability in Chapter 4.

• GUI Behaviour. This type of variability includes different arbitrary logic that also
needs to be applied on reconfiguration. This logic can be used for defining be-
haviour e.g. gesture handlers, and also alter UI element event handlers. For the
sake of our evaluation, it can also encompass other visual adaptations that can
only be carried out in source code logic.

We argue these different variability categories form a representative set of variabil-
ity cases that this work is designed to unify. Based on this, we use these types of
variability within the SPLs we have presented earlier. The first categories we consider
are GUI elements.

GUI Elements

In this example, we show how we handle variability for GUI elements. These GUI
elements can both either be a single widget e.g. buttons, and text fields, or can be
layout widgets that act as containers of other GUI elements. For this type of variability,
we use the ContentStore application home screen. On this screen, depending on the

131

8.2. SCENARIO-BASED EVALUATION

Figure 8.1: Screenshots of the main screen

geographical location of the device, the user has access to different types of content
including applications, videos, and music. This screen therefore has different elements
related to different content types. In Figure 8.1, we illustrate screenshots of the screen
with and without the videos feature.

Firstly we consider the context and application feature models. For this scenario,
we need the following contexts:

• GeographicRegion: This context checks the coarse gained location of the mo-
bile device, specifically just to which continent. This context has the context val-
ues of north america, south america, europe, africa, asia, and oceania. These
different regions are checked using a range of different longitudes and latitudes.
This context will deduce which types of content are available to the user.

• WifiContext: This context monitors the state of the Wifi connection on the de-
vice. This can be either an off state (WifiOff), a disconnected state (WifiNotCon-
nected), or connected state (WifiConnected).

• TelephonyContext: This context monitors the state of the telephony connection
on the device. The phone can be connected in either a 2G connection (Tele2G),

132

8.2. SCENARIO-BASED EVALUATION

3G connection (Tele3G), or 4G/LTE connection (Tele4G).

• Internet: This context is a composite context made up of the Wifi and tele-
phony contexts to deduce if the device has capable internet connectivity. If either
Tele3G, Tele4G, or WifiConnected contexts are active, the device can be under-
stood to have internet connectivity (InternetOn). This context is required for the
user to be able to browse the different content available in the store.

In the application feature model, we need the features ContentStore, Applications,
Music, and Videos. The ContentStore feature in terms of the home screen has the
base structure of the GUI including advertisements and GUI containers. Buttons and
screen areas for specific content types are contained within Applications, Music, and
Videos. Since the Applications feature is default in all regions, we do not need a
context rule to enable it, and instead have it active in the initial configuration. Music
and Videos however are supported in different geographic regions. Music is enabled
in North and South America, Europe, and Oceania. This is enabled with the following
context rule:

North america ∨ South america ∨ Europe ∨Oceania⇒Music

Videos can only be downloaded in North America, and Europe. This is handled in the
following context rule:

North america ∨ Europe⇒ V ideos

Listing 8.1: Activity main screen Document Refinement
1 <FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

2 android:id="@+id/framelayout" >

3 <LinearLayout android:id="@+id/mainlayout" >

4 <LinearLayout android:id="@+id/corebuttons" >

5 <LinearLayout android:id="@+id/contenttypes" >

6 <!-- @start after android:id’=’’@+id/btnApps’’ -->

7 <Button

8 android:id="@+id/videos"

9 android:background="@drawable/btnVideos"

10 android:text="@string/videos"

11/>

12 <!-- @end after android:id’=’’@+id/btnApps’’ -->

13 </LinearLayout>

14 </LinearLayout>

15 <LinearLayout

133

8.2. SCENARIO-BASED EVALUATION

16 android:id="@+id/videoads"

17 android:orientation="vertical"

18>

19 <LinearLayout

20 android:layout_width="match_parent"

21 android:layout_height="wrap_content" >

22 <TextView

23 android:id="@+id/videoAdvertTitle"

24 android:text="@string/advert_title"

25/>

26 <Button

27 android:id="@+id/btnVideoMore"

28 android:onClick="movieAdClick"

29 android:text="@string/More"

30/>

31 </LinearLayout>

32 <LinearLayout

33 android:id="@+id/videoadcontainer"

34/>

35 </LinearLayout>

36 </LinearLayout>

37 </FrameLayout>

Next, lets look at the different source refinements required. The videos feature con-
tains a number of refinements to the home screen. Firstly, there needs to be a button
to take the user to the section of the application destined for selling video content. As
we want to be sure that the video button is always directly after the button for apps,
we add the after refinement ordering statement. The second is a group of adverts to
show the most popular videos to the user.

In Listing 8.1, we have the GUI document refinement to add the Videos button, and
the container for holding video advertisements in the LinearLayout named videoads.
This container contains a title, a button to take the user to a larger list of videos in order
of popularity, and an empty container named videoadcontainer. This container will
be used to hold each individual advertisement, each of which are instances of a GUI
document named videoadview.

Next we describe the supporting class refinements for this example.
In Listing 8.2, we show the refinement added to the MainScreen activity. As de-

scribed in Chapter 5, we need to have an onCreate method to handle all initialisation
operations for the activity_main_screen GUI document. Included in this method re-
finement are the operations to add a listener to handle touch events on the main video
button, and logic to populate the videoadcontainer element container with instances
of the videoadview GUI document for each movie.

134

8.2. SCENARIO-BASED EVALUATION

Listing 8.2: MainScreen class Refinement
1 public class MainScreen extends Activity {

2 public void onCreate_activity_main_screen(ViewGroup vg) {

3 original();

4 Button btnVideo = (Button)vg.findViewById(R.id.btnVideo);

5 btnVideo.setOnClickListener(new OnClickListener() {

6 public void onClick(View v) {

7 gotoVideoStoreScreen();

8 }

9 });

10 ArrayList<VideoAdvert> videoads = getVideoAdvertisements();

11 ViewGroup root = (ViewGroup) this.findViewById(R.id.videoadcontainer);

12 for (VideoAdvert ad : videoads) {

13 LinearLayout newMovie = (LinearLayout)View.inflate(this, R.layout.videoadview, null);

14 TextView movieName = (TextView) newMovie.findViewById(R.id.videoName);

15 movieName.setText(ad.getName());

16 ImageView movieImg = (ImageView) newMovie.findViewById(R.id.videoImage);

17 movieImg.setImageBitmap(ad.getImage());

18 root.addView(newMovie);

19 }

20 }

Lastly, we need to consider the adaptation timing of this variability. We have chosen
to apply this adaptation, only when the screen is created, for two reasons. There firstly
is a large amount of visual change to the GUI which could confuse the user if adapted.
Secondly, it is very unlikely that the user will change geographic continents during the
use of this app. This therefore means that we do not need to add the activity to the
runtime adaptation configuration file.

Next, we describe an example of how we implement variability in GUI element
properties.

GUI Element Properties

This next scenario considers how we adapt the properties of GUI elements on the
screen. For this scenario we consider the screen designed to allow the user to down-
load, install (in the case of applications), stream (in the case of videos), and review that
particular content. This screen is affected by the network connectivity and remaining
battery of the device. For this scenario, we use the same context model as used in the
previous scenario except with different context rules for the application. To download
or review content, the device must have a connection that is either 3G, LTE, or WiFi,
with an internet connection. In Figure 8.2, we illustrate two different configurations of
the GUI, with each of the relevant features stated above.

First, we define the following contexts in our context model:

135

8.2. SCENARIO-BASED EVALUATION

Figure 8.2: Screenshots of the main screen

• Battery: This context monitors the amount of remaining device battery charge.
This can be either very high (BatteryHigh), medium (BatteryMedium), or low (Bat-
teryLow).

• WifiContext: This context monitors the state of the Wifi connection on the de-
vice. This can be either an off state (WifiOff), a disconnected state (WifiNotCon-
nected), or connected state (WifiConnected).

• TelephonyContext: This context monitors the state of the telephony connection
on the device. The phone can be connected in either a 2G connection (Tele2G),
3G connection (Tele3G), or 4G/LTE connection (Tele4G).

• ExternalStorageSpaceContext: This context monitors the amount of storage
capacity in the main external storage area of the device, normally the SD card.
The device can either have high amount (StorageHigh), medium amount (Stor-
ageMed), or low amount (StorageLow) of remaining capacity.

• Internet: This context is a composite context made up of the Wifi and tele-
phony contexts to deduce if the device has capable internet connectivity. If either

136

8.2. SCENARIO-BASED EVALUATION

Tele3G, Tele4G, or WifiConnected contexts are active, the device can be under-
stood to have internet connectivity (InternetOn).

• DataSync: This context is a composite context made up of the Internet and
battery to deduce when is the right time to carry out connections to the main
context store.

These contexts will drive the main adaptation in this GUI. The main contexts that
we plan to affect the GUI are ExternalStorageSpaceContext, and DataSync. DataSync
makes the user unable to download or stream content. It also stops the user from being
able to write and save a review of the content. These are expressed with the following
rule:

DataSyncOff ⇒ NoUserReview ∧NoDownload ∧NoStream

StorageLow on the other hand only results in the user being unable to download
the content due to lack of space. The user can still review the content and stream it.
This is expressed in the following:

StorageLow ⇒ NoDownload

Next, we need to implement the different GUI document refinements.

Listing 8.3: GUI Document Refinements
1 //contentdetailheader.xml refinement in feature ‘‘Download’’

2 <LinearLayout android:id="@+id/contentdetailheader">

3 <Button android:id="@+id/downcloudcontent"

4 android:layout_width"wrap_content"

5 android:layout_height="wrap_content"

6 android:background="@drawable/can"

7 android:text="@string/download" />

8 </LinearLayout>

9 //contentdetailheader.xml refinement in feature ‘‘NoDownload’’

10 <LinearLayout android:id="@+id/contentdetailheader">

11 <Button android:id="@+id/downcloudcontent"

12 android:layout_width="wrap_content"

13 android:layout_height="wrap_content"

14 android:background="@drawable/cant"

15 android:text="@string/download" />

16 </LinearLayout>

17 //contentreviews.xml refinement in feature ‘‘NoUserReview’’

18 <LinearLayout android:id="@+id/contentreviews" >

19 <EditText android:id="@+id/txtreviewsValue"

20 android:enabled="false" />

21 <Button android:id="@+id/btnSaveReview"

22 android:background="@drawable/cant" />

137

8.2. SCENARIO-BASED EVALUATION

23 </LinearLayout>

In Listing 8.3, we have excerpts of different GUI document refinements. We do
not have room to have all refinements, so we illustrate just some of them. As this
GUI is broken down over multiple GUI documents, we needs to refine multiple GUI
documents. Two of the refinements are for the contentdetailheader.xml document,
which both add a download button, but with different properties. The first is designed
for when the Download feature is activated, and the user can download that specific
content. The second is when the NoDownload feature is activated, and the user can-
not download content due to specific contexts. The last refinement disables a button
responsible for saving user reviews for a specific item. The next set of refinements
required for this scenario include refinements to the Android activity sourcecode.

We consider how the GUI should be behave in Figure 8.4. This excerpt implements
the behaviour required by the system if the application cannot connect to the content
store because of a lack of internet connectivity. This sourcecode refinement is used
along with the with the visual changes made to contentreviews.xml. This refinement
implements an error message to the user by use of an Android Toast. To implement
this behaviour we had to add additional logic to the GUI document initialisation method
onCreate_contentreviews.

Listing 8.4: GUI Document Initialisation Refinement for ContentDetails.java class in
Feature NoUserReview

1 public class ContentDetails extends Activity {

2 public void onCreate_contentreviews(ViewGroup vg) {

3 original();

4 btnSaveReview = (Button) vg.findViewById(R.id.btnSaveReview);

5 btnSaveReview.setOnClickListener(new OnClickListener() {

6 @Override

7 public void onClick(View arg0) {

8 Toast toast = Toast.makeText(mContext, R.string.error_cantsendreview,

9 Toast.LENGTH_LONG);

10 }

11 }

Next, because we plan to disable the textfields when the device has no connection
to the internet, we need to be sure the state from the review textfield is retained during
adaptation. This is done by creating a state retention file for the class EditText. Finally,
as this adaptation is needed when the GUI is active, and not just when it is created,
we need to add the activity class to the runtime adaptation configuration file. This is
carried simply by adding the name of the class file to the text based configuration file.

138

8.2. SCENARIO-BASED EVALUATION

Listing 8.5: Auxiliary files needed for scenario
1 //State retention for the Text fields in the widget templates.

2 <NEWWIDGET>.setText(<OLDWIDGET>.getText());

3
4 //Activity added to the runtime adaptation configuration file

5 ContentDetails.java

GUI Behaviour

For this type of variability, we consider a gesture for remove items in a list. This ex-
ample is used in K9 Mail, and allows the user to easily remove emails by swiping the
item in the list. Variability in this scenario is not driven by device contexts like the other
scenarios, but driven by properties of the application, which are alterable by the user.
This adaptation does not require any variability in a GUI document, only in the source
code. The more simplistic version of this gesture given in Chapter 5 would require a
base version of this gesture to nullify the gesture. The reason for this is that changes
made in the source are not automatically reversed, and therefore default values must
be set. In this example however, because gesture support is not handled using the
same Android APIs, and the appropriate method is called based on the direction of
swipe, we can adapt the gestures using standard FOP method refinements.

In the standard downloadable version of K9 Mail, gestures are used for select-
ing/deselecting messages in the mail list GUI (MessageListFragment). To implement
this, we make the base version of the two methods for handling swiping events for
the fragment empty. We then add refinements to the features ”leftToRight” and ”right-
ToLeft” to handle the operations to select the correct email message from the list, and
delete it. In Listings 8.6, showing the base version of the two onSwipe methods, and
the leftToRight method refinement.

Listing 8.6: The “Swipe to Delete” Gesture
1 //Base version (MessageListFragment.java)

2 public void onSwipeRightToLeft(final MotionEvent e1, final MotionEvent e2){

3 }

4 public void onSwipeLeftToRight(final MotionEvent e1, final MotionEvent e2){

5 }

6
7 //Feature leftToRight (MessageListFragment.java)

8 public void onSwipeLeftToRight(final MotionEvent e1, final MotionEvent e2){

9 int x = (int) downMotion.getRawX();

10 int y = (int) downMotion.getRawY();

11 Rect headerRect = new Rect();

12 mListView.getGlobalVisibleRect(headerRect);

139

8.3. SCALABILITY EVALUATION

13 if (headerRect.contains(x, y)) {

14 int[] listPosition = new int[2];

15 mListView.getLocationOnScreen(listPosition);

16 int listX = x - listPosition[0];

17 int listY = y - listPosition[1];

18 int listViewPosition = mListView.pointToPosition(listX, listY);

19 onDelete(getMessage(listViewPosition));

20 }}

As this adaptation does not require any GUI document refinements, we do not need
to add the MessageListFragment class to the full runtime adaptation configuration file.

8.2.3 Summary of Scenarios

In this section, we presented different types of variability using two different scenario
DSPLs. Based on the different implementation variability categories, we believe our
approach can be used for implementing each of the variability types presented in
Chapter 4. Our observations based on carrying out these cases will be discussed
later in the Chapter, along with the scalability results. In the next section, we attempt
to understand more how the approach will scale, which will help us assess the feasi-
bility of the approach.

8.3 Scalability Evaluation

Because our approach to handling dynamic variability in GUI documents requires the
compile time generation of each possibly used variant, scalability tests were carried
out following the scenario SPLs. The goal of these tests are to evaluate how feasible
our approach is in different situations. To do this, we are interested how our approach
behaves with different levels of variability and GUI document sizes. This can be broken
down into the following areas:

• Generation Time: This is the time the tool takes to generate the needed GUI
document variants and the source code needed to support runtime adaptation.
For this metric, we do not consider the time required for configuration file reading,
and automatic feature model refactoring.

• Application Size: This metric considers how the size of the application will
change with the increased GUI document size and variability. This metric will

140

8.3. SCALABILITY EVALUATION

be measured at two specific points. First is the size of the compiled Android in-
stallation file, or the .apk file produced following compilation, measured on the
development machine. The second is the size of the application once installed
on the Android device. This is measured by checking the ”Apps” section of the
Android Settings application.

• Adaptation Time: This final metric measures the time it takes for a complete
adaptation cycle to take place. This time assumes a new configuration, and
therefore does not consider the time the DSPL middleware takes to deduce a
new configuration. To measure the time of a configuration, we start the appli-
cation with only the base feature active, and then change the configuration to
the configuration with all features active. We then do the reconfiguration again,
reversing from all features active to just the base feature. We repeat this 1000
times to fetch the average time for these adaptations.

In these scalability tests, we do not test the scalability of non GUI adaptation in-
cluding normal method extensions. Our approach as explained in Section 7.2.3 uses
the Context-Oriented Programming language JCOP (Appeltauer et al., 2010) to han-
dle runtime Java composition. In benchmark tests carried out on JCOP (Schuster
et al., 2011), it was found their approach was 16% slower than standard conditional if
branches.

To test these different areas, we constructed a basic SPL for handling variability of
a single GUI document. This SPL contains a single mandatory feature, and 20 optional
features.

The mandatory feature contains the base version of the GUI document. In our
experiment, one of the independent variables are different GUI document sizes. We
test different randomly created GUI documents that are <1KB, 2KB, 4KB, and 8KB.
The <1KB contains just a container layout widget needed for putting the widgets inside.
Inside the 2KB GUI document contains a number of different widgets including labels,
textfields, and images. To create the 4KB and 8KB documents, we multiplied the
widgets of the 2KB document as appropriate.

Each optional feature contains a refinement for the activity_main GUI document.
Feature relationships can greatly influence the feasibility of our approach by altering
the total number of variants generated. By choosing all additional features to be op-
tional, we can judge our approach closer with variability worse case scenarios. Each
refinement within a feature adds an additional button to the base GUI document, de-

141

8.3. SCALABILITY EVALUATION

picted in Listing 8.7. This widget type was chosen as it is a highly common widget
used in GUIs. Because of this selection, we can not guarantee that the same results
will be obtained from other widgets including textfields, checkboxes, and other cus-
tom widgets. We expect that deviation from our results will depend on the number of
properties the developer uses with that widget, and the complexity required to use it at
runtime including rendering and interaction.

Listing 8.7: GUI Refinement for Feature 1
1 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

2 android:id="@+id/outercontainer">

3 <LinearLayout android:id="@+id/container">

4 <Button

5 android:id="@+id/button1"

6 android:layout_width="41dp"

7 android:layout_height="wrap_content"

8 android:text="1" />

9
10 </LinearLayout>

11 </LinearLayout>

Finally, to measure adaptation time, we created a basic Android application. For
each test, we copy the variants and support code generated by our tools to the Android
application. Then, we measure the time to adapt the GUI as explained earlier in this
section.

These experiments are carried out using the following equipment:

• Lenovo Thinkpad T440p laptop, with an Intel i5 Processor, 8GB RAM, standard
hard disk drive, and Windows 8.1

• Samsung Nexus S phone, with Android 4.2.1.

8.3.1 Results

In this subsection, we presented the results of our scalability tests. While originally the
decision was made to have 20 optional features, because we considered the genera-
tion time as approaching unfeasibility at 14 features, we decided to end experimenta-
tion at this number of features. For all results data, please see Appendix C.

Generation Time

In Figure 8.3, we depict evaluation results for the generation time of our approach in
logarithmic scale. The generation time varied between 1.11 seconds for a <1KB GUI

142

8.3. SCALABILITY EVALUATION

Figure 8.3: Generation Time (log)

Document with 1 feature to 1405.89 seconds (23.43mins) for a 4KB GUI Document
with 14 optional features. The rate of increase is closely shared between each of GUI
Document sizes.

We observed while running this experiment that file IO contributes to a considerable
amount for the tool to generate all variants. Because our tool uses FeatureHouse, each
of the variants generated are placed in their own configuration folder. Our tool therefore
not only renames the variant file name to contain the variant identifier, but it also moves
the file into a single collective folder for all variants. During generation, we found this
operation to take a considerable amount of time. This experiment therefore we believe
is highly dependant on the type of storage used. As our experiment was carried out
on a standard laptop hard drive, we would expect a considerable time difference if a
solid state drive was used.

Application Size

In Figures 8.4 & 8.5, we show the increase in application installation size, and instal-
lation .apk binary size in logarithmic scale. The application size increase varied from
2KB for a <1KB GUI document with 1 feature to 16538KB for a 8KB GUI document
with 14 optional features. The installation binary size increase also varied from 0.01MB
for a <1KB GUI document with 1 feature to 19.07MB for a 8KB GUI document with 14
optional features. This shows that the rate of increase is far higher for application size,
than the rate of increase for the generation. We understand that the difference in size
for the application installation and installation binary is due to (de)compression of the

143

8.3. SCALABILITY EVALUATION

different application resources during compilation and installation. This group of re-
sults appears to rise far faster than the other two result categories. However, because
the absolute size of all the variants is in the regions of megabytes, it is still less of an
issue than the generation time result.

Figure 8.4: Installation Size Inc. (log) Figure 8.5: .apk File Size Inc. (log)

Adaptation Time

Finally, the results of the adaptation time are presented in Figure 8.6. Adaptation time
scales far better than the generation time, and application size. Time to adapt the GUI
was between 2.44ms for a GUI Document <1KB with a single feature, and 63.72ms
for a GUI Document of 8KB with 14 optional features. This therefore means that a GUI
tree can be adapted between 16 and 409 times a second. This means that in many
cases, the adaptation process can be carried out faster than the screen can refresh, at
60Hz. Unsurprisingly, the time to adapt increased both with GUI Document size, and
with the number of optional features.

We can see that the size of the GUI Document plays a role in the performance when
comparing the time of each of the different sizes at the same number of features. This
difference is most likely due to the time it takes for Android to inflate a new GUI subtree
instance from each GUI Document variant. As the GUI Document size increases, more
widget instances are needed in each of the GUI subtrees, which will subsequently take
longer.

144

8.4. DISCUSSION

Figure 8.6: Adaptation Time

8.4 Discussion

Based on the experimentation given in the previous sections, we discuss our evalu-
ation findings. To discuss our findings, we consider the following areas of interest:
unification, scalability, and extensibility. We also compare our approach with previous
approaches, which act as a baseline for our approach.

8.4.1 Unification

The core challenges described in Chapter 3 relate specifically to the unification of GUI
adaptation, and context as a feature. By using our approach, we can enable the ability
to apply GUI refinements both at design time at runtime. During our scenario SPLs, we
discovered that in some cases we could not always disable features to disable specific
elements of the GUI. In DSPLs that consider only logic, when particular functionality
is not wanted anymore, that feature can be unbound, therefore removing that func-
tionality. When considering the GUI, this was not always the same. In the example
of the content download/review screen of the content store DSPL, in a static product,
the feature to allow for downloading views may not be selected. When implementing
this variability, this would mean that the download button is not included. If however
the feature is deactivated in a DSPL product because of a lack of internet connec-
tion, this will cause the button to disappear which could possibly confuse the user. To
ensure usability and user trust, we believe it would be more suitable to disable the

145

8.4. DISCUSSION

button or alter the functionality of the button to inform the user of the situation. In these
cases, we need to have additional features for this runtime adaptation, for example
we introduced a “NoDownload” feature in the content store application. Depending on
the kind of adaptation required, the developer will need to decide whether the runtime
adaptation should result the same as a static product.

When handling context as a feature using feature models we find both advantages
and disadvantages. Firstly, with our proposed DSPL middleware, using feature mod-
els, we have the benefit of being able to treat context as a reconfigurable entity of the
system. This means that when contexts are not wanted or needed further, the system
can cease its use. One disadvantage is that this requires finite models and that means
more context deduction has to be carried out in the context components instead of the
context model. This is because every value that we want to include in a context rule
must relate to a feature name in one of the feature models. In instances of checking
against many different values, for ease, it is better to aggregate different values into
single context values, to avoid the feature models becoming too large and complex. An
example of this includes handling country by country content available in the content
store application. Instead of having a propositional rule for each country, have the con-
text component aggregate different countries into the same context value when they
have a shared fate.

8.4.2 Scalability

In our scalability tests, we have seen that our approach is broadly feasible in the situ-
ations of 8 to 12 dynamic binding units of GUI document variability. The cost of GUI
unification using our approach can be seen to be quite high, and some might suggest
to place GUI adaptation only in source code and not GUI documents. This approach
however more scalable, will increase code scattering. While conventionally, code scat-
tering can degrade a program’s comprehensibility, we believe this can be magnified
when GUI code is scattered across different artefacts and languages. In our prototype
platform, there is not always a simplistic corresponding class getter or setter for ev-
ery GUI document property, complicating the issue of managing a single concern over
many artefacts and languages. Also, with GUI documents, platform IDEs often allow
the developer to preview and implement the GUI using drag and drop visual editors. If
GUI adaptation is moved to source code, this could result in the developer no longer
being able to develop the GUI using these tools.

146

8.4. DISCUSSION

A large issue with our approach relates to the amount of repetitive code generated
with each GUI document variant. Repetitive source can become more of an issue in
larger GUI trees, as the whole tree is present in every variant. For this we suggest to
decompose the GUI document. By decomposing the GUI document, we essentially
break the GUI document down in to multiple parts, that can be loaded separately and
used at runtime. Depending on the location of the GUI document variability, highly
variable sections of the document can be separated from the main GUI document,
therefore lowering the amount of repetitive code. This not only helps lower the amount
of storage required for an application installation, but can also make the runtime adap-
tation more efficient. At runtime, every time there is an adaptation, a new variant of
that GUI document is reloaded before adding, removing, or swapping the appropriate
widgets. As presented in the scalability tests, the time to adapt is dependant on the
size of the GUI document. Consequently, the smaller the GUI document, the faster
that GUI document instance will adapt.

Overall, we can see that scalability can be a real issue with our approach. Later in
our future, we discuss further work we wish to carry out to try and improve this.

8.4.3 Extensibility

Extensibility is an important property of any SPL as product requirements constantly
change, allowing for the derivation of new products. Extensibility in a DSPL can be
related to both the domain engineering, and application engineering phases of the
SPL. By having an extensible domain, the developer can easily add new variability to
an SPL at design time.

Extensions to the domain can be handled easily by further FOP refinements for
source code, or GUI documents. If more widgets are required for runtime adaptation
that require their state to be retained, a state retention template can be created for each
widget. This can be for both Android system widgets, or widgets implemented in the
application. Additionally, contexts can be developed for the DSPL. As we explained
in the earlier chapters of this thesis, each context in the context feature model has
a corresponding context component implementation. We can therefore extend the
context-awareness of the domain by adding additional contexts to the context model,
and develop the new context components to be used by that DSPL.

An extensible application on the other hand refers to the ability to add and mod-
ify the variability of the application. Application derivation in DSPLs can happen both

147

8.4. DISCUSSION

before deployment, and after at runtime. Application extensions can be carried out by
adding additional features and contexts after deviation but before compilation. Cur-
rently runtime extensibility is limited to contexts. This is due to the use of the Context-
Oriented Programming language JCop. JCop is built on top of AspectJ, an Aspect-
Oriented language. Runtime aspect weaving is currently not supported in the Dalvik
virtual machine, used by Android. This makes it impossible to extend the actual appli-
cation currently. While dynamic binding and class loading can be handled by Android,
we currently know of no Android compatible languages to handle this similar to FOP
languages, for example FeatureC++. Because the Android UI framework requires GUI
documents to be statically referenced in source code, this means no additional GUI
document variants can be added at runtime. Contexts however can be added after
deployment to the management system using the API we provided.

8.4.4 Previous Approaches

In this work, we propose an approach to unifying GUI adaptation using, and extending
DSPLs. It is important we look back at previous work briefly to compare our approach
with those already proposed. It is obviously difficult to compare solid scalability data
we gathered with previous approaches fairly, as we have to consider the differences in
system languages, platforms, and form factors.

Different DSPL approaches have been proposed previously. These different DSPLs
differ on a number of aspects, including language, platform, and support for dynamic
and static variability. Many DSPL approaches rely on service-oriented architecture
for implementation (Lee and Kang, 2006; Marinho et al., 2010; Parra et al., 2009;
Lee et al., 2012). While there are differences between each of these approaches, in
essence they all use services for logic implementation. During runtime, these different
services can be binded together supporting runtime adaptation. Other pure language
approaches include FeatureC++ (Rosenmüller et al., 2011b). FeatureC++ makes use
of C++ language extensions and dynamic binding to achieve adaptation. Adaptation
is implemented in Feature-Oriented Programming, which is then transformed into the
declarator pattern. This approach also proposed the use of static binding with dynamic
to achieve greater scalability and performance. The one aspect that these DSPLs all
share is their lack of real GUI support.

These different DSPLs do not consider how to adapt the GUI explicitly. In many
of these approaches, where the GUI is programmed in the same language as the

148

8.4. DISCUSSION

program logic, it is possible to adapt the GUIs when they are created/instantiated.
However, these approaches do not give any ability to handle GUI adaptations once
the GUI has been created, and is visible to the user. This therefore leaves a static GUI
once it has been displayed to the user. It could be possible to combine DSPLs with
other existing adaptive GUI approaches, but that leaves large drawbacks. The first is
that static and dynamic GUI adaptation is separately developed. In the cases where
a given GUI refinement is required in both static and dynamic final products, the de-
veloper will need to design, implement, and maintain two different versions depending
on if the adaptation is required statically, or dynamically. The second drawback is how
it is managed in the SPL. To handle both static and dynamic versions of that GUI, the
developer will need to use one of two approaches. The first would require many ad-
ditional features to be added to the feature model, each of which would contain each
version of the different GUIs. The second approach would be require adaptation to be
added to the product after it has been derived. These two approaches add additional
product complexity in terms of their configuration management. Using our approach,
only GUI adaptation needs only to be designed, and implemented once. This alle-
viates the need for managing features that require specific binding times in a single
feature model, as all features can be bound statically, or dynamically.

In addition, as the lack of existing DSPL support also stretches to the ability to
handle more than a single language. DSPLs in literature traditionally handle a single
language which is used to implement the whole system. GUI development however
in modern platforms often requires the need for multiple languages through their use
of document-oriented GUIs, or GUI description languages. Using current DSPL ap-
proaches will effectively mean the developer cannot use GUI description languages as
there is no support for them. Composing these documents at runtime while possible,
would in practice either require GUI framework alterations, or a new GUI framework
designed to handle the GUI documents. The primary reason for this is during applica-
tion composition on different platforms including iOS, Android, and Microsoft Windows
the GUI documents are compiled also into internal proprietary binary formats.

Because existing DSPL approaches only handle adaptations in program logic which
is more easily composable at runtime, these approaches scale far better than our ap-
proach when including GUI variability. Having said this, scalability in our approach
is mostly affected by GUI variability. Program logic variability in DSPL should scale
broadly inline with existing approaches as our approach is extension of existing lan-
guages.

149

8.5. SUMMARY

8.5 Summary

In this chapter, an evaluation of the proposed work has been presented. It has been
shown that our approach has good coverage in terms of the types of GUI variability, as
specified in Chapter 4, that can be handled using approach. Coverage is of variability
cases is handled through the use of scenario DSPLs, with different types of GUI imple-
mentation variability. While our approach does not scale as well as the other existing
DSPL approaches, we believe it is feasible for the vast majority of cases. More data will
be needed across real industrial case studies however to assist in the generalisation
of these findings.

150

Part IV

Conclusion

151

9
Conclusions and Future Work

Contents
9.1 Introduction . 152

9.2 Thesis Summary . 152

9.3 Thesis Contributions . 154

9.4 Future work . 156

9.1 Introduction

In this thesis, an approach for unifying GUI adaptation and context modelling in DSPLs
has been presented. This final chapter concludes this thesis providing an overall sum-
mary in Section 9.2. In Section 9.3, we summarise the main contributions of this work,
and finally discuss future work to be carried out in Section 9.4.

9.2 Thesis Summary

In the high proliferation of smart devices, and mobile applications, people are interact-
ing with computers in new and exciting ways. With this use of pervasive and ubiquitous
computing, user requirements are always changing. Using context-aware adaptive
computing, software can adapt to suit the user in different situations and help antici-
pate their actions. SPLs and FOSD provide methods, processes, and techniques to
manage this need for requirement variability. This systematic consideration for variabil-
ity helps provide strategies for artefact reuse across product families using annotative

152

9.2. THESIS SUMMARY

and compositional approaches. Traditional SPLs however, consider variability only
statically, and therefore cannot adapt to user requirements at runtime.

In this thesis, we contribute to the vision of unification in DSPLs, allowing for soft-
ware to be adaptable statically, and dynamically. Our work primarily concentrated on
bringing design time and runtime GUI adaptation unification to DSPLs, allowing the
developers to apply refinements to the GUI statically and dynamically. This work is
designed to solve this challenge particularly for Document-Oriented GUIs, which are
an increasingly common approach to implementing GUIs through the use of markup,
and GUI description languages. For our approach, we have extended the use of FOP,
a language paradigm for implementing SPLs, to the domain of GUIs. Using FOP,
GUI variability can be implemented through the use of GUI document refinements,
which refine and adapt that GUI document in a specific way. Along with the ability for
stepwise refinement of GUI documents, we enable the ability to precisely control the
positioning of different GUI elements during composition. GUI document refinements
however only constitute half of our design time contributions. Next, we extend FOP to
enable the implementation of source code based GUI adaptations. This can be bro-
ken down into multiple parts. We firstly propose to place all GUI document initialisation
logic, which is required to ensure GUI elements adapted at runtime are initialised ap-
propriately. Secondly, we give the developer the ability to implement GUI adaptations
based in source code, for example gesture support. These different adaptations can
be refined like all other FOP methods enabling runtime stepwise refinement. This con-
tribution is important to runtime GUI adaptation as its execution is always carried out
on adaptation, which is not guaranteed using standard FOP.

To support runtime adaptation, we create several different components. The first
component was designed to manage and orchestrate the reconfiguration of the appli-
cation. The second component is used to manage the different GUI document variants,
which can be requested by other classes in the system at runtime. The third and last
component manages state retention by transferring widget state between variants at
adaptation.

In addition, we focus on treating context as a unified feature in the DSPL. This
allows the develop to model the context and system features in a single modelling no-
tation. It also can enable the use of dynamic context-acquisition. Context-acquisition
historically in DSPLs has been a static process, whereby context information is con-
tinuously collected regardless of the systems requirements. In our work, we focus on
including context modelling in feature models to allow a single modelling notation to be

153

9.3. THESIS CONTRIBUTIONS

used to model both context and the system variability. To complement this, we develop
a DSPL management system that can dynamically activate/deactivate context sensing
and deploy new context components. These two complimenting parts of this work are
achieved by treating context as a feature of the system in a DSPL.

To validate our proposed work, we carried out a combination of scenarios and
scalability tests. For scenario based tests, we categorised different implementation
variability types, and carried out an example scenario for each. These variability cat-
egories included whole widget additions and removals, widget attribute changes, and
adaptation of a gesture in the GUI. In the scalability evaluation, we examined how the
approach scales with different amounts of variability, and complexity in the GUI. Over-
all, we found that the approach shows promise to be scalable to 8-12 optional features
for each GUI document. We found that in our tests, it was the time it took to generate
each of the GUI variants to be main hindrance in handling great amounts of variability.

Next, we describe the different contributions of this thesis.

9.3 Thesis Contributions

The core aim of this thesis was to bring unified GUI adaptation to DSPLs. In the
process of this thesis, a number of contributions to the field of Software Product Lines
have been achieved, including:

1. An extended modelling approach to handle system variability and context:
To support the domain engineering process, we propose a unified modelling ap-
proach for handling system variability and context. By using extended feature
models, we avoid the need for supplementary models required by previous ap-
proaches. The models are then used at runtime by the DSPL management sys-
tem to not only adapt the DSPL application, but dynamically use different con-
texts.

2. A Feature-Oriented approach to GUI adaptation: An approach to unified GUI
adaptation was proposed. This approach is based on Feature-Oriented Pro-
gramming, and allows GUI variability to be implemented in refinements, along
with the rest of the application. These refinements are composed together at
compile-time using superimposition, and allows for precise GUI element place-
ment using refinement hooks.

154

9.3. THESIS CONTRIBUTIONS

3. A mechanism for runtime GUI adaptation: In conjunction with the adapta-
tion approach in the last contribution, we proposed a mechanism for dynamically
adapting the GUI at runtime. Our proposal is an approach that only updates the
widgets requiring adaptation, and ensures GUI state is retained during adapta-
tion.

4. A centralised DSPL management system: To avoid the need for a DSPL man-
agement system for each DSPL on a mobile device, we proposed a system that
can be centralised. This management system can be part of a single mobile
app, or centralised to managed multiple DSPL applications. It also includes a
context-acquisition engine, to handle context sensing and basic higher level con-
text deduction. This component can also allow for context data to be shared
over many mobile apps, and DSPL instances. As the context acquisition is part
of the DSPL management system, we can also handle context activations and
deactivations based on the DSPL feature model.

5. Tool support and developed prototypes: To validate and evaluate our con-
tribution, we developed several deliverables including tool support, and mobile
middleware. Tool support was built via an extension to the FeatureIDE plugins
for Eclipse IDE to handle context modelling, and source code generation and
transformations. It generates the different GUI document variants based on the
variability of the DSPL, and transforms the source code to handle runtime GUI
adaptation. The mobile middleware, FeatureDroid, includes the DSPL manage-
ment system named FeatureDroid, developed for the Android mobile platform
to handle DSPL configuration management. This middleware also includes the
context management system, ContextEngine, for handling context sensing, and
reconfiguration based on context.

One key impact of this work, in finding a solution to the research challenges in
this thesis, a number of different artefacts were produced. In particular, extensions to
FeatureHouse to enable composition have been included into the main project source
code1, enabling software developers to carry out static GUI document composition.
It is also possible that in the future, the components developed to enable runtime
GUI adaptation will be developed further, and be included as an additional plugin to
FeatureIDE. We believe the interest by the research community to include our work

1The main FeatureHouse source code can be found at: https://github.com/joliebig/featurehouse

155

9.4. FUTURE WORK

helps highlight its relevance to developers and researchers. In the next section, we
describe and discuss areas in which further research is required.

9.4 Future work

While we argue this thesis provides a feasible answer to handling GUI adaptation in
DSPLs, this we believe is just the beginning. In this section we aim to discuss some of
the areas of future which we believe warrant further investigation, and development.

By developing our context models using feature models, we have been able to
create a product where contexts can be activated or deactivated allowing for context
acquisition to be self-aware to an extent. Currently, if the developer wants to alter
the parameters of a context component e.g. the delay between getting a users loca-
tion, the developer needs to have multiple similar context components. It would be
interesting to extend our context models and DSPL management system to allow for
context components to be adapted also allowing for the system to be fully self-aware
and adaptive. Appropriate consideration will be needed to avoid multiple applications
having conflicting context component parameters when context is acquired centrally.

Application extensibility was discussed to be a particular feature that is missing
from our implemented solution. This is in part due to the need for GUI document vari-
ants, and also due to the use of the COP language, JCOP. To recap, we chose to
follow the approach of generating all variants because runtime composition of the GUI
documents using current platform APIs was not possible. This is not to say the idea
of runtime composition is impossible on all platforms, just that we viewed the develop-
ment effort to be too high. We also aimed to have an approach that we believe can be
applicable across more than a single platform. It is possible that additional develop-
ment could be carried out to parse the GUI documents that had not been preprocessed
on some platforms. Particularly with Android If these two different components can be
implemented, it would be interesting to conduct experiments to find the advantages
and disadvantages of the different approaches.

In this dissertation, we have concentrated on compiled native mobile applications.
With the rise and shift from native applications to web applications, this presents us
with the interesting question of how this work can be adapted to the mobile web. We
expect that while our approach to static composition could be adapted to work with
HTML files, the real question is how the runtime GUI composition could be carried
out. While work previously has used DSPLs with the web (Parra et al., 2009; Alferez

156

9.4. FUTURE WORK

and Pelechano, 2011), this has always been server-side. Modern HTML5 enables the
ability to develop web applications that can be used offline, this means that server-
side solutions cannot work offline. Solutions for runtime logic adaptation in JavaScript
include ContextJS (Lincke et al., 2011). Just like our solution, it is possible a FOP ex-
tension for Javascript could be implemented for FeatureHouse, with similar FOP-COP
source-code transformations for runtime adaptation. While it is possible an adapted
version of our approach could be used with DOM elements in a web page, it should be
possible to apply each refinement to the DOM tree without the need for whole variants,
as used in this work. This therefore would be more scalable than the solution proposed
for native applications.

Program validation, and verification are very important activities to ensure a pro-
gram remains bug free, and meets the requirements it is designed for. This is no less
true for GUIs in a SPL. GUI documents help enforce separation of concerns by forcing
the developer to implement the view external from the data, and the business logic
of the application in design patterns including the Model-View-Controller. This separa-
tion however, means there are multiple linked artefacts in the application. As these GUI
documents are often only interpreted at runtime, they are often not statically checked
at compile time. We therefore need to ensure that no inconsistencies between these
artefacts occur. These inconsistencies can be two ways, between the controller and
view, and equally between the view and the controller. Examples of these bugs in-
clude attempting to add event listeners to non-existent buttons in the GUI document,
or referencing an onClick method in the GUI document that is not implemented in the
controller using the document. While these inconsistencies can be easily managed
in standard applications, SPLs can make it increasingly more difficult to check these
artefact dependencies, and therefore these bugs could occur far more easily. To help
find some of these inconsistencies, we suggest the following checks:

• Controller-View: This checks the consistency between view references made in
the controller to the view. In this check, we attempt to ensure widgets referenced
in controllers exist within the GUI document that is used.

• View-Controller: This checks the consistency between controller references
made in the view to the controller. In this check, we attempt to ensure that,
event handlers declared within the GUI documents are implemented within the
controller.

As it is not always possible to understand the context of use for a GUI document in an

157

9.4. FUTURE WORK

application, we therefore suggest only potential warnings to the developer, not errors.

158

A
Implementation specific scripts

Listing A.1: Ant build.xml target alterations to create context deployable jar
1 <!-- This is a modified version of the "dex-helper" macro. It added the "input-dir" and

2 "output-dex-file" required attributes.

3 Configurable macro, which allows to pass as parameters input directory,

4 output directory, output dex filename and external libraries to dex (optional) -->

5 <macrodef name="dex-helper-mod">

6 <attribute name="input-dir" />

7 <attribute name="output-dex-file" />

8 <element name="external-libs" optional="yes" />

9 <element name="extra-parameters" optional="yes" />

10 <attribute name="nolocals" default="false" />

11 <sequential>

12 <!-- set the secondary dx input: the project (and library) jar files

13 If a pre-dex task sets it to something else this has no effect -->

14 <if>

15 <condition>

16 <isreference refid="out.dex.jar.input.ref" />

17 </condition>

18 <else>

19 <path id="out.dex.jar.input.ref">

20 <path refid="project.all.jars.path" />

21 </path>

22 </else>

23 </if>

24
25 <echo>Converting compiled files and external libraries into @{output-dex-file}...</echo>

26 <dex executable="${dx}"

27 output="@{output-dex-file}"

28 nolocals="@{nolocals}"

29 verbose="${verbose}">

30 <path path="@{input-dir}"/>

31 <path refid="out.dex.jar.input.ref" />

32 <external-libs />

33 </dex>

34 </sequential>

35 </macrodef>

159

36
37 <!-- This is a modified version of "-dex" target taken from $SDK/tools/ant/main_rules.xml -->

38 <!-- Converts this project’s .class files into .dex files -->

39 <target name="-dex" depends="-compile, -post-compile, -obfuscate"

40 unless="do.not.compile">

41 <if condition="${manifest.hasCode}">

42 <then>

43 <!-- Create staging directories to store .class files to be converted to the -->

44 <!-- default dex and the secondary dex. -->

45 <mkdir dir="${out.classes.absolute.dir}.1"/>

46 <mkdir dir="${out.classes.absolute.dir}.2"/>

47
48 <!-- Primary dex to include everything but the concrete library implementation. -->

49 <copy todir="${out.classes.absolute.dir}.1" >

50 <fileset dir="${out.classes.absolute.dir}" >

51 <exclude name="uk/ac/uwl/mdse/contextengine/components/**" />

52 </fileset>

53 </copy>

54 <!-- Secondary dex to include the concrete library implementation. -->

55 <copy todir="${out.classes.absolute.dir}.2" >

56 <fileset dir="${out.classes.absolute.dir}" >

57 <include name="uk/ac/uwl/mdse/contextengine/components/**" />

58 </fileset>

59 </copy>

60
61 <!-- Compile .class files from the two stage directories to the apppropriate dex files. -->

62 <dex-helper-mod input-dir="${out.classes.absolute.dir}.1"

63 output-dex-file="${out.absolute.dir}/${dex.file.name}" />

64 <mkdir dir="${out.absolute.dir}/secondary_dex_dir" />

65 <dex-helper-mod input-dir="${out.classes.absolute.dir}.2"

66 output-dex-file="${out.absolute.dir}/secondary_dex_dir/classes.dex" />

67 <!-- Jar the secondary dex file so it can be consumed by the DexClassLoader. -->

68 <!-- Package the output in the assets directory of the apk. -->

69 <jar destfile="${asset.absolute.dir}/secondary_dex.jar"

70 basedir="${out.absolute.dir}/secondary_dex_dir" includes="classes.dex" />

71 </then>

72 <else>

73 <echo>hasCode = false. Skipping...</echo>

74 </else>

75 </if>

76 </target>

160

B
Scenario Feature Models

Listing B.1: ContentStore Context Feature Model XML
1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>

2 <featureModel chosenLayoutAlgorithm="1" showAllConstraints="true">

3 <struct>

4 <and abstract="true" mandatory="true" name="Context">

5 <and abstract="true" mandatory="true" name="Device">

6 <alt mandatory="true" name="Battery">

7 <feature mandatory="true" name="BatteryLow">

8 <attribute domain="range" name="batlowdesc" value="0-10"

/>

9 </feature>

10 <feature mandatory="true" name="BatteryMed">

11 <attribute domain="range" name="batmedesc" value="11-80"

/>

12 </feature>

13 <feature mandatory="true" name="BatteryHigh">

14 <attribute domain="range" name="bathighdesc" value="

81-100"/>

15 </feature>

16 </alt>

17 <alt name="Wifi">

18 <feature mandatory="true" name="WifiOff"/>

19 <feature mandatory="true" name="WifiNotConnected"/>

20 <feature mandatory="true" name="WifiConnected"/>

21 </alt>

22 <alt name="Telephony">

23 <feature mandatory="true" name="Tele2G"/>

24 <feature mandatory="true" name="Tele3G"/>

25 <feature mandatory="true" name="Tele4G"/>

26 </alt>

27 </and>

28 <and abstract="true" name="AggContexts">

29 <alt abstract="true" name="Internet">

30 <feature mandatory="true" name="InternetOn"/>

31 <feature mandatory="true" name="InternetOff"/>

32 </alt>

161

33 <and abstract="true" name="DataSync">

34 <feature name="DataSyncOn"/>

35 <feature name="DataSyncOff"/>

36 </and>

37 </and>

38 </and>

39 </struct>

40 <constraints>

41 <rule>

42 <imp>

43 <disj>

44 <var>Tele3G</var>

45 <disj>

46 <var>Tele4G</var>

47 <var>WifiConnected</var>

48 </disj>

49 </disj>

50 <var>InternetOn</var>

51 </imp>

52 </rule>

53 <rule>

54 <imp>

55 <conj>

56 <disj>

57 <var>BatteryHigh</var>

58 <var>BatteryMed</var>

59 </disj>

60 <var>InternetOn</var>

61 </conj>

62 <var>DataSyncOn</var>

63 </imp>

64 </rule>

65 </constraints>

66 <comments/>

67 <featureOrder userDefined="false"/>

68 </featureModel>

162

C
Scalability Data

163

D
oc

.
S

iz
e

#
of

Fe
a.

Va
ria

nt
G

en
.

Ti
m

e
(s

)
To

ta
lA

pp
S

iz
e

(K
B

)
In

st
al

l.
S

iz
e

(M
B

)
R

un
.

A
da

pt
.

Ti
m

e
(m

s)
or

ig
in

al
0

0
28

4
1.

04
0

<
1K

B
(2

46
B

)
1

1.
11

28
6

1.
05

2.
44

8
-

2
2.

10
1

28
8

1.
05

3.
81

1
-

4
2.

35
6

29
5

1.
06

6.
56

1
-

6
3.

53
5

32
4

1.
10

9.
16

3
-

8
11

.5
03

44
3

1.
25

12
.5

24
-

10
40

.2
74

92
7

1.
84

15
.2

59
-

12
19

1.
51

8
29

09
4.

30
17

.0
45

-
14

10
82

.1
82

11
03

8
14

.5
4

17
.8

87
2K

B
1

1.
10

3
28

7
1.

05
7.

93
4

-
2

2.
10

8
28

9
1.

06
9.

50
1

-
4

2.
25

7
30

0
1.

07
12

.4
79

-
6

4.
45

4
34

0
1.

11
15

.0
77

-
8

13
.8

56
50

6
1.

31
17

.7
98

-
10

50
.9

41
11

79
2.

09
20

.8
6

-
12

22
6.

13
4

39
18

5.
29

23
.0

78
-

14
10

46
.0

36
15

07
0

18
.4

0
26

.0
69

Ta
bl

e
C

.1
:

S
ca

la
bi

lit
y

D
at

a
fo

r<
1K

B
an

d
2K

B
G

U
ID

oc
um

en
ts

.

164

D
oc

.
S

iz
e

#
of

Fe
a.

Va
ria

nt
G

en
.

Ti
m

e
(s

)
To

ta
lA

pp
S

iz
e

(K
B

)
In

st
al

l.
S

iz
e

(M
B

)
R

un
.

A
da

pt
.

Ti
m

e
(m

s)
or

ig
in

al
0

0
28

4
1.

04
0

4K
B

1
2.

05
6

28
8

1.
05

14
.3

04
-

2
2.

47
6

29
0

1.
06

15
.7

56
-

4
2.

58
30

1
1.

07
18

.6
59

-
6

6.
59

4
34

4
1.

12
22

.0
92

-
8

18
.8

58
51

7
1.

32
24

.9
68

-
10

75
.7

93
12

20
2.

13
26

.9
86

-
12

32
4.

17
6

40
81

5.
84

29
.9

43
-

14
14

05
.8

89
15

73
2

19
.0

4
32

.7
90

8K
B

1
2.

08
4

28
9

1.
06

33
.2

86
-

2
2.

10
3

29
1

1.
06

37
.0

97
-

4
3.

27
2

30
3

1.
07

40
.9

6
-

6
6.

61
3

34
9

1.
13

46
.0

09
-

8
19

.3
42

53
4

1.
34

47
.8

23
-

10
71

.9
75

12
88

2.
20

51
.8

81
-

12
32

8.
90

4
43

52
5.

71
58

.0
65

-
14

13
48

.3
12

16
82

2
19

.0
7

63
.7

27

Ta
bl

e
C

.2
:

S
ca

la
bi

lit
y

D
at

a
fo

r4
K

B
an

d
8K

B
G

U
ID

oc
um

en
ts

.

165

Bibliography

Abowd, G. D., Atkeson, C. G., Hong, J., Long, S., Kooper, R. and Pinkerton, M. (1997).
Cyberguide: A mobile context-aware tour guide, Wirel. Netw. 3(5): 421–433.

Acher, M. (2011). Managing Multiple Feature Models: Foundataions, Language and
Applications, PhD thesis, Université De Nice-Sophia Antipolis.

Acher, M., Collet, P., Fleurey, F., Lahire, P., Moisan, S. and Rigault, J.-P. (2009). Mod-
eling Context and Dynamic Adaptations with Feature Models, 4th International
Workshop Models@run.time at Models 2009 (MRT’09), p. 10.

Alferez, G. and Pelechano, V. (2011). Context-aware autonomous web services in
software product lines, Software Product Line Conference (SPLC), 2011 15th In-
ternational, pp. 100 –109.

Alves, V., Matos Jr., P., Cole, L., Borba, P. and Ramalho, G. (2005). Extracting and
evolving mobile games product lines, in H. Obbink and K. Pohl (eds), Software
Product Lines, Vol. 3714 of Lecture Notes in Computer Science, Springer Berlin /
Heidelberg, pp. 70–81.

Anfurrutia, F. I., Dı́az, O. and Trujillo, S. (2007). On refining xml artifacts, Proceed-
ings of the 7th international conference on Web engineering, ICWE’07, Springer-
Verlag, Berlin, Heidelberg, pp. 473–478.

Apel, S. (2007). The Role of Features and Aspects in Software Development, PhD
thesis, Otto-von-Guericke-University Magdeburg.

Apel, S., Janda, F., Trujillo, S. and Kästner, C. (2009). Model superimposition in soft-
ware product lines, Proceedings of the 2nd International Conference on Theory
and Practice of Model Transformations, ICMT ’09, Springer-Verlag, Berlin, Heidel-
berg, pp. 4–19.

Apel, S. and Kästner, C. (2009). An overview of feature-oriented software develop-
ment, Journal of Object Technology 8(5): 49–84.

Apel, S., Kastner, C. and Lengauer, C. (2009). Featurehouse: Language-independent,
automated software composition, Proceedings of the 31st International Confer-
ence on Software Engineering, ICSE ’09, IEEE Computer Society, Washington,
DC, USA, pp. 221–231.

166

BIBLIOGRAPHY

Apel, S., Leich, T., Rosenmüller, M. and Saake, G. (2005). Featurec++: on the sym-
biosis of feature-oriented and aspect-oriented programming, Proceedings of the
4th international conference on Generative Programming and Component Engi-
neering, GPCE’05, Springer-Verlag, Berlin, Heidelberg, pp. 125–140.

Apel, S. and Lengauer, C. (2008). Superimposition: a language-independent approach
to software composition, Proceedings of the 7th international conference on Soft-
ware composition, SC’08, Springer-Verlag, Berlin, Heidelberg, pp. 20–35.

Apel, S., Lengauer, C., Möller, B. and Kästner, C. (2010). An algebraic foun-
dation for automatic feature-based program synthesis, Sci. Comput. Program.
75(11): 1022–1047.

Apel, S., Lengauer, C., Möller, B. and Krästner, C. (2008). An algebra for features
and feature composition, in J. Meseguer and G. Rosu (eds), Algebraic Methodol-
ogy and Software Technology, Vol. 5140 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, pp. 36–50.

Appeltauer, M., Hirschfeld, R. and Masuhara, H. (2009). Improving the development
of context-dependent java applications with contextj, International Workshop on
Context-Oriented Programming, COP ’09, ACM, New York, NY, USA, pp. 5:1–5:5.

Appeltauer, M., Hirschfeld, R., Masuhara, H., Haupt, M. and Kawauchi, K. (2010).
Event-specific Software Composition in Context-oriented Programming, Proceed-
ings of International Conference on Software Composition, Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin, Heidelberg, Germany, pp. 50–65.

Avrahami, D. and Hudson, S. E. (2006). Responsiveness in instant messaging: Predic-
tive models supporting inter-personal communication, Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’06, ACM, New York,
NY, USA, pp. 731–740.

Bass, L., Clements, P. and Kazman, R. (2003). Software Architecture in Practice, SEI
Series in Software Engineering, Addison-Wesley.

Batory, D. (2005). Feature models, grammars, and propositional formulas, in H. Ob-
bink and K. Pohl (eds), Software Product Lines, Vol. 3714 of Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, pp. 7–20.

167

BIBLIOGRAPHY

Batory, D., Sarvela, J. and Rauschmayer, A. (2004). Scaling step-wise refinement,
IEEE Trans. Softw. Eng. 30: 355–371.

Behan, M. and Krejcar, O. (2012). Adaptive graphical user interface solution for mod-
ern user devices, in J.-S. Pan, S.-M. Chen and N. Nguyen (eds), Intelligent Infor-
mation and Database Systems, Vol. 7197 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, pp. 411–420.

Benavides, D., Segura, S. and Ruiz-Cortés, A. (2010). Automated analysis of feature
models 20 years later: A literature review, Inf. Syst. 35: 615–636.

Benavides, D., Trinidad, P. and Ruiz-Cortés, A. (2005). Automated reasoning on fea-
ture models, Proceedings of the 17th international conference on Advanced In-
formation Systems Engineering, CAiSE’05, Springer-Verlag, Berlin, Heidelberg,
pp. 491–503.

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A.
and Riboni, D. (2010). A survey of context modelling and reasoning techniques,
Pervasive and Mobile Computing 6(2): 161 – 180.

Bosch, J. (2000). Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach, Addison-Wesley.

Boucher, Q., Abbasi, E., Hubaux, A., Perrouin, G., Acher, M. and Heymans, P. (2012).
Towards more reliable configurators: A re-engineering perspective, Product Line
Approaches in Software Engineering (PLEASE), 2012 3rd International Workshop
on, pp. 29 –32.

Brummermann, H., Keunecke, M. and Schmid, K. (2011). Variability issues in the
evolution of information system ecosystems, Proceedings of the 5th Workshop on
Variability Modeling of Software-Intensive Systems, VaMoS ’11, ACM, New York,
NY, USA, pp. 159–164.

Bruntink, M., van Deursen, A., D’Hondt, M. and Tourwé, T. (2007). Simple crosscut-
ting concerns are not so simple: analysing variability in large-scale idioms-based
implementations, Proceedings of the 6th international conference on Aspect-
oriented software development, AOSD ’07, ACM, New York, NY, USA, pp. 199–
211.

168

BIBLIOGRAPHY

Calvary, G., Coutaz, J. and Thevenin, D. (2001). A unifying reference framework for
the development of plastic user interfaces, in M. Little and L. Nigay (eds), Engi-
neering for Human-Computer Interaction, Vol. 2254 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, pp. 173–192.

Cetina, C., Giner, P., Fons, J. and Pelechano, V. (2009). Autonomic computing through
reuse of variability models at runtime: The case of smart homes, Computer
42(10): 37–43.

Chen, K., Zhang, W., Zhao, H. and Mei, H. (2005). An approach to constructing fea-
ture models based on requirements clustering, Requirements Engineering, 2005.
Proceedings. 13th IEEE International Conference on, pp. 31 – 40.

Classen, A., Heymans, P. and Schobbens, P.-Y. (2008). What’s in a feature: a re-
quirements engineering perspective, Proceedings of the Theory and practice of
software, 11th international conference on Fundamental approaches to software
engineering, FASE’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg, pp. 16–30.

Clements, P. and Northrop, L. (2001). Software Product Lines: Practices and Patterns,
3rd edn, Addison-Wesley Professional.

Collignon, B., Vanderdonckt, J. and Calvary, G. (2008). Model-driven engineering of
multi-target plastic user interfaces, Proceedings of the Fourth International Con-
ference on Autonomic and Autonomous Systems, ICAS ’08, IEEE Computer So-
ciety, Washington, DC, USA, pp. 7–14.

Conan, D., Rouvoy, R. and Seinturier, L. (2007). Scalable processing of context infor-
mation with cosmos, Proceedings of the 7th IFIP WG 6.1 international conference
on Distributed applications and interoperable systems, DAIS’07, Springer-Verlag,
Berlin, Heidelberg, pp. 210–224.

consortium, O. (n.d.). Frascati project, http://frascati.ow2.org.
URL: http://frascati.ow2.org

Cordy, M., Schobbens, P.-Y., Heymans, P. and Legay, A. (2013). Beyond boolean
product-line model checking: dealing with feature attributes and multi-features,
Proceedings of the 2013 International Conference on Software Engineering, ICSE
’13, IEEE Press, Piscataway, NJ, USA, pp. 472–481.

169

BIBLIOGRAPHY

Coutaz, J., Balme, L., Alvaro, X., Calvary, G., Demeure, A. and Sottet, J.-S. (2007). An
mde-soa approach to support plastic user interfaces in ambient spaces, Proceed-
ings of the 4th International Conference on Universal Access in Human-computer
Interaction: Ambient Interaction, UAHCI’07, Springer-Verlag, Berlin, Heidelberg,
pp. 63–72.

Criado, J., Vicente-Chicote, C., Padilla, N. and Iribarne, L. (2010). A model-driven
approach to graphical user interface runtime adaptation, Proceedings of the 5th
Workshop on Models@run.time at the ACM/IEEE 13th International Conference
on Model Driven Engineering Languages and Systems, pp. 49–59.

Czarnecki, K. and Eisenecker, U. (2000). Generative Programming: Methods, Tools,
and Applications, Addison-Wesley.

Czarnecki, K., Helsen, S. and Eisenecker, U. (2004). Staged configuration using fea-
ture models, in R. Nord (ed.), Software Product Lines, Vol. 3154 of Lecture Notes
in Computer Science, Springer Berlin Heidelberg, pp. 266–283.

Czarnecki, K., Helsen, S. and Eisenecker, U. W. (2005a). Formalizing cardinality-
based feature models and their specialization, Software Process: Improvement
and Practice 10(1): 7–29.

Czarnecki, K., Helsen, S. and Eisenecker, U. W. (2005b). Staged configuration through
specialization and multilevel configuration of feature models, Software Process:
Improvement and Practice 10(2): 143–169.

Czarnecki, K. and Wasowski, A. (2007). Feature diagrams and logics: There and back
again, the Proceedings of the 11th International Software Product Line Confer-
ence, pp. 23–34.

Damiani, F. and Schaefer, I. (2011). Dynamic delta-oriented programming, Proceed-
ings of the 15th International Software Product Line Conference, Volume 2, SPLC
’11, ACM, New York, NY, USA, pp. 34:1–34:8.

Daniele, L. M., Silva, E., Pires, L. F. and Sinderen, M. (2009). A soa-based platform-
specific framework for context-aware mobile applications, in W. Aalst, J. Mylopou-
los, M. Rosemann, M. J. Shaw, C. Szyperski, R. Poler, M. Sinderen and R. San-
chis (eds), Enterprise Interoperability, Vol. 38 of Lecture Notes in Business Infor-
mation Processing, Springer Berlin Heidelberg, pp. 25–37.

170

BIBLIOGRAPHY

David, L., Endler, M., Barbosa, S. D. J. and Filho, J. V. (2011). Middleware support for
context-aware mobile applications with adaptive multimodal user interfaces, Pro-
ceedings of the 2011 Fourth International Conference on Ubi-Media Computing,
U-MEDIA ’11, IEEE Computer Society, Washington, DC, USA, pp. 106–111.

Desmet, B., Vallejos, J., Costanza, P., De Meuter, W. and D’Hondt, T. (2007).
Context-oriented domain analysis, Proceedings of the 6th international and inter-
disciplinary conference on Modeling and using context, CONTEXT’07, Springer-
Verlag, Berlin, Heidelberg, pp. 178–191.

Dey, A. K. (2001). Understanding and using context, Personal Ubiquitous Comput.
5: 4–7.

Dey, A. K. and Abowd, G. D. (2000). Cybreminder: A context-aware system for sup-
porting reminders, Proceedings of the 2Nd International Symposium on Handheld
and Ubiquitous Computing, HUC ’00, Springer-Verlag, London, UK, UK, pp. 172–
186.

Dey, A. K., Abowd, G. D. and Salber, D. (2001). A conceptual framework and a toolkit
for supporting the rapid prototyping of context-aware applications, Hum.-Comput.
Interact. 16: 97–166.

Draheim, D., Lutteroth, C. and Weber, G. (2006). Graphical user interfaces as docu-
ments, Proceedings of the 7th ACM SIGCHI New Zealand chapter’s international
conference on Computer-human interaction: design centered HCI, CHINZ ’06,
ACM, New York, NY, USA, pp. 67–74.

Feast, L. and Melles, G. (2010). Epistemological Positions in Design Research: A Brief
Review of the Literature, number July, Connected, pp. 1–5.

Feigenspan, J., Kästner, C., Frisch, M., Dachselt, R. and Apel, S. (2010). Visual
support for understanding product lines, Proceedings of the 2010 IEEE 18th In-
ternational Conference on Program Comprehension, ICPC ’10, IEEE Computer
Society, Washington, DC, USA, pp. 34–35.

Fernandes, P., Werner, C. and Teixeira, E. (2011). An approach for feature modeling
of context-aware software product line, Journal of Universal Computer Science
17(5): 807–829.

171

BIBLIOGRAPHY

Findlater, L. and McGrenere, J. (2010). Beyond performance: Feature awareness in
personalized interfaces, Int. J. Hum.-Comput. Stud. 68(3): 121–137.

Gomaa, H. and Hashimoto, K. (2011). Dynamic software adaptation for service-
oriented product lines, Proceedings of the 15th International Software Product
Line Conference, Volume 2, SPLC ’11, ACM, New York, NY, USA, pp. 35:1–35:8.

Grolaux, D. (2007). Transparent Migration and Adaptation in a Graphical User Interface
Toolkit, PhD thesis, Université catholique de Louvain.

Günther, S. and Sunkle, S. (2012). rbfeatures: Feature-oriented programming with
ruby, Sci. Comput. Program. 77(3): 152–173.

Hallsteinsen, S., Hinchey, M., Park, S. and Schmid, K. (2008). Dynamic software
product lines, Computer 41: 93–95.

Hanumansetty, R. G. (2004). Model based approach for context aware and adaptive
user interface generation, Master’s thesis, Virginia Polytechnic Institute and State
University.

Hauptmann, B. (2010). Supporting derivation and customization of user interfaces
in software product lines using the example of web applications, Master’s thesis,
University of Augsburg.

Henricksen, K. and Indulska, J. (2006). Developing context-aware pervasive comput-
ing applications: Models and approach, Pervasive Mob. Comput. 2(1): 37–64.

Hinchey, M., Park, S. and Schmid, K. (2012). Building dynamic software product lines,
Computer 45(10): 22–26.

Hirschfeld, R., Costanza, P. and Nierstrasz, O. (2008). Context-oriented programming,
Journal of Object Technology, March-April 2008, ETH Zurich 7(3): 125–151.

Holzinger, A., Geier, M. and Germanakos, P. (2012). On the development of smart
adaptive user interfaces for mobile e-business applications - towards enhancing
user experience - some lessons learned, DCNET/ICE-B/OPTICS, pp. 205–214.

IBM (2003). An architectural blueprint for autonomic computing, Technical report, IBM.

172

BIBLIOGRAPHY

Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E. and Huh, M. (1998). Form: A feature-
oriented reuse method with domain-specific reference architectures, Annals of
Software Engineering 5(1): 143–168.

Kang, K., Cohen, S., Hess, J., Nowak, W. and Peterson, S. (1990). Feature-Oriented
Domain Analysis (FODA) Feasibility Study, Technical Report CMU/SEI-90-TR-21
.

Kästner, C. and Apel, S. (2009). Virtual separation of concerns - a second chance for
preprocessors, Journal of Object Technology 8(6): 59–78.

Kästner, C., Apel, S. and Kuhlemann, M. (2009). A model of refactoring physically and
virtually separated features, Proceedings of the Eighth International Conference
on Generative Programming and Component Engineering, GPCE ’09, ACM, New
York, NY, USA, pp. 157–166.

Kastner, C., Thum, T., Saake, G., Feigenspan, J., Leich, T., Wielgorz, F. and Apel, S.
(2009). Featureide: A tool framework for feature-oriented software development,
Proceedings of the 31st International Conference on Software Engineering, ICSE
’09, IEEE Computer Society, Washington, DC, USA, pp. 611–614.

Kaviani, N., Mohabbati, B., Gasevic, D. and Finke, M. (2008). Semantic annotations of
feature models for dynamic product configuration in ubiquitous environments, Pro-
ceedings of the 4th International Workshop on Semantic Web Enabled Software
Engineering, in collaboration with ISWC 2008, Karlsruhe, Germany.

Kim, J. and Lutteroth, C. (2009). Multi-platform document-oriented guis, Proceedings
of the Tenth Australasian Conference on User Interfaces - Volume 93, AUIC ’09,
Australian Computer Society, Inc., Darlinghurst, Australia, Australia, pp. 27–34.

Kramer, D., Clark, T. and Oussena, S. (2011). Platform independent, higher-order,
statically checked mobile applications, International Journal of Design, Analysis
and Tools for Circuits and Systems 2(1): 14–29.

Kramer, D., Kocurova, A., Oussena, S., Clark, T. and Komisarczuk, P. (2011). An exten-
sible, self contained, layered approach to context acquisition, Proceedings of the
Third International Workshop on Middleware for Pervasive Mobile and Embedded
Computing, M-MPAC ’11, ACM, New York, NY, USA, pp. 6:1–6:7.

173

BIBLIOGRAPHY

Kramer, D., Oussena, S., Komisarczuk, P. and Clark, T. (2013). Graphical user in-
terfaces in dynamic software product lines, Product Line Approaches in Software
Engineering (PLEASE), 2013 4th International Workshop on, pp. 25–28.

Krasner, G. E. and Pope, S. T. (1988). A cookbook for using the model-view controller
user interface paradigm in smalltalk-80, J. Object Oriented Program. 1(3): 26–49.

Krueger, C. W. (2002). Easing the transition to software mass customization, Revised
Papers from the 4th International Workshop on Software Product-Family Engi-
neering, PFE ’01, Springer-Verlag, London, UK, pp. 282–293.

Lavie, T. and Meyer, J. (2010). Benefits and costs of adaptive user interfaces, Int. J.
Hum.-Comput. Stud. 68(8): 508–524.

Lee, J. and Kang, K. C. (2006). A feature-oriented approach to developing dynami-
cally reconfigurable products in product line engineering, Proceedings of the 10th
International on Software Product Line Conference, SPLC ’06, IEEE Computer
Society, Washington, DC, USA, pp. 131–140.

Lee, J., Kotonya, G. and Robinson, D. (2012). Engineering service-based dynamic
software product lines, Computer 45(10): 49–55.

Liang, S. and Bracha, G. (1998). Dynamic class loading in the java virtual machine,
SIGPLAN Not. 33: 36–44.

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L. and López-Jaquero, V.
(2005). Usixml: A language supporting multi-path development of user inter-
faces, Proceedings of the 2004 International Conference on Engineering Human
Computer Interaction and Interactive Systems, EHCI-DSVIS’04, Springer-Verlag,
Berlin, Heidelberg, pp. 200–220.

Lincke, J., Appeltauer, M., Steinert, B. and Hirschfeld, R. (2011). An open implemen-
tation for context-oriented layer composition in contextjs, Science of Computer
Programming X: 19.

Malek, S., Esfahani, N., Menasce, D. A., Sousa, J. P. and Gomaa, H. (2009). Self-
architecting software systems (sassy) from qos-annotated activity models, Pro-
ceedings of the 2009 ICSE Workshop on Principles of Engineering Service Ori-
ented Systems, PESOS ’09, IEEE Computer Society, Washington, DC, USA,
pp. 62–69.

174

BIBLIOGRAPHY

Marcos, E. (2005). Software engineering research versus software development, SIG-
SOFT Softw. Eng. Notes 30: 1–7.

Marinho, F., Lima, F., Ferreira Filho, J., Rocha, L., Maia, M., de Aguiar, S., Dantas,
V., Viana, W., Andrade, R., Teixeira, E. and Werner, C. (2010). A software prod-
uct line for the mobile and context-aware applications domain, in J. Bosch and
J. Lee (eds), Software Product Lines: Going Beyond, Vol. 6287 of Lecture Notes
in Computer Science, Springer Berlin / Heidelberg, pp. 346–360.

McKinley, P. K., Sadjadi, S. M., Kasten, E. P. and Cheng, B. H. C. (2004). Composing
adaptive software, Computer 37(7): 56–64.

Moisan, S., Rigault, J.-P. and Acher, M. (2012). A feature-based approach to sys-
tem deployment and adaptation, Modeling in Software Engineering (MISE), 2012
ICSE Workshop on, pp. 84–90.

Myers, B. A. (1988). A taxonomy of window manager user interfaces, IEEE Comput.
Graph. Appl. 8: 65–84.

Nicols, J. (2006). Automatically Generating High-Quality User Interfaces for Appli-
ances, PhD thesis, Camegie Mellon University.

Nielsen, J. (1990). Designing user interfaces for international use, Elsevier Science
Publishers Ltd., Essex, UK, chapter Usability Testing of International Interfaces,
pp. 39–44.

Parnas, D. L. (1976). On the design and development of program families, IEEE Trans.
Softw. Eng. 2: 1–9.

Parra, C. (2011). Towards Dynamic Software Product Lines: Unifying Design and
Runtime Adaptations, PhD thesis, INRIA Lille Nord Europe Laboratory.

Parra, C., Blanc, X. and Duchien, L. (2009). Context awareness for dynamic service-
oriented product lines, SPLC ’09: Proceedings of the 13th International Soft-
ware Product Line Conference, Carnegie Mellon University, Pittsburgh, PA, USA,
pp. 131–140.

Paskalev, P. (2009). Rule based gui modification and adaptation, Proceedings of the
International Conference on Computer Systems and Technologies and Workshop

175

BIBLIOGRAPHY

for PhD Students in Computing, CompSysTech ’09, ACM, New York, NY, USA,
pp. 93:1–93:7.

Paskalev, P. and Nikolov, V. (2004). Multi-platform, script-based user interface, Pro-
ceedings of the 5th international conference on Computer systems and technolo-
gies, CompSysTech ’04, ACM, New York, NY, USA, pp. 1–6.

Paymans, T. F., Lindenberg, J. and Neerincx, M. (2004). Usability trade-offs for adap-
tive user interfaces: ease of use and learnability, Proceedings of the 9th interna-
tional conference on Intelligent user interfaces, IUI ’04, ACM, New York, NY, USA,
pp. 301–303.

Pleuss, A., Hauptmann, B., Dhungana, D. and Botterweck, G. (2012a). User inter-
face engineering for software product lines: the dilemma between automation
and usability, Proceedings of the 4th ACM SIGCHI symposium on Engineering
interactive computing systems, EICS ’12, ACM, New York, NY, USA, pp. 25–34.

Pleuss, A., Hauptmann, B., Keunecke, M. and Botterweck, G. (2012b). A case study
on variability in user interfaces, Proceedings of the 16th International Software
Product Line Conference - Volume 1, SPLC ’12, ACM, New York, NY, USA, pp. 6–
10.

Pohl, K., Böckle, G. and van der Linden, F. (2005). Software Product Line Engineering:
Foundations, Principles and Techniques, 1 edn, Springer.

Pohl, K., van der Linden, F. and Metzger, A. (2006). Software product line variability
management, Proceedings of the 10th International on Software Product Line
Conference, SPLC ’06, IEEE Computer Society, Washington, DC, USA, pp. 219–.

Rabiser, R., Heider, W., Elsner, C., Lehofer, M., Grünbacher, P. and Schwanninger, C.
(2010). A flexible approach for generating product-specific documents in product
lines, in J. Bosch and J. Lee (eds), Software Product Lines: Going Beyond, Vol.
6287 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 47–
61.

Rodrı́guez-Gracia, D., Criado, J., Iribarne, L., Padilla, N. and Vicente-Chicote, C.
(2012). Runtime adaptation of architectural models: an approach for adapting
user interfaces, Proceedings of the 2nd international conference on Model and
Data Engineering, MEDI’12, Springer-Verlag, Berlin, Heidelberg, pp. 16–30.

176

BIBLIOGRAPHY

Rosenmuller, M. (2011). Towards Flexible Feature Composition: Static and Dynamic
Binding in Software Product Lines, PhD thesis, Otto-von-Guericke-University
Magdeburg.

Rosenmüller, M., Siegmund, N., Apel, S. and Saake, G. (2011a). Flexible feature
binding in software product lines, Automated Software Engg. 18(2): 163–197.

Rosenmüller, M., Siegmund, N., Pukall, M. and Apel, S. (2011b). Tailoring dynamic
software product lines, SIGPLAN Not. 47(3): 3–12.

Rosenmüller, M., Siegmund, N., Saake, G. and Apel, S. (2008). Code generation to
support static and dynamic composition of software product lines, Proceedings
of the 7th international conference on Generative programming and component
engineering, GPCE ’08, ACM, New York, NY, USA, pp. 3–12.

Russo, P. and Boor, S. (1993). How fluent is your interface?: Designing for international
users, Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human
Factors in Computing Systems, CHI ’93, ACM, New York, NY, USA, pp. 342–347.

Savidis, A. and Stephanidis, C. (2010). Software refactoring process for adaptive user-
interface composition, Proceedings of the 2nd ACM SIGCHI symposium on En-
gineering interactive computing systems, EICS ’10, ACM, New York, NY, USA,
pp. 19–28.

Schaefer, I., Bettini, L., Damiani, F. and Tanzarella, N. (2010). Delta-oriented program-
ming of software product lines, Proceedings of the 14th international conference
on Software product lines: going beyond, SPLC’10, Springer-Verlag, Berlin, Hei-
delberg, pp. 77–91.

Schlee, M. (2002). Generative programming of graphical user interfaces, Master’s
thesis, University of Applied Sciences of Kaiserslautern.

Schlee, M. and Vanderdonckt, J. (2004). Generative programming of graphical user
interfaces, Proceedings of the working conference on Advanced visual interfaces,
AVI ’04, ACM, New York, NY, USA, pp. 403–406.

Schuster, C., Appeltauer, M. and Hirschfeld, R. (2011). Context-oriented programming
for mobile devices: Jcop on android, Proceedings of the Workshop on Context-
Oriented Programming (COP) 2011, Lancaster, UK.

177

BIBLIOGRAPHY

Sinnema, M., Deelstra, S., Nijhuis, J. and Bosch, J. (2004). Covamof: A framework
for modeling variability in software product families, Software Product Lines, Vol.
3254 of Lecture Notes in Computer Science, Springer, pp. 197–213.

Sottet, J.-S., Calvary, G., Coutaz, J. and Favre, J.-M. (2008). A model-driven engineer-
ing approach for the usability of plastic user interfaces, in J. Gulliksen, M. B. Harn-
ing, P. Palanque, G. C. Veer and J. Wesson (eds), Engineering Interactive Sys-
tems, Vol. 4940 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,
Heidelberg, pp. 140–157.

Stuerzlinger, W., Chapuis, O., Phillips, D. and Roussel, N. (2006). User interface
facades: towards fully adaptable user interfaces, Proceedings of the 19th annual
ACM symposium on User interface software and technology, UIST ’06, ACM, New
York, NY, USA, pp. 309–318.

Sutton, S. M. and Rouvellou, I. (2004). Concern Modeling for Aspect-Oriented
Software Development, Aspect-Oriented Software Development, Addison-Wesley
Professional, chapter 21, pp. 479–505.

Tarr, P., Ossher, H., Harrison, W. and Sutton, Jr., S. M. (1999). N degrees of separa-
tion: multi-dimensional separation of concerns, Proceedings of the 21st interna-
tional conference on Software engineering, ICSE ’99, ACM, New York, NY, USA,
pp. 107–119.

Thüm, T. (2008). Reasoning about feature model edits, Master’s thesis, Otto-von-
Guericke-University Magdeburg.

Thum, T., Kastner, C., Erdweg, S. and Siegmund, N. (2011). Abstract features in fea-
ture modeling, Proceedings of the 2011 15th International Software Product Line
Conference, SPLC ’11, IEEE Computer Society, Washington, DC, USA, pp. 191–
200.

Vanderdonckt, J., Calvary, G., Coutaz, J. and Stanciulescu, A. (2008). Multimodality
for plastic user interfaces: Models, methods, and principles, in D. Tzovaras (ed.),
Multimodal User Interfaces, Signals and Commmunication Technologies, Springer
Berlin Heidelberg, pp. 61–84.

Voelter, M. and Groher, I. (2007). Product line implementation using aspect-oriented
and model-driven software development, Proceedings of the 11th International

178

BIBLIOGRAPHY

Software Product Line Conference, SPLC ’07, IEEE Computer Society, Washing-
ton, DC, USA, pp. 233–242.

Weiser, M. (1991). The computer for the 21st century, Scientific American Special
Issue on Communications, Computers, and Networks.

Weiss, D. M. and Lai, C. T. R. (1999). Software product-line engineering: a family-
based software development process, Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Zave, P. (2003). An experiment in feature engineering, in A. McIver and C. Morgan
(eds), Programming methodology, Springer-Verlag New York, Inc., New York, NY,
USA, pp. 353–377.

179

