
Case Acquisition from Text:
Ontology-based Information Extraction with

SCOOBIE for myCBR

Thomas Roth-Berghofer1,2, Benjamin Adrian1,2, and Andreas Dengel1,2

1 Knowledge Management Department,
German Research Center for Artificial Intelligence (DFKI) GmbH

Trippstadter Straße 122, 67663 Kaiserslautern, Germany
2 Knowledge-Based Systems Group, Department of Computer Science,

University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern

{firstname.lastname}@dfki.de

Abstract. myCBR is a freely available tool for rapid prototyping of
similarity-based retrieval applications such as case-based product recom-
mender systems. It provides easy-to-use model generation, data import,
similarity modelling, explanation, and testing functionality together with
comfortable graphical user interfaces. SCOOBIE is an ontology-based
information extraction system, which uses symbolic background knowl-
edge for extracting information from text. Extraction results depend on
existing knowledge fragments. In this paper we show how to use SCOO-
BIE for generating cases from texts. More concrete we use ontologies of
the Web of Data, published as so called Linked Data interlinked with
myCBR’s case model. We present a way of formalising a case model as
Linked Data ready ontology and connect it with other ontologies of the
Web of Data in order to get richer cases.

Key words: Textual Case-Based Reasoning, Ontology-based Informa-
tion Extraction, Linked Open Data, Web of Data

1 Introduction

Structural Case-Based Reasoning relies on cases described by attributes and
corresponding values. Structural CBR systems organise attributes in various
ways, e.g., as flat attribute lists or in an object-oriented way. This organisation
is often called domain ontology. The structural approach is useful in domains
where additional knowledge such as complex similarity measures must be used
in order to produce good results, and where a case model is easy to acquire.

myCBR3 [22] is an Open Source (Structural) CBR tool developed at the Ger-
man Research Center for Artificial Intelligence (DFKI). Key motivation for im-
plementing myCBR was the need for a compact and easy-to-use tool for rapidly
3 http://www.mycbr-project.net

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UWL Repository

https://core.ac.uk/display/46597130?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

building prototype CBR applications in teaching, research, and small industrial
projects with low effort. Moreover, the tool is easily extendable in order to fa-
cilitate the experimental evaluation of novel algorithms and research results.

In domains where large collections of semi-structured documents are read-
ily available a different CBR approach is used: Textual CBR (TCBR). TCBR
systems aim at managing information contained in semi-structured documents
and providing means for content-oriented retrieval. The approach is especially
useful in domains where the intended user is able to immediately make use of
the knowledge contained in the respective documents.

There is no standard or consensus about the structure of a textual CBR
system. One way of employing TCBR is to determine the structure of cases by
a case model and use a pre-processor to fill case templates from semi-structured
texts, thus providing a structured representation of the documents. The quality
of the cases obviously depends on the abilities of the pre-processor.

In this paper, we describe how to combine the ontology-based information
extraction tool SCOOBIE [3] as such a pre-processor with myCBR, where an
ontology is an explicit, formal specification of a conceptualisation, i.e. a particu-
lar vocabulary that can be employed for describing aspects of real domains [16].
SCOOBIE strongly depends on the existence of an ontology to provide formal
extraction results. In the presented approach, one such ontology is the case model
of myCBR. As standard ontology representation formalism we chose to express
the case model in the Resource Description Framework language (RDF) [23]
where meaning is expressed by facts encoded in sets of triples [7].

<rdf:Description
rdf:about="http://dbtropes.org/resource/Main/Ratatouille#Remy">
<does-not-like

rdf:resource=
"http://mycbr-project.net/models/Recipe#velveeta_cheese"/>

</rdf:Description>

Fig. 1. RDF represents information as graph in form of triples. Triples consist of sub-
ject, predicate and object values. RDF can be serialised in XML.

Triples are like elementary sentences composed of subject, predicate, and ob-
ject. Subjects, predicates, and objects are given as names for entities, also called
resources or nodes. Entities represent something like a contact, an appointment,
a website, etc. Names are either literals or Uniform Resource Identifiers (URI) [8],
which are global in scope, always referring to the same entity in any RDF docu-
ment in which they appear. Fig. 1 shows an example of an RDF triple describing
which cheese Remy does not like.

As of July 2009

LinkedCT
Reactome

Taxonomy

KEGG

PubMed

GeneID

Pfam

UniProt

OMIM

PDB

Symbol
ChEBI

Daily
Med

Disea-
some

CAS

HGNC

Inter
Pro

Drug
Bank

UniParc

UniRef

ProDom

PROSITE

Gene
Ontology

Homolo
Gene

Pub
Chem

MGI

UniSTS

GEO
Species

Jamendo

BBC
Programmes

Music-
brainz

Magna-
tune

BBC
Later +
TOTP

Surge
Radio

MySpace
Wrapper

Audio-
Scrobbler

Linked
MDB

BBC
John
Peel

BBC
Playcount

Data

Gov-
Track

US
Census
Data

riese

Geo-
names

lingvoj

World
Fact-
book

Euro-
stat

flickr
wrappr

Open
Calais

RevyuSIOC
Sites

Doap-
space

Flickr
exporter

FOAF
profiles

Crunch
Base

Sem-
Web-

Central

Open-
Guides

Wiki-
company

QDOS

Pub
Guide

RDF
ohloh

W3C
WordNet

Open
Cyc

UMBEL

Yago

DBpedia
Freebase

Virtuoso
Sponger

DBLP
Hannover

IRIT
Toulouse

SW
Conference

Corpus

RDF Book
Mashup

Project
Guten-
berg

DBLP
Berlin

LAAS-
CNRS

Buda-
pest
BME

IEEE

IBM

Resex

Pisa

New-
castle

RAE
2001

CiteSeer

ACM

DBLP
RKB

Explorer

eprints

LIBRIS

Semantic
Web.org

Eurécom

RKB
ECS

South-
ampton

CORDIS

ReSIST
Project
Wiki

National
Science

Foundation

ECS
South-
ampton

Linked
GeoData

BBC Music

Fig. 2. Existing linked open data sets (as of July 2009) [9]

Representing a case model in RDF results in URIs for each attribute and
possible values. If an HTTP request of these URIs delivers RDF triples with
additional information about the resource identified with this URI and if several
URIs in multiple web domains are interlinked with special types of predicates
(e.g., owl:sameAs) whether they represent a similar resource, we talk about
Linked (Open) Data (Fig. 2)4 or the Web of Data [9].

We show that case models published as Linked Open Data can be intercon-
nected with information from various data sources. Thus, they can be enriched
with additional knowledge from other ontologies. Combining SCOOBIE and
myCBR allows leveraging available knowledge of the Web of Data for acquiring
cases from texts.

The rest of the paper is structured as follows: The next section provides
an overview of previous and related work regarding ontology-based information
extraction and Textual CBR. Section 3 briefly recapitulates relevant features
of myCBR. In Sect. 4 we describe the ontology-based information extraction
tool SCOOBIE before we put SCOOBIE to use for myCBR (Sect. 5). Finally,
Sect. 6 summarises the combination of the two tools and concludes the paper
with an outlook on further work.

4 Graphic source URL of the LOD cloud: http://www4.wiwiss.fu-berlin.de/bizer/
pub/lod-datasets_2009-07-14_colored.png

2 Related Work

In their survey article on Textual CBR, Weber et al. [24] formulate four research
questions that TCBR addresses. TCBR looks at how to assess similarity between
textually represented cases, map from texts to structured case representations,
adapt textual cases, and automatically generate representations for TCBR.

In this classification schema our approach clearly addresses the second ques-
tion, of how to map texts to structured case representations and work along
the line of Lenz’s framework, which targets semi-structured documents [18]. In
this our approach is similar to what empolis’ information access suite [14] and
jColibri5 [6, 19] are offering: intelligent access to all sorts of documents.

In [17], Lenz describes a layered model that divides text processing into
several stages, i.e., Keyword Layer, Phrase Layer, Thesaurus Layer, Glossary
Layer, Feature Value Layer, Domain Structure Layer, and Information Extrac-
tion Layer. SCOOBIE is built upon a standard information extraction pipeline
architecture [2]. In general, Lenz’ layered model of textual CBR subsumes SCOO-
BIE’s pipeline architecture, moreover SCOOBIE can be incorporated into parts
of the layer model, i.e., Keyword Layer, Phrase Layer, Thesaurus Layer, and the
Information Extraction Layer.

SCOOBIE is based on information extraction (IE) principles that are well
described in [5]. Comparable and approved OBIE systems are the General Archi-
tecture for Text Engineering (GATE)6 [10] and the SmartWeb Ontology-Based
Annotation component (SOBA) [12]. In contrast to these, SCOOBIE does not
use the ontology as input gazetteer, i.e., a plain list of relevant labels, but as a
model for semantic analyses such as instance disambiguation and discourse anal-
ysis. This technique of using existing domain ontologies as input for information
extraction tasks and extraction results for ontology population and therefore
knowledge acquisition was presented already in [20].

SCOOBIE also supports the population of extraction templates. The con-
cept of querying ontologies with IE templates in order to extract information
from text is completely missing in existing OBIE systems. Other OBIE ap-
proaches can be found in the proceedings of the OBIES workshop 2008 [4].

3 Similarity-based Retrieval with myCBR

myCBR, in its current version7, focuses on the similarity-based retrieval step
of the CBR cycle [1], as this is still the core functionality of most CBR appli-
cations. A popular example of such retrieval-only systems are case-based prod-
uct recommender systems [11]. While the first CBR systems were often based
on simple distance metrics, today many CBR applications make use of highly

5 http://gaia.fdi.ucm.es/projects/jcolibri
6 http://gate.ac.uk
7 myCBR, Version 2.6

sophisticated, knowledge-intensive similarity measures [21]. Such extremely do-
main specific similarity measures enable the improvement of the retrieval quality
substantially. However, they increase the development effort significantly.

myCBR is a plug-in for the Java-based Open Source ontology editor Pro-
tégé8 [15], which was chosen as the modelling platform for myCBR and which
existing functionality for creating case models and instances was extended for
modelling similarity measures and testing similarity-based retrieval.

The major goal of myCBR was to minimise the effort for building CBR
applications that require knowledge-intensive similarity measures. Therefore, it
provides comfortable graphical user interfaces for modelling various kinds of
attribute-specific similarity measures and for evaluating the resulting retrieval
quality. In order to reduce also the effort of the preceding step of defining an
appropriate case representation, it includes tools for generating the case repre-
sentation automatically from existing raw data.

myCBR is intended for structural CBR applications that make use of rich
attribute-value based or object-oriented case representations. Although Protégé
provides powerful graphical user interfaces for modelling attribute-value based
and object-oriented representations, their manual definition remains a laborous
task. It includes the definition of classes and attributes and the specification of
accurate value ranges required for a meaningful similarity assessment.

3.1 CSV Import

In order to ease the definition of case representations, myCBR provides a power-
ful CSV9 data import module. CSV files are widely used to store attribute-value
based raw data in pure ASCII format. For example, in the Machine Learning
community example data sets are usually exchanged by using CSV files10. Us-
ing the CSV importer, the user has the choice to import data instances into an
existing Protégé data model, or to create a new model automatically based on
the raw data. In the latter case, myCBR generates a Protégé slot11 for each data
column of the CSV file automatically. After the CSV data has been imported,
the user may further modify the generated case model (e.g., extend it to an
object-oriented representation) to meet the application specific needs. The final
case model together with the case base is stored by myCBR in XML files.

3.2 Cases from Texts

For retrieving texts with myCBR a similar approach to CSV import is used.
But where the entries in the CSV file are used at face value without interpreting

8 http://protege.stanford.edu/
9 Comma Separated Values

10 See, for example, http://archive.ics.uci.edu/ml/
11 In Protégé, attributes are called slots.

them12, texts as raw material for cases need to be searched for the occurrence
of certain concepts and phrases, i.e., attribute values.

Concepts may be expressed in different ways. They may vary grammatically
(singular, plural, case) or semantically (synonyms, hyponyms, hypernyms). The
different representations can be seen as triggers for concepts. Concepts can also
be measured values, i.e., numbers with a unit.

Another difference to the CSV import is that a case model cannot be derived
automatically from texts. At least a basic case model is required to start building
cases from texts. Section 5 describes the process in detail. First we will have a
closer look at SCOOBIE.

4 Ontology-based Information Extraction with
SCOOBIE

Ontology-based information extraction (OBIE) extracts formal facts from text
resources. In terms of RDF, facts may be triples representing attribute knowledge
about a resource (e.g., :Cheddar_Cheese skos:prefLabel “Cheddar Cheese”)13 or
relations between resources (e.g., :Remy :does-not-like :velveeta_cheese). OBIE
algorithms incorporate those relevant bits of knowledge from an input ontology
that support information extraction inside a pipeline of cascading extraction
tasks [2]. Conceiving the extraction pipeline of the SCOOBIE system [3] as
black box, mandatory input parameters are:

1. The ontology, which comprises vocabularies and schemes, used to represent
entities of the SCOOBIE domain model. The classes (e.g., ingredients, or
cooking steps), datatype properties of these classes (e.g., ingredient label or
recipe name) and object properties between instances of these classes (e.g.,
persons not liking ingredients) define a search space of possible instances and
facts that may be extracted from text.

2. Entities of SCOOBIE’s domain model, which are represented as instances
of the ontology. The given datatype property values of these instances (e.g.,
the symbolic slot value of a recipe’s ingredient called “cheese”) are used
for extracting instances from text. Object properties between instances are
used for disambiguating instances with similar datatype property values or
ranking the relevance of extracted instances.

As shown in Fig. 3, the ontology and its instances are analysed during an
offline pre-processing and training phase. Results are index structures (e.g., suf-
fix arrays, B*-trees) and learning models (e.g., Conditional Random Fields, K-
Nearest Neighbour Classifiers) that can now be used by efficient extraction tasks
inside the extraction pipeline:
12 The importer analyses each column to determine the value ranges for slots. For text

data, symbol or string type slots are created depending on a user defined threshold.
13 In order to preserve readable inline examples we prefered writing RDF triples in

Turtle syntax (please refer to http://www.w3.org/2007/02/turtle/primer/).

Ontology

Instances

SCOOBIE
Domain Model

Ta
sk

s

Index

Pre-
process Train Extract

OIA
P

I

I

Indexes
&

Learning
Models

Fig. 3. Architecture of the ontology-based information extraction system SCOOBIE

1. Normalisation: Extracts document metadata and plain text data from tex-
tual or binary file formats. The language of the plain text is detected by ap-
plying statistics about n-gram distributions of letters in different languages.

2. Segmentation: Partitions plain text into segments: paragraphs, sentences,
and tokens. With respect to the detected language, a POS tagger tags each
token with its part of speech (POS).

3. Symbolisation: Recognises datatype property values in text by matching
phrases in text and values of datatype properties of the domain model.
For example, assume having the triple :Cheddar_Cheese skos:prefLabel “Ched-
dar Cheese”, then “Cheddar Cheese” may be recognised as content symbol.
By performing noun phrase chunking, noun phrases expressing candidates
for names without any structure in syntax (e.g., names) are detected.

4. Instantiation: For each recognised datatype property value the Instantiation
resolves instance candidates.
For example, assume having the triple :Cheddar_Cheese skos:prefLabel “Ched-
dar Cheese”, then “Cheddar Cheese” is resolved as skos:prefLabel of instance
:Cheddar_Cheese. An instance candidate recognition resolves possible can-
didates for recognised datatype property values. Here, ambiguities may oc-
cur if more than one instance possesses the same datatype property values
(e.g., determining wether “onions” symbolise “red onions” or “green onions”).
Candidates are disambiguated by counting resolved instances in the domain
model that are related directly with an object property or indirectly via an-
other instance of the domain model. As result, the ambiguous instance with
a higher count of related and recognised instances is taken.

5. Contextualisation: Extracts facts (RDF triples) about resolved instances.
At first, a fact candidate extraction computes all possible facts between

resolved instances. Then, a set of fact selectors rates these facts according
to heuristics. A known fact selector heightens rates of extracted facts that
exist as triples inside the domain model.

6. Population: Creates scenario graphs in RDF format. They contain extracted
values, i.e., HTTP URIs of resolved instances with those datatype property
values that match with text sequences and RDF triples about object prop-
erties between these resolved instances. Scenario graphs can be filtered and
ordered by confidence values in range between zero and one.

5 Generating Structural Cases from Texts

Using SCOOBIE as pre-processor formyCBR comprises four steps as illustrated
by Fig. 4: Based on the case model the information extraction model is generated
(1). This is then fed into SCOOBIE for myCBR together with linked open data
and the text files from which the cases are to be extracted (2). The extracted
concepts (expressed in RDF format) are then combined into cases (3), which can
eventually be used for similarity-based retrieval (4). We will detail and exemplify
each step in the following by providing our fictive user Remy with a similarity-
based search engine for recipes.

Fig. 4. Process overview: generate information extraction model from case model (1),
extract case information from texts (2), transform result into cases (3), and use gener-
ated cases for retrieval (4)

5.1 Generating the Information Extraction Model

Cases in myCBR are class instances modelled with Protégé. In this first version
only flat attribute-value lists are considered, but the approach can be easily

extended to more complex class structures by adapting the application logic in
SCOOBIE for myCBR accordingly.

Our guiding example is recipe search. Remy likes to cook but sometimes
forgets to buy ingredients and needs to deal with what is left in the fridge and in
his storage room. Remy needs a system for retrieving recipes that he can cook
with the ingredients at hand. As recipe collection we used recipes of the Second
Computer Cooking Contest14.

For the similarity-based search we modelled a class Recipe with such at-
tributes as title, ingredients_meat, ingredients_vegetables, ingredients_fish, in-
gredients_pasta, ingredients_cheese, ingredients_spices, preparation_steps. The
title is not used for retrieval, but for identifying the recipe. All other attributes
are of type Symbol and can hold multiple values. For example, allowed values
for ingredients_meat are chicken, pork, and bacon which can occur together in
one recipe. myCBR provides various options to configure similarity measures for
set type attributes [22]. Depending on the chosen settings, the mapping between
query values and case values is calculated differently. For example, a set of values
may have an “and” or an “or” semantic. The size of the query and case sets also
may have different impact on the similarity.

The information model extractor (circle (1) in Fig. 4) takes the case model
and transforms it into an information extraction model with the help of XSL
transformations15. The Extensible Stylesheet Language (XSL)16 is used for de-
scribing how to transform and render XML documents.

<SMFunction smfname="default" model_instname="ingredients_cheese"
type="Symbol" active="true" simMode="Table">

<QuerySymbol symbol="blue_cheese">
<CBSymbol sim="1.0" symbol="blue_cheese" />

</QuerySymbol>
<QuerySymbol symbol="velveeta_cheese">

<CBSymbol sim="1.0" symbol="velveeta_cheese" />
</QuerySymbol>[...]

</SMFunction>

Fig. 5. Section of myCBR case model

Figure 5 shows a few lines of the case model.17 Two of the allowed values for
the attribute ingredients_cheese are shown: blue_cheese and velveeta_cheese.

SCOOBIE needs its input ontologies represented in RDF format. For trans-
forming the case model into RDF, using XSL was an obvious choice. We use
SKOS, the Simple Knowledge Organisation Systems family of formal languages

14 CCC at ICCBR 2009: http://www.wi2.uni-trier.de/ccc09/index.php
15 http://www.w3.org/TR/xslt
16 http://www.w3.org/Style/XSL/
17 Actually, the XML snippet is part of the similarity measure functions file, which

duplicates the information contained in the proprietary, LISP/Protégé file format.

<xsl:for-each select="QuerySymbol">
<skos:Concept

rdf:about="<xsl:value-of
select=’concat("http://mycbr-project.net/models/Recipe#",

@symbol)’/>">
<skos:prefLabel>

<xsl:value-of select=’@symbol’/>
</skos:prefLabel>
<rdf:type

rdf:resource=
"<xsl:copy-of select="$slot_name_for_type"/>"/>

</skos:Concept>
</xsl:for-each>

Fig. 6. Section of XSL transformations

as representation formalism. SKOS is designed for exactly our purpose of repre-
senting a structured controlled vocabulary.18 SKOS is built upon RDF. Its main
objective is to enable easy publication of controlled structured vocabularies for
the Semantic Web.

Figure 6 shows the main section of the XSL file. The XSL transformations
are nearly domain independent. Following the Linked Open Data principles with
HTTP accessable URIs the RDF ontology file needs to exist at the given URL
(e.g., http://mycbr-project.net/models/Recipe) and needs to be provided in
the XSL stylesheet. And there is the basic requirement that just one class exists
(which, in turn, implies that the case model is flat). Then, for each QuerySymbol,
i.e., allowed value, one SKOS concept is created.

<skos:Concept
rdf:about="http://mycbr-project.net/models/Recipe#blue_cheese">

<skos:prefLabel>blue cheese</skos:prefLabel>
<rdf:type rdf:resource="ingredients_cheese"/>

</skos:Concept>

Fig. 7. Section of transformation result: initial information extraction model

Each attribute value (of type Symbol) becomes a SKOS concept. In order to
keep the relation between attribute and value the attribute name is treated as
a SKOS concept’s RDF type. The allowed value becomes the preferred SKOS
label (and is used for the information extraction task in the next step). Fig-
ure 7 shows the result of the transformation process. The concept with URI
http://mycbr-project.net/models/Recipe#blue_cheese is of RDF type in-
gredients_cheese and has the preferred label blue cheese.

18 http://www.w3.org/TR/2009/REC-skos-reference-20090818/

5.2 Extract Case Information from Texts

The resulting information extraction model is the core ontology. It is used to
extract concepts from input texts, but it would perform very poorly if used
alone. SCOOBIE would only be able to find exact matches to preferred labels.
In order to find more concepts additional ontologies are needed.

<http://mycbr-project.net/models/Recipe#red_pepper">
owl:sameas <http://dbpedia.org/resource/Cayenne_pepper>

<http://mycbr-project.net/models/Recipe#blue_cheese">
owl:sameas <http://dbpedia.org/resource/Blue_cheese>

Fig. 8. Example expressions connecting the case model to DBpedia

Further intelligence is brought into the system by, first, extending the number
of labels (alternative labels), which act as triggers for the associated symbols and,
second, by linking SKOS concepts, and thus symbols, to Linked Open Data (e.g.,
DBpedia19). This last step then enhances the case generation step drastically.
Figure 8 shows a sample snippet of the respective expressions.

SCOOBIE then extracts attribute values according to the information ex-
traction model and all additional ontologies linked to the information extraction
model. A configuration model determines which portion of the texts are analysed
into which attribute.

<RECIPE>
<TI>"Blue" Fettuccine</TI>
<IN>4 oz Danish blue cheese or 8 oz. Danish blue

Castello cheese, chilled</IN>
<IN>1/4 c Marinated, dried tomatoes</IN>
<IN>8 oz Green fettuccine or spinach egg noodles</IN> [...]
<IN>1/4 c Chopped fresh parsley</IN>
<PR>[...]

<STEP>Meanwhile, in small skillet over medium heat, heat
reserved oil; add shallots and garlic. Saute until shallots
are limp but not brown.</STEP>
<STEP>Add wine, basil and reserved tomatoes. Heat through
and keep hot.</STEP> [...]
</PR>

</RECIPE>

Fig. 9. Example recipe text

19 “DBpedia is a community effort to extract structured information from Wikipedia
and to make this information available on the Web.” http://dbpedia.org/About

The recipes of the Computer Cooking Contest are given in XML format. Fig-
ure 9 shows a section of a recipe. Each recipe is divided in title <TI>. . . </TI>,
ingredients <IN>. . .</IN> and preparation steps <STEP>. . .</STEP>. The
title is just copied into the attribute title and used as an identifier for a case.
The ingredients are analysed into the attributes title, ingredients_meat, ingredi-
ents_vegetables, ingredients_fish, ingredients_pasta, ingredients_cheese, ingre-
dients_spices. The preparation steps go into the attribute preparation_steps. All
attributes are multi-valued, as already said above. The order of steps cannot be
taken into account. This is due to the set semantics for multi-valued attributes.

5.3 Building the Case Base

The resulting RDF extracts are transformed into myCBR’s case base format
(illustrated in Fig. 10). An instance is created, and the title is copied from the
recipe text into the respective slot.

<Instance model_instname="recipes_Class10000">
<slotvalue slot="title" value=""blue" fettuccine" />
<slotvalue slot="ingredients_cheese" value="blue_cheese" />
<slotvalue slot="ingredients_pasta" value="egg_noodles" />
<slotvalue slot="ingredients_pasta" value="noodles" />
<slotvalue slot="ingredients_pasta" value="spinach_noodles" />
<slotvalue slot="preparation_steps" value="heat" />
<slotvalue slot="preparation_steps" value="saute" /> [...]

</Instance>

Fig. 10. Snippet of an example (recipe) case

From each extracted SKOS concept the slot name, encoded in each of the
concept’s RDF type, is taken (e.g., ingredients_cheese in Fig. 7) and filled
with the respective concept’s name (e.g., blue_cheese from the concept’s URI
http://mycbr-project.net/models/Recipe#blue_cheese).

Finally, the newly generated case base can be used for searching recipes that
match a given set of available ingredients and preferred way of preparation. Using
the title of the case the original recipe text can be retrieved for Remy.

6 Conclusion and Outlook

Weber et al. [13] describe the combination of knowledge elicitation for a case
model and information extraction techniques for case generation in a knowledge
management scenario. SCOOBIE and myCBR very well fit into this scenario.

In this paper we described how to combine the ontology-based information
extraction tool SCOOBIE with the similarity-based, structural CBR system
myCBR. Ontology-based information extraction systems strongly depend on the
existence of symbolic background knowledge for generating relevant results. Such

knowledge is available in myCBR and can be used as seeding knowledge for
feeding the powerful information extraction system SCOOBIE. Linking this
core knowledge to available linked open data on the Web of Data provides new
opportunities for knowledge modelling and retrieval.

A case model usually is constructed top down after analysing a domain and
the respective documents. From the case model we automatically generated an
information extraction model consisting of SKOS concepts. For each allowed
value of symbol type attributes we constructed a unique SKOS concept and used
the allowed value as preferred label. This IE model already allows for simple text
extraction. Linking the IE model to the Web of Data makes the difference.

As we have shown, SCOOBIE has a lot more to offer (e.g., extracting facts,
or even new instances), but the current implementation only uses a fraction of
SCOOBIE’s abilities. A GUI, based on the OSGi20 platform, is under devel-
opment to ease the use of developing the case model in combination with case
generation from texts. This close interaction will, on one hand, help to extend
the case model with symbols previously not recognised (i.e., extend the range of
allowed values), and, on the other hand, help to extend the information extrac-
tion model by linking allowed values to concepts of other ontologies on the Web
of Data.

myCBR is an ongoing project. We encourage others to try out myCBR in
their own research and teaching projects and to contribute to the further devel-
opment by implementing their own extensions and experimental modules.

Acknowledgments

This work was funded by the BMBF project Perspecting (Grant 01IW08002).

References

1. Aamodt, A.: Explanation-driven case-based reasoning. In: Stefan Wess, K.D.A.,
Richter, M. (eds.) Topics in Case-Based Reasoning. Springer-Verlag, Berlin (1994)

2. Adrian, B., Dengel, A.: Believing finite-state cascades in knowledge-based infor-
mation extraction. In: Dengel, A., Berns, K., Breuel, T., Bomarius, F., Roth-
Berghofer, T.R. (eds.) KI. LNAI, vol. 5243, pp. 152–159. Springer, Berlin

3. Adrian, B., Hees, J., van Elst, L., Dengel, A.: iDocument: Using ontologies for
extracting and annotating information from unstructured text. In: Mertsching, B.,
Hund, M., Aziz, Z. (eds.) KI 2009: Advances in Artificial Intelligence. Künstliche
Intelligenz (KI-2009), September 15-18, Paderborn, Germany. Lecture Notes in
Artificial Intelligence, LNAI, vol. 5803, pp. 249–256. Springer-Verlag, Heidelberg

4. Adrian, B., Neumann, G., Troussov, A., Popov, B. (eds.): Ontology-based Infor-
mation Extraction Systems (OBIES 2008) (2008), http://CEUR-WS.org/Vol-400/

5. Appelt, D., Israel, D.: Introduction to information extraction technology: A tutorial
prepared for ijcai-99. SRI International (1999)

20 http://en.wikipedia.org/wiki/OSGi: [Last access: 2010-05-03]

6. Bello-Tomás, J., González-Calero, P.A., Díaz-Agudo, B.: JColibri: An Object-
Oriented Framework for Building CBR Systems. In: Calero, P.A.G., Funk, P. (eds.)
Proceedings of the 7th European Conference on Case-Based Reasoning. Lecture
Notes in Artificial Intelligence LNAI, Springer (2004)

7. Bergmann, R., Schaaf, M.: Structural Case-Based Reasoning and Ontology-Based
Knowledge Management: A Perfect Match? Journal of Universal Computer Science
9(7), 608–626 (2003), http://www.jucs.org/jucs_9_7/structural_case_based_
reasoning [Last access: 2010-02-26]

8. Berners-Lee, T., Fielding, R.T., Masinter, L.: Rfc 3986: Uniform resource iden-
tifier (uri): Generic syntax (2005), http://www.ietf.org/rfc/rfc3986.txt [Last
access: 2010-02-26]

9. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Interna-
tional Journal on Semantic Web and Information Systems 5(3), 1–22 (2009), http:
//dblp.uni-trier.de/db/journals/ijswis/ijswis5.html#BizerHB09 [Last ac-
cess: 2010-02-26]

10. Bontcheva, K., Tablan, V., Maynard, D., Cunningham, H.: Evolving GATE to
meet new challenges in language engineering. Natural Language Engineering 10(3-
4), 349–373 (2004), http://journals.cambridge.org/action/displayAbstract?
fromPage=online&aid=252241&fulltextType=RA&fileId=S1351324904003468
[Last access: 2010-02-26]

11. Bridge, D., Göker, M.H., McGinty, L., Smyth, B.: Case-based recommender sys-
tems. Knowledge Engineering Review 20(3) (2006)

12. Buitelaar, P., Cimiano, P., Racioppa, S., Siegel, M.: Ontology-based Information
Extraction with SOBA. In: Proceedings of the 5th International Conference
on Language Resources and Evaluation (LREC). pp. 2321–2324. ELRA (2006),
http://www.aifb.uni-karlsruhe.de/WBS/pci/Publications/buitelaaretal_
lrec06.pdf [Last access: 2010-02-26]

13. David, R.W., Aha, D.W., Sandhu, N., Munoz-Avila, H.: A textual case-based
reasoning framework for knowledge management applications. In: Schnurr, H.P.,
Staab, S., Studer, R., Stumme, G., Sure, Y. (eds.) In Proceedings of the Ninth
German Workshop on Case-Based Reasoning. pp. 244–253. Shaker Verlag, Aachen
(2001)

14. empolis: Information Access Suite — e:IAS Text Mining Engine. Technical white
paper (2008), empolis IAS 6.2, Publication Date: 8 Dec. 2008, Build: 5976

15. Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubézy, M., Eriks-
son, H., Noy, N.F., Tu, S.W.: The evolution of Protégé an environment for
knowledge-based systems development. Int. J. Hum.-Comput. Stud. 58(1), 89–123
(2003)

16. Gruber, T.R.: Toward principles of the design of ontologies used for knowledge
sharing. International Journal of Human and Computer Studies 43, 907–928 (1995)

17. Lenz, M.: Defining knowledge layers for textual case-based reasoning. In: Smyth,
B., Cunningham, P. (eds.) EWCBR. Lecture Notes in Computer Science, vol. 1488,
pp. 298–309. Springer (1998)

18. Lenz, M.: Knowledge sources for textual cbr applications. In: Lenz, M., Ashley, K.
(eds.) Textual Case-Based Reasoning: Papers from the AAAI-98 Workshop. pp.
24–29. AAAI Press, Menlo Park, CA (1998), technical Report WS-98-12

19. Recio-García, J.A., Díaz-Agudo, B., Gómez-Martín, M.A., Wiratunga, N.: Ex-
tending jcolibri for textual cbr. In: Muñoz-Avila, H., Ricci, F. (eds.) ICCBR.
Lecture Notes in Computer Science, vol. 3620, pp. 421–435. Springer (2005),
http://dblp.uni-trier.de/db/conf/iccbr/iccbr2005.html#RecioDGW05

20. Sintek, M., Junker, M., Elst, L.V., Abecker, A.: Using information extraction rules
for extending domain ontologies. In: Maedche, A., Staab, S., Nedellec, C., Hovy,
E. (eds.) Position Statement for the IJCAI-2001 Workshop on Ontology Learning
(2001), http://CEUR-WS.org/Vol-38/

21. Stahl, A.: Learning of Knowledge-Intensive Similarity Measures in Case-Based Rea-
soning. Ph.D. thesis, University of Kaiserslautern (2003)

22. Stahl, A., Roth-Berghofer, T.R.: Rapid prototyping of CBR applications with the
open source tool myCBR. In: Bergmann, R., Althoff, K.D. (eds.) Advances in
Case-Based Reasoning. Springer Verlag (2008)

23. W3C: Rdf primer (February 2004), http://www.w3.org/TR/2004/
REC-rdf-primer-20040210/ [Last access: 2010-02-26]

24. Weber, R.O., Ashley, K.D., Brüninghaus, S.: Textual case-based reasoning. Knowl-
edge Engineering Review 20(3), 255–260 (2005)

