
Distributed collaborative context-aware

content-centric workflow management

for mobile devices

Anna Kocurova

A thesis submitted in partial fulfilment of the

requirements of the University of West London

for the degree of Doctor of Philosophy

September 2013

Acknowledgements

From my point of view, the past four years have been a pilgrimage and
I would like to thank the following people for all their support during this
journey.

First, I would like to express my deep gratitude to my research supervi-
sors, Dr Samia Oussena, Prof Peter Komisarczuk, and Prof Tony Clark.
My special thanks to Samia, for the opportunity, for her valuable and pa-
tient guidance and for useful critiques of this research work. Many thanks
to Peter, for his suggestions, advices and positive attitude. Many thanks
to Tony, for being my external supervisor and his insightful comments
and feedbacks.

I would like to thank to my fellow PhD mates, Dean Kramer, Malte Ressin,
Alison Wiles and Sujan Shresta, for great office co-habitation and all
those unforgettable moments. Special thanks to Dean and Malte, for
sharing so many ups and downs of the PhD life with me, for being so
encouraging and friendly. I am particularly grateful to Dean for his hard
work on our Context Engine. I would also like to thank Tina South, for
her regular visits to our office and for being so supportive and caring.

I wish to express my thanks to all members of the School of Computing
and Technology at University of West London, for their help and support
in completing this work. I would like to thank Maria Pennells for her inde-
spensable support and help during the last four years, and arranging the
viva. I would also like to thank Prof Thomas Roth-Berghofer for agreeing
to be an internal examiner at my viva.

I would like to thank Urmi Chana and Mahendra Mahey for their continual
support and their tips for improving my English.

Finally, I would like to thank to my husband, Marian, and my daugh-
ters, Veronika and Viktoria, for all their patience, love and encouragment.
Many thanks to my parents, family and all friends for being there when I
needed you.

’If you think you are too small to make a difference,
try sleeping with a mosquito.’

Dalai Lama XIV

ii

Abstract

Ubiquitous mobile devices have become a necessity in today’s society,
opening new opportunities for interaction and collaboration between geo-
graphically distributed people. With the increased use of mobile phones,
people can collaborate while on the move. Collaborators expect tech-
nologies that would enhance their teamwork and respond to their indi-
vidual needs.

Workflow is a widely used technology that supports collaboration and
can be adapted for a variety of collaborative scenarios. Although the
originally computer-based workflow technology has expanded also on
mobile devices, there are still research challenges in the development of
user-focused device-oriented collaborative workflows.

As opposed to desktop computers, mobile devices provide a different,
more personalised user experience and are carried by their owners ev-
erywhere. Mobile devices can capture user context and behave as dig-
italised user complements. By integrating context awareness into the
workflow technology, workflow decisions can be based on local, context
information and therefore, be more adapted to individual collaborators’
circumstances and expectations. Knowing the current context of collab-
orators and their mobile devices is useful, especially in mobile peer-to-
peer collaboration where the workflow process execution can be driven
by devices according to the situation.

In mobile collaboration, team workers share pictures, videos, or other
content. Monitoring and exchanging the information on the current state
of the content processed on devices can enhance the overall workflow
execution. As mobile devices in peer-to-peer collaboration are not aware
of a global workflow state, the content state information can be used to
communicate progress among collaborators. However, there is still a lack
of integrating content lifecycles in process-oriented workflows.

The aim of this research was therefore to investigate how workflow tech-
nology can be adapted for mobile peer-to-peer collaboration, in particu-
lar, how the level of context awareness in mobile collaborative workflows

can be increased and how the extra content lifecycle management sup-
port can be integrated.

The collaborative workflow technology has been adapted for mobile peer-
to-peer collaboration by integrating context and content awareness. In
the first place, a workflow-specific context management approach has
been developed that allows defining workflow-specific context models
and supports the integration of context models with collaborative work-
flows. Workflow process has been adapted to make decisions based on
context information. Secondly, extra content management support has
been added to the workflow technology. A representation for content life-
cycles has been designed, and content lifecycles have been integrated
with the workflow process.

In this thesis, the MobWEL workflow approach is introduced. The Mob-
WEL workflow approach allows defining, managing and executing mobile
context-aware content-centric workflows. MobWEL is a workflow execu-
tion language that extends BPEL, using constructs from existing workflow
approaches, Context4BPEL and BPELlight, and adopting elements from
the BALSA workflow model. The MobWEL workflow management ap-
proach is a technology-based solution that has been designed to provide
workflow management support to a specific class of mobile applications.

Contents

Contents v

List of Figures ix

List of Algorithms xi

I Foundations 1

1 Introduction 2
1.1 Motivation . 2

1.1.1 The Vision of Mobile Collaboration 2
1.1.2 Challenges of Mobile Collaborative Workflows 4

1.2 Research Aim and Objectives . 7
1.3 Research Questions and Focus . 8
1.4 Contributions . 9
1.5 Approach . 11

1.5.1 Research Methodology . 11
1.5.2 Development Methodology . 12
1.5.3 Validation Approach . 14

1.6 Scope and Structure of Thesis . 15

2 Background and Concepts 18
2.1 Introduction . 18
2.2 Mobile Peer-to-Peer Collaboration Scenario 19
2.3 Workflow Management . 22

2.3.1 Basic Terminology and Concepts 22
2.3.2 Workflow Management . 24

2.4 Mobile Peer-to-Peer Workflow Management 25
2.4.1 Workflow Standards . 27
2.4.2 BPEL . 29

2.5 Content/Object Awareness . 31
2.6 Context Awareness . 32

v

CONTENTS

2.6.1 Context Classification . 33
2.6.2 Context Management for Mobile Systems 34

2.7 Summary . 36

3 Related Work 37
3.1 Introduction . 37
3.2 Techniques for Workflow Adaptation 37
3.3 Context Management . 42

3.3.1 Workflow Contextualisation . 42
3.3.2 Context Modelling and Management 45

3.4 Object Behaviour Modelling and Management 47
3.4.1 Artifact-Centric and Object-Aware Workflows 47
3.4.2 Support for Content Lifecycle Management 52

3.5 Mobile Peer-To-Peer Workflow Execution 53
3.6 Summary . 55

II Contribution 57

4 MobWEL Definition and Syntax 58
4.1 Introduction . 58
4.2 MobWEL Workflow Approach . 59

4.2.1 Adapted Collaborative Workflow 59
4.2.2 MobWEL Workflow Process Anatomy 61
4.2.3 Overview of MobWEL Metamodel 62

4.3 MobWEL Workflow Process Definition 63
4.3.1 MobWEL Process Control Flow Representation 63
4.3.2 MobWEL Global Declarations 66
4.3.3 Peer-To-Peer Interaction Model 68
4.3.4 Content Management Support 72
4.3.5 Support for Context and Content Awareness 75

4.4 Representation of Collaborators Group 80
4.4.1 MobWEL Group Identification Metamodel 80
4.4.2 Group Identification XML Schema 81

4.5 Representation of Workflow-Specific Context Definition 82
4.5.1 MobWEL Context Definition Metamodel 83
4.5.2 Context Definition XML Schema 88

4.6 Representation of Context-Aware Content Lifecycles 89
4.6.1 MobWEL Context-Aware Content Lifecycle Definition 89
4.6.2 Context-Aware Content Lifecycle XML Schema 95

4.7 Summary . 97

vi

CONTENTS

5 MobWEL Semantics 98
5.1 Introduction . 98
5.2 Context Situation . 99
5.3 Control Flow Semantics . 99
5.4 Extended Semantics with Data Flow 104
5.5 Content Behaviour . 105
5.6 Consistency of Process Flow and Content Lifecycle 106
5.7 Summary . 107

6 MobWEL Workflow Management and Execution 108
6.1 Introduction . 108
6.2 Architecture of MobWEL Workflow Management System 109
6.3 Context Provider . 112

6.3.1 Context Data Processing Layer 113
6.3.2 Interaction and Context Management Layer 118
6.3.3 Context Provider Interface . 119
6.3.4 Context Provider Usage . 119

6.4 Context Manager . 120
6.4.1 Context Manager Interface . 124

6.5 Content Manager . 125
6.5.1 Content Provider . 126
6.5.2 Content Lifecycle Parser . 127
6.5.3 Content State Transition System 131
6.5.4 Content Manager Interface . 132

6.6 MobWEL Engine . 134
6.7 Peer-To-Peer Interaction Manager . 135

6.7.1 Interaction and Message Handling 135
6.7.2 MobWEL Communication Protocol 137
6.7.3 Message Structure . 138
6.7.4 Message Processing . 139

6.8 Internal Cooperations . 139
6.9 Summary . 142

III Validation 143

7 From Design To Implementation 144
7.1 Introduction . 144
7.2 ContextEngine . 145

7.2.1 Context Data Processing Layer 145
7.2.2 ContextEngine Manager . 149

vii

CONTENTS

7.3 CAWEFA . 151
7.3.1 CAWEFA Service . 151
7.3.2 MobWEL Process Parsing . 152
7.3.3 Interaction with ContextEngine 156
7.3.4 Peer-to-Peer Message Exchange 158

7.4 Summary . 160

8 Evaluation 161
8.1 Introduction . 161
8.2 Experimental Design . 162
8.3 Scenario-Based Evaluation . 163

8.3.1 Construction of a MobWEL workflow process 163
8.3.2 Quantitative Data . 167

8.4 Workflow Instantiation . 168
8.4.1 Sequential Workflow Instantiation 168
8.4.2 Parallel Workflow Instantiation 173

8.5 Discussing Findings . 175
8.6 Summary . 176

IV Conclusion 177

9 Conclusion and Future Work 178
9.1 Summary of This Thesis . 178
9.2 Contributions of This Thesis . 179
9.3 Future Work . 181

Appendix A - Design Methodology for MobWEL workflows 184

Appendix B - XML schemas 186

Appendix C - MobWEL Workflow Models 193

Bibliography 199

Published Papers 207

viii

List of Figures

1.1 Research Methodology . 11
1.2 Relation between key contributions of this thesis 17

2.1 Collaborative Workflow Scenario . 22
2.2 Workflow-Related Concepts (Hollingsworth, 1995) 24
2.3 BPEL Process Structure (Informatica, 2007) 29
2.4 BPEL Control Flow . 30
2.5 BPEL Process Lifecycle . 31
2.6 Context Types based on the context source 33

3.1 Taxonomy for Dynamic Processes (Weber et al., 2009) 38
3.2 Flexibility Classification (Nurcan, 2008) 41
3.3 The architecture of the Sliver execution engine (Hackmann et al., 2006b) 55

4.1 Collaborative Workflow Scenario . 59
4.2 Anatomy of the MobWEL Workflow Definition 61
4.3 Overview of MobWEL Metamodelling 63
4.4 MobWEL Metamodel of Adapted Process Control Flow 65
4.5 The Structure of the MobWEL Workflow Process 65
4.6 Group Identification . 80
4.7 Group Identification XML Schema . 81
4.8 Context Definition Metamodel . 83
4.9 Examples of Context Aggregation . 85
4.10 Context Use . 87
4.11 Context Definition XML Schema . 88
4.12 Metamodel for Content Lifecycle Definition 90
4.13 Example of Context-Driven Transitions 93
4.14 Example of Context-Aware Transition 94
4.15 XML Schema for Content Lifecycle . 95

5.1 MobWEL Process Flow as a Graph . 100
5.2 Example of MobWEL Control Flow Execution 103
5.3 Example of Execution of an Interaction Activity - Whole Workflow . . . 103

ix

LIST OF FIGURES

5.4 Example of Execution of an Interaction Activity - Individual Actors . . . 104
5.5 Examples of Executions Paths Depicted on Model 104
5.6 Notation for Data Flow . 105
5.7 Notation for Decisions . 106

6.1 High-Level Architecture of the MobWEL Workflow Management System109
6.2 Deployment of MobWEL Workflow . 111
6.3 Context Provider Infrastructure . 112
6.4 Context Component . 114
6.5 A Composite Component . 116
6.6 Composite Component Lifecycle . 117
6.7 Usage Scenarios . 119
6.8 Context Manager . 121
6.9 Content Manager . 125
6.10 Data Model of Content Provider . 126
6.11 Internal Structures of Content Lifecycles 128
6.12 Lifecycle Example in Different Representations 129
6.13 Incoming Message from Another Mobile Device 137
6.14 Context-Related Interactions . 141
6.15 Content-Related Interactions . 141

7.1 Component Types . 146

8.1 Experimentation Strategy . 162
8.2 The Basic Work Flow in the Usage Scenario 164
8.3 Picture Lifecycle . 166
8.4 Anatomy of the Workflow Process . 167
8.5 Workflow Instance . 169
8.6 Testing . 172

1 Model for Battery Context . 193
2 Models for Bluetooth Context and Wifi Context 193
3 Model for DataSync . 194
4 Model for Connectivity . 194
5 Models for User Preferences . 194
6 Model for Collaborator’s Availability . 195
7 Model for Location . 195
8 Picture Information Object Model . 195
9 Picture Lifecycle Object Model . 196
10 Process Control Flow for Designer . 197
11 Process Control Flow for Reviewer and Customer 198

x

List of Algorithms

6.1 Registering of Context Definition . 122
6.2 Registering of Context Definition - STEP 1 and STEP 2 123
6.3 Obtaining context notification from Context Provider 124
6.4 Adding of Context-Aware Content Lifecycle 130
6.5 Transition of content object O: si

c7→ sj 133
6.6 The internal execution of contentActivity 134
6.7 Message Processing by Event Handler 140

xi

Part I

Foundations

1

Chapter 1

Introduction

Contents
1.1 Motivation . 2

1.2 Research Aim and Objectives . 7

1.3 Research Questions and Focus . 8

1.4 Contributions . 9

1.5 Approach . 11

1.6 Scope and Structure of Thesis . 15

1.1 Motivation

1.1.1 The Vision of Mobile Collaboration

In the era of ubiquitous computing, the view of mobile phones as devices to make
and receive telephone calls has been replaced by a vision of smartphones. By com-
bining telephony and computing capabilities, smartphones could offer users a wider
variety of services, Internet connection and applications. People have been accus-
tomed to using the mobile computing capabilities in everyday life. Mobile phones,
as the always-on and always-carried devices capable of creating and distributing va-
rious content, taking and uploading pictures and capturing events (Fling, 2009), have
become ubiquitous, opening new possibilities for collaboration, communication and
sharing ideas in real-time. Using smartphones allows people to remain productive
regardless of their geographical locations and work while on the move. However,
with the spread of using mobile technologies, collaborators expect to have tools
to collaborate, share and manage content as time and situation require (Erickson
et al., 2009). Mobile devices are used in various collaborative scenarios including

2

1. INTRODUCTION

collaboration in manufacturing, health care and education. Improved and instant
communication enables interactions between suppliers and customers, nurses and
patients, or tutors and students. A broad range of mobile collaborative applications
such as Dropbox, or ShowDocument have been developed to support collaboration,
file management, social networking, work organisation or scheduling.

Advances in mobile collaborative solutions have enriched user experience, but
also have resulted in a new set of user demands. The raising user expectations
for mobile collaboration, apart from just putting workload onto smartphones, include
the demand for an intelligent mobile collaborative environment which responds to
people′s needs. A smartphone is a device physically mobile and carried by its
owner constantly. Therefore, the device and the user have a similar perception of
the environment which makes possible for the mobile device to be a user’s digital
complement. The fact has motivated users to raise the demand for intelligent mobile
systems being centred on an individual user.

Bringing intelligence into everyday life and environments is addressed by the
ambient intelligence paradigm. The ambient intelligence vision is characterised by
technologies which are embedded, context-aware, personalised, adaptive and an-
ticipatory (Denning, 2001). In other words, the ambient intelligence paradigm refers
to a) devices and technologies integrated into the environment which is sensitive
to humans’ presence; b) people′ interaction with devices is personalised, easy and
natural; and c) devices can recognise the situational context and are tailored to user
needs. The goal of ambient intelligence is to seamlessly weave intelligent tech-
nologies into everyday lives and its ongoing challenges include awareness of user
preferences and needs in the systems (Cook et al., 2009).

There is no doubt that the technologies will not come from a single research field.
Building a fully intelligent environment requires the development of well integrable,
improvable and evolutive individual technologies that address certain aspects and
requirements of it. The individual technologies need to envisage today’s raising
user expectations, add value to real world and contribute to the existing base of
knowledge.

One of the individual technologies is collaborative workflow, a widely accepted
technology which offers rich support for multi-party collaboration, coordination of
distributed teamwork and content sharing. The work presented in this thesis con-
tributes to the long-term vision of an intelligent mobile collaborative environment by
investigating and adapting the collaborative workflow technology for mobile collabo-
ration, as described next.

3

1. INTRODUCTION

1.1.2 Challenges of Mobile Collaborative Workflows

Collaboration originated in the past when work was divided into separate tasks as-
signed to single workers. Workers, each specialising only on a particular aspect of
service or goods production, had to collaborate together to reach common goals.
During the workdays, people followed certain work processes and patterns to ac-
complish their goals. The last decades of the 20th century, a period of an infor-
mation technology boom, opened new ways of collaboration. The work processes,
previously managed only by people, have been handled by information technologies
which could partially support, control or automate the work. New concepts such
as workflow, an abstraction of phenomena of work in the real world, and workflow
management systems (WfMS), generic software packages designed for workflow
management and execution, have been introduced.

The impact made by the introduction of the workflow management technology
is present in many areas such as transportation management, enterprise resource
planning or customer relationship management. Better efficiency, process control,
worker productivity and process improvement can be achieved by the deployment
of workflow systems (Yan et al., 2006). By using the technology, the logistic facilities
for processes automation have been provided by workflow management systems
and the complexity of work processes has been reduced as the tasks have been
allocated to right people at right time and in right order.

Workflow management systems belong to a class of generic software and can
be used for a number of different purposes. However, in the workflow management
systems the processing logic is separated from the application logic. This means
that actual tasks are not performed by the systems and other software applications
are needed. Therefore, the technology has been often customised, modified and
adapted for various collaboration needs. As a result, a variety of workflow models,
languages, modelling concepts and software packages has been developed.

With the arrival of mobile computing on the scene, mobile devices have been
integrated into workflow scenarios and the workflow management technology has
been adapted to those scenarios. Consider an example where a group of collabo-
rators work on a project in which each participant is responsible for certain tasks.
The tasks are in a logical order and collaborators have to follow a particular work
pattern to finish the project. By deploying collaborative workflow management tech-
nologies, users can rely on a software system which would automate their work
process and task scheduling. It would be beneficial if collaborators could perform
little tasks such as approving or declining proposals at any time without any restric-
tions. Smartphones are ideal tools to achieve that. By employing smartphones to
complete some workflow tasks, collaboration can become more efficient.

4

1. INTRODUCTION

Some workflow solutions for smart devices have been developed, however, the
approaches relied on workflow management systems deployed on servers and pro-
vide only light-weight workflow process support on mobile devices (Battista et al.,
2008; Pryss et al., 2011). Using the approaches that are based on the server-client
model is almost impractical for small-scaled workflows in various situations in which
people could collaborate only by using mobile devices. Typical situations where
purely mobile collaboration might add value are meetings between business part-
ners who share private information, or teamwork in small companies without own
server. Moreover, in the centralised architectural style, control and management of
workflows is driven by a central unit with mobile devices behaving only as thin clients.
The central management unit makes all important decisions and drives the whole
workflow execution without considering the current situation of users and context the
devices reside in. The need for a mobile device-centric workflow process, and sys-
tems that manage such workflow processes in a completely distributed manner has
been recognised (Pajunen & Chande, 2007). Mobile collaboration in a distributed
manner, also labeled as mobile peer-to-peer collaboration, involves a set of mobile
devices connected through wireless links. Moreover, in peer-to-peer workflow man-
agement, data and content can be distributed by direct exchange and all decisions
are made by mobile devices. Therefore, the decisions can be adapted to the current
user and device circumstances and based on local, context information.

The evolution of solutions for peer-to-peer mobile collaboration and workflow
management can contribute to the vision of building an intelligent collaborative en-
vironment. However, the mobility of collaborators imposes constraints on tasks allo-
cation, coordination management or results marshalling (Hackmann et al., 2006a).
Smanchat et al. (2008) pointed out that to utilise workflows in ubiquitous environ-
ments, adaptability and context-awareness are the features that should be included
in the workflow mechanism. To increase the level of context awareness in a dis-
tributed mobile workflow management system requires a sophisticated software in-
frastructure to support a) gathering, storing, trading, and using context knowledge;
b) dealing with uncertain and unpredictable changes in human actions (Sen, 2008).

In addition, peer-to-peer mobile collaboration often involves content manipula-
tion, for example, when collaborators review or approve proposals or pictures. Mo-
bile content such as picture, document or video/audio file is usually user-generated
or adapted for use on mobile devices. Two workflow approaches for content pro-
cessing are a) activity-centric; and b) object-centric (Nurcan, 2008). In the object-
centric approach, an object is placed in the center of the workflow process rather
than people or process itself. Each workflow step alters the object. This approach

5

1. INTRODUCTION

is usually used in content management systems such as Alfresco1. In contrast, in
the activity-centric or process-centric approach, the workflow process is described
as a sequence of activities and the control-flow facet of workflow is emphasised.
BPEL, BPMN and YAWL are examples that represent this approach. This approach
is useful for representing the functional view of workflows. Although the flow of data
and objects is indicated, data and objects are handled only as second-class citizens
in the activity-centric approaches. The duality of information-centric and activity-
centric workflow models, and the strengths and weaknesses of the two modelling
approaches have been illustrated in the work of Kumaran et al. (2008).

There are several benefits to increasing content awareness in process-oriented
workflows and integrating advanced content management capabilities in peer-to-
peer mobile workflow management. Firstly, knowing the content state can enable
content synchronisation over a number of devices, especially in peer-to-peer collab-
oration. There are basically two ways to share the information about content object
that is processed on a particular device. In the first way, a set of all content-related
data would be send to all interested devices at any time when content has been
updated or modified. In this case, all devices would need to process the whole set
of information and if required, undertake any consequential actions. This approach
is inefficient as all devices would need to process and evaluate the incoming set of
data. Moreover, the broadcasting would be irregular and chaotic, requiring an ex-
cessive amount of processing on all involved devices. On the other hand, the more
organised and simpler way to share the information among the devices is by more
controlled and organised content management on each device. Adding extra con-
tent management functionalities on each device enables the set of content-related
information to be processed directly on the device, using content states as mile-
stones in content behaviour. Sending the information only about certain content
states can keep the workflow execution more consistent and synchronised. The
number of messages would be significantly reduced, the interaction points could be
better indicated and the shared messages would be more expressive. Secondly,
there can be relationships and dependencies between various content items. For
example, the proposal can have more sections edited by co-workers on their de-
vices. Receiving the regular information about the sections would enable to process
the proposal accordingly.

So far, however, too little attention has been paid to content processed in process-
centric workflows. Many workflow approaches are organised around process-centric
and activity-centric workflow models which have relatively limited focus on artifacts
processed in workflows. Entities such as content or business artifacts are integrated

1http://www.alfresco.com/

6

1. INTRODUCTION

in workflows as an input or output of an activity and the effects of how performed ac-
tivities influence an entity’s behaviour are not visible (Bhattacharya et al., 2009). The
field of artifact-centric workflows is still in infancy (Hull, 2008) and object-awareness
in process-centric workflows is still very limited (Künzle & Reichert, 2011). More-
over, there has been lack of consideration how the approaches could operate in a
peer-to-peer mobile setting and the research to date has tended to focus on the
lifecycle of the artifact without considering its adaptation to context changes.

The work presented in this thesis explores how the collaborative workflow ma-
management technology can be adapted to mobile platforms in order to meet inter-
action needs of collaborators, and how content behaviour and context awareness
can be integrated in the adapted workflow management. Workflows need to be well
defined because the success of the workflow management system is based on the
quality of the workflow models put into it (Aalst & Hee, 2004). This thesis tackles
the problem associated with the representation of context information available on
a single mobile device, and using context information to shape peer-to-peer work-
flow execution. Context describes the current situation of a user, a device or an
environment regarding a specific purpose. By expressing context explicitly for each
workflow, each mobile device can monitor, acquire and process only the required
context information. By adapting workflow management to consume the context in-
formation and make decision based on it, the workflow execution can become more
dynamic and responsive to individual collaborator’s needs and current situation.

1.2 Research Aim and Objectives

The research aim is to adapt the collaborative workflow technology for peer-to-peer
mobile collaboration by targeting the challenges described in the previous section.
The intention includes making workflows context-aware so the execution of work-
flows can be based on local, context information and therefore adapted to collab-
orator’s needs and circumstances. Adding extra support for content lifecycle and
management will increase content awareness in workflows and make content a first-
class citizen in the activity-based workflows.

The main objectives addressed in this work are:

1. To design a workflow model that defines a certain class of mobile distributed
context-aware content-centric workflow processes at an abstract level and in
a machine-interpretable form. The characteristics of the certain class of work-
flows are as follows:

• Workflows are activity-oriented and collaborative. Workflow activities are

7

1. INTRODUCTION

performed by a number of roles and actors.

• Workflow tasks are accomplished by using mobile devices such as smart-
phones or tablets, and workflows are executed solely on mobile devices.

• Current situation and needs of stakeholders can be captured on mobile
devices and used to trigger workflow tasks or influence workflow deci-
sions.

• There is one or more artifacts such as pictures or documents processed
in the workflow. Different artifact evolution states are monitored and used
to communicate workflow progress among collaborators.

2. To design a generic workflow management software architecture that is ca-
pable of managing and executing such workflow processes and operates in a
peer-to-peer manner on mobile devices.

3. To implement a prototype of the generic workflow management system on a
mobile platform.

4. To analyse two usage scenarios and construct a concrete mobile distributed
context-aware content-centric workflow process for a usage scenario.

5. To demonstrate that the workflow instances of the constructed workflow pro-
cess are manageable and executable.

1.3 Research Questions and Focus

Based on the research aim outlined in the previous section, the investigation leads
to the following research question and subquestions:

Research Question

• How can distributed mobile context-aware content-centric workflows be
represented, managed and executed?

Chapters 4, 5 and 6 are dedicated to this question and present a mobile work-
flow execution language (MobWEL). MobWEL is a workflow language that is
context-aware, integrates content behaviour and supports mobile peer-to-peer
interaction. Chapter 4 provides the definition and syntax of the workflow lan-
guage. In Chapter 5, the MobWEL semantics is defined. MobWEL workflow
management and execution is elaborated in Chapter 6.

8

1. INTRODUCTION

Research Subquestions

1. How can context-awareness be integrated and supported within the work-
flow process?

A workflow-specific context management approach has been developed as a
part of the MobWEL workflow approach. A metamodel that defines context
models is introduced in Section 4.5. Processing of context models is elabo-
rated in Sections 6.3 and 6.4.

2. How can content behaviour be supported in the workflow process?

Content lifecycles are expressed in the same way as the workflow process is
described. A metamodel for the definition of content lifecycles is presented in
Section 4.6. Content management support is described in Sections 6.5.

1.4 Contributions

The thesis contributes to the mobile collaborative workflow domain in the following
ways:

• Mobile Workflow Execution Language (MobWEL) Metamodel: A mobile
workflow execution language called MobWEL has been designed and its meta-
model is introduced in the thesis. The MobWEL metamodel comprises four
parts (Workflow-specific context definition, Context-aware content lifecycle,
Group identification, and Process Control Flow). MobWEL extends BPEL,
integrates BPELlight’s interaction model, uses the Context4BPEL’s context-
aware approach and adapts dimensions defined in BALSA, an artifact-centric
workflow model.

• MobWEL Syntax and Semantics: MobWEL syntax and formalised seman-
tics are described in this thesis. Its syntax is expressed in XML because of
BPEL, BPELlight and Context4BPEL are XML-based workflow languages.
Concrete workflow definitions are described in XML and their behaviour can
be described in a formal way by using MobWEL semantics.

• MobWEL Workflow Management System Specifications: The logical and
run-time architecture of the MobWEL workflow management system that ex-
tends a BPEL engine are described in this work. The system is designed to
carry out workflows which are described in MobWEL. Context Provider, Con-
text Manager, Content Manager, MobWEL Engine, and Peer-to-peer Interac-
tion Manager are main MobWEL workflow management system components.

9

1. INTRODUCTION

Context Provider monitors, acquired, processes and disseminates context in-
formation. Context Manager manages and routes relevant context information
to right internal components. Content Manager provides advanced content
management functionalities. The MobWEL engine manages and instantiates
MobWEL workflows, and executes its instances. Peer-to-peer Interaction Man-
ager handles interaction among collaborators.

• Workflow-Specific Context Management Approach: A workflow-specific
context management approach has been designed. The approach is intro-
duced in the thesis and covers context modelling, context acquisition, context
providing, context management and context consumption on a mobile device.
Separation of the context acquisition logic from context adaptation logic is sup-
ported in this approach, meaning that the Context Provider component can be
used either internally as a part of the MobWEL workflow management sys-
tem, or externally as a context providing service. As an external component,
the service can be used by multiple context aware applications running on the
same mobile device.

• Context-Aware Content Management Approach: Mobile content objects
processed in MobWEL workflows are considered as significant workflow ar-
tifacts, and their lifecycles are explicitly expressed. Content states are moni-
tored and used to communicate progress to fellow collaborators.

• Software Prototypes: Two software prototypes have been built on the An-
droid platform1 and are described in this work. ContextEngine, a prototype of
the context provider, monitors, acquires, processes and distributes workflow-
specific context information. ContextEngine provides context provisioning ser-
vices to context-aware mobile applications running on the same mobile device.
This engine has been developed in collaboration with Dean Kramer, who has
used it for a different research project. CAWEFA is a prototype of a mobile
workflow management system. CAWEFA extends the Sliver BPEL engine,
and has been developed to carry out MobWEL workflows. Both software pro-
totypes will be available to research community as open source software.

Generally, the designed technology intends to enhance mobile peer-to-peer col-
laboration. This thesis presents the MobWEL workflow approach that contains all
necessary information to define a certain class of workflows. The MobWEL workflow
approach adds a value in the real world as follows. Firstly, it can be used by work-
flow designers who will be able to model and define the concrete workflow cases

1http://developer.android.com

10

1. INTRODUCTION

for mobile applications. Secondly, the workflow management software is designed
in a generic way and can provide workflow management support to multiple mobile
applications running on the same mobile device. Finally, the abstracted description
of the MobWEL workflow management system can be used for the implementation
of the software on any mobile platform.

1.5 Approach

1.5.1 Research Methodology

Design Science Research by definition changes the state-of-the-world through the
introduction of novel artefacts (Vaishnavi & Kuechler, 2004) and is particularly rel-
evant for investigation and understanding innovation in mobile computing (Love,
2009).

By considering Hevner’s Design-Science research guidelines (Hevner et al., 2004)
and the design cycle of Vaishnavi & Kuechler (2004), this research has engaged the
design science research approach which comprises four phases as follows (Fig-
ure 1.1):

Figure 1.1: Research Methodology

Research Phase 1: During this phase, the research area is explored and the nec-
essary insight is gained, research boundaries and requirements are defined,
the gap and problem are identified. A usage scenario that represents the
targeted class of mobile collaborative workflow scenarios and applications is
created.

11

1. INTRODUCTION

Research Phase 2: Epistemologically, the ’knowing through making’ belief is im-
plied. Knowledge and artifacts are elaborated through an iterative constructive
process which stops when the research results are acceptable and satisfac-
tory. The process is based on the following steps:

1. Qualitative workflow analysis: By performing workflow process analysis,
opportunities for workflow adaptation are identified.

2. Design suggestions: As a result of the qualitative workflow process anal-
ysis, new workflow constructs are formed, new data structures are exam-
ined, and a set of requirements and expectations is suggested.

3. Development phase: Development of research artifacts is based on ex-
periments.

4. Evaluation iterations: Micro-evaluation accompanies each design deci-
sion.

Research Phase 3: Formalisation of the knowledge obtained in Phase 2 and de-
veloping the MobWEL semantics.

Research Phase 4: Final Evaluation, Validation and Verification of the research ar-
tifacts.

1.5.2 Development Methodology

Design Research produces general outputs in a form of constructs, models, meth-
ods, or instantiations (March & Smith, 1995). Development of the research artifacts
requires various techniques that extend and enhance the design research paradigm.
The following techniques have been implied.

A usage scenario presented in Chapter 2 has been created and used to navigate
this research. Scenario-based design is a family of techniques in which the narra-
tive descriptions of the system use are described early in the development process
(Rosson & Carroll, 2002). The scenario-based design approach has been employed
in various ways to guide the development of the research artifacts :

• Requirements analysis: The scenario has provided a rich picture on par-
ticipating stakeholders, and their work pattern, and outlined the need for a
technology that would enhance their collaboration and teamwork. Scenario
analysis has been used to gather requirements.

• Design and research rationale: The domain concepts have been explored
and constructed with respect to the usage scenario.

12

1. INTRODUCTION

• Envisioning: The scenario has been used to visualise and simulate the use
of a system.

• Software design: The identification of key domain objects and the decisions
about the design direction have been based on the scenario analysis.

• Implementation: The prototype implementation has been driven by the usage
scenario in order to keep certain boundaries of the phase.

• Evaluation and testing: The scenario has been used as a skeleton for vali-
dation of the MobWEL approach.

These steps have been relevant to the development of the workflow language
and the software.

MobWEL Language Definition

Metamodelling is the way to design and integrate semantically rich languages in a
unified way (Clark et al., 2008). A metamodelling approach is used to define all con-
structs of the MobWEL workflow processes, the relationships between constructs
and rules that state how the constructs can be combined to create models.

The constructed metamodel is then mapped into an XML Schema and MobWEL
becomes an XML-based language. MobWEL workflows are described in XML docu-
ments which conform to the XML schema.

Software Development

MobWEL workflows are carried out by appropriate software. Prototyping, a software
engineering developmental technique based on iterative and incremental building of
software prototypes, has used to develop the software and explore design alterna-
tives, test theories and suggestions. By using the software prototyping technique,
the suggestions are implemented. Working software is a proof of concept that the
theory is functional and workflows are executable. The construction of prototypes is
driven by the usage scenario.

A modularisation approach and component-based software engineering prac-
tice are used in the development of the mobile workflow management system. The
workflow management system is composed of loosely coupled independent compo-
nents. Each component groups semantically related data and functions relevant to
one management concern. Using this component-based approach enables the ex-
ploration and evolution of each concern and component on its own. In addition, the
system needs to detect, consume, and react to context events. To cope with context
events, the system architecture is based on the event-driven architecture pattern.

13

1. INTRODUCTION

1.5.3 Validation Approach

Validation and verification are important phases of the research process to deter-
mine whether the designed research artifacts fit the intended purpose. In design
research, the evaluation of the artifacts requires formulation of criteria for success
(Blessing & Chakrabarti, 2009). Criteria are used to plan the appropriate evaluation,
assess the evaluation results and judge the outcome of the research against the
research goals and objectives.

This design science research produces an artifact in the form of the MobWEL
workflow language. The hypothesis is that the MobWEL workflow language is a suit-
able technology for the definition and representation of mobile distributed context-
aware content-centric workflows. To validate this hypothesis, the following criteria
for success have been defined:

• A certain class of mobile distributed context-aware content-centric workflows
can be defined by using the MobWEL workflow language.

• The instances of MobWEL workflows are manageable and executable.

To achieve the validation goal, the following steps have been undertaken:

1. Design and development of the MobWEL workflow management system:

• A logical and run-time architecture of the system have been designed.

• A prototype of the system has been developed on the Android platform.

2. Once the MobWEL workflow language and management system were con-
structed, the artifacts are evaluated according to the defined criteria. The final
evaluation based on experimentation, one of the most fundamental methods
for validation in the software engineering area (Wohlin et al., 2012), was con-
ducted:

• A MobWEL workflow definition for the usage scenario has been con-
structed.

• The MobWEL semantics has been used to describe the expected be-
haviour of individual workflow instances.

• The MobWEL workflow definition has been deployed to the MobWEL
workflow management system.

• The MobWEL workflow was instantiated and the behaviour of running
workflow instances was monitored.

14

1. INTRODUCTION

• Comparison of the expected with the actual behaviour of workflow in-
stances. Quantitative data was collected and analysed appropriately to
produce relevant answers.

This concludes the description of the methodologies used in this research. The
next section outlines the structure of this thesis.

1.6 Scope and Structure of Thesis

The goal of this thesis is to present a first milestone in the definition, management
and execution of MobWEL workflows designed for peer-to-peer mobile collabora-
tion. The focus is put on the description and integration of two main aspects: the
workflow-specific context management process and context-aware content manage-
ment support. Special interest is placed on specifying the anatomy, syntax and
semantics of the MobWEL workflow language.

However, to complete this work within three-and-a-half year time frame, this work
does not include workflow partitioning, run-time optimisation of the workflow pro-
cesses and fault handling. It is not extended to deal with tasks allocation and op-
timised content sharing in peer-to-peer interactions. Also this work does not cover
the recent concepts of the adaptation or composition of the workflow definition at
run-time. In addition, an overall logical architecture of the workflow management
software package is highlighted, however, the system is complex and thereby only
its major components are fully described.

Generally, there are five categories of workflow management activities: workflow
design, workflow modelling, workflow execution, workflow monitoring, and workflow
optimisation. It is necessary to emphasise that only first three categories are ad-
dressed in this work.

The reader should be familiar with the following concepts and technologies:
BPEL, UML, Java, XML schema and XML.

This thesis comprises four parts: Foundations, Contribution, Validation and Con-
clusion.

Part I: Foundations

Chapter 1: Introduction - The current chapter motivated this work, outlining the
vision of futuristic mobile collaboration and challenges in the collaborative workflow
management technology. Research aims, research questions, contribution and re-

15

1. INTRODUCTION

search approach were described.

Chapter 2: Background and Concepts - In this chapter a scenario of mobile peer-
to-peer collaboration is presented. The scenario describes a particular workflow
case which is used to illustrate the technology produced in this work. After that, a
background to the topic is given and the basic terminology needed to understand
the work in this thesis is defined.

Chapter 3: Related Work - This chapter provides the literature review. The review
covers the various aspects of context modelling and management, content manage-
ment and workflow adaptation. The support for the management and execution of
context-aware content-centric workflows is also discussed.

Part II: Contribution

This main part presents the contribution of the thesis. This thesis is concerned with
designing a workflow model that contains information to define, manage and exe-
cute MobWEL workflows. Figure 1.2 shows the components of the workflow model
and outlines the structure of Part II. The model is based on the workflow reference
model defined by Workflow Management Coalition (Hollingsworth, 1995). At the
highest level, two functional areas are characterised: build-time functions and run-
time functions. At build-time, workflows are defined. MobWEL workflow specification
comprises three parts: Context Definition Model, Content Lifecycles and Adapted
Workflow Process Definition which is an extended version of an existing basic work-
flow definition. The defined workflows are represented in a machine-interpretable
form and are deployed to a workflow management software package. At run-time,
the software package interprets the defined workflows, instantiate them and ma-
nages the execution of running workflow instances. The software package is built
from two systems: Context Provider and Mobile Workflow Management System.

The contribution of the thesis is decomposed into three chapters as follows:

Chapter 4: MobWEL Definition and Syntax - The MobWEL workflow anatomy,
metamodel and syntax are described here.

Chapter 5: MobWEL Semantics - This chapter defines the semantics of the Mob-
WEL workflow language.

Chapter 6: MobWEL Workflow Management and Execution - In this chapter an

16

1. INTRODUCTION

Figure 1.2: Relation between key contributions of this thesis

architecture of the MobWEL workflow management system is presented and the
functioning of all system components is elaborated.

Part III: Validation

The following two chapters are dedicated to the validation of the MobWEL workflow
management approach:

Chapter 7: From Design to Implementation - This chapter presents the imple-
mentation details of software prototypes implemented for the Android platform.

Chapter 8: Evaluation - Experiments have been conducted to validate the designed
research artefact. The validation technique and results are described in this chapter.

Part IV: Conclusion

Chapter 8: Conclusion and Future Work - This chapter summarises the thesis
and outlines interesting areas of future work.

After the conclusion chapter, appendices are included. Appendix 1 describes a
methodology how to define a MobWEL workflow. Appendix 2 contains the XML
schemas for MobWEL workflow constituents. Appendix 3 provides details about
the definition of MobWEL workflow for the usage scenario. Finally, Bibliography is
given and Published Papers are attached.

17

Chapter 2

Background and Concepts

Contents
2.1 Introduction . 18

2.2 Mobile Peer-to-Peer Collaboration Scenario 19

2.3 Workflow Management . 22

2.4 Mobile Peer-to-Peer Workflow Management 25

2.5 Content/Object Awareness . 31

2.6 Context Awareness . 32

2.7 Summary . 36

2.1 Introduction

This chapter presents background information for the remainder of the thesis. The
objective of this chapter is to provide an introduction to the domain and define the
terminology used in this work.

The remainder of this chapter is structured as follows. Firstly, usage scenar-
ios for mobile peer-to-peer collaboration are provided in Section 2.2 in order to give
some concrete ideas for the use of the designed technology. After that, the concepts
related to several relevant areas are elaborated. Basic concepts and standards re-
lated to workflow management, peer-to-peer workflow management and workflow
types are explored in Section 2.3. Section 2.4 provides a brief overview of mobile
distributed and peer-to-peer systems. Section 2.5 is dedicated to object and con-
tent awareness. In Section 2.6, context-awareness and its association to workflow
management are explored. Finally, the chapter is summarised in Section 2.7.

18

2. BACKGROUND AND CONCEPTS

2.2 Mobile Peer-to-Peer Collaboration Scenario

The MobWEL approach is tailored specifically to a certain class of workflows and
this section describes the type of workflows which are targeted. Two usage scenar-
ios are described to illustrate the use of the MobWEL workflow model.

The characteristics of the targeted workflow type are as follows:

• Workflows are activity-oriented and collaborative. Workflow activities are per-
formed by a number of roles and actors.

• Workflow tasks are accomplished by using mobile devices such as smart-
phones or tablets, and workflows are executed solely on mobile devices.

• Current situation and needs of stakeholders can be captured on mobile de-
vices and used to trigger workflow tasks or influence workflow decisions.

• There is one or more artifacts such as pictures or documents processed in the
workflow. Different artifact evolution states are monitored and used to commu-
nicate workflow progress among collaborators.

In the first usage scenario, consider a small business focusing on residential and
commercial interior design of houses, offices and shops. In this company, design
projects are carried out by a team of ten interior designers. Business success de-
pends on close cooperation within the team and between the team and customers.
Designers usually work out in the field and communicate with each other by using
their smartphones. With mobile devices, designers can make important decisions
right away and share images of design patterns with as little delay as possible.

Designers work on a number of concurrent projects. Although each project is as-
signed to a particular designer, design decisions are never done by a single person.
Jane, as a specialist on private houses, has been assigned to a project to redesign
a living room for a private client. The client wishes to optically enlarge the room by
repositioning the furniture. Undertaking of the project requires following this work
pattern:

1. Designer Jane takes a picture of a new room design by using her smart phone.

2. A simple rating system is used to quickly assess design ideas. Jane adds her
own rating to the picture.

3. The picture is sent to her fellow workers. They work out in the field so each of
them can review the picture by using their own mobile phone.

4. The reviewer’s subjective opinion can be captured by adding a comment.

19

2. BACKGROUND AND CONCEPTS

5. Reviews and comments are sent back to Jane. She finally reassesses her idea
according to opinions of other designers.

6. If the idea is good, the picture is sent for final approval to customer.

7. The approved picture is added to Jane’s completed work.

Designers do not want to perform all tasks, such as launching camera to take
picture, or sending the picture to team workers by looking up their contact details
in the contact list, manually. The team follows this work pattern on a regular daily
basis, therefore, performing the tasks manually several times a day would be time
consuming and inefficient. Therefore, the company expect to have a technology that
automates this work pattern and minimalises the number of human input.

In addition, there are other requirements for the technology:

• The company does not have an own server, therefore, the technology has to
be supported on smartphones.

• The technology needs to be adapted to individual collaborator’s needs. For
example, one designer might need to obtain two reviews at a certain point of
time, while another designer requires at least 4 reviews to be able to assess
whether the proposed design is really good.

• Not all designers are always available to review the picture. For instance, some
of them might have a day off, or are busy in a meeting with clients. Thereby,
sending the picture to all of them would be inefficient and the picture should
be sent only to those team workers who are available to review it.

• Finally, the picture is processed on several devices. Consider a situation that
the picture has been sent to all fellow collaborators to be reviewed but the
interior designer who sent the picture needs to obtain only two reviews to be
able to assess the picture. Therefore, when the picture is assessed, the other
collaborators, who have been also asked to review it but have not done so yet,
are informed that the picture has been already assessed and there is no more
need for their reviews.

The second usage scenario that illustrates the use of the MobWEL workflow ap-
proach is described next. Universities often provide students with the opportunity for
work placement experience. While on a placement, students closely communicate
with their tutors and placement mentors who monitor their attendance and progress.
There can be two workflows outlined in such collaboration.

20

2. BACKGROUND AND CONCEPTS

In the first workflow for monitoring attendance, smartphones can be used to cap-
ture time when student comes to the placement venue and a message of the arrival
is sent to tutor and mentor. When student enters the placement venue, the location
data provided by the GPS of the mobile device can be used as a trigger for capturing
the time on a daily basis. On the other hand, if student does not enter the placement
venue in a certain time range, and student arrival has not been recorded in any other
way, tutor and mentor are informed about student absence by their mobile devices.

In the second workflow, mentor creates a day plan of actions and tasks for stu-
dent. Each task has its start time, duration, goals, learning outcomes and location.
Mentor shares the plan with student and tutor. Student can indicate completion of
each task, add own notes and task rating by using own smartphone or tablet. In
addition, if allowed, student can take pictures by using own smarthphone and enrich
task related notes by them. Once the plan achieves a certain state of completeness,
the plan outcome is sent to mentor and tutor who assess it and take further actions.
Using smartphones in this scenario would enable capturing of important informa-
tion more accurately, for example, timestamps can be added to tasks or task-related
pictures can be taken.

The second scenario highlights a need for a technology that supports collabora-
tion on mobile devices such as smartphones and tablets, is adaptable and reactive
to the current situation of stakeholders such as location, and supports monitoring of
the state of shared artifacts such as student plan of actions.

The main commonalities between the two usage scenarios are that there are
different roles involved in collaboration, a work pattern is followed and each role has
certain activities that need to be completed. The activities can be accomplished
by using smartphones. In both scenarios, current user situations are obtained by
mobile devices in order to make workflow decisions. While in the first usage sce-
nario, designer’s preferences are used to decide which execution path is taken, in
the second scenario, location data enables to make decision for monitoring student
attendance. Moreover, artifacts are handled in both scenarios, pictures are captured
and reviewed in the first scenario, action plans are created and followed in the sec-
ond scenario. In both cases, states of artifacts are monitored and shared among
collaborators to communicate workflow progress.

The domain analysis has been performed and in next sections, the individual
features and related concepts of the technology that would support the mentioned
requirements are elaborated.

21

2. BACKGROUND AND CONCEPTS

2.3 Workflow Management

Collaborative workflow is a technology that supports multi-party collaboration and
can be adapted for various needs. This section presents the basic concepts related
to workflow and workflow management.

Basically, the work pattern described in the collaborative scenario can be ab-
stracted into a collaborative workflow, as outlined in Figure 2.1. The simplified work-
flow process is illustrated from a user’s point of view. It shows three roles that par-
ticipate in this collaboration: Interior Designer, Reviewer and Customer. The roles
can be assigned to one or more collaborators. Each role has allocated a number of
tasks. The logical order of task execution is outlined, too.

Figure 2.1: Collaborative Workflow Scenario

The work pattern can be described by a workflow language. Then the workflow
description is interpreted by a workflow management system which manages and
executes multiple instances of the particular workflow.

2.3.1 Basic Terminology and Concepts

Generally, workflow is an abstracted form of a real work pattern. Although there have
been some efforts from various vendors to standardise the definition of workflow,
workflow language and workflow management system architecture, there is no fully
standardised workflow technology that would be used by all and the meaning of
concepts can vary depending on the purpose of their application. The terminology
used throughout this thesis follows and extends that given in (Hollingsworth, 1995)
and in (Aalst & Hee, 2004):

Workflow: The computerised facilitation or automation of a business process, in

22

2. BACKGROUND AND CONCEPTS

whole or part, during which documents, information or tasks are passed from
one participant to another for action, according to a set of procedural rules.

Workflow Management System (WfMS): A system that completely defines, ma-
nages and executes workflows through the execution of software whose or-
der of execution is driven by a computer representation of the workflow logic.
WfMS provide support in three functional areas:

• Build-time functions are concerned with defining, and possibly modelling,
the workflow process and its constituent activities;

• Run-time control functions concerned with managing the workflow pro-
cesses in an operational environment and sequencing the various activi-
ties to be handled as part of each process;

• Run-time interactions with human users and applications for processing
the various activity steps.

Workflow Schema/Metamodel: The meta structure of a workflow process defined
in terms of a data model.

Workflow Process Definition: The computerised representation of a process de-
scribed by using a workflow language. The definition contains all necessary
information about the workflow process to enable its execution by software.
This includes:

• starting and completion conditions;

• constituent activities;

• rules to navigate between activities;

• user tasks to be undertaken;

• references to applications which may to be invoked;

• definition of any workflow relevant data.

Workflow Case Type: A workflow process description for a particular usage sce-
nario. It is a collection of related, structured activities or tasks that produce a
specific output for a particular user or application.

Workflow Instance: An occurrence of a workflow process for specific input.

Workflow Partition: A fragment of workflow process executed by one device.

Activity: A logical step in a workflow process.

23

2. BACKGROUND AND CONCEPTS

Figure 2.2: Workflow-Related Concepts (Hollingsworth, 1995)

Automated Activity: A step in a process that is performed directly by the workflow
execution engine.

Task: Task is a special type of activity representing a unit of work performed by one
or more human workflow participants or carried out by another application.

The relationships between the basic concepts are illustrated in Figure 2.2. To
clarify, workflow is often named as a business process, however, in this work the
term ’workflow’ is used rather than ’business process’.

The following terms related to workflow scheduling are extracted from the ta-
xonomy described by (Yu & Buyya, 2006). Local scheduling means task handling of
a single resource whereas global scheduling involves deciding where to handle the
task. Managing the task execution depends on the architecture of workflow system.
Secondly, local decision is based on on the information of current task and global
decision is based on the information of entire workflow.

2.3.2 Workflow Management

The role of workflow management can be described by five key aspects. The follow-
ing aspects of workflow specifications, originally distinguished by Jablonski (1996)
have been described in the work of (Oren & Haller, 2005):

24

2. BACKGROUND AND CONCEPTS

• The functional aspect defines a functional decomposition of activities in the
workflow and describes what should be done.

• The behavioural aspect defines the execution order and dependencies (control
flow) of activities in the workflow and describes when the activities should be
done.

• The informational aspect describes internal and external data used in the
workflow, their dependencies and data-flow.

• The organisational aspect defines allocation of work to resources in the or-
ganisation: describes who should do the work including the hierarchy and the
policies.

• The operational aspect describes interaction between the workflow manage-
ment system and environment.

Mobile workflow management can be centralised with a workflow management
system running on a server, or distributed with the workflow management system
running solely on mobile devices. As described in the usage scenario, the company
does not possess an own server, therefore, mobile peer-to-peer collaboration is
required. The peer-to-peer workflow management approach on mobile devices is
described next.

2.4 Mobile Peer-to-Peer Workflow Management

As mobile phones are becoming more capable and wireless networks improve, the
mobile phone users are expecting the same or better services as traditionally avail-
able in the fixed networks. Classical distributed systems designed for desktop com-
puting are usually stable, consisting of multiple autonomous computers. In contrast,
systems targeting mobile devices face a number of constraints in terms of location
variability, context changes, network data connectivity and resource sharing (Mah-
moud, 2004). The development of distributed mobile applications introduces chal-
lenging problems as devices have also more scarce resources especially in terms of
battery consumption. Thus the distributed mobile applications are often adapted for
the constraints, for example, certain operations are performed only when the battery
level is sufficient enough.

Mobile distributed systems consist of a set of mobile hosts, connected to the
network through wireless links. High-speed wireless connections (Wi-Fi) and tech-
nology standards such as Bluetooth enable frequent use of mobile devices in var-

25

2. BACKGROUND AND CONCEPTS

ious environments. Moreover, the wireless communication supports forming peer-
to-peer systems which allow data and content distribution between devices by direct
exchange without using centralized servers. The administration, maintenance, re-
sponsibility for the operation, and even the notion of ’ownership’ of peer-to-peer sys-
tems are distributed among the users or devices (Androutsellis-Theotokis & Spinel-
lis, 2004). By using the peer-to-peer technology, there is the potential that com-
munication processes are accelerated and collaboration costs through the ad hoc
administration of working groups are reduced (Schoder & Fischbach, 2003).

Coulouris et al. (2005) has described the characteristics of peer-to-peer systems
as follows:

• Each peer contributes information resources located on the device to the sys-
tem through a network.

• Each peer has the same functional capabilities and responsibilities.

• No centrally administered system.

• Each node has a certain level of anonymity to other peers.

• Efficient functioning depends on a choice of an algorithm for the placement of
data across many peers.

In the pure peer-to-peer architecture, all peers are equal and each peer becomes
a supplier and consumer of resources and information services. Application of the
decentralized algorithm implies that no device has complete information about the
system state and devices make decisions based only on local information. If the
peer-to-peer model is used in mobile collaboration, data management and deci-
sion making techniques that support tasks, processes or workflows need to be ade-
quately developed.

Workflow management systems purely designed for mobile devices has a de-
centralised, peer-to-peer infrastructure. The application of the peer-to-peer charac-
teristics into workflow management means that:

• A workflow definition is decomposed into small partitions and the workflow par-
titions are deployed on participating mobile devices, also labeled as a workflow
peer or participant.

• Each device acts autonomously and executes an allocated workflow partition
in order to achieve the common goal.

• No single device has a complete view of the global workflow state.

26

2. BACKGROUND AND CONCEPTS

Distributed workflow execution is performed when each device executes an al-
located partition of the workflow. Each participating device needs to be aware of
the workflow process definition and also all multiple process instances the device is
involved in.

It is important to outline that there exist two different views on distributed workflow
management: orchestration view and choreography view (Peltz, 2003). From the or-
chestration point of view, the workflow logic and behaviour of a single participant is
described. An orchestrated workflow does not describe coordination between two or
more parties. As opposed to the orchestration view, the choreography view focuses
on interactions and message exchanges between two or more workflow participants.
Choreography refers to an overall process without specifying how it is implemented
and describes coordination between two or more parties. The choreography may
consist of several orchestrations. In this work, the focus is put more on the orches-
tration view and on what is happening on a single device rather than optimisation of
the interaction among participating devices.

In the following section, existing workflow standards, which have been consi-
dered to be used as a base for the workflow described in the usage scenario, are
presented.

2.4.1 Workflow Standards

The workflow management field has been shaped from the nineties onward. Various
workflow standard models and specifications have been developed. This section
presents the most known and adopted workflow approaches.

Workflow Management Reference Model: An almost two-decade-old Workflow
Management Reference Model developed by the Workflow Management Coalition1

represents a rich source of specifications for the design and development of work-
flow management systems. The reference model, described by Hollingsworth (1995),
identifies the basic characteristics, terminology, general structure and components
of a workflow management system. The major component within the workflow ar-
chitecture is a workflow enactment service which provides the run-time environment
and utilises one or more workflow engine(s). A number of core interfaces and inter-
change workflow definition formats are constructed around the workflow enactment
service to regulate the interactions between the workflow control component and
external resources such as process definition tools, workflow client applications,
invoked applications, other workflow enactment services and administration tools.

1http://www.wfmc.org

27

2. BACKGROUND AND CONCEPTS

Other standards proposed by the WfMC include XML Process Definition Language
(XPDL) and Workflow API (WAPI). XPDL is used to describe workflow processes
which are deployed to the enactment service. WAPI is a set of API calls and inter-
change functions around the workflow enactment service used to interact with other
resources and applications.

BPMN: Business Process Modeling Notation (BPMN) is a graphical representation
of a business process developed by the Object Management Group (OMG) (OMG,
2011). The notation facilitates businesses by giving them the ability to communicate
their business procedures in a standard manner. The goal of BPMN is to provide a
standardised notation that is easily understandable by various business users. Al-
though BPMN is a useful notation tool to visualise business processes, it has been
developed for graphical design and its deployment to the process engine is con-
ditional on transformation to another process format. Because of wide-spread of
BPEL in process engines, BPMN processes have often been mapped to the execu-
tion format such as Business Process Execution Language (BPEL)

BPEL: BPEL, a shortened name for Web Service Business Process Execution Lan-
guage, is a standard executable XML-based language developed by the Organi-
sation for the Advancement and Structured Information Standards (OASIS). The
full specification of BPEL process can be found online (OASIS, 2007). BPEL has
been designed for specifying business process behaviour based on Web Services.
Web services are self-contained and self-describing software application compo-
nents designed to achieve interoperability between applications over the network
by using Web standards. Applications integration and interoperability requires a
formally defined interaction model that supports peer-to-peer message exchanges,
both request-response and one-way formats, between two or more parties. An ab-
stract process is used to describe the interaction model without revealing the internal
implementation of the parties involved. Separating the public aspects of business
process behaviour from internal business aspects enables to hide internal data ma-
nagement and decision making from other parties and provides the ability to change
the private aspects without affecting the public process behaviour. BPEL is an
orchestration language, not a choreography language. BPEL defines how multi-
ple service interactions are coordinated to achieve a business goal and provides a
mechanism for dealing with exceptions and faults. BPEL utilises XML specifications
such as WSDL 1.1, XML Schema 1.0, XPath 1.0 and XSLT 1.0.

BPEL Extensions: BPEL has been used for describing business processes in

28

2. BACKGROUND AND CONCEPTS

many scenarios, however, its standard constructs did not support the various re-
quirements. Therefore, more functionality had to be added and the language has
been frequently extended. BPEL4Chor extends BPEL for modelling choreographies
(Decker et al., 2007), BPEL4People to cover also human user interactions (Klopp-
mann et al., 2005) or BPEL4SWS is BPEL for semantic web services (Nitzsche
et al., 2007a) are only some examples of BPEL extensions.

BPEL is a) platform-agnostic; b) expressed entirely in XML, c) extensible and adapt-
able, d) accepted as standard and widely adopted, e) provides robust interaction
model that enables peer-to-peer conversation. Because of the BPEL characteris-
tics, BPEL is used for describing the scenario work pattern and forms a base for
MobWEL. Thereby, its basic constructs are described next.

2.4.2 BPEL

The structure of a BPEL process is outlined in Figure 2.3. At the top, the <process>
element with attributes such as name, query language, expression language, target
namespace, etc. is defined. Global declarations define items that used within the
process, including extensions, imports, partnerLinks, etc. For this work, the most
important concepts are variables and eventHandlers.

Figure 2.3: BPEL Process Structure (Informatica, 2007)

Explicit data flows are not supported in BPEL and data in BPEL is stored in

29

2. BACKGROUND AND CONCEPTS

Figure 2.4: BPEL Control Flow

shared variables. Data in variables are accessed and modified by activities. Va-
riables can be inputs or outputs of activities such as receive, pick or invoke. Data
can be copied from one variable to another variable by using the assign activity.
To obtain the value of a variable, a built-in function: ’bpws:getVariableData’ can be
used. An XPath expression is used to extract data from an XML document.

BPEL processes can be organised into logical units of work called scopes. To
react to certain events or to the expiration of timers during the scope execution,
event handler can be used. The most obvious reasons for using event handlers
are events, for example, a cancellation event to terminate the scope or process
escalation when a timer set on the scope expires.

After the global declarations, the process control flow is defined. The flow con-
sists of several individual activities. In BPEL, each activity represents an action that
is actually performed. There are two types of activities: basic and structured. Basic
activities such as invoke, receive, assign, or exit are atomic. Structured activities
such as flow, if, pick or sequence are containers which can contain other activities.
To describe each activity is out of scope of this thesis, however, activities that have
been altered or adopted in MobWEL will be described in other chapters.

A simple example of control flow in BPEL is illustrated in Figure 2.4. It is im-
portant to outline that a process definition contains a single entry point in a form of
primary activity, usually the <sequence> or<flow> activity.

30

2. BACKGROUND AND CONCEPTS

BPEL Process Lifecycle

Once a BPEL process is designed, it is deployed to a BPEL-compliant engine. After
that, the BPEL process can be instantiated. The process is typically initiated when
an incoming message is received (Figure 2.5, step 1). At first, the engine would try
to find and match the message to a currently running instance (Figure 2.5, step 2).

Figure 2.5: BPEL Process Lifecycle

If not successful, a new process instance is created. Each process instance
represents a separated thread of execution of the single BPEL process, using its
own associated data, and is controlled independently. Process instances have their
own internal states which represent their progress towards completion. While the
BPEL process instance is executed, corresponding activity instances are created
and managed for each invocation of the process activities in accordance to the pro-
cess definition.

This section has introduced the concepts related to workflow management and
standards, particularly BPEL. Next section explores content and object awareness
with respect to workflow management.

2.5 Content/Object Awareness

It has been outlined in the introduction that duality of content-centric and activity-
based workflow models can be a way to better workflow management. In the work-
flow described in the usage scenario, a picture is shared among designers. Nearly
all objects in their life go through a number of stages. For instance, a book is writ-
ten, edited, published, read, or disposed. Usually a set of restrictions is placed on
the transitions between the stages of an object. The same happens to the picture
which goes through a number of states from being created, reviewed, or at the end
archived. Placing the picture in the center of the workflow would be limiting for per-
forming other actions. However, content awareness in an activity-based approach
can be increased by considering the lifecycle of the processed object.

31

2. BACKGROUND AND CONCEPTS

Several representations for modelling object lifecycles have been developed, of-
ten based on finite state machines or statecharts. In state machines, a set of states
and directed transitions between the states form a representation (Sipser, 2006).
Many of the state-machine representations use the event-condition-action paradigm
and associate transitions with events that triggers transitions. On the other hand, al-
though statecharts can be seen an extended version of state-machines, statecharts
have been designed more to represent concurrency. For example, the statechart
approach has been used in the UML State Machines (OMG, 2007). In this thesis,
the state machine approach is used to describe lifecycles of the objects processed
in workflows and the object lifecycles are integrated to the process flow. If the view
on the object lifecycle is integrated in an activity-based workflow, the workflow be-
comes object-aware, also referred as content-centric in this thesis. In other words,
the object-aware activity-based workflow captures the order of the workflow tasks
complemented with the view on lifecycles of objects processed in the workflow.

The following terminology related to content awareness is used throughout this
thesis:

Content/ Content Piece: An object type such as image or document processed in
a workflow, and declared as variable in a workflow definition.

Content Lifecycle: Content can have a longer lifespan than workflow that creates
it. Description of a period involving all stages of the content life from its creation
to its disposal.

Content Item/ Content Object: A concrete workflow object processed in a parti-
cular workflow instance.

Content Metadata/ Content Attribute: Data providing information about a content
object.

It has been outlined in the usage scenario that the technology needs consider
needs of individual collaborators. In the next section, context awareness as a con-
cept that can be used to adapt the technology for the requirement is presented.

2.6 Context Awareness

Mobile devices reside in extremely dynamic contexts. Context awareness might
have a number of meanings, depending on the domain to which it is applied. Context
awareness can be broadly defined as:

32

2. BACKGROUND AND CONCEPTS

’...as an active process dealing with the way humans weave their experience
within their whole environment, to give it meaning.’ (Bolchini et al., 2009)

or

’Context awareness is of an entity to be aware of the surrounding situations
and use the information to perform some tasks.’ (Dawson et al., 2008)

In this thesis, the following definition of context is used:

’Context is any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
applications themselves. Context is typically the location, identity, and state
of people, groups, and computational and physical objects.’ (Dey et al.,
2001)

2.6.1 Context Classification

Context information can originate from various sources. Hence, the heterogeneous
context raw data need to be processed into more compact and meaningful context
information that is delivered to various context-aware systems. Concerning that
context diversity, context classes relevant for the MobWEL are clarified.

Based on the source, the following classes of context have been identified as rel-
evant for the MobWEL workflow model: user context, device context, environmental
context and social context, see Figure 2.6.

Figure 2.6: Context Types based on the context source

User context deals with all those aspects related to workflow participants and
users of the mobile phone. People use mobile devices in a more personalised way
and mobile information systems need to be more customisable and adaptable to
user behaviour and needs. Personalisation and adaptation of information systems is

33

2. BACKGROUND AND CONCEPTS

usually accomplished by considering additional information about a user, for exam-
ple, by including more detailed information based on personal preferences (Bierig,
2008). Using user preferences in the workflow concept can lead to more flexible and
dynamic workflow structures that can respond to collaborators’ needs.

Secondly, smart mobile phones are capable of capturing various types of contex-
tual information. Sensors that can be found in the phones include GPS, accelero-
meters, digital compass, or proximity sensors. These sensors with other equipment
found in mobile phones can be used for acquisition of a wide range of contextual
information. Context information can be related to the context of device or environ-
ment. Connectivity and battery level are examples of device’s context. Environmen-
tal context groups all those aspects in which the device is embedded such as time,
location or information about surrounding devices.

Finally, significant context to establish cooperative effort is social context. Social
context awareness relies on knowing the work context of fellow collaborators, such
as their availability, current activity and location (Bardram & Hansen, 2004). A core
challenge, especially in the mobile environment, is to provide collaborators with a
social context information of each another.

2.6.2 Context Management for Mobile Systems

Contextual information is consumed by context-aware mobile applications. Context
aware applications have been described as:

’...intelligent applications that can monitor the user’s context and, in case
of changes in this context, consequently adapt their behaviour in order to
satisfy the user’s current needs or anticipate the user’s intentions.’ (Daniele
et al., 2009)

Context management encompasses a number of phases as context monitoring,
context acquisition, context processing, context distribution, context consumption
and context adaptation. The first four phases are part of context provisioning that is
functionally separated from the other two phases.

Much work has been done to enable context awareness and a holistic view of
the existing literature has been presented in the survey derived by (Bellavista et al.,
2013). The survey of context data distribution for mobile ubiquitous systems puts
together recent research efforts. Considering and comparing a significant number
of solutions resulted in a unified architectural model and taxonomy for context data
distribution. The concepts presented in that work is used throughout this thesis and
this section briefly outlines the most important ones.

With relation to computing, context awareness can be seen as:

34

2. BACKGROUND AND CONCEPTS

’...the ability to provide services with full awareness of the current execution
environment.’

In the architectural model for context data distribution systems, the context data
distribution function need to contain the following main facilities: Context Data Ma-
nagement layer, Context Data Delivery layer and Run-Time Adaptation Support.
The Context Data Management layer is responsible for local context data handling.
Context data processing in this layer include aspects such as context aggregation,
context filtering, context data security and history management. Context data is
stored in this layer. The Context Data Delivery layer supports internal delivery of
context data. Finally, the Run-Time Adaptation Support provides the dynamic con-
text management to application by considering conditions occurred at run-time.

In this thesis, the following terminology related to context awareness is used:

Context Representation: A model that represents context information. The model
can be general or domain-specific. General models are concerned with the
generic problem of context representation. Domain-specific models are used
to represent data belonging to a certain domain.

Context Information: Higher-level information is derived from raw context data.

Context Situation: The set of context information which describes the current state
of the execution environment.

Context Data Aggregation: Operations and reasoning techniques used to merge
different context data.

Context Data Filtering: Techniques to control and reduce the amount of transmit-
ted context data.

Context Data Dissemination: A dissemination strategy that enables data flow be-
tween sources and consumers. There are two categories of dissemination
solution are relevant:

• flooding-based: context data are disseminated to all nodes within a
scope;

• selection-based: context-data reach only interested nodes.

Context Provisioning Platform/Context Provider: A platform that interprets con-
text model and adequately monitors, acquires, aggregates, filters and dissemi-
nates context data.

With this section, this chapter is concluded. Its summary is presented next.

35

2. BACKGROUND AND CONCEPTS

2.7 Summary

In this chapter, the usage scenario has been presented, the individual but interre-
lated features have been elaborated and the related terminology used throughout
this thesis has been defined.

The presented usage scenario represents a certain class of mobile applications.
Those applications would benefit from a workflow management technology which
is a) distributed; b) adaptive; c) context-aware; d) content-centric; and e) supports
mobile collaboration.

There exist numerous workflow management technologies that partially address
the requirements. The existing workflow approaches are reviewed and discussed in
next chapter.

36

Chapter 3

Related Work

Contents
3.1 Introduction . 37

3.2 Techniques for Workflow Adaptation 37

3.3 Context Management . 42

3.4 Object Behaviour Modelling and Management 47

3.5 Mobile Peer-To-Peer Workflow Execution 53

3.6 Summary . 55

3.1 Introduction

This chapter reviews work related to adaptive workflows, content and context aware-
ness in workflows, mobile workflows and is organised as follows. The techniques
for workflow adaptation are discussed in Section 3.2. Section 3.3 presents context
management frameworks and outlines the need for a workflow-specific context man-
agement approach that is tailored for mobile devices. Section 3.4 surveys previous
work related to object-aware workflows and content-centric workflow management.
Workflow models designed for peer-to-peer mobile collaboration and the support
for the execution of such workflows are discussed in Section 3.5. This chapter is
concluded in Section 3.6

3.2 Techniques for Workflow Adaptation

Traditional workflows have not been designed to react on the dynamic changes at
run-time and the need for more flexible and adaptive workflow has long been recog-

37

3. RELATED WORK

nised (Ellis et al., 1995; Aalst et al., 2000; Buhler & Vidal, 2003). Workflows are
organised in a structured way, however, the dynamic nature of the business world
requires dynamic processes that deal with a wide range of variations, foreseen and
unforeseen changes in the context or environment in which they operate (Schonen-
berg et al., 2008b).

Flexibility can influence process at any point of its lifecycle. Aalst et al. (2009)
has identified five phases of a process lifecycle: design time, configuration time,
instantiation time, run time and auditing time. Creation of models without connection
to organizational settings is done at design time. Models become more specific and
connected to organizational context at configuration time. A process instance is
created at instantiation time, executed at run time and completed at auditing time.

Contrary to Aalst, dynamic processes and the impact of their characteristics on
three phases of the process lifecycle, namely modelling, execution and monitoring,
shown in Figure 3.1, have been discussed in the work of Weber et al. (2009) as
follows.

Figure 3.1: Taxonomy for Dynamic Processes (Weber et al., 2009)

Dynamic processes comprise three characteristics:

Flexibility is based on a loosely or partially specified model which is fully specified at
run-time, so basically each process instance can determine its own process.
Thus the process is not fully anticipated and not strictly prescriptive. Flexible
processes are defined in a more relaxed manner. However, this characteristic
raises challenges including flexible configuration of process models, either at
build time or runtime. Flexibility refers also to customisation.

Adaptation represents the ability of the process to cope with exceptional circum-
stances. This ability refers to a) anticipated exceptions that can be captured in
the process definition; b) unanticipated exceptions addressed through struc-
tural changes of process instances such as adding or deleting of activities.

38

3. RELATED WORK

Evolution means that the implemented process changes when the business pro-
cess evolves. In this case, the assumption is that there is a pre-defined
model which is modified when the changes occur. However, the modification
of the process model raises a challenge to handle existing running process
instances.

Although there are three phases outlined in that work, our focus is placed on the
first two phases, therefore, Table 3.1 reviews only the existing strategies designed
for modelling and execution of dynamic processes.

Different classifications of the existing approaches to achieve process flexibility
and adaptation have been described in the work of Schonenberg et al. (2008a). In
this work, four types of workflow flexibility have been recognised: flexibility by de-
sign, flexibility by deviation, flexibility by underspecification and flexibility by change.
Flexibility by Design basically is the same ability as Weber’s Flexibility by Enumer-
ation. Flexibility by Deviation enables the process instance to deviate from a pre-
defined path without altering its process model. For instance, the deviation allows
changes of the tasks order. This flexibility type is similar to Weber’s Dealing with
Unanticipated Changes and is suitable for descriptive rather than prescriptive pro-
cess models. Flexibility by Underspecification is a similar approach as Weber’s
Late Modelling in which the model is underspecified at build-time and completed at
run-time. And finally, Flexibility by Change enables to modify a process model at
runtime meaning that all running process instances are migrated to the new process
model. This type of flexibility is particularly suitable for processes which need to
adapt to operational changes and unforeseen events. This type falls under Weber’s
Dealing with Unanticipated Changes approach. It shows that Weber’s classification
covers all flexibility types and is more extensive in terms of categories.

The properties of flexible/adaptive workflows have been considered in the work of
Nurcan (2008). The properties, analysed with respect to business process flexibility
requirements, are shown in Figure 3.2. The first property is Nature of the flexibility
which defines whether the process model incorporates the environmental change
during the build-time. The capacity of the process model is characterised in two
flexibility types: the flexibility by selection(a priori) and the flexibility by adaptation (a
posteriori). The flexibility by selection is based on modelling formalisms which offer
dealing with environmental changes without any evolution of process definitions and
process instances always conform to the defined model. It means that the process
definition should be specified in such a flexible way that no evolution of process
definition is needed. The flexibility of adaptation allows adaptation of the process
definition or its instances during their execution. Resulting process definitions are
considered adaptive rather than flexible. Other two properties are applicable only

39

3. RELATED WORK

Table 3.1: Existing Approaches for Dynamic Processes

Technique Description
M

O
D

E
LL

IN
G

P
H

A
S

E

Granularity

Control

Activities are modelled as black boxes, thus they can com-
prise a number of sub-activities which existence is not dis-
closed to the process. The flexibility is achieved by perform-
ing the sub-activities.

Flexibility

by

Enumeration

This approach requires to enumerate all possible execution
paths in the process model. During runtime, one path is
chosen.

Process

Configuration

Several model variants exist for a business process. Each
variant is adjusted for specific requirements. The variants
are either specified in separate models or are expressed
within the same model in terms of conditional branches.

Late Binding

This technique enables late binding of services or sub-
process fragments at runtime. It is often used for late re-
source allocation. Basically, a process activity is modelled
as an abstract action at build-time. An appropriate service
is selected and associated with the activity at runtime.

Late Modelling This technique enables the definition of the whole process
or its parts at runtime.

E
X

E
C

U
TI

O
N

P
H

A
S

E

Dealing

with

Expected

Exceptions

Depending on the exception type raised during process
execution, a handling strategy should be chosen. Each
strategy describes (a) handling of the work item on which
the exception is based; (b) handling the process instance
for which the exception is detected; and (c) recovery ac-
tions.

Dealing

with

Unanticipated

Changes

Non-anticipated changes often require structural adapta-
tions of a process schema. There are two options: a) A
complex and error-prone way that requires the application
of multiple change primitives such as add node, remove
node, add edge, remove edge and move edge; b) A way
based on a set of change patterns: high-level change ope-
rations like insert process fragment between two sets of
nodes.

Dealing

with

Uncertainty

Decisions regarding the exact flow of control are deferred to
runtime. The process schema is not fully specified as some
parts of schema remain unspecified. Examples for such
techniques: late binding, late modelling, late composition
of process fragments, multi-instance activities, data-driven
processes.

40

3. RELATED WORK

when the flexibility is a posteriori. Nature of impact defines whether the definition
or instances will be affected, and Nature of change defines why the transformation
of the process is required.

Figure 3.2: Flexibility Classification (Nurcan, 2008)

Redding et al. (2010) have pointed out that despite the large number of propos-
als for flexible workflow support, the targeted process model is still composed of
activities and flexibility is achieved by two specific approaches: allowing runtime de-
viations or minimalistic specification of flow dependencies in which a larger part of
behaviour is forecasted in advance.

As shown, there have been various techniques developed to achieve workflow
flexibility. One question that needs to be asked, however, is which mentioned tech-
nique can be applied in the case of MobWEL workflows. In peer-to-peer mobile
collaboration, the workflow management system is deployed on each single mobile
device. As MobWEL workflows need to be executed on multiple mobile devices,
the modifications of their workflow descriptions on each device could cause lots of
inconsistencies and thereby, the techniques that include changes in the process
schema during run-time are not suitable. Similarly, process definition underspecifi-
cation or using the black box activities approach would increase processing on each
device, so these techniques are not considered as suitable either. Because of this,
the environmental changes must be anticipated and captured at build time. Thus,
the flexibility techniques that have been considered as most relevant and applicable
for the work in this thesis are: late binding and late modelling.

The next sections discuss workflow adaptation approaches, in particular adap-
tation for the integration of context changes and content behaviour. Previous work
related to workflow contextualisation and context management within workflows is
reviewed next.

41

3. RELATED WORK

3.3 Context Management

This section reviews previous work on context modelling and management, and
highlights the need for a workflow-specific context management approach.

3.3.1 Workflow Contextualisation

Workflow contextualisation has been addressed in a number of works, however,
there are many research challenges to make context-aware workflow systems ready
for practical use.

The extrinsic drivers for process flexibility which can be found in the context of
the process such as time, location, weather or performance requirements have been
studied in the work of Rosemann et al. (2006a). The study suggests an explicit
consideration of these contextual factors in the design and modelling of business
processes. The notion of context-aware business processes has been established
in the work, subsuming the questions related to context conceptualisation and the
impact of context on process design. Although types of context are defined and
the use of context information is depicted in a process model, the study only helps
to gain a better understanding of the different types of context and their impact on
business processes from the modelling perspective.

The study has been extended in the work of Rosemann & Recker (2006b), point-
ing to three main research challenges related to a context-aware process design:
context description, design for context and process adaptation. Context description
refers to the identification and description of context variables relevant for a business
process. In other words, it refers to a relevant context model which is integrated with
existing metamodel of a process modelling language. Design for context refers to
the incorporation of contextual elements in the design of business process. In par-
ticular, how the knowledge can be embedded and utilised in the process design for
context. Finally, Process adaptation considers the support for context-aware busi-
ness processes and need for the design of adaptive process management systems
which support the adaptation of processes to context changes. While this paper only
envisages the requirements and challenges for context-aware business processes
without their further elaboration, another work of Rosemann et al. (2008) presents
context integration and a metamodel that integrates context with the traditional pro-
cess perspective. Although the metamodel has formalised the idea how processes
can be used to identify context that is relevant for the process, the challenges pre-
sented in the previous work have not been fully addressed.

A more comprehensive approach towards context-aware workflows has been
described in the work of Wieland et al. (2007). In that work, the Nexus platform

42

3. RELATED WORK

has been chosen as a context provisioning platform. The Nexus platform supports
two access patterns: context querying and context events broadcasting. In context
querying, the Augmented World Query Language (AWQL) is used to obtain context
information at real time. On the other hand, by employing the publish-subscribe
mechanism, notifications about context events observed by the Nexus platform are
sent to the application. Thus the process model is adapted to support a) waiting
asynchronously for a context event that triggers a certain action (context event);
b) synchronous querying of context data and its storing into internal variables (con-
text query); c) branching and routing process control flow based on context (context
decision). BPEL is used for the implementation of such context-aware workflows
and the extended BPEL version is named Context4BPEL. The concept for modelling
context-aware workflows introduced in the work and their realisation by extending
BPEL is a promising practical approach for the workflows adaptation to changed en-
vironment. The workflow adaptation to context is achieved without losing generality.
It means that although Context4BPEL has been coupled with the Nexus platform,
the binding is only one possibility among others and the process model can be cou-
pled with other context management platforms.

Another approach that facilitates adequate specification of context variables and
contextualised business process is described in the work of Vara et al. (2010). The
methodological approach to business process contextualisation called COMPRO
and described in that work is based on context analysis, a technique that supports
context reasoning and discovery of its relevant properties. The approach suggests
to model initial business model at first. Then the business process context is ana-
lysed and context variants determined. After that, the initial model is extended and
a contextualised business process model is produced. Basically, the first business
process is underspecified and contains some black-box activities which are influ-
enced by context. After the context analysis is conducted, the activities are fully
specified. This approach offers a systematic way to identify and discover context
variables, however, in this approach only context decisions are considered within
the business process, without incorporating context events. Furthermore, there has
been only a little attention paid to context provisioning and the way how context
information is obtained has not been fully elaborated.

Contextualisation of a role-driven business process modelling (RBPM) is another
approach that addresses integration of context awareness in business process mo-
delling (Saidani & Nurcan, 2007, 2009). In role-driven business processes, there
are roles played by actors and during the execution of a business process, actors
perform activities. In this approach, contextual information is used to enhance the
adequacy of the task assignments during the execution of a business process. It

43

3. RELATED WORK

refers to the fact that if all actors, who play a given role, are unavailable to perform a
certain function, the function is performed by one from the available roles. Therefore,
the business process contextualisation approach is very specific for operations-to-
role assignments and thus not very applicable for our usage scenario.

The conceptual foundations of a discrete service named Worklet service that
transforms static workflow processes into dynamically extensible process instances
have been described in the work of Adams et al. (2009). To accommodate flexibility,
these criteria would need to be satisfied a) a flexible modelling framework in which
process models are considered as guides rather than prescriptions; b) a repertoire
of actions available for each task during execution of each process instance; c) dy-
namic/contextual choice from the repertoire at runtime; d) dynamic process evolution
meaning that the repertoire can be dynamically extended. Therefore, in this frame-
work each task is provided with the ability to be linked with the repertoire of actions
and the action is contextually and dynamically chosen at runtime to carry out the
task. In addition, a repertoire of exception-handling processes needs to be provided.
The repertoire-member actions are presented as worklets. The Worklet Service has
been implemented as a YAWL (Yet Another Workflow Language) custom service.
In addition, the following taxonomy of contextual data has been introduced with this
framework:

• Generic(case independent): are the attributes that occur within any process;

• Case dependent with a priory knowledge: a set of data known to be pertinent
when a case is instantiated;

• Case dependent with no a priory knowledge: a set of data that only becomes
known at runtime when the case is active.

The Worklet Service allows a model to be considered from many levels of granularity
and supports late binding of processes. It maintains a repertoire of actions that can
be constructed during design and/or runtime and invoked as required. However,
due to limitations of mobile devices and issues resulting from peer-to-peer workflow
execution, the framework is too complex and thus not considered as suitable for our
work.

The workflow contextualisation approaches presented in this chapter highlighted
the need for an explicit context description and identification of context variables that
influence process design and execution. (Wieland et al., 2007) has pointed out that
workflow meta-models should support context modelling and its use in workflows.
Thus some existing context modelling and management approaches are discussed
next.

44

3. RELATED WORK

3.3.2 Context Modelling and Management

Numerous general context frameworks have been developed to facilitate context
modelling, recognition, reasoning and management.

One of the earlier widely acknowledged works, the Context Toolkit, provides a
framework for context modelling and management (Salber et al., 1999; Dey et al.,
2001). Using context in applications is difficult because of the nature of context in-
formation. Context data is dynamic and acquired from multiple unconventional and
heterogeneous sources. Context data must be abstracted to be useful for applica-
tions. The Context Toolkit framework has been developed to address the difficulties.
The framework is based on the idea of context widgets, the concept inherited from
the graphical user interface (GUI) widgets. Context widgets mediate between the
application and its operating environment. A context widget represents a software
component which provides access to context information. The widget hides the com-
plexity of actual sensors, encapsulates and abstracts context information. Context
widgets have states represented by a set of attributes and behaviour. Applications
can register their interest to be notified of context changes or access the widgets
through provided methods. This framework separates context acquisition from use,
and also supports context composition. The framework addresses the general dif-
ficulties with using context information, however, it does not suggest the structure
and overall management for organising and controlling of widgets lifecycles, and is
not focused on mobile platforms.

Focus on mobile platforms with aim to simplify the development of context-aware
mobile applications has been addressed in the context management framework pre-
sented in the work of (Korpipaa et al., 2003). This framework enables higher-level
context abstractions and provides systematic techniques for context acquisition from
multiple sources. The framework is based on four main functional entities: context
manager, resource server, context recognition service, and application. Context
Manager acts as a central server which can be queried to gain context data and
provides context notification services for other entities which function as clients.
Context data is obtained by using the resource servers which then passes them
to the context manager. The framework manages context information systematically
by providing a common structure and an ontology for representing context informa-
tion. The framework has been designed for the Symbian platform 1. The framework
employs the context manager to provide control between the acquisition and use of
context information by applications. However, the ontology is static and the higher-
level context abstractions are predefined and the same context values are used by all
applications. Thus applications cannot determine their own customised derivation of

1www.symbian.com

45

3. RELATED WORK

the context values. It influences the optimal use of context manager as applications
obtain also context values they might not be particularly interested into. Although
the framework focuses on mobile platforms, it is based on a centralised operating
and therefore, only hardly applicable for peer-to-peer mobile collaboration.

Context modelling techniques and a preference context model for representing
context-dependent application requirements are described in the work of Henricksen
& Indulska (2006). In contrast to other more infrastructure-centred context manage-
ment approaches, the framework developed in the work integrates a set of well-
defined context modelling abstractions. The conceptual foundations of the frame-
work lie in three separate but closely integrated modelling approaches: a) Context
Modelling Language (CML) that supports the specification of an application’s context
requirements; b) Relational Representation that supports the management and per-
sistence of context information in a repository; c) Situation Abstraction in a form of
predicate logic supports the specification of abstract classes of context. Additionally,
a preference model is developed that facilitates the decision-making process which
is supported by the use of machine learning techniques and preferences based on
the ranking of choices. The modelling approach developed in the work is based
upon a set of reusable concepts such as context definition and context processing
components. Further, a high degree of user customisation is supported. However,
the CML models require a precise description of various aspects and their relation-
ships. This approach can be beneficial for general context modelling, however, it
is too complex and impractical to be used in conjunction with context-aware mobile
workflow management systems.

There have been other context modelling and management frameworks devel-
oped, each of them targeting a certain set of challenges. For example, challenges
such as distribution, mobility and resource-constraints have been addressed in the
context modelling framework for pervasive computing systems called MUSIC (Re-
ichle et al., 2008). With emphasising the need to establish an ontology of concepts,
the work bases the framework on three abstraction layers: conceptual, exchange
and functional. Whilst the conceptual layer enables the definition of context artifacts,
the exchange layer utilises the interoperability between devices and the functional
layer refers to the implementation of the context model. The framework is compre-
hensive but requires the use of an ontology.

With increased context data dissemination, another example of a framework ad-
dressing the corresponding issues is the Nexus Platform (Grossmann et al., 2005).
The goal of the platform is to support all kinds of context-aware applications by set-
ting up a global and detailed context model. This approach is designed to provide
context information acquired from multiple geographically dispersed sources. How-

46

3. RELATED WORK

ever, the platform operates on a context server, therefore, its use is impractical in
our scenario.

As discussed, there have been various context management frameworks devel-
oped. However, the frameworks are either too general and designed to be used with
a wide range of context-aware applications, or the frameworks are designed for a
specific class of scenarios and a particular set of requirements. As shown later in
this thesis, none of the approaches sufficiently fulfills our requirements, therefore,
a workflow-specific context management approach that combines the most suitable
features of existing approaches is proposed as a part of the MobWEL workflow ap-
proach.

The next section presents work related to data-driven and object-aware workflow
processes.

3.4 Object Behaviour Modelling and Management

The need for more data-driven and object-aware workflow processes has been
recognised in the research community and various approaches, presented in this
section, have been developed to outline or address the associated challenges.

3.4.1 Artifact-Centric and Object-Aware Workflows

The idea of object awareness, although in a slightly different meaning, has been de-
veloped in a framework based on Proclets (Aalst et al., 2001). A proclet represents
only one aspect or element of workflow such as a) lightweight workflow process
with a knowledge base containing information on previous interactions; b) object
equipped with an explicit lifecycle; c) active document. In the approach, workflow
definitions have been divided into smaller interacting proclets. Proclets interact via
channels. There is also a naming service that enables for proclets to find each other.
However, based on our terminology and understanding of concepts, the framework
is more applicable for building flexible processes rather than for object-aware pro-
cess models defined in Chapter 2.

A component model built around the concept of Adaptive Business Object (ABO)
is presented in the work of Nandi & Kumaran (2005). The model allows designing
workflow processes around a set of key business entities. ABOs are abstractions
of business entities with managed state manifested in a currentState attribute. The
lifecycle is defined by using a finite state machine. People and applications may
interact with ABO, however, the access control to the objects is adaptive and based
on business roles. The lifecycle and behaviour of ABOs are designed by using the

47

3. RELATED WORK

UML state charts and state transitions are labeled as [Event]/[Condition]/[Action]. A
business process is viewed as a sequence of activities used to create, manipulate,
and close ABOs. Although the component model is based on ABOs and the artifacts
are considered as important as the activities, the data and remote actions are part
of state transitions. That makes the component model more artifact-centric because
only actions which are relevant for that artifact can be expressed.

The belief that traditional process modelling approaches which focus on activities
fail to capture informational structure relevant to the business contexture has been
supported in the work of Liu et al. (2007). Business artifacts, such as Purchase
Order or Insurance Claim, are seen as an additional dimension with which business
analyst can model their business. So that work is based on the idea that busi-
ness process operational modelling engages also business artifact discovery and
modelling the lifecycle of the discovered artifacts. The discovery phase produces
the actual product or artifact of the process. A business artifact, initially defined
by Nigam and Caswell (2003), has been described as ’identifiable, self-describing
unit-of-information through which business stakeholders add value to the business’.
Therefore, the artifact has ID, uniquely identified within the business, and attributes,
named in the way that their use within the domain is apparent. Information contained
in the artifact form the information model. The modelling phase of the lifecycle of
the discovered artifacts is achieved via adapted business tasks and using the con-
cept of input and output ports which live in the context of task. The ports are the
recognisers for artifacts. The business operational modelling approach incorporates
the contexture of a business and the behaviour of the business is described in the
context of artifacts. This approach highlights the need for discovering and modelling
of the artifact behaviour, however, the way how the artifact behaviour and the control
process are integrated is not suitable for running on mobile devices.

Business artifact integration is usually limited on the inputs and outputs of certain
workflow activities, and impact on its lifecycle is neglected or hardly visible (Bhat-
tacharya et al., 2009). Thereby in the work, the notion of Business Artifacts with
Lifecycles, Services and Associations, referred as the BALSA workflow model, is
developed. The artifact-centric workflow model comprises four key elements or di-
mensions. The elements are as follows:

Business Artifact Information Model: An information model that holds information
about a given business artifact and contains information needed to complete
workflow execution. The artifact is self-contained and has an identity. A set
of artifact attributes stores the data needed for the workflow execution and
use services in workflow which can create, update and delete the values of
attributes.

48

3. RELATED WORK

Business Artifact (Macro-Level) Lifecycle: The possible evolution of a business arti-
fact is captured in its lifecycle that is usually described in terms of stages and
represented using a specific version of finite state machines.

Services (Tasks): A unit of work is encapsulated in a service (in the Service-Oriented
Architecture), workflow task or activity. The service makes changes to one or
more business artifacts.

Associations: There is a family of constraints for using services including procedural
specification, precedence relationships among the services, between services
and external events.

By varying the paradigms used to specify the information model, lifecycle, services
and associations, numerous BALSA models can be obtained. For example, the
information model might be specified as attributes with scalar values or XML; the
lifecycle might be specified by using flowcharts or finite state machines; and the
services might be specified in black box or BPEL activities. The choice among the
various paradigms really depends on the intended area of application. Therefore,
the BALSA workflow model is flexible in its use and provides a guided framework
how to develop a customised artifact-centric workflow approach. This motivated to
use the BALSA model in building the MobWEL workflow approach.

The specification of the artifact-centric workflows with the vision of four explicit
and inter-related dimensions described in the BALSA workflow model has been also
supported in the survey of Hull (2008). As a data-centric approach to workflows has
emerged, the survey highlights the research results and challenges raised by the
approach to date. The challenges in building the data-centric and artifact-centric
workflows are as follows:

Design principles in support of usability and flexibility: The first challenge is to find
a mechanism which would enable to specify data-centric workflows in an in-
tuitive and concise way. At the same time, two forms of flexibility have to be
supported: a) highly varied operations in workflows for different clients, prod-
ucts, context and regions; b) evolution of the workflow schema.

Componentisation and composition: Easier refinement and quick constructions of
workflows can be addressed by improvements in workflow re-use and com-
position. Workflow partitioning into natural components ensures that different
combinations of the components can be built, workflow schema evolution is
more flexible and open for globalisation or outsourcing.

49

3. RELATED WORK

Implementation and optimisation: Efficient implementation of the data-centric work-
flows is still open with challenges in concurrency control, indexing, data stale-
ness, performance monitoring and workflow schema evolution.

Foundations, static analysis, and synthesis: There has been little understanding a-
bout modelling of data and workflow process in a interconnected setting. Other
issues are related to constructions or synthesis of workflow schemas from
high-level perspective.

User-centric aspects: Development of a natural approach for visualisation and rep-
resenting of workflow schemas remains open.

Monitoring and tuning: Challenges in monitoring and the performance of operations.

Linkage to business strategy: A need to specify the business strategy by using a
relatively small number of workflow conceptual constructs.

Evaluations of paradigms, tools, and methods: A very challenging area is the eval-
uations of the artifact-centric approaches. It is hard to measure in an objective
manner the costs or benefits of different approaches and therefore, compare
them and decide what approach should be used.

The list shows that there are numerous challenges that should be taken into account
and considered in building the content-centric MobWEL approach.

Object awareness and object lifecycle modelling can be seen as the subjects of
some other recent studies. A framework for integrated process and object life cy-
cle modelling has been developed by Wahler (2009). Business objects processed
by business processes can be associated with distinct states abstracted from the
details of the performed tasks. The states mark the milestones of the overall pro-
cessing and are useful in communicating progress to stakeholders who are unaware
of the exact process logic. The state and state transitions are captured in an object
lifecycle model. The object lifecycle model abstracts from the underlying business
process. The object lifecycle model and process model represent complementary
and overlapping views on the operations of a business. Consistency of two overlap-
ping models is seen as a critical issue that is addressed in the framework.

Another approach to workflow process design is the Product-Based Workflow
Design (PBWD) (Vanderfeesten et al., 2008, 2011). As opposed to evolutionary
approaches that try to improve existing situations, the PBWD approach starts the
design from scratch. The base of the approach is a description of the product called
a Product Data Model that is produced by the process under consideration. Work-
flow execution is based on the product data model without the need for a process

50

3. RELATED WORK

model that would guide the execution. Although the approach is dynamic and of-
fers some benefits, its use is more suitable for centralised workflow management
solutions.

Unlike other approaches which base entity lifecycles on variants of finite state
machines, the work of Hull et al. (2011) introduces the guard-stage-milestone life-
cycle model. This model is evolved from previous, already described approaches
which have been based on business entities with lifecycles. The Guard-State-
Milestone (GSM) approach for specifying Business Entity Lifecycles (BEL) is a more
declarative than finite machines and supports hierarchy within a single entity in-
stance. The notion of stage can be found at the core of GSM lifecycle models,
based on three constructs: a) milestone - an objective expressed using a condi-
tion over the informational model and possibly triggering event; b) stage body -
containing one or more activities intended to achieve a milestone; and c) guard -
a condition that enables entry into the stage body. So the GSM metamodel has
four key constructs: information model, guards, stage bodies, and milestones. All
business-relevant information about an entity instance is recorded in the information
model. This contrasts with typical process-centric approaches in which business-
related data arises in process variables but is almost impossible to access the data
from outside the scope of use. The information model, therefore, includes a) data
provided by human stakeholders; b) data related to activated external services; and
c) data that holds a log of what has happened to the entity instance so far. Following
this, the attributes are divided into three categories: data attributes, event attributes,
and milestone and stage info. The GSM approach is a new variant of entity life-
cycle specification. The use of milestones in the GSM approach is an interesting
concept because it enables to track the status of object evolution and communicate
the progress among collaborators. So it can bring many benefits in peer-to-peer
workflow management, and thereby the concept has been adapted in the MobWEL
workflow approach.

Integration of object-awareness into process management system is addressed
in the PHILharmonicFlows framework (Künzle & Reichert, 2011). In the framework,
a holistic approach to integrate data, processes and users is undertaken and the
following characteristics for process and data integration have been derived:

• During process execution, the behaviour of objects needs to be considered;

• Interactions between objects must be taken into account;

• Process execution needs to be accomplished in data-driven manner;

• Process-related objects can be accessed and managed at any point of time.

51

3. RELATED WORK

As opposed to other approaches, there is a tighter integration of processes and
data in PHILharmonicFlows. To capture both object behaviour and object interac-
tions, two levels of granularity, namely micro and macro processes, are defined.
Micro processes are defined for each object type and express object behaviour by
using states and transitions. Macro processes model multi-object processes and
specify object interactions. In PHILharmonicFlows, object behaviour is combined
with data-driven process execution. However, the requirements set that is met in the
development in the framework differs from the requirements for MobWEL workflows
usage.

Most of the recent studies support the use of a process model and an object
model as two complementary assets in object-aware workflows. However, there has
been only little attention paid to the integration of context awareness into both mod-
els and the existing approaches do not provide the necessary level of expressive-
ness to capture it. Moreover, the approaches are not tailored for mobile platforms.
This has motivated the need for MobWEL workflows to support context-awareness
in both models and be more mobile-specific.

3.4.2 Support for Content Lifecycle Management

The future of content-centred collaboration based on building solutions around the
content items, tasks and ideas has been envisioned by Erickson et al. (2009).
Content-centred collaboration is based on the vision of hosted collaborative spaces
called content spaces. Content spaces represent work and authoring environments
in which collaborators can customise functionality around content items. Active be-
haviours, simple automated coordination of human tasks, can be attached to a con-
tent space so collaborators can easily develop and share work patterns. The model
of active behaviours is based on events processing as content is created, modified,
and deleted within a content space.

The idea of collaboration based on content spaces has been also used in Al-
fresco (Shariff et al., 2009; Potts, 2008). Alfresco is an open source platform for
Enterprise Content Management solutions. At its core is a repository for content
like documents and multimedia. The repository can be extended to accommodate
business-specific metadata and business logic. A space in Alfresco is a smart folder
that contains content and sub spaces. The additional features of a space include
security, business rules, workflow, notifications, local search capabilities and special
views. Content-centric workflow in Alfresco are defined and managed by using con-
tent spaces. Therefore, various spaces are created, each dealing with a different
stage the content flows through.

52

3. RELATED WORK

The idea of content space has been applied in the management of context-aware
content behaviour. The state machine approach is used to describe the lifecycle
of objects/content. The lifecycle model is defined independently but similarly as
process model at build-time. However, when the workflow process is instantiated
and multiple content items are created at run-time, the management of such lifecycle
requires an approach that would enable processing and monitoring of all content
items without creation multiple state machines. This can be achieved when each
content state is represented by a content space which is capable to hold multiple
content items at the same time.

3.5 Mobile Peer-To-Peer Workflow Execution

To manage and execute workflows in a peer-to-peer manner require a workflow
model and workflow management system adapted for mobile platform. In this sec-
tion, work related to workflow adaptation for mobile platforms is reviewed.

The need for device-oriented processes has been highlighted in the work of Pa-
junen & Chande (2007) in which a mobile workflow system that includes a mobile
workflow engine is discussed. In the work, BPEL is used to describe the mobile
processes. BPEL-based process can interact with internal mobile services such as
Browser service, Calendar service, Map service, or Messaging service; and cooper-
ates with external services and other external BPEL-based processes which reside
on other mobile devices. The deployment of workflows in a mobile environment is
more dynamic and requires the support of extra process capabilities. Three kinds
of extensions have been suggested: XPath extensions to query local deployment
settings, extensions to BPEL implementation to better leverage mobile execution
environment, and finally support for mobile specific protocols such as SMS, MMS,
Bluetooth. Although the system has been designed for the mobile environment,
context awareness has not been considered.

A different approach to integration of processes into mobile computing system
in which mobile devices do not behave only as process participants is proposed
in the work of Kunze et al. (2006, 2007). This approach introduces a process de-
scription language and an execution model for distributed business processes. The
requirements for the description of distributed mobile processes include the ability to
express a) the business logic with its data and control flow; b) the participating par-
ties; c) routines to recover failures; d) handling of communication failure; e) handling
of the distribution of the process itself. Activities of mobile processes can last very
long like hours, days or weeks, and the device environment can change dramati-
cally in that time. Thereby mobile process execution relies on contextual information

53

3. RELATED WORK

and the Context Toolkit is mainly suited for context data acquisition. The DEMAC
process description language is an XML-based language that inherits some XPDL
constructs and extends it by introducing new constructs such as exception han-
dlers, connection reset handlers, transaction, and transaction activities. The new
constructs allow a distributed handling of the process over heterogeneous systems.
The approach provides the support for cooperation of mobile devices, however, it is
not demonstrated how the language is adapted to use the context information. In
addition, it is outlined that despite the fact that BPEL offers very powerful elements
to link tasks and deal with unexpected circumstances, it does not provide concepts
for distributed process execution.

Although BPEL has been designed for processes in a Web Service world, it can
be adapted for mobile peer-to-peer workflow execution. BPELlight is a WSDL-less
BPEL extension which decouples process logic from interface definition (Nitzsche
et al., 2007b). Communication between two services in BPEL is enabled by using a
partner link type. The BPELlight approach allows modelling of the workflow process
independently of Web service technology by introducing a single type of interaction
activity. The interaction activities (<receive>, <reply>, <invoke>, <pick>) defined
in BPEL 2.0 are resumed by this single activity - the <interactionActivity >activ-
ity. In addition, BPELlight processes can be modelled without specifying interface
definitions (port types), hence they can be used in non-WS environment. By dis-
carding the static specification of port types, this approach enables direct message
exchange between workflow partners. The BPELlight approach offers better flexibil-
ity than BPEL and is more suitable for the description of peer-to-peer mobile work-
flows in which all participating and interacting parties are known and determined.
Hence some concepts defined in BPELlight have been adopted in MobWEL.

BPEL has been initially deployed only on heavyweight server platforms such as
Apache Tomcat. However, to support device-oriented workflow process and its exe-
cution, the engine has been also adapted for mobile devices. One of such solution
is Sliver, an open source workflow engine that supports the execution of SOAP ser-
vices and BPEL processes on a wide range of devices (Hackmann et al., 2006b).
The design of the lightweight engine has been influenced by three traits: a) it needs
to have a smalll storage and memory footprint (including all libraries); b) it depends
only on the JAVA APIs that are available on all devices; c) it must supports a wide
range of communication protocols. Sliver depends only on two external libraries and
can be deployed on a broad range of devices. The architecture of Sliver is shown in
Figure 3.3.

Communication components are separated from processing components. At the
lowest level, the transport layer supports the exchange of message object in the form

54

3. RELATED WORK

Figure 3.3: The architecture of the Sliver execution engine (Hackmann et al., 2006b)

of serialised XML strings via various network media and protocols. XML and SOAP
parsers are used to convert these strings to and from Java objects. SOAP compo-
nents do not depend on BPEL components. BPEL parser with XML parser layer
converts BPEL documents into executable processes. The processes are hosted
by the BPEL server layer. The BPEL and SOAP servers consume requests coming
from the transport layer and routes them to the corresponding processes or services.
Sliver engine offers many benefits such as it has a relatively small footprint, supports
many communication protocols and is capable of executing BPEL processes. An-
other point in favour of Sliver is that it provides the core features for building of more
complex mobile workflow management systems and supports numerous communi-
cation protocols. This motivates to use the Sliver engine as the basic stone in the
MobWEL workflow management system.

3.6 Summary

In this chapter, previous work related to workflow adaptation, context modelling and
management, object-awareness in workflow approaches, and mobile peer-to-peer
workflow execution, has been reviewed. Firstly, the techniques for workflow adapta-
tion have been discussed. These techniques are applicable either in the workflow
modelling phase or in the workflow execution phase. After that, existing approaches
for workflow contextualisation and context management have been presented. It
has been highlighted that a context model should be included in the workflow meta-
model, and workflow contextualisation requires applying of a context management
approach that would be designed for the given area of use. Object behaviour man-
agement approaches have been presented next. Modelling of content object lifecy-

55

3. RELATED WORK

cle has been recognised as an additional dimension in workflow modelling, and this
idea has been elaborated in some recent studies. Finally, work related to mobile
peer-to-peer workflow execution has been discussed.

The goal of this work has been to adapt the collaborative workflow technology
that would a) enhance mobile peer-to-peer collaboration; b) integrate context aware-
ness so that workflows can be adapted to individual collaborators’ needs and cir-
cumstances; and c) incorporate extra management support for content behaviour
in order to increase content awareness in workflows and enable communicating
progress among collaborators.

The existing workflow approaches presented in this chapter only partially sup-
ports all listed requirements. The summary of the most relevant technologies and
approaches is presented in Table 3.2.

Table 3.2: MobWEL Constructs

Workflow Approach Mobile Collaboration
Context
Aware-
ness

Artifact-
Centric
Approach

BPEL Not considered in design NO NO

BPELlight
Provides light interaction
model NO NO

Context4BPEL Not considered in design YES NO

BALSA Not considered in design NO YES

MobWEL YES YES YES

With this, the first part of the thesis is concluded. In the following part of the
thesis, the MobWEL workflow approach is presented. MobWEL extends BPEL, us-
ing constructs from Context4BPEL and BPELlight, and adopting elements from the
BALSA workflow model.

56

Part II

Contribution

57

Chapter 4

MobWEL Definition and Syntax

Contents
4.1 Introduction . 58

4.2 MobWEL Workflow Approach . 59

4.3 MobWEL Workflow Process Definition 63

4.4 Representation of Collaborators Group 80

4.5 Representation of Workflow-Specific Context Definition 82

4.6 Representation of Context-Aware Content Lifecycles 89

4.7 Summary . 97

4.1 Introduction

Mobile workflows capabilities can be increased by making mobile activity-oriented
workflows context-aware and content-centric. With context awareness integrated,
workflows are adapted to collaborator’s needs and circumstances. Extra manage-
ment support for content behaviour added in activity-based workflows enables com-
municating progress among collaborators. Chapter 2 has provided the background
to the domain and introduced the usage scenarios with listed requirements. Chap-
ter 3 has discussed suitability of existing workflow technologies to be applied for
the given class of mobile collaboration scenarios. As shown, none of the existing
technologies fully meets the requirements. Thereby, to address the need, the Mob-
WEL workflow approach has been designed. In this chapter, the MobWEL workflow
language is defined, and its syntax and metamodel are presented. The mobile work-
flow execution language can be used to specify mobile context-aware and content-
centric workflows. MobWEL extends BPEL, using constructs from existing workflow

58

4. MOBWEL DEFINITION AND SYNTAX

approaches, Context4BPEL and BPELlight, and adopting elements from the BALSA
workflow model.

The remainder of this chapter is organised as follows. An anatomy of a MobWEL
workflow process and an adapted workflow from the usage scenario are presented
in Section 4.2. The MobWEL workflow process is constructed of a number of work-
flow parts which are individually described in next sections. The control flow of the
MobWEL workflow is described in Section 4.3. Section 4.4 is dedicated to the work-
flow representation of a group of collaborators. Workflow-specific context definition
is explored in Section 4.5. Finally, Section 4.6 describes context-aware content life-
cycles. This chapter is summarised in Section 4.7.

4.2 MobWEL Workflow Approach

In this section, the MobWEL workflow approach is introduced and the anatomy of
MobWEL workflows is outlined.

4.2.1 Adapted Collaborative Workflow

The MobWEL workflow approach is illustrated by using the workflow from the usage
scenario, as shown in Figure 4.1.

Figure 4.1: Collaborative Workflow Scenario

The simplified control flow of the workflow process is illustrated from a user’s
point of view in the middle of the figure.

59

4. MOBWEL DEFINITION AND SYNTAX

In the first place, this workflow process becomes content-aware by integrating
the lifecycle of the picture processed in the control flow, as shown on the left side of
the figure. The picture can go through a number of states such as Initial, Reviewed,
Assessed, Approved or Final. Tasks or activities that can influence a change of
the picture state are highlighted. For instance, if the Review task is performed, the
picture should move to the Reviewed state or if the Approve task is performed, the
picture may go to the Approved state. The benefit of knowing the content state is
that the state represents a brief and concise information about what is happening in
the control flow with the particular content piece. The information can be then easily
broadcasted to other collaborators and help either in results marshalling or in further
workflow execution. If collaborators, who have had assigned a role of Reviewer and
are supposed to review the picture, receive a message that the picture has been
already assessed and is in the ’Assessed’ state, they are informed that they do not
need to review the picture anymore. The depicted lifecycle shows only the basic
picture states in order to illustrate the concept. The lifecycle is formed from other
content states such as Ready To Review, In Review, In Assessment, etc..

Context integration is shown on the right side of the figure. Firstly, context in-
formation such as location and time is needed when the picture is taken. Latitude
and longitude are coordinates that are usually captured as default by most mobile
devices. However, adding name of place or building is more useful. Thereby, the
picture can be enriched by context metadata. Secondly, picture movement between
two states can be influenced by context information. For instance, Jane can spec-
ify that only pictures with rating larger than her Rating User Preference can move
from the Initial state to the Reviewed state. So if the Rating User Preference is
set to 3 and the rating added to the picture is 4, then the picture can be sent for
review. A similar situation is between the Reviewed and the Assessed states. The
picture can move to the Assessed state only if a number of obtained reviews has
reached Jane’s requirement. Jane sets her preference for the number of reviews,
NoOfReviewsUP, to 2, in order to determine that only two reviews are needed for
her to assess the picture. Finally, the workflow process can be driven by context
information. For example, reviewer can write an extra comment while reviewing the
picture, but not always willing to do so. By setting the preference for comments
writing, AddCommentUP, the decision in the control flow and the choice of the fur-
ther execution path can be based on this context value. Furthermore, knowing work
context and current availability of fellow co-workers would enhance the mobile col-
laboration. For instance, the picture can be sent only to those co-workers who are
currently available to review it (Reviewer’s Availability = YES).

The adapted workflow shows that there are numerous workflow parts that have

60

4. MOBWEL DEFINITION AND SYNTAX

to be described in the MobWEL workflow process such as the adapted process
control flow, the group of collaborators and their roles, the picture lifecycle, and the
context variables. To outline the structure of such process, the anatomy of MobWEL
workflows is described next.

4.2.2 MobWEL Workflow Process Anatomy

MobWEL workflows are designed for mobile peer-to-peer collaboration and are com-
posed of several parts. The overall anatomy of a MobWEL workflow process is
illustrated in Figure 4.2.

Figure 4.2: Anatomy of the MobWEL Workflow Definition

The workflow definition has role-independent parts and role-specific parts. The
role-independent parts are defined for all participating roles, whereas the role-specific
parts need to be explicitly defined for each participating role. The parts are de-
scribed next.

Role-Independent Parts

The role-independent parts of the workflow are as follows:

Group Identification This part specifies all stakeholders participating in a workflow
process and their roles.

Context-Aware Content Lifecycles A number of content objects can be processed
across multiple mobile devices in a MobWEL workflow process, and each con-
tent object follows its own content lifecycle. Therefore, a set of content lifecy-
cles can be defined. The evolution of content items is distributed across all
collaborators, so the set is the same for all workflow participants.

61

4. MOBWEL DEFINITION AND SYNTAX

Role-Specific Parts

The workflow MobWEL definition includes a number of role-specific parts, each part
defined for a particular collaborator’s role or workflow partition. The role-specific
parts are as follows:

Context Definition Different context variables are related to different roles. To en-
sure more efficient context monitoring, context variables need to be modelled
and defined extra for each workflow partition.

MobWEL Process Control Flow The activities performed by a particular role and
adapted process flow have to be defined in each workflow partition.

The MobWEL workflow definition is composed of parts which are related but de-
fined independently. The benefit of defining workflow parts independently is that
a) the semantically related concerns are functionally separated; b) a workflow part
can be used in multiple workflows; c) the evolution of each workflow part is indepen-
dent from the remaining parts.

4.2.3 Overview of MobWEL Metamodel

To define MobWEL workflows and their operational instances in a consistent man-
ner, the workflows have to conform to a workflow language metamodel. The Mob-
WEL metamodel expresses the workflow language constructs and their relation-
ships at a higher level of abstraction. The MobWEL workflow metamodel supports
modelling of all MobWEL workflow elements, and thereby, the metamodel has the
following components (Figure 4.3):

• a part for modelling adapted process control flows;

• a part for modelling a group of collaborators and their roles;

• a part for modelling context definitions; and

• a part for modelling context-aware content lifecycles.

This section has presented an anatomy of MobWEL workflows and MobWEL
workflow parts. The metamodel parts are described in details in next sections.

62

4. MOBWEL DEFINITION AND SYNTAX

Figure 4.3: Overview of MobWEL Metamodelling

4.3 MobWEL Workflow Process Definition

The first part of the MobWEL metamodel that defines the adapted process control
flow is described in this section. Firstly, the structure and the metamodel of the
adapted process control flow are presented. After that, the MobWEL constructs
designed for the integration of other MobWEL workflow parts are introduced. Next,
the support for context and content awareness in the MobWEL process control flow
is described. Finally, the MobWEL interaction model is presented.

4.3.1 MobWEL Process Control Flow Representation

BPEL is a widely accepted workflow standard language that can describe the activity-
based control flow. The MobWEL workflow language extends BPEL, however, BPEL
is not context-aware, does not support explicit data flows and is coupled with web
service technology. Thereby, various extensions, changes and adaptations have
been done in BPEL in order to make the workflow language a) content-aware,
b) context-aware, and c) executable in a mobile peer-to-peer environment, as de-
scribed throughout this section.

The brief summary of workflow constructs introduced or adopted in MobWEL is
given in Table 4.1 and the metamodel of the adapted process control flow is shown
in Figure 4.4.

63

4. MOBWEL DEFINITION AND SYNTAX

Table 4.1: MobWEL Constructs

MobWEL Construct Description

MobWEL Process A workflow process identified by its unique target-
Namespace. The groupIdentification, contentLifecy-
cleDescription and contextDefinition attributes specify
namespaces of group identification, content lifecycle
and context definition schemas.

Variable A variable is used in a standard process. A spe-
cial type of variables is used in MobWEL workflows.
The variables are used for content items processed
in workflow process and the default value for type is
’content’.

Lifecycle A lifecycle is a description of an explicitly defined con-
tent lifecycle. Each lifecycle is specified by its name
and resource, a path to the explicit definition. A vari-
able of a content type must be also associated with
the lifecycle.

ContextDefinition Context hierarchy is defined explicitly too. The con-
textDefinitionSource attribute specifies the path to the
context definition. A workflow process can have zero
or one context definition.

CollaboratorsGroup A group of collaborators is explicitly defined and im-
ported in the workflow definition. It is specified by its
name and groupSource, a path to the group descrip-
tion. A workflow process has one group of collabora-
tors.

Conversation A declaration of conversation between collaborators.
The construct is adopted from BPELlight and enables
WSDL-free contract between parties.

Partner A declaration of partners involved in collaboration.
The construct is adopted from the BPELlight workflow
definition. A workflow process can have one or more
partners.

MobWEL Activity A base type for MobWEL activities. The BPEL activ-
ity extension mechanism has been used to define the
MobWEL activity construct. The mechanism enables
to extend BPEL and introduce new activity types.

InteractionActivity An interaction activity adopted from BPELlight used
for all interaction activities between partners.

ContentActivity An activity that triggers an action on a content item. It
is a structured activity that can contain other activities.

64

4. MOBWEL DEFINITION AND SYNTAX

Figure 4.4: MobWEL Metamodel of Adapted Process Control Flow

The structure of the adapted BPEL process is outlined in Figure 4.5. Firstly, the
Global Declarations part has been extended. Constructs for the peer-to-peer inter-
action and integration of other workflow elements have been added. Secondly, two
extra activities, interactionActivity and contentActivity, can be used in the process
definition of the control flow.

Figure 4.5: The Structure of the MobWEL Workflow Process

MobWEL constructs that extend the BPEL process definition are described in
details next, starting with the global declarations part.

65

4. MOBWEL DEFINITION AND SYNTAX

4.3.2 MobWEL Global Declarations

The adapted global declaration part in a MobWEL workflow process is shown in List-
ing 4.1. The < process > element as a top-level container defines the basic prop-
erties of the MobWEL workflow. It is an extended version of the BPEL < process >

element. The additional attributes: groupIdentification, contentLifecycleDescription
and contextDefinition refer to fully qualified namespaces of XML schemas devel-
oped for group identification, context-aware content lifecycle description and context
definition. The workflow elements are integrated in the process definition through
the collaboratorsGroup, lifecycle, and contextDefinition tags.

Listing 4.1: MobWEL Workflow Process - Global Declaration Part
<process name= ”NCName”

. . .
g r o u p I d e n t i f i c a t i o n = ” h t t p : / / uk . ac . uwl . mdse /MobWEL/ G r o u p I d e n t i f i c a t i o n ”
c o n t e n t L i f e c y c l e D e s c r i p t i o n = ” h t t p : / / uk . ac . uwl . mdse /MobWEL/ Con ten tL i fecyc le ”
c o n t e x t D e f i n i t i o n = ” h t t p : / / uk . ac . uwl . mdse /MobWEL/ C o n t e x t D e f i n i t i o n ”
standard a t t r i b u t e s

>

<co l laboratorsGroups>
<co l labora to rsGroup groupName= ”NCName”

groupSource= ”NCName” />
</ co l laboratorsGroups>

<var iab les>
<v a r i a b l e name= ”NCName” type= ”QName” />?
<v a r i a b l e name= ”NCName” type= ” content ” />

<\var iab les>

< l i f e c y c l e s >

< l i f e c y c l e name= ”NCName”
resource= ”NCName”
v a r i a b l e = ”NCName” />

</ l i f e c y c l e s >

<c o n t e x t D e f i n i t i o n s>
<c o n t e x t D e f i n i t i o n con tex tDe f i n i t i onSou rce = ”NCName” />

</ c o n t e x t D e f i n i t i o n s>

<other BPEL g loba l dec la ra t i ons>

. . . c o n t r o l f l ow d e s c r i p t i o n . . .

</process>

MobWEL Variable

During the workflow execution, the application data are in BPEL maintained by us-
ing variables. Variables are declared in the workflow definition, initialised when the

66

4. MOBWEL DEFINITION AND SYNTAX

workflow instance begins and modified usually through invoked web services. Mo-
bile content is basically a specific type of application data, thereby variables are
used for declaration of content objects. To differentiate the content variable from
other variables, the type of the variable element is set to ”content” as follows:

< variable name = ”NCName”

type = ”content”/ >

Therefore, variables which contain content objects can be clearly identified. Not
each piece of content requires to be explicitly managed and have its lifecycle visi-
ble. The specification of the variable type enables to recognise the variables which
have lifecycles explicitly managed in the workflow process. All content variables are
declared together with other variables in the < variables > tag.

MobWEL Lifecycle

To integrate context-aware content lifecycles in the workflow process control flow,
the lifecycle element has been created:

< lifecycle name = ”NCName”

resource = ”NCName”

variable = ”NCName”/ >

A lifecycle is identified by its name. The resource specifies the path to the definition
file. The variable refers to a content variable which has been declared in variables.
This attribute is used to highlight the content piece which behaviour is described in
the lifecycle. More content variables can be associated with one lifecycle, however,
for each content variable the declaration has to be made. All the < lifecycle > tags
are grouped in the < lifecycles > tag.

MobWEL Context Definition

Workflow-specific context definition is specified for each workflow role or partition.
To associate a particular context definition model with the workflow process, the
< contextDefinition > element is created. The element is nested within the
< contextDefinitions > element and multiple declarations are allowed. This en-
ables to decompose more complex context definitions into more manageable context
hierarchies and integrate all of them as if they were defined together. The element
is declared as follows:

67

4. MOBWEL DEFINITION AND SYNTAX

< contextDefinition contextDefinitionSource = ”NCName”/ >

There is no need to specify anything else, apart from the contextDefinitionSource
path to the actual resource.

MobWEL Collaborators Group

A group of collaborators is predefined and this resource is integrated through the
collaboratorsGroup construct as follows:

< collaboratorsGroup groupName = ”NCName”

groupSource = ”NCName”/ >

The group has assigned a name and again, the path to the actual resource is spec-
ified. Nesting the element within the < collaboratorsGroups > tag enables declara-
tion of several groups. The advantages of this multiple declaration are a) possible
decomposition of a large group, b) reusability of one group definition in a number of
workflow processes.

To sum up, the elements defined in the global declarations part of a MobWEL
workflow process have been created to support the integration of other MobWEL
workflow parts. The next section is dedicated to the description of MobWEL con-
structs related to the peer-to-peer interaction model.

4.3.3 Peer-To-Peer Interaction Model

Peer-to-peer collaboration imposes requirements on functional aspects of work-
flows. Workflow partitions are executed on mobile devices and messages are ex-
changed directly between peers. BPEL supports asynchronous communication,
however, strong coupling of process logic with the web services technology in BPEL
is not very convenient and flexible approach to be used for mobile peer-to-peer col-
laboration. Workflow participants and their roles are known beforehand so a much
lighter interaction model can be used. Therefore, the BPELlight approach is used
for the interaction in MobWEL. BPEL interaction activities are replaced by the single
BPELlight < interactionactivity >. However, this BPELlight model has been devel-
oped for a broader range of scenarios, and thereby, is further adapted to be specific
for the class of applications targeted in this work.

The elements: partner, conversation and interactionActivity have been adopted
from BPELlight to form a peer-to-peer interaction model. Collaborators and their de-

68

4. MOBWEL DEFINITION AND SYNTAX

vices are known, therefore, the communication between them can be direct without
the use of web service technology. The mentioned BPELlight constructs have been
adapted in the following way:

• Conversation is an element that enables WSDL-free contract between par-
ties. It replaces the function of partner links in BPEL by specifying interaction
between two collaborators, but without referencing the WSDL port type. The
element is identified only by name and declared within the < conversations >

tag as follows:

< conversation name = ”NCName”/ >

The < conversation > element has not been modified in MobWEL. Each in-
teraction between two roles is labeled as a conversation. For example, there
can be two conversations, approvePicture and receiveApproval, defined in the
designer’s workflow partition for two interactions between the role of designer
and customer.

• The meaning of the < conversation > element can be better understood by
introducing the Partner element. The < partner > element was originally de-
fined in BPEL 1.1. It has been removed in BPEL 2.0 and with different meaning
recreated in BPELlight. This BPELlight element has been adopted in Mob-
WEL but has been conceptually modified. The definition of the < partner >

element is as follows:

< partner name = ”NCName”

collaborator = ”QName|all|any” >
businessEntity = ”QName” >

< conversation name = ”NCName”/ >

< /partner >

The role of the element is to group conversations with one party of collabo-
rators group. A partner can specify either a component such as a content
management unit, or define collaborator(s) who have assigned a particular
role. In BPELlight , the businessEntity attribute has been defined to specify
the name of an organisation. In MobWEL, this attribute specifies whether the
partner is a component or collaborator(s). For example,

– If the partner is one of a component type and:

69

4. MOBWEL DEFINITION AND SYNTAX

∗ the component is a content management unit, then
< partnername = ”contentManager”

businessEntity = ”mobwel : contentManagementUnit” >;

∗ the component is a context management unit, then
< partnername = ”contextManager”

businessEntity = ”mobwel : contextManagementUnit” >;

∗ the component is a worklist manager, then
< partnername = ”worklist”

businessEntity = ”mobwel : worklistManager”/ >

– If the partner represents collaborator(s), then
businessEntity = ”mobwel : collaboratorRole”

and the optional attribute, collaborator, is also specified as follows:

∗ There can be only a concrete collaborator specified:
< partner name = ”reviewer”collaborator = ”Jane”

businessEntity = ”mobwel : collaboratorRole” >

< conversation name = ”reviewPicture”/ >

< conversation name = ”sendConfirmation”/ >

< /partner >

∗ There can be a subgroup of all reviewers specified by setting the
collaborator attribute to any :
< partner name = ”reviewer”collaborator = ”any”

businessEntity = ”mobwel : collaboratorRole” >

...
< /partner >

∗ When all reviewers are considered, the collaborator attribute is set to
all :
< partner name = ”reviewer”collaborator = ”all”

businessEntity = ”mobwel : collaboratorRole” >

...
< /partner >

• The actual interaction between collaborators is realised through the BPELlight

interaction activity. In MobWEL, this activity has been enriched by two op-
tional attributes, minCollaborators and collaborationContext, in order to sup-
port collaboration context, and is defined in the following way:

70

4. MOBWEL DEFINITION AND SYNTAX

< interactionActivity name = ”NCName”

inputV ariable = ”NCName”

outputV ariable = ”NCName”

mode = ”in− out|out− in”
conversation = ”NCName”

createInstance = ”yes|no”
collaborationContext = ”yes|no”
minCollaborators = ”xs : int”

standardAttributes >

< /interactionActivity >

The < interactionActivity > covers four different interaction activities for both,
synchronous and asynchronous, communication. Modelling of the interaction
activity types is shown in Table 4.2.

Table 4.2: MobWEL < interactionActivity > types

Activity

Type m
od

e

in
pu

tv
ar

ia
bl

e

ou
tp

ut
va

ri
ab

le

cr
ea

te
in

st
an

ce

co
lla

bo
ra

tio
nC

on
te

xt

m
in

C
ol

la
bo

ra
to

rs

pa
rt

ne
r

ty
pe

-
co

lla
bo

ra
to

r
at

tr
ib

ut
e

Activity that only

receives a message
must
not

must may
any or
one

Activity that only

sends a message
must

must
not

may may

all or
any or
one

Activity that first receives

and then sends a message
in-out must must may

any or
one

Activity that first sends

and then receives a message
out-in must must

any or
one

As shown, only in the activity that sends a message, the minCollaborators and
collaborationContext attributes can be specified. Consider a situation that a
picture is sent for review. There is a group of ten collaborators who play the
role of reviewer but only five of them are currently available to review it. If col-

71

4. MOBWEL DEFINITION AND SYNTAX

laborationContext is set to yes, then the picture is sent only to the available
reviewers. However, the number of available reviewers might not be satisfac-
tory. For instance, there can be only one available reviewer. To ensure that
the picture is sent to sufficient number of collaborators, the minCollaborators
attribute has to be specified. If minCollaborators is set to 3, then the picture is
sent to the available reviewers and if there are less than 3 available reviewers,
to meet the minimum request, the picture is sent also to randomly chosen, not
currently available, reviewers. The definition of such activity type is as follows:

< conversation name = ”reviewPicture”/ >

< partner name = ”reviewer”

collaborator = ”any”

businessEntity = ”mobwel : collaboratorRole” >

< conversation name = ”reviewPicture”/ >

< /partner >

< interactionActivity name = ”reviewpicture”

inputV ariable = ”message”

conversation = ”reviewPicture”

collaborationContext = ”yes”

minCollaborators = ”3”

standardAttributes >

< /interactionActivity >

This section presented the MobWEL interaction model. In the next section, the
MobWEL support for advanced content management functionalities is described.

4.3.4 Content Management Support

The behaviour of content variables is described in their lifecycles which are managed
explicitly from the MobWEL process control flow. Questions have been raised how a
content object can move through its lifecycle and the content management unit can
be informed about any content manipulation during the process execution. In BPEL,
the variables are not accessible from outside of the process or scope. Therefore,
the need for a MobWEL workflow construct that would communicate the values of
variables out has been recognised.

One possible option to manage such interaction would be by using the < inter-
action Activity > construct. However, there are two drawbacks with the use of this
element:

72

4. MOBWEL DEFINITION AND SYNTAX

1. The element has been designed for interaction and its use is already too gen-
eral and broad.

2. The process control flow is usually composed of many < interactionActivity >

elements, thus using the element also for this purpose would make the control
flow conceptually non-transparent.

Thereby, a new MobWEL workflow construct called < contentActivity > has been
created. By introducing this element, interaction with the content management unit
is allowed directly, and all interactions can be clearly visualised in the process flow.
Another advantage of using this construct is that if management of content lifecycles
is not required, all < contentActivity > elements can be simply removed from the
workflow definition without affecting the rest of the control flow. Simply said, the
< contentActivity > has an informative character and has been defined to support
extra content management functionalities. The primary role of the content activity
is to inform the content management unit about a content-related data change or
a content object manipulation or update in order to invoke a corresponding content
management operation in the content management unit.

MobWEL ContentActivity

The definition of the < contentActivity > element is as follows:

< contentActivity name = ”NCName”

action = ”add|update|remove”
contentV ariable = ”NCName”

element = ”NCName”

value = ”NCName”/ >

The <contentActivity> element has the following attributes and elements:

name - represents a name of the activity;

action - specifies the content management action that needs to be

performed such as add, update or remove;

contentVariable - defines the content variable that is passed in;

element - specifies the attribute of the content item;

value - contains the element value.

73

4. MOBWEL DEFINITION AND SYNTAX

There are three possible actions. To illustrate each action, the following declara-
tions need to be made, see (Listing 4.2).

Listing 4.2: Workflow Declarations

<var iab les>
<v a r i a b l e name= ” p i c t u r e ” type= ” content ” />
<v a r i a b l e name= ” p ic tureURI ” type= ” xs : s t r i n g ” />
<v a r i a b l e name= ” p i c t u reRa t i ng ” type= ” xs : f l o a t ” />

</ va r iab les>

< l i f e c y c l e s >

< l i f e c y c l e name= ” p i c t u r e L i f e c y c l e ”
resource= ” p i c t u r e L i f e c y c l e . xml ”
v a r i a b l e = ” p i c t u r e ” />

</ l i f e c y c l e s >

A content variable for picture is declared. The lifecycle of picture called picture-
Lifecycle is defined in the < lifecycle > element. The pictureURI and pictureRating
are content-related attributes, also declared as variables.

The use of <contentActivity> element is shown in three different situations:

• Add Action When a picture is taken on a mobile device, the content manage-
ment unit needs to be informed about it. So after the < interactionActivity >

has been performed, the < contentActivity > element gets executed. The
name of the activity is ’createPicture’ and the action is set to ’add’. The con-
tent variable is ’picture’. And its actual location specified in the ’contentURI’
variable is passed as the ’pictureURI’ element or content attribute. It means
that the content management unit will create and process the content object,
based on the associated content lifecycle.

< interactionActivity name = ”takeP icture”

partner = ”worklist”

outputV ariable = ”pictureURI”

mode = ”out− in”

operation = ”TakeP icture”/ >

< contentActivity name = ”createP icture”

action = ”add”

contentV ariable = ”picture”

element = ”contentURI”

value = ”pictureURI”/ >

74

4. MOBWEL DEFINITION AND SYNTAX

• Update Action This action is used to update values of metadata associated
with a given content item. In this example, rating has been added to picture in
the interaction activity and the output of it has been stored in the pictureRating
variable. This value is passed to the content management unit through the
content activity.

< interactionActivity name = ”addRating”

partner = ”worklist”

inputV ariable = ”pictureURI”

outputV ariable = ”pictureRating”

mode = ”out− in”
operation = ”AddRating”/ >

< contentActivity name = ”updateP ictureRating”

action = ”update”

contentV ariable = ”picture”

element = ”rating”

value = ”pictureRating”/ >

• Remove Action To remove the content object from the content management
unit, the remove action is used. The example and definition of the < content-
Activity > element for removing the picture is as follows:

< contentActivity name = ”removeP icture”

action = ”remove”

contentV ariable = ”picture”

4.3.5 Support for Context and Content Awareness

This section focuses on the support for content and context awareness within the
process control flow. To make process control flow context-aware and content-
aware, the MobWEL workflow process needs to have the ability to react to context
changes and content state changes, and adapt its behaviour to changed environ-
ment or content behaviour. To achieve this, the MobWEL workflow process needs
to be adapted for the use of context information or content state information in two
ways:

• context information or information about content state can be queried when
needed, especially at workflow decisions points,

75

4. MOBWEL DEFINITION AND SYNTAX

• context or content state-related changes and events need to be captured and
handled at any time of the workflow execution.

To address the need, the Context4BPEL concepts: context query, context de-
cisions and context events have been adopted in MobWEL. However, the concepts
are not only used for context-related information, but also for content state-related in-
formation. Therefore, the concepts have been generalised and named as MobWEL
query, MobWEL decision and MobWEL event.

MobWEL Event is triggered when a context or content state change occurs.
Both events can happen at any time, thereby, the MobWEL workflow process needs
to have a mechanism to listen for, and reacts to, the events. On the other hand,
information about current context situation or content state can be obtained at any
time by using so called MobWEL query from: a) a context provisioning platform
when context change occurs, or b) a content management unit when content state
change occurs. MobWEL queries are used in MobWEL decisions. These three
concepts are described in details next.

MobWEL Query

A condition in BPEL is usually written in the form of an XPath expression. BPEL
uses some built-in functions such as the bpel:getVariableProperty() function. To
support expression and query writing in MobWEL, several extension functions has
been added, see Table 4.3. By using the getContextValue() and getContentState()
functions, context values, or content states can be obtained at any decision point in
the control flow. To obtain a content-related attribute from the content management
unit, the getContentAttribute function can be used. The getCollaboratorID function
has been designed to recognise the identity of the collaborator through the phone
number. To recognise the MobWEL-specific extension functions, the prefix ’mobwel:’
is used.

Each MobWEL extension function has a signature that specifies its input pa-
rameters and exactly one output parameter. The use of the functions is illustrated
throughout this chapter.

MobWEL Event

To deal with the events, Event Handlers can be used. Event Handler is a construct
developed in BPEL to deal with events independently from the process control flow.
Using event handlers allows workflow to wait asynchronously for an event notifica-
tion in parallel to its process execution. Event handlers define how the workflow will

76

4. MOBWEL DEFINITION AND SYNTAX

Table 4.3: MobWEL Extension Functions

Function: mobwel:getContextValue()

Signature: (String contextValue) mobwel:getContextValue(String contextName)

Description: This function is used to query a context provider and obtain a context
value of particular workflow-active context. Context is specified by its
name and described in the context definition file.

Function: mobwel:getContentAttribute()

Signature: (String attributeValue) mobwel:getContentAttribute(String contentVariable, String attribute)

Description: This function is used to obtain a content attribute value.

Function: mobwel:getContentState()

Signature: (String contentState) mobwel:getContentState(String contentVariable)

Description: This function is used to set a state of a content item processed in the
particular workflow instance.

Function: mobwel:getCollaboratorID()

Signature: (String myPhoneNumber) mobwel:getCollaboratorID()

Description: This function is used to identify the collaborator by obtaining the mobile
phone number of the device on which the particular workflow partition is
executed.

deal with events. Event handlers can be defined for a scope of the whole work-
flow and remain active as long as the scope or workflow is active. There are two
types of events handlers: onEvent and onAlarm. The former event handler is con-
sidered in MobWEL. By way of illustration, the handler can be used if a content
state change occurs and this change needs to be broadcasted to peers by using
< interactionActivity > as demonstrated in Listing 4.3. This situation is handled in-
dependently from the workflow process execution. For example, if a picture reached
the ’Assessed’ state, reviewers are informed about the state and in case they have
not reviewed the picture yet, the task request can be terminated. Similarly, if there
is a context change in collaboration-related context, for instance when collaborator
changed a preference and is not available to perform tasks, the notification about his
unavailability needs to be sent to team workers. These actions should be handled
asynchronously to the workflow process control flow. The event handler can be used
to receive the context-related information (Availability-NO) and send the information
about the context change to collaborators.

77

4. MOBWEL DEFINITION AND SYNTAX

Listing 4.3: Event Handler
<conversat ions>

<conversat ion name=newContentState/>
</ conversat ions>
<par tners>

<par tne r name= ” ContentManager ”
bus inessEn t i t y= ” mobwel : contentManagementUnit ”>
<conversat ion name=newContentState/>

</ par tner>
</ par tners>
<eventHandler>

<onMessage par tne r= ” ContentManager ” conversat ion= ” newContentState ”
v a r i a b l e = ” contentStateMessage ”>

. . . e x t r a c t the content s t a t e and in form c o l l a b o r a t o r s about i t . . .
</onMessage>

</eventHandler>

MobWEL Decision

To query context-related or content state-related information, and make decisions
based on the obtained result, Conditional Branching can be used. Conditional
branching in BPEL introduces decision points in the control flow.

By the way of illustration, two BPEL activities are used to demonstrate querying
and the decision making process withing the control flow.

1. Switch Activity is an exclusive-OR activity that enables to set up one or more
branches. Each branch is represented by a case structure that has a condi-
tional expression and an activity. The otherwise clause with no condition can
be used at the end to run an activity if none of the conditions in preceding cases
has been evaluated to true. This construct is used to make decision based on
local information related to the current context or content state as illustrated
in Listing 4.4. The extension functions such as mobwel:getContextValue() and
mobwel:getContentState() can be used to write queries.

Listing 4.4: Switch Activity
<switch>

<case c o n d i t i o n = ” mobwel : getContextValue (’AddCommentUP ’) = ’ yes ’ ”>
. . . add ex t ra comment to the reviewed p i c t u r e . . .

</case>

<case c o n d i t i o n = ” mobwel : getContextValue (’AddCommentUP ’) = ’ no ’ ”>
. . .

</case>

<otherwise>
. . .

</ otherwise>
</ swi tch>

78

4. MOBWEL DEFINITION AND SYNTAX

2. While Activity is a looping construct in BPEL which has a continuation con-
dition and a child activity. Before each iteration, the condition is evaluated. If
the condition is true, the child activity is executed, if not, the loop exits. By us-
ing this construct, a certain activity can be executed as long as the context or
content state information remains same or does not reach certain value. The
examples are shown in Listing 4.5.

Listing 4.5: While Activity
Example 1 :
<whi le c o n d i t i o n = ” mobwel : getContentState (’ p i c t u r e ’) != ’ ReadyToAssess ’ ”>

<sequence>
< i n t e r a c t i o n A c t i v i t y > . . . < / i n t e r a c t i o n A c t i v i t y >

<c o n t e n t A c t i v i t y > . . . < / c o n t e n t A c t i v i t y>
</sequence>

</whi le>

Example 2 :
<whi le c o n d i t i o n = ” mobwel : getContextValue (’ UPNoOfReviews ’) != ’2 ’ ”>

<wai t f o r = ” ’PT1H ’ ” />
</whi le>

Example 1 shows a situation when the picture has been sent to a number of
reviewers and the process control flow waits till a certain number of responses
is obtained back. When a response is obtained through the interaction activ-
ity, the content activity is executed to inform Content Manager about content
updates. If the picture moves to the Ready To Assess state only when three
reviews have been obtained, then this loop has to be executed 3 times. After
that, the continuation condition is not evaluated to true and therefore, the loop
exits.

Example 2 illustrates a situation when the process flow will not continue unless
a particular context state is achieved. The context value for ’UPNoOfReviews’
is basically checked every hour. If the condition is evaluated to true, the pro-
cess wait for an hour and then the condition is evaluated again.

This section has described the support for content and context awareness in
the MobWEL process control flow. This concludes the description of the MobWEL
process control flow and its adaptation. In next sections, other workflow constituents
(Group Identification, Context Definition, and Context-Aware Content Lifecycle) are
presented, starting with the description of the Group Identification workflow part and
its representation.

79

4. MOBWEL DEFINITION AND SYNTAX

4.4 Representation of Collaborators Group

In previous section, the adapted process control flow, the first and main part of the
MobWEL workflow, has been presented. This section describes another part of the
MobWEL workflow metamodel, the representation of the collaborators group.

4.4.1 MobWEL Group Identification Metamodel

In collaborative workflows, tasks are performed by collaborators. In this concept,
workflow collaborator is a person who uses a mobile device to collaborate, share
content and communicate with other team members in order to achieve a common
goal. To execute workflows in peer-to-peer manner, each mobile device needs to be
given all relevant details about fellow collaborators and their roles. All co-workers are
known beforehand, therefore, the group of collaborators can be fully pre-described
and deployed on each device together with the workflow definition.

The structure of the Group Identification MobWEL metamodel part is shown in
Figure 4.6.

Figure 4.6: Group Identification

This MobWEL metamodel part specifies Collaborators and Roles.
The Collaborators element is a set of collaborators participating in a workflow. A

collaborator’s identity has to encompass several attributes and identifiers in order to
enable interaction and messages exchange among devices. Each Collaborator is
described by own name and mobile device which is identifiable by its phone number,
Wi-Fi and Bluetooth MAC addresses. Therefore, each participating device gains all
necessary information to start interaction with any other fellow peer.

The Roles element represent a set of roles involved in the workflow. Each Role is
associated with a number of actors, each actor referring to a particular collaborator.
The Actor element uses only the phoneNo attribute of Collaborator. The set of
collaborators is defined separately from the set of involved roles. There are two

80

4. MOBWEL DEFINITION AND SYNTAX

reasons for this. The first reason is that one collaborator can participate in multiple
roles and by separating these two sets, the collaborator’s details are not duplicated in
the workflow definition. A collaborator can play a number of roles in various workflow
instances. For instance, Jane with the role of Interior Designer takes a picture and
creates a workflow instance. Meanwhile, another team member can take a picture
that needs to be reviewed by Jane and creates another workflow instance. Jane can
have a role of Reviewer in the coexisting workflow instance.

Secondly, the details about collaborators might already exist in the identity man-
agement unit as collaborators could have been involved in some previously deployed
workflow definitions. Thus there is no need to persist the details again. Clearly, the
part specifying collaborators’ details can be seen basically as workflow-independent
and the part describing the roles details as workflow-specific.

4.4.2 Group Identification XML Schema

MobWEL is based on BPEL, and BPEL is an XML-based language. To keep the
format consistency for the full MobWEL workflow description, groups of collabora-
tors should be also describable in the XML format, too. Thereby, the metamodel
part for group identification has been mapped into an XML schema, as illustrated
in Figure 4.7 and the XML documents describing groups of collaborators have to
conform to this schema. See Appendix B for full listing of the groupIdentification.xsd
XML Schema.

Figure 4.7: Group Identification XML Schema

This section has described the Group Identification MobWEL metamodel part.
Next section focuses on another MobWEL metamodel part which has been designed
for the definition of context variables.

81

4. MOBWEL DEFINITION AND SYNTAX

4.5 Representation of Workflow-Specific Context Def-

inition

Context modelling is supported in the MobWEL workflow metamodel and described
in this section. A number of existing context management frameworks have been
already described in Chapter 3, however, they are often very general, tailoring a
wide spectrum of context-aware applications without awareness of the execution
environment and the use of context. In the MobWEL workflow approach, the context
modelling and management approach is adapted for the class of applications it is
applied to.

The requirements and considerations for the definition of context models, which
have to be taken into account, are well known and been summarised in the work of
(Bettini et al., 2010):

Heterogeneity and mobility: Context information can be acquired from a variety
of sources. For example, whilst sensors placed on mobile devices can pro-
vide numerical data that need additional interpretation, user preferences are
usually comprehensible enough. In order to make the context data useful for
the workflow management system, the raw context data need to be processed
and provided in a concise and more uniformed format.

Relationships and dependencies: Some context data can be related or depen-
dent on other context data. To reduce the amount of context information de-
livered to the workflow management system, the relationships should be de-
picted in the context definition model.

Reasoning: A reasoning technique to derive higher level context information can
be adopted. For example, a finite set of context values can be derived for
numeric raw data.

Usability of modelling formalisms: Context definition models are created by work-
flow designers. Thereby, real world concepts should be translated into the
context definition easily. Based on the model, context information can be and
manipulated by an application at run-time.

However, the listed considerations have been elicited for general and broad use.
As mentioned, other aspects for the definition of context models have been consid-
ered:

Execution environment: The context is acquired and processed on a mobile de-
vice, therefore, the context model can be designed only for context data ac-
quirable on the device.

82

4. MOBWEL DEFINITION AND SYNTAX

Consumption: The main context consumer will be the MobWEL workflow man-
agement system, thus the context model has to be workflow-specific to enable
easier, more convenient and efficient context consumption and workflow exe-
cution. It means that only relevant context information should be delivered to
the workflow management system.

Following the considerations, a workflow-specific context definition metamodel
has been constructed, as presented next.

4.5.1 MobWEL Context Definition Metamodel

Context Definition Metamodel, see Figure 4.8, expresses all the constructs, con-
cepts and relationships between the constructs needed to build MobWEL workflow-
specific context definition models.

Figure 4.8: Context Definition Metamodel

Context is described by its contextName, Context Type and Values Set . For
example, context can have its name set to Status, its type set to User Preference
and the context values set defined as {Busy, Available, Not Set}. Context data
is acquired on a mobile device and Context Type contains information about the
context source, which can be used as an indicator how the context data can be
obtained. For example, if the context data is related to user preferences, the context
type is set to User Preference.

83

4. MOBWEL DEFINITION AND SYNTAX

High-Level Context Information

The context values set contains high-level context values. A high-level Context
Value can be derived from raw context data. We use the Values Descriptor con-
struct to associate the high-level context values with raw data. Two examples:
Range and Coordinates are outlined. For instance, LOW as a high-level con-
text value for battery level can be defined for a range with minValue set to 0 and
maxValue set to 5 (%). Coordinates are used to specify a location or a place of
interest.

Further processing of context raw data is needed to make context information
meaningful and concise. There is a number of reasons why the context raw data
should be processed before its dissemination to context-aware applications and
workflow management systems. Firstly, the raw context data is heterogeneous and
inconsistent. Secondly, if a context provisioning platform distributed the raw context
data, context-aware applications would need to make the context related decisions
very often. That can lead to inefficient data dissemination and worse performance of
the applications. Finally, the set of context raw values might be too large or infinite,
for example, in case of numeric context data.

To ensure that the consuming applications obtain only relevant and consistent
context data, the abstraction level of the delivered context data is raised. The applied
reasoning technique, in which high-level context information is derived from raw
context data before their delivering to the applications, makes also the broadcasting
frequency more adequate.

For example, battery usage can be critical for some context-aware applications.
Knowing when battery level is low might influence decisions whether certain opera-
tions should be performed or not. If a consuming application requires to be informed
only about the change when the battery level drops down to 5 %, constant noti-
fications about every battery level changes would be completely inefficient. Each
notification would trigger a decision-making process in the application or workflow
management system. Therefore, specifying a high-level context information such as
LOW for battery level in a range between 0-5% and HIGH for range 5-100% would
ensure that the context-aware application is notified only when the context value is
changed from HIGH to LOW.

By using the reasoning technique, the requirement regarding heterogeneity of
context data is met. The technique allows to process raw context data and build
concise and uniformed context information. Although, only two examples of context
values derivation have been outlined on the metamodel, this approach for deriva-
tion of high-level context values is expandable and other values descriptors can be
added, if need to be.

84

4. MOBWEL DEFINITION AND SYNTAX

Context Aggregation

Composite context , dedicated for context aggregation, is designed as a context
container. It is a subtype of Context and inherits all its attributes and behaviour.
A composite context can be built as an aggregation of other composite and atomic
contexts. Based on the context values of child contexts, Rule is used to determine
a context value of the composite context. Therefore, the context values set can
be fully defined and customised by its designer. For example, the context value of
Connectivity can be defined as YES iff the current values of DataSync is ON and
Battery is FULL.

Relationships and dependencies between context are identified through the ac-
commodation of context aggregation and composition. Two examples of context
aggregation are illustrated in Figure 4.9.

Figure 4.9: Examples of Context Aggregation

Work context of fellow interior designers is expressed as a context aggregation
of: At work, Work Preference and Status. Context values for the ’At work’ context are
YES and NO representing the designer’s work status. Each designer can specify
own work preference, for illustration purposes only OFFICES, HOUSES and SHOPS
are shown. The ’Status’ is used to show whether collaborator is currently busy.
Availability of the designer has an informative character to indicate whether the task
can be taken by the person. The context value of Availability is determined by using
context values of children and associated rules. The aggregated context value is
broadcasted as follows: (Availability-YES) or(Availability-NO).

The other example shows a context hierarchy for Connectivity. The DataSync
component is composed of Bluetooth, 3G and WiFi. The value sets for all of them
are specified as {ON,OFF}. In case that any of the context is ON, the context
value of DataSync is ON and content can be shared between devices. Content
sharing might consume battery, so ideally, this operation should be performed only
if battery level is not LOW. Thus the Connection component is aggregated of the

85

4. MOBWEL DEFINITION AND SYNTAX

DataSync and the Battery contexts. The context value of Connectivity is set to YES
iff DataSync is ON and Battery is MEDIUM or FULL. The workflow management
system gets a notification only about the aggregated context information, therefore,
either (Connectivity-YES) or (Connectivity-NO).

Context Aggregation Rules

To derive the aggregated context values, a rule-based approach is used. As the
rules are used to determine the aggregated context value based on child context
values, a matching technique, using the Boolean operator AND, is applied in the
rules-based strategy. The rules for the composite context, Connectivity, can be con-
structed by identifying all possible combinations of child context values. Aggregated
context values are determined for each combination, as illustrated in Table 4.4. Each
row in the table represent one rule. This approach might be a little inefficient but is
simple and straightforward to be modelled and used.

Table 4.4: Rules Example

DataSync Battery Connectivity

ON LOW NO

ON MEDIUM YES

ON HIGH YES

OFF LOW NO

OFF MEDIUM NO

OFF HIGH NO

By enabling context aggregation, dependencies and relationships between var-
ious context data are modelled, and context tree structures and hierarchies can be
built.

Workflow-Active Contexts

In addition, Workflow Attributes are used in the context modelling approach to
make context consumption easier in the workflow management system. The first
workflow attribute is workflowActive. A workflow does not need to be aware of all
defined contexts. For example, in order to execute a workflow step, the workflow
might need to obtain only context information: Connectivity-YES without knowing
that DataSync is ON and Battery is FULL. Therefore, each context is associated

86

4. MOBWEL DEFINITION AND SYNTAX

with the workflowActive attribute which can be set to true if the workflow is interested
in listening to changes of this context, respectively to false if the context is only
auxiliary and its values do not influence the workflow execution.

Therefore, the term of workflow-active context determines the context compo-
nents which values are used directly in the workflow execution. In the example, only
the Connectivity context is workflow-active and none of its children is needed to be
defined as workflow-active. By specifying workflow-active contexts, the amount of
context information delivered to the workflow management system is reduced.

Context Consumption

The second workflow attribute is the consumption attribute which is used to identify
the consumption part of workflow. By knowing the value of this attribute, context
routing in the workflow management system is more straightforward.

For easier context adaptation and decision making process in the workflow man-
agement system, the context use is indicated for each context. Two categories of
the context use have been defined, see Figure 4.10.

Figure 4.10: Context Use

The first category is workflow case independent context which is relevant to the
workflow management system in a global manner. It means that the context in-
fluences operating of the whole workflow management system and is relevant for
all workflow cases. This category includes three classes of context. User Profile-
related context describes user’s preferences such as preference for number of pos-
sible workflow instances that can run at a certain moment of time. This type of con-
text is used to configure the workflow management system. Communication-related
context is needed to determine whether the communication between devices is pos-
sible, for example, whether there is a WiFi or 3G connection. Collaboration related
context is used for social awareness to effectively mediate the constraints of content
sharing between workflow participants and determines availability of collaborators.
The second workflow case specific category of context consumption defines context
related to a workflow case. Context information can be workflow-related influenc-

87

4. MOBWEL DEFINITION AND SYNTAX

ing the workflow execution, or content-related influencing the evolution of a content
lifecycle.

By adding the workflow attributes to context definition models, the context mod-
elling approach becomes workflow-specific.

The XML schema of this MobWEL metamodel part is presented next.

4.5.2 Context Definition XML Schema

The metamodel is mapped to an XML schema. The graphical view of the XML
schema is shown in Figure 4.11. The full contextDefinition.xsd XML schema for
context definition can be found in Appendix B.

Figure 4.11: Context Definition XML Schema

The description of the MobWEL workflow-specific context modelling approach
has been presented in this section. The description of Context-Aware Content Life-
cycle, the last MobWEL workflow part, follows next.

88

4. MOBWEL DEFINITION AND SYNTAX

4.6 Representation of Context-Aware Content Lifecy-

cles

So far, three MobWEL workflow parts (process control flow, collaborators group and
context definition models) have been described. This section describes the last
MobWEL metamodel part, designed for the definition of context-aware content life-
cycles.

4.6.1 MobWEL Context-Aware Content Lifecycle Definition

Mobile content in peer-to-peer workflow management is shared among various work-
flow participants with different roles. Therefore, each mobile device needs to have
a system to store, manage and provide access to that content. When content is re-
ceived, created or generated, it needs to be stored on the particular device. Content
is manipulated by workflow activities, therefore, an easy access to content need to
be provided at anytime. Content piece processed in a workflow has its own lifecy-
cle and can go through a number of states. The states of evolution might play an
important role in the workflow execution. This can be illustrated briefly by a real-
life situation. For example, a buyer is interested in buying an item, but before the
purchase, the buyer needs to know the state of the item, in other words whether
the item is new, used or damaged. Obtaining the information about the item state
enables the buyer to make the decision much easier. A similar situation happens
in the workflow management world where the workflow decisions can be based on
the particular information about content states. For example, if a picture has been
already assessed, it can be said that it is in the Assessed state, and the information
about its state can be broadcasted to other interior designers who will immediately
know that there is no more need to review the picture. Obviously, this will be an
event automatically handled by the workflow management system, not by collabora-
tors themselves. Based on this vision, the states of single content pieces should be
monitored and managed accordingly on each device.

In content lifecycles, content movements between lifecycle states are usually in-
dicated by conditions but can also be influenced by context changes. In BPEL, there
is only a little support for the recognition of a context-aware content lifecycle. Con-
tent is handled as a workflow variable and its behaviour, apart from being used as
an input or output of certain activities, is hardly recognisable. In MobWEL, content
is not just a workflow variable but it has its own identity. Its management is indepen-
dent of the control flow execution and needs to be appropriately supported.

The other aspect of content lifecycle management envisioned here are transi-

89

4. MOBWEL DEFINITION AND SYNTAX

tions between two content states. Moving of a content object to another state can
be caused a) internally, when the values of content attributes have been changed;
b) externally, either by an external event or by a change of external but related
data. The first case of a content state change is more typical and has been con-
sidered in other works described in Chapter 3. In the second case, the external
events depends on actual circumstances and the given execution environment. By
following this fact, the external events need to be identified adequately for mobile
peer-to-peer workflow management. As already discussed, context awareness and
context events are quite significant external events that can influence running of mo-
bile workflows. Promoting context changes in the content behaviour management
can reshape and enrich its evolution, and make the whole lifecycle management ap-
proach more flexible and adaptable. Consider an example from the usage scenario
about setting the user preference for the picture rating, which specifies the rating
score that need to be achieved in order the picture being sent to reviewers. Thereby,
to integrate context awareness into content lifecycles, transitions between content
states have to be adapted for to handle this type of external context events.

To support the visions, two elements of the BALSA workflow model, the Business
Artifact Information Model and the Business Artifact Lifecycle, have been adopted in
MobWEL and in the modelling approach of context-aware content lifecycles. Based
on that, the metamodel for context-aware content lifecycles has been constructed
(Figure 4.12).

Figure 4.12: Metamodel for Content Lifecycle Definition

There are two parts, one representing content metadata model and another rep-

90

4. MOBWEL DEFINITION AND SYNTAX

resenting content lifecycle model. Lifecycle is described by its lifecycleName. The
lifecycle can describe the behaviour of several Content objects, however, in a par-
ticular definition it can be associated only with one Content object.

Content Metadata Model

The Content item is characterised by its contentType such as image, audio or
video and a set of workflow-specific Metadata. Metadata is described by its meta-
dataName, dataType:text, number, date, metadataType: location, management,
control, inclusion, and multiplicityAllowed: yes, no.

Content Metadata Model has adopted the idea of the BALSA’s Business Artifact
Information Model which describes the content-related data, respectively metadata.
Boiko (2005) describes ’content management as the art of naming information’ and
metadata as ’the small snippets of information that are attached to content’. Mo-
bile content has a package of default metadata. For instance, a picture taken by
phone’s built-in camera might be described by data such as creation date, creator or
GPS coordinates. This metadata package is created and managed by the software
system that actually creates or alters the picture or other content.

As mentioned, the workflow management system only coordinates the flow of
the workflow activities and does not perform the actual activities. Therefore, the
package of default content metadata is not accessible by the workflow management
system. To gain control over a processed content piece and its evolution in work-
flow, a set of content-related metadata that is accessible and manageable by the
workflow management system, needs to be defined beforehand. This can be briefly
illustrated by an example from usage scenario. If there is a rating system created
for pictures, an attribute called ’ratingScore’ should be associated with the picture to
hold an information about added rating. By adding the metadata to picture, the infor-
mation can be accessed at anytime and can be used to make certain management
decisions.

To identify the roles and types of metadata that need to be associated with mobile
content, Boiko’s classification of metadata has been followed and adapted as follows
(Boiko, 2005):

Location: Mobile content is often semantically enriched by context information about
location. GPS coordinates are taken when content is created. For example,
a picture when created is associated with information about the physical loca-
tion. However, using name of the building or place might be more meaningful
information. If the picture of an interior has been taken in a particular building,
having the name of building associated with the picture might be useful later in

91

4. MOBWEL DEFINITION AND SYNTAX

the workflow execution when, for example, the interior designer would like to
see all pictures taken in the building.

Management: Content is administered through management metadata. In the work-
flow description, content is referred and processed only as a variable. There-
fore, content needs to have also an identifier that helps to manage content.
Other data such as name, creator, creation date, modification date, and owner
might be considered as management metadata. The metadata is general, as-
sociated with almost each piece of content.

Control: Control metadata is used to guide transitions between two states and two
devices. In comparison to the management metadata, the control metadata
is more workflow-case specific, thereby needs to be defined specifically for a
particular workflow case. The examples of control metadata are numberOfRe-
views, or ratingScore.

Inclusion: This metadata enables to reference content that physically stored in differ-
ent file system. For example, on the Android platform, pictures are stored in the
default file system on a given mobile device and are accessible only through an
Android-specific content provider. The content provider shares data between
mobile applications and it exposes a unique URI (Ableson et al., 2011). This
URI is used to query data or content. Therefore, the inclusion metadata holds
the information about actual content URI.

Content metadata plays an important function in content management, thereby,
a set of workflow-specific content-related metadata needs to be defined for each
content item.

Content Lifecycle Model

The concept of the BALSA Business Artifact Lifecycle element has been adopted
in the content lifecycle model. Similarly, the context-aware content lifecycle is rep-
resented by a variant of finite state machines. Generally, a state machine contains
a number of states, each state corresponding to a stage in the content lifecycle.
Therefore, a content state is an essential construct in the content lifecycle. Content
might move from one stage to another. The connections between two states are
called transitions. When content is created, it is in an initial state with no incoming
transition. At the end of its evolution, there is a final state that indicates the end of its
lifecycle and has no outgoing transition. Between the initial and the final state, there
are states with incoming and outgoing transitions. Conditions may be attached to
these transitions. A condition can depend on a certain value of content attribute.

92

4. MOBWEL DEFINITION AND SYNTAX

However, in MobWEL, also the aspects related to a) context awareness; and
b) content evolution across multiple devices have been taken into account as follows:

• Context Awareness: It has been outlined that a context change can trigger a
transition between two content states. Because of this, conditions placed on
transitions need to be modified to deal with context. Two possible situations
can happen.

– In the first situation, the further evolution of a content piece depends on
the current context in the execution environment. For example, if rating
has been added to a picture, the picture moves to the Rated state. Af-
ter that, based on the available context information, the picture can go to
either the Ready to Review or Ready To Archive state, see Figure 4.13.
So if ratingScore of the added picture is greater than or equal to the value

Figure 4.13: Example of Context-Driven Transitions

of the user preference related to picture ratings, the picture goes to the
Ready to Review state. Otherwise, it is moved to the Ready To Archive
state. In this situation, the context information has to be obtained at the
given instance of time and when it is obtained, the conditions are evalu-
ated. The context information presented in this example is simplified, con-
sidering only Rating User Preference as a representant of current context
situation. But as shown in the previous chapter the context information
can be aggregated and context situation can be more complex.

– In the second situation, the transition between two content states occurs
only when specific context emerges. Figure 4.14 illustrates the situation.

Rating added to the picture is stored in the ratingScore attribute. For
example, it can have a value of ’2’. Current Rating User Preference is
set to ’3’, therefore the picture cannot move to the Ready to Review state

93

4. MOBWEL DEFINITION AND SYNTAX

Figure 4.14: Example of Context-Aware Transition

at this time. But it waits whether any context change in the Rating User
Preference happens. The picture remains in the Rated state until the
Rating User Preference is changed and becomes less than or equal to
’2’. In contrast to the first situation, this situation requires an awaiting,
monitoring and filtering mechanism for context events.

To distinguish between these situations, two types of context conditions are
created: context-driven condition (CDC) and context-aware condition (CAC).

• Content evolution across multiple devices: Content is shared among collab-
orators and devices, and its lifecycle evolves on numerous devices. Thereby
this requires some extra considerations how to deal with the distributed be-
haviour. One of the options how to deal with the content evolution on multiple
devices would be to partition the content lifecycle in a similar way as distributed
workflows are often partitioned. However, by using this method, the overall
behaviour of content would be hardly visible. Thus a more pragmatic way is
considered that allows the whole content lifecycle to be described in one piece.
The technique outlines the ’ownership’ of content states. In other words, each
content state is associated with a name of the role which is accountable for
the corresponding workflow steps. For example, if the task of rating picture is
assigned to the role of designer, the Rated state is owned by the role.

Thereby, in the MobWEL metamodel for definition of context-aware content life-
cycles, Lifecycle is composed of a number of States and Transitions. A State
is identified by its stateName and the roleName attribute which specifies the role
accountable for the state. Each Transition has a source and target State and can
be associated with a Condition. To trigger the transition of the content item be-
tween the source and target state, the associated condition must evaluate to true.
There are two subtypes of conditions, MetadataCondition and ContextCondition.

94

4. MOBWEL DEFINITION AND SYNTAX

Fulfillment of MetadataCondition depends on the value of particular metadata.
ContextCondition depends on certain context and can be ContextAware or Con-
textDriven. The fulfillment of the Context Aware condition depends on particular
context. The transition is triggered when the expected context emerges. The ful-
fillment of the Context Driven condition depends on current context. So it requires
immediate context querying. Based on the returned context value, the transition is
evaluated. Only if the condition is evaluated to true, the transition is triggered.

The metamodel represents an abstract form of a context-aware content lifecycle
and has been mapped into an XML Schema which is shown next.

4.6.2 Context-Aware Content Lifecycle XML Schema

The metamodel has been mapped into the XML schema, see Appendix B for the
full listing of the contentLifecycle.xsd XML Schema. The graphical view of the XML
schema is shown in Figure 4.15.

Figure 4.15: XML Schema for Content Lifecycle

Expression Building

The conditions placed on transitions are characterised by expressions which are
built in the precise format. The expression building is shown in Table 4.5.

An expression has a prefix that determines the type of condition, a left side and
a right side. MobWEL extension functions can be used to build the left and/or right
side of expressions. The left side and the right side of an expression are joined by
using a comparison operators such as:

95

4. MOBWEL DEFINITION AND SYNTAX

Table 4.5: Expression Builder

Condition Prefix Left Side Right Side

Context-Aware condition cac: getContextValue() concrete context value

Context-Driven condition cdc: getContextValue() concrete context value

Attribute-Related condition def: getContentAttribute() concrete context value

Mixed condition (cac+def) cac: getContextValue() getContentAttribute()

Mixed condition (cdc+def) cdc: getContextValue() getContentAttribute()

• equal to (=, eq);

• not equal to (! =, ne);

• greater than (>, gt);

• less than (<, lt);

• greater than or equal to (≥, ge);

• less than or equal to (≤, le).

The symbols for the comparison operators are used in figures and in text, whereas
the two-letter abbreviations are used to describe conditions in XML documents.

For example, this context-aware condition:

ratingScore≥RatingUP

would be expressed as:

cac:getContentAttribute(ratingScore)≥getContextV alue(RatingUP)

and in the XML description as:

cac:getContentAttribute(ratingScore) &ge getContextV alue(RatingUP)

In this section, the metamodel for the definition of context-aware content lifecy-
cles has been presented as the last component of the MobWEL workflow language
metamodel. This section concludes the definition of the MobWEL workflow lan-
guage. A brief chapter summary is given next.

96

4. MOBWEL DEFINITION AND SYNTAX

4.7 Summary

One of the objectives of the thesis was to design a workflow language that can be
used to represent workflows for a certain class of mobile applications. This chap-
ter has introduced MobWEL, a context-aware content-centric workflow language
designed for mobile peer-to-peer collaboration. MobWEL extends BPEL, using
constructs from existing workflow approaches, Context4BPEL and BPELlight, and
adopting elements from the BALSA workflow model. In this chapter, four MobWEL
metamodel parts have been presented which define MobWEL process control flow,
MobWEL collaborators group, MobWEL context model, and MobWEL context-aware
content lifecycles. Additionally, the MobWEL XML-based format and MobWEL syn-
tax have been described.

Formal semantics of MobWEL workflow language is elaborated in next chapter.

97

Chapter 5

MobWEL Semantics

Contents
5.1 Introduction . 98

5.2 Context Situation . 99

5.3 Control Flow Semantics . 99

5.4 Extended Semantics with Data Flow 104

5.5 Content Behaviour . 105

5.6 Consistency of Process Flow and Content Lifecycle 106

5.7 Summary . 107

5.1 Introduction

The metamodel and syntax of the MobWEL workflow language has been presented
in Chapter 4. Many MobWEL constructs have been adopted from existing workflow
approaches, therefore, most of MobWEL structural and operational semantics is
inherited. However, several concepts have been introduced in MobWEL workflow
schema that influenced the way how MobWEL workflow processes are executed.
Thereby, this chapter completes the definition of the MobWEL language by providing
its semantics. This semantics is used in the validation part for the description of the
expected behaviour of MobWEL workflow instances.

The remainder of this chapter is organised as follows. Firstly, the definition for
context situation is given in Section 5.2. After that, semantics for MobWEL control
flow is defined in Section 5.3. Section 5.4 extends the semantics with data flow.
Semantics for content behaviour is elaborated in Section 5.5. Definitions for con-
sistency between process flow and content lifecycles are given in Section 5.6. This
chapter is summarised in Section 5.7.

98

5. MOBWEL SEMANTICS

5.2 Context Situation

The workflow execution is adapted to the actual context situations in which the mo-
bile devices reside at that time. The context situation depends on workflow-active
context components that are defined for each workflow partition. Therefore, the
context situation on a mobile device is defined as follow:

Definition 5.1 (Context Situation). Let Ctx = {ctx1, ctx2, ..., ctxk} be a set of workflow-
active context components defined in a context definition model M, and let each
component Ctxi, i ∈ {1, .., k}, be associated with a set of context values {cvi1, ..., cvij},
j ∈ N. A context situation c is a k-tuple of current context values of all context com-
ponents < (ctx1, cv1x), (ctx2, cv2y), ..., (ctxk, cvkz) > where each context value cvij

belongs to the values set of the corresponding context component Ctxi.
A context situation in which only a particular context value of a particular context
component is important is labeled as c/ctxi, c/ctxi =< (ctxi, cvij) >.

By the way of illustration, let us consider that there are three workflow-active con-
text components defined in the context definition model: RatingUP (values set={1,2,3}),
Connectivity (values set={YES,NO}), and Location (values set={BuildingA, Build-
ingB}). If current context values are: ’1’ for RatingUP, ’YES’ for Connectivity and
’BuildingB’ for Location, then the current context situation c is

c =< (RatingUP, 1), (Connectivity, Y ES), (Location,BuildingB) > .

5.3 Control Flow Semantics

This section introduces MobWEL control-flow semantics. Some definitions have
been adapted from the work of Wahler (2009).

Firstly, the definition of a MobWEL workflow process is provided.

Definition 5.2 (MobWEL process flow). A MobWEL process flow is a directed
graph G = (N,E), where a node n ∈ N is one of the following: a start node, a stop
node, an activity, a fork, a join, a decision, or a merge. The functions in, out : N
→ ρ(E) map a node to the set of its incoming and outgoing edges. The following
conditions hold with respect to a MobWEL process flow G = (N,E):

• there is exactly one start node and exactly one stop node in N;

• the start node has no incoming edges and exactly one outgoing edge, whereas
the stop node has exactly one incoming edge but no outgoing edges;

99

5. MOBWEL SEMANTICS

• each fork and each decision has exactly one incoming edge and two or more
outgoing edges, whereas each join and each merge has exactly one outgoing
edge and two or more incoming edges;

• each action has exactly one incoming and exactly one outgoing edge;

• each node n ∈ N is on a path from the start node to the stop node.

According to Aalst et al. (2003), a join, also known as AND-join, is different from
a merge in that the join is a point in the workflow process where multiple parallel
subprocesses converge into a one single thread of control. A merge, also known as
a XOR-join or asynchronous join, is a point where two or more alternative branches
come together without synchronisation.

Figure 5.1: MobWEL Process Flow as a Graph

Consider a workflow model depicted in Figure 5.1. This model is mapped into
a graph in which all activities are nodes and flows between activities are edges.
For conciseness, the activities are labeled. Labeling enables to highlight the per-
former’s role such as AD. is an activity performed by designer, and AR. is an activity
performed by reviewer. The final flow states are labeled with the letter ’F’ and inter-
action activities are highlighted in the grey area.

An execution state of a MobWEL process flow is represented by the distribution
of tokens.

Definition 5.3 (MobWEL Process Flow Execution state). Given a MobWEL pro-
cess flow G = (N,E), its execution state is a mapping ω : E → N that assigns natural
numbers to all edges in G. The number assigned to an edge in an execution state ω
represents the number of tokens carried by that edge in ω.

The definition for control-flow semantics has been adapted for context situation. It
means that a change of the execution state happens in a particular context situation.
In the particular context situation the semantics of the various nodes is defined as
follows:

100

5. MOBWEL SEMANTICS

• One token is removed from each of its incoming edges and one token is added
to each of its outgoing edges when the node is an activity, a fork, or a join.
However, if the activity is an interaction activity, this rule is altered. In case of
sending a request to x actors with the same role, one token is removed from its
incoming edge and x token is added to its outgoing edge. In case of receiving
a reply from x actors with the same role, only one token is removed from its
incoming edge at the time and one token is added to its outgoing edge.

• One token is removed from its incoming edge and one token is added to one
of its outgoing edges when the node is a decision

• One token is removed from one of its incoming edges and added to its outgoing
edges when the node is a merge.

As the workflow graph abstract from the decision logic, in last two cases the edge is
chosen nondeterministically.

Definition 5.4 (Context-aware MobWEL Control-flow semantics). Let ω and ω′

be two execution states of a MobWEL Process Flow G = (N,E), c ∈ C be a context
situation, and n ∈ N be a node that is neither a start nor a stop node. The change
of the execution state from ω to ω′ by the execution of node n in the context situation
c is written as ω n,c−−→ ω′. The following four rules define ω

n,c−−→ ω′ for different types
of nodes:

1. n is an activity, interaction activity (IN), fork, or join and

ω′(e) =

ω(e)− 1 for e ∈ in(n),

ω(e) + 1 for e ∈ out(n),

ω(e) otherwise.

2. n is an interaction activity (OUT)

ω′(e) =

ω(e)− 1 for e ∈ in(n),

ω(e) + x for e ∈ out(n), x is number of actors

ω(e) otherwise.

3. n is a decision and there exists an outgoing edge e′ ∈ out(n) of n such that

ω′(e) =

ω(e)− 1 for e ∈ in(n),

ω(e) + 1 for e = e′,

ω(e) otherwise.

101

5. MOBWEL SEMANTICS

4. n is a merge and there exists an incoming edge e′ ∈ in(n) of n such that

ω′(e) =

ω(e)− 1 for e = e′,

ω(e) + 1 for e ∈ out(n),

ω(e) otherwise.

Definition 5.5 (Initial and terminal execution states). Given a workflow graph G,
its initial execution state is the execution state ωi that has exactly one token on the
outgoing edge of the start node and no tokens elsewhere. The terminal execution
state of G is the state ωt that has exactly one token on the incoming edge of the stop
node and no tokens elsewhere.

To validate the workflow execution, other related concepts are defined.

Definition 5.6 (Activated node, execution sequence). A node n is said to be
activated in an execution state ω if there exists another execution state ω′ and context
situation c such that ω n,c−−→ ω′.
A sequence of node executions ω0

n1, c1−−−→ ω1...ωk−1
nk, ck−−−→ ωk is called an execution

sequence.

There can be more acceptable context situations that enables the activation of a
node.

Definition 5.7 (Acceptable context situations for an activated node). Let G=(N,E)
be a workflow graph and C = {c1, c2, ..., ck} be a set of all possible context situations
that can occur while G is executed. Let n ∈ N be a node, ω and ω′ be two execution
states of G.
Acceptable context situations for a node n are such context situations that enable
the change of the execution state from ω to ω′ by the execution of the node n are

∀ci ∈ Cn,Cn ⊂ C, ω n, ci−−→ ω′

This is also denoted as ω n,Cn−−−→ ω′.
If Cn = C, then the change of the execution state is not dependent on the context
situation and all context situations are acceptable. It means that the execution of the
node n is context-independent and this is denoted as

ω
n, c̃−−→ ω′.

Definition 5.8 (Reachable execution state). An execution state ω′ is reachable
from an execution state ω, denoted ω ∗→ ω′, if there exists a finite execution sequence
ω0

n1, c1−−−→ ω1...ωk−1
nk, ck−−−→ ωk such that ω0 = ω and ωk = ω′.

102

5. MOBWEL SEMANTICS

Figure 5.2: Example of MobWEL Control Flow Execution

To illustrate the application of the MobWEL process flow semantics, Figure 5.2
shows an example of the execution sequence in the workflow model, starting with
ω0, and reaching the ω3 execution state and the final flow state FD1. The nodes ac-
tivated in the execution sequence are: AD1, AD2, AD3, and the changes of execution
states are context independent. In the workflow model, the tokens are associated
with edges and highlighted in grey squares and the activated nodes, respectively
activities are marked with a tick.

Figure 5.3: Example of Execution of an Interaction Activity - Whole Workflow

Figure 5.3 illustrates the change of the execution state by activating an interaction
activity AD4 when a request to review the picture is sent to three different actors who
play the role of reviewer. Therefore, 3 tokens are associated with the edge. In
the next step, when one of the reviewers receives the request, the activity AR1 is
executed which causes the change of the overall execution state. Then the activity
is activated again on another actor’s device. So overall, the execution sequence is
triggered: ωi

*−−→ ωi+3.
However, as the workflow case is executed on multiple mobile devices and by

various actors, the execution sequence is defined for all participating actors inde-
pendently. From the point of view of the actor with the designer role D1, after the
request to review the picture has been sent to three reviewers, the flow continues
towards the interaction activity AD5 (Figure 5.4a). The change of the execution state
triggered by activating the interaction activity AR1 on the device of the reviewer R1

and the reviewer R2 is shown in Figure 5.4b. In the case of the reviewer R3, the

103

5. MOBWEL SEMANTICS

Figure 5.4: Example of Execution of an Interaction Activity - Individual Actors

activity has not been activated yet.
As demonstrated, the control flow semantics is used to derive the behaviour

of individual workflow partitions and the overall behavior of the whole workflow in-
stance. However, to simplify the description of the execution sequence on the work-
flow model, the notation shown in Figure 5.5 is used. There are two execution paths
highlighted. An execution path is highlighted by a) placing tokens on flows (number
of tokens corresponds to the overall count of the particular edge invocation); and
b) marking activated activities with ticks and using grey squares.

Figure 5.5: Examples of Executions Paths Depicted on Model

In the following section, the existing control-flow semantics presented in this
chapter is extended by the data flow.

5.4 Extended Semantics with Data Flow

The MobWEL workflow language allows to visualise content flow explicitly, however,
the content flow is also embedded within the control flow and content-related data
are used as input or output data of several workflow activities. Explicit content flow
is referred as content lifecycle. Implicit content-related data flow assumes the defi-
nition of workflow process variables which are accessible in the read/write mode by
workflow activities.

104

5. MOBWEL SEMANTICS

Content-related data in a workflow model form a subset of data in the model. To
monitor implicit content-related data flow in a given workflow graph, the approach
described in the work of (Wahler, 2009) has been adapted, and input and output
data are added to the representation of a node n and its edges. This is formalised
in the following definition:

Definition 5.9 (Implicit data flow). Given a workflow graph G = (N,E) and a set
of process variables V with a values set D, a data flow for G is defined using two
functions dataIN, dataOUT: N → ρ(D) that map a node to sets of the values for
data variables available before and after the execution of node n. A partial function
type: E → D is defined to map an edge e ∈ E to the set of the values D for data
variables. Given a node n ∈ N , the following conditions hold:

• dataIN(n) and dataOUT(n) are empty if n is not an activity or a decision;

• all incoming and outcoming edges of n are mapped to the same set of the
values for data variable, dataIN(n) = dataOUT(n), if n is a decision, a merge, a
fork or a join.

Based on the definition, the notation for the data flow is defined, as shown in
Figure 5.6. In this example, dataIN(A) = d1 and dataOUT (A) = d2 if A is an
activity, and dataIN(D) = dataOUT (D) = d if D is a decision.

Figure 5.6: Notation for Data Flow

As the interest is focused particularly on decisions based on context information
or content state information, the notation for these types of decisions is shown Fig-
ure 5.7. A decision based on context information is labeled as DCtx, whereas the
label for a decision based on content state information is DCSt.

5.5 Content Behaviour

Content lifecycle is defined explicitly and content states are the attributes of con-
tent objects that are managed independently from the process control flow. In this
section, definitions for content behaviour management are introduced.

105

5. MOBWEL SEMANTICS

Figure 5.7: Notation for Decisions

Definition 5.10 (Fired Transition, Transition Firing Sequence). Let L be a context-
aware content lifecycle for a content object O. A transition t with a source state s in
the lifecycle L is said to be fired if condition(guard) g placed on the transition t is
evaluated to true and there exists a content state s’ such that s

g−−→s′.
A sequence of fired transitions s0

g1−−→s1......sk−1
gk−−→ sk is called a transition firing

sequence.

Definition 5.11 (Reachable Content State). A content state s′ is reachable from
a content state s, denoted s

*−−→ s′, if there exists a finite transition firing sequence
s0

g1−−→ s1...sk−1
gk−−→ sk such that s0 = s and sk = s′.

5.6 Consistency of Process Flow and Content Life-

cycle

This section is dedicated to the consistency between process flow and content life-
cycles. Content lifecycles are managed independently from the main process flow
logic. Thus as the process flow is executed and the content object is manipulated
through various activities, the associated content object lifecycle should evolve ac-
cordingly. To achieve that, MobWEL workflows should be well-formed. Workflows
are well-formed if there are no dangling activities or tasks. In well-formed workflows,
every part of workflow contributes to the result of a run and all workflow roles and
declared input data contribute to achieve the expected workflow products.

The content object is in a content state at any given time of the process execution.

Definition 5.12 (Process execution state with corresponding content state).
Given a workflow graph G = (N,E) and an integrated context-aware content lifecycle
L for a content object O, an execution state of G is represented by (ω, s,O), where
ω is the mapping defined in Definition 7.3, O is the manipulated object, and s is the
current content state of the content object O. Thus (ω, s,O) represents a process
execution state with corresponding content state s for an object O.

Therefore, the reachability of a certain execution state is defined as follows:

106

5. MOBWEL SEMANTICS

Definition 5.13 (Reachable process execution state with corresponding con-
tent state). A process execution state ω′ with corresponding content state s′ for an
object O is reachable from an execution state ω with corresponding content state
s, denoted (ω, s,O)

∗7→ (ω′, s′, O), if and only if there exists a finite transition firing
sequence s0

g1−−→s1......sj−1
gj−−→ sj such that s0 = s and sj = s′, and also if and only if

there exists a finite execution sequence ω0
n1, c1−−−→ ω1...ωk−1

nk, ck−−−→ ωk such that ω0 = ω

and ωk = ω′.

Finally, the definition for the consistency between these two workflow assets is
introduced.

Definition 5.14 (Consistency of Process Flow and Content Lifeycle). Let Q = {
< ω11

∗→ ω1p >,...,< ωn1
∗→ ωnq >} be a set of execution sequences generated by

all possible executions of a well-formed MobWEL process flow F, let X = { < s11
∗→

s1m >,...,< sp1
∗→ spn >} be a set of all possible transition firing sequences within

a context-aware content lifecycle L for a content object O, and let Z = {(ω12, sp2, O),
(ω1p, sp2, O),...,(ωnq, s1m, O)} be a set of all possible process execution states with
corresponding content states. The process flow F and the lifecycle L are consistent
if and only if the following conditions are satisfied:

• for every execution sequence q = < ω
∗→ ω′ > in Q, there exist a transition

firing sequence z = < S
∗→ S ′ > in Z such that (ω, S,O) ∗→ (ω′, S ′, O);

• ∀z1, z2 ∈ Z, z1 = (ω, s,O), z2 = (ω′, s′, O) (for which ∃q ∈ Q, q =< ω
∗→ ω′ >,

and ∃x ∈ X, x =< s
∗→ s′ >) the following implication must be met:

If q is executed, then x is fired and the content state s’ is reached.

5.7 Summary

This chapter has introduced the semantics of the MobWEL workflow language. With
this, the definition of the MobWEL workflow language is completed. The workflow
management system that is capable of managing and executing such MobWEL
workflows is described in next chapter.

107

Chapter 6

MobWEL Workflow Management and
Execution

Contents
6.1 Introduction . 108

6.2 Architecture of MobWEL Workflow Management System 109

6.3 Context Provider . 112

6.4 Context Manager . 120

6.5 Content Manager . 125

6.6 MobWEL Engine . 134

6.7 Peer-To-Peer Interaction Manager . 135

6.8 Internal Cooperations . 139

6.9 Summary . 142

6.1 Introduction

The previous two chapters defined the syntax and semantics of the MobWEL work-
flow language. The MobWEL language can be used to define MobWEL workflows.
Management and execution of MobWEL workflows on mobile devices need to be
supported by a suitable workflow management software that also has capabilities
to support context and content management, and operates in a distributed man-
ner. This chapter presents the MobWEL workflow management system, a system
capable of managing and executing MobWEL workflows.

The rest of this chapter is organised as follows. The logical architecture of the
MobWEL workflow management system and the parsing process of MobWEL work-

108

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

flows are presented in Section 6.2. After that, individual system components are
presented. Section 6.3 presents the Context Provider, a component designed for
context acquisition. Context routing and consumption is controlled by the Context
Manager component, presented in Section 6.4. The advanced content management
functionalities are provided by the Content Manager component, described in Sec-
tion 6.5. The MobWEL engine, the main execution unit, is presented in Section 6.6.
Finally, Peer-to-peer Interaction Manager is described in Section 6.7. Components
interactions are outlined in Section 6.8. This chapter is concluded in Section 6.9.

6.2 Architecture of MobWEL Workflow Management

System

This section describes the high-level architecture of the MobWEL workflow manage-
ment system.

MobWEL workflows are based on BPEL, therefore, in the center of the Mob-
WEL workflow management system, a BPEL engine is operating. Because of the
complexity of the workflow management solution, the semantically related data and
functions have been grouped together into smaller, more manageable functional
parts called components. Each internal component has a specific functionality de-
signed for management of one particular MobWEL workflow part. The high-level
architecture of the MobWEL workflow management and execution system is shown
in Figure 6.1.

Figure 6.1: High-Level Architecture of the MobWEL Workflow Management System

External interactions are outlined between the MobWEL workflow management
system and other external components. Interaction with Web Services is enabled by
the BPEL engine which is capable of importing and exporting information by using

109

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

web services. Worklist Manager is an external component that provides task man-
agement. Mobile Applications use the workflow management services provided by
the MobWEL workflow management system. Any mobile application can deploy
own MobWEL workflow description to the MobWEL workflow management system
and then request its instantiation. The deployed MobWEL workflow descriptions
are stored in a MobWEL workflow definitions repository. In peer-to-peer mobile
collaboration, each device behaves as an autonomous management unit and par-
ticipates equally in workflow execution and management. The MobWEL workflow
management system running on one device communicates and interacts with other
MobWEL workflow management systems deployed on peer devices.

Internally, the system is composed of the following components:

Context Provider is a component responsible for context monitoring, acquiring,
processing, aggregating and disseminating.

Context Manager manages the use and consumption of context information and
drives context routing to other components at run-time.

Content Manager provides advanced content management functionalities and man-
ages the evolution of content management lifecycles.

MobWEL Engine instantiates, manages and executes MobWEL workflow instances.
The MobWEL engine extends a BPEL engine.

Peer-to-peer Interaction Manager manages communication and messages exchan-
ges between mobile devices.

As mentioned, each component manages a particular aspect of MobWEL work-
flows. Each component has an integrated parser that enables interpretation and
parsing of the corresponding MobWEL workflow part. The MobWEL workflow pars-
ing process is described next.

MobWEL Parsing Process

The main parser is the MobWEL Parser, a part of MobWEL Engine. This parser is
invoked when a new MobWEL workflow description is deployed. The input for the
parser is a MobWEL workflow definition, deployed as a set of XML documents. Doc-
uments are persisted in the MobWEL Workflow Definition Repository. This parser
firstly analyses the MobWEL workflow descriptions, then builds the corresponding
internal data representations and structures. The parsing process is illustrated in
Figure 6.2.

110

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

Figure 6.2: Deployment of MobWEL Workflow

Apart from the main control flow description, the MobWEL workflow definition
contains descriptions of context-aware content lifecycles, context definition and col-
laborators group. Each workflow part is parsed by a parser in the corresponding
system component as follows:

• Content Lifecycle Parser, a part of Content Manager, is called to parse the
descriptions of context-aware content lifecycles and build internal lifecycle ob-
jects.

• To parse the group identification part, Group Parser in Peer-to-peer Interaction
Manager is used.

• Active Context Definition Parser and Context Definition Parser interpret
the context definition part of the MobWEL workflow.

– Active Context Definition Parser as a part of Context Manager parses
the context definition part and extracts information only about workflow-
active context variables which will have a direct impact on the workflow
execution.

– Context Definition Parser in Context Provider is used to interpret con-
text hierarchies and build internal structures in order to manage process-
ing of context information from its acquisition to its dissemination.

This section has presented the high-level architecture of the MobWEL workflow
management system and the overall parsing process. In next sections, functioning
of each component, starting with the description of Context Provider, is outlined.

111

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

6.3 Context Provider

This section describes Context Provider, a component designed for context provi-
sioning on a mobile device.

Context data is acquired locally on each mobile device and consumed by the
workflow management system. However, there can be other mobile context-aware
applications running on the same device which could use and consume the same
context data. It would be inefficient to have a number of context provisioning services
with same functionalities implemented on one mobile device. Therefore, Context
Provider has been designed to be used twofold as:

1. an internal component of the workflow management system, which provides
services solely to the workflow management system. In this case, this compo-
nent can be fully designed in a workflow-specific way.

2. an external component, respectively a stand-alone engine, which provides
context provisioning services to several context consumers and mobile ap-
plications.

Context Provider interprets the context definition part of the MobWEL workflow
description, but is able to interpret any context model definition which conforms to
the context definition XML schema. These context definitions can be provided by
other mobile applications. Based on the context model definitions, the provider can
monitor, acquire, process and aggregates the relevant raw context data, and dis-
seminates meaningful and required context information back to applications.

Context Provider also supports context querying. Mobile applications can syn-
chronously communicate with the provider and obtain any context information at
real-time.

The infrastructure of Context Provider is shown in Figure 6.3.

Figure 6.3: Context Provider Infrastructure

112

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

Context Provider has Context Container which contains self-contained context
components. The container can contain various context components, each manag-
ing particular context concern. There are five context widget examples presented,
Bluetooth Context, Location Context, WiFi Context, UP (User Preference) Context,
and Light Context.

Context Provider has two main layers. The Context Data Processing Layer man-
ages, processes and aggregates context data acquired by context widgets within the
system. The Interaction and Context Management Layer manages interaction with
other mobile applications, disseminates context information and manages lifecycles
of context widgets. Interaction with other applications is enabled through Context
Provider Interface.

The elements of Context Provider are in details described next.

6.3.1 Context Data Processing Layer

The Context Data Processing Layer represents the core of the context provider. In
this layer, the internal context aggregations and hierarchies are built when context
definition models are parsed. This layer supports context data monitoring, high-level
context value derivation and context aggregation, as explored next.

Atomic Context Acquisition and Processing

Context Component is a construct designed to manage and process particular
atomic context data that can be acquired from an external context source. By way
of illustration, Bluetooth Manager can provide an information whether Bluetooth is
switched on or off.

Although different context sources provide heterogeneous context data in various
formats, the high-level principles for context acquisition and processing are same
and can be generalised. Based on that fact, the blueprint of Context Component,
shown in Figure 6.4, and the mechanism for context acquisition and processing
have been designed.

Context Component is described by the contextName attribute which specifies
the name of particular context. As various applications might define different high-
level context values for the same context, Context Component can have one or
more ContextValuesSet(s). Each set holds the information about the current con-
text value (lastContextValue), and the date of last context change (dateOfChange).
A ContextValuesSet can be defined once and used by multiple workflows or mobile
applications. As each workflow or application is identified by its AppKey, the values
set is associated with the particular app keys. For example, the Battery level can be

113

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

Figure 6.4: Context Component

associated with two different values sets defined: {LOW, MEDIUM, HIGH} or {LOW,
FULL} depending on the specifications in the context definition model.

The values set {ON, OFF} is set as default set of values.

ContextValuesSet is a set of ContextValue(s). Often context values have to be
derived from raw context data. Range and SpecificContextValue have been cre-
ated to illustrate the use of the values descriptor designed for high-level context
information derivation. Range supports the use of ranges, for example, a context
value LOW can be derived for battery context if its raw numeric data is in a range
between 0% and 5%. SpecificContextValue can be used to name locations de-
fined by its coordinates, for example, the value of ”Museum” can be set for a pair of
coordinates. Another point in favour of using the values descriptor principle is that
a finite set of context values can be built as shown in the example for battery level,
two or three context values are defined instead of hundred.

The behaviour of Context Component is defined by using the following methods:

• create and destroy - the methods enable construction and destroying of the
context component object;

• setupContextValues - the method is used to define a new context value set;

• setContextValue - this method sets a new context value in the values set;

114

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

• addRange and addSpecificContextValue - the methods are used to define a
range or a specific context value;

• getContextValue - this method is a typical getter method;

• checkContextValue - in case that the context data needs to be obtained at real
time, this method is used to query the context source. For example, some
context sources can inform about context changes in certain intervals, so this
method enables to query the context data at any time when required;

• onContextChange - if a new context raw data is obtained from a context source,
the method is called. It tries to set the new context value in all context values
sets. However, the new value is set only if two conditions are fulfilled:

– (a) the new context value is an element of the context values set;

– (b) the new context value differs from the previous context value.

If the new value has been set, the sendNotification method is called. For ex-
ample, if last context value for Bluetooth has been OFF, context information
is broadcasted if and only if the new context value is ON. If context data ob-
tained from Bluetooth adapter is CONNECTING then this information is not
broadcasted further because it is not element of the context values set. Or if
the battery level has been changed from 23% to 22%, the context value is still
MEDIUM, therefore, there is no need to broadcast the same context value to
listening parties;

• sendNotification - if a change of context value occurs, a notification is sent
internally to all listening parties including composite components. The data
structure of notifications is: AppKey-ContextName-ContextValue-ContextDate.

As shown, Context Component is an abstract class that captures the common
context constructs and principles for context data acquisition and processing. How-
ever, context sources operate and provide context data in various ways. Thereby,
subclasses of the Context Component class for managing specific atomic context
data have to be defined in Context Container. These concrete components inherit
most of the Context Component structure and behaviour. Only constructor and the
checkContextValue method are context-specific constructs and have to be specified
in each component.

115

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

Context Composition

Context composition (aggregation) is supported by introducing the Composite Com-
ponent class, see Figure 6.5. Two or more types of Context Component can be
loosely aggregated to form Composite Component.

Figure 6.5: A Composite Component

The main role of the composite component is to aggregate context information
as prescribed in the context definition model. Composite components inherit all con-
structs of context component as they also need to obtain context changes and act
upon it. In addition, the composite component must be aware of context compo-
nents it is composed of and rules which drive the derivation of aggregated context
values. Composite components can be constructed, assembled and defined at run-
time. The isDefined attribute is used to determine that the component has been fully
defined, all child context components have been added and changes in child context
values can be monitored.

The definition of context aggregated values is driven by rules. The rules are for-
malized by a function as follows:

Definition 6.1 (Rule for composite component). Let Ccomp be composite component
and C1, C2, . . . , Cm be its child context components. Let Vcomp be the value set of
Ccomp. Let Vi be the value set of component Ci,∀i ∈ [0,m]. Then rule function can
be specified as

f: V1 × V2 × . . .× Vn → Vcomp

and the rule R can be written as:
R(v1, v2, . . . , vn, f(v1, v2, . . . , vn)), where vi ∈ Vi and f(v1, v2, . . . , vn) ∈ Vcomp.

The values v1, v2, . . . , vn are stored in the ifCondition attribute. The aggregated
value: f(v1, v2, . . . , vn) is stored in the thenStatement attribute.

116

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

The behaviour of Composite Component is defined by using the methods in-
herited from Context Component, and the following extra methods:

• registerComponent and unregisterComponent - the methods enable adding
and removing of a child context component object.

• addRule - the method is used to add a rule.

• fireRules - when a child context value changed, the method is used to fire rules
and determine new aggregated context value.

• isDefined - to set the value of the isDefined attribute.

• setupMonitor - once the composite component is fully defined, this method is
used to launch a monitoring mechanism for notifications broadcasted by child
context components.

Basically, a composite component object can be in the Definition or Active state
as shown in Figure 6.6.

Figure 6.6: Composite Component Lifecycle

The state diagram shows methods that are performable in each state. The object
is in the initial Definition state until its all child components and rules are defined.
While in the Definition state, its child context components can be registered, its
aggregated context value set can be defined, and rules can be specified. The fully
defined composite component becomes active when the isDefined attribute is set
to true. At the moment of leaving the Definition state, the setupMonitor method is
called.

In the Active state, a situation is constantly monitored for any child’s context
change. If such a context change occurs, composite component is notified. Rules
associated with the composite component are fired to determine the aggregated
context value. Similarly as in the context component, the sendNotification method is
called only when the new aggregated context value differs from the previous value,
as shown in the following example.

117

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

Consider two context components - Bluetooth and Wifi, both with value sets:
{ON,OFF}. A composite component object named DATASYNC is defined with its
own values set {ON, OFF}, and with Bluetooth and Wifi registered as its children.
Rules for DATASYNC are defined as follows (R1({ON,ON}, ON), R2({OFF,ON},
ON), R3({ON,OFF}, ON), R4({OFF,OFF}, OFF)).

Let have the initial child context values of both, Bluetooth and Wifi context, be set
to ON. So the aggregated context value of DATASYNC is ON. A context change in
one child context component (ON 7→ OFF) does not change the aggregated context
value of DATASYNC. The aggregated context value of DataSync would remain (ON),
thus no notification is sent and the sendNotification method is not invoked.

The relationships between Context Component and Composite Component
enable building context hierarchies in which low level context components are loosely
coupled to form high level composite contexts. These context hierarchies and data
structures correspond to the context definitions specified in the parsed XML docu-
ments. As demonstrated, this layer enables monitoring, acquiring and processing of
relevant context data.

Next, the layer with the role to manage lifecycle of context components, and
disseminate context information to applications, is presented.

6.3.2 Interaction and Context Management Layer

The main component of the Interaction and Context Management Layer is Context
Provider Manager. This layer has several characteristics:

1. When a new context definition is received, it invokes the XML Parser to parse
XML description and builds corresponding internal context hierarchies.

2. It maintains Context List, a list of Context Components which are in the
active state. Keeping the list up-to-date ensures that each component runs
only once.

3. It disseminates context information to external components or application. The
messages are broadcasted in the AppKey-ContextName-ContextValue-Context-
Date format.

4. This component implements Context Provider Interface and provides sup-
port for context querying.

118

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

6.3.3 Context Provider Interface

To standardise interaction between the context engine service and applications, it
is necessary to have a well-defined interface. Context Provider Interface include
specifications for context definition and context querying as follows:

• setupContexts The method is called by applications in order to deploy context
definition described in an XML document.

• registerContextPath Particular context components for specific context have to
be defined in Context Container. However, not all required context component
can be known when context provider is built. Therefore, to support dynamic
class loading and addition of other context components into container at run-
time, this method can be used. The input parameter is the actual path to the
context components.

• getContextValue The method is used for context querying at real-time. The
input for the method is component name and output is the current context
value.

6.3.4 Context Provider Usage

As outlined, there are two options how Context Provider can be used, either inter-
nally within the workflow management system, or externally. Context Provider has
been designed in a generic way to support both ways of usage, see Figure 6.7.

Figure 6.7: Usage Scenarios

119

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

Firstly, Context Provider can be deployed on a mobile device as a standalone
background service providing support for all context-aware applications as shown
in Figure 6.7(a). In this case, context-aware applications interact with it by using
its ContextEngine Interface. Secondly, Context Provider can be used as a library
within an application or workflow management system, as shown in Figure 6.7(b). In
this case, the particular context-aware application can extend the functionality of the
Context Provider by defining own Context Container and own context components
which inherit the attributes and behaviour from Context Component.

This concludes the description of Context Provider. Next section describes Con-
text Manager, a component designed to manage the use and consumption of context
information within the workflow management system.

6.4 Context Manager

The use and consumption of context information within the MobWEL workflow man-
agement system is managed by the Context Manager component. The design of
the component is described in this section.

Context Manager acts as intermediator between Context Provider and other in-
ternal workflow management components. Context Manager contains mechanisms
to synchronously and asynchronously communicate with Context Provider. To com-
municate effectively, both components need to be aware about the same contexts.
Because of this, the same context definition is deployed to both components. When
a new context definition is deployed to Context Manager, Context Manager also
passes the definition to Context Provider. This ensures that Context Provider broad-
casts context messages that are related to the parsed workflows and Context Man-
ager can process them further. Context Manager has implemented a mechanism to
receive the broadcasted messages and also a mechanism to query context when
required.

Context information is consumed within the workflow management system in
several ways. Context Provider broadcast context notifications, however, the mes-
sages do not contain information how the data should be further used within the
system or which component needs it. Therefore, the further use and routing of con-
text information is managed by Context Manager. Context Manager persists the last
known context values of workflow-active context components and provides context
information to other internal system components which can query it at real time.

The structure of this component is shown in Figure 6.8.

120

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

Figure 6.8: Context Manager

The Context Manager class is a main element in the package. There are four
elements created to provide different functionalities: ActiveContextsParser, Con-
textDefinitionDeployer, ContextListener, and ContextRequester. Algorithm 6.1
outlines the sequence of all operations performed when a context definition docu-
ment is deployed and the registerContextDefinition(String XMLsource, workflowID:
String) method is invoked in Context Manager.

Context Manager is associated with ActiveContextsParser, an element that in-
terprets and parses MobWEL context definitions. The parser extracts only informa-
tion about workflow-active contexts. This ensures that only relevant and required
context information is received and further managed. To support this, the Mob-
WELContext class has been created. For each workflow-active context defined
in the XML description, a MobWELContext object is constructed. The attributes
specified in the MobWELContext class are contextName, lastContextValue, last-
ContextChangeDate, contextValuesSet, workflowID and workflowUse. Apart from

121

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

Algorithm 6.1 Registering of Context Definition
Input: A path to the XML description (XMLsource) and the ID of the workflow
(workflowID).
Output: A set of constructed MobWELContext objects.
Begin
if XMLsource not empty then

//Step 1. parse workflow active contexts
ActiveContextsParser.parseContextDefinition(XMLsource, workflowID)
//Step 2. deploy the context definition to Context Provider
ContextDefinitionDeployer.deployContextDefinition(XMLsource)
//Step 3. add to the list of context definitions persisted in Context Manager
contextDefinitions.add(XMLsource, workflowID)
//Step 4. obtain initial context values
while exist O.workflowID = workflowID do

ContextRequester.obtainContextInformation(O.contextName)
end while
//Step 5. if no listener, set up one via setupMonitor method
if ContextListener.contextMonitor is not set then

ContextListener.setupMonitor()
end if

end if
End

the lastContextChangeDate and lastContextValue attributes, the values of the Mob-
WELContext attributes are extracted from the context definition document.

Algorithm 6.2 shows details of Step 1 and Step 2. In Step 1, the actual parsing
process is performed. When active contexts are parsed and corresponding internal
MobWELContext objects constructed, ContextDefinitionDeployer is used and the
definition is passed and deployed in Context Provider, as shown in Step2.

The context definition is added to the list of definitions in Context Manager (STEP
3). After that, Context Provider creates corresponding context hierarchies and broad-
cast relevant messages about context changes. To ensure that Context Manager
has current context values of all active contexts, ContextRequester is used and the
initial context values are obtained by invoking this method (STEP 4):

ContextRequestuer.obtainContextInformation(O.contextName) .
This method is invoked for each constructed MobWELContext object. ContextRe-
quester binds synchronously to Context Provider and query particular context in-
formation by invoking the ContextProvider.getContextValue(contextName) method
through the Context Provider’s Interface2.

To receive context information from Context Provider, ContextListener is used
and a listening mechanism in this element is established. This mechanism is set up
by calling the setupMonitor method. By setting the context monitor, the broadcasted

122

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

Algorithm 6.2 Registering of Context Definition - STEP 1 and STEP 2
Input: A path to the XML description (XMLsource) and the ID of the workflow
(workflowID).
Output: A set of constructed MobWELContext objects.
Begin (STEP1)
for context C defined in XMLsource do

if C.getAttributeValue(workflowActive) = ’YES’ then
construct a new MobWELContext object O
O : contextName← C : getAttributeV alue(contextName)
O : workflowUse← C : getAttributeV alue(consumptionType)
O : workflowID ← workflowID
while exist C.getAttributeValue(contextValue) do

O.contextValuesSet.add(C.getAttributeValue(contextValue))
end while
if O.workflowUse = ’Content’ then

ContextManager.contentContexts.add(O)
else if O.workflowUse = ’Communication’ then

ContextManager.conmmunicationContext = O
else if O.workflowUse = ’Collaboration’ then

ContextManager.collaborationContexts.add(O)
else if O.workflowUse = ’Worfklow’ then

ContextManager.workflowContexts.add(O)
else if O.workflowUse = ’UserProfile’ then

ContextManager.userProfileContexts.add(O)
end if

end if
end for
End (STEP1)
Begin (STEP2)
if Context Provider is external component then

bind to context provider service (ContextService)
ContextService.setupContexts(XMLsource)
unbind

end if
if Context Provider is internal component then

ContextProvider.setupContexts(XMLsource)
end if
End (STEP2)

123

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

messages can be received. When a message from Context Provider is received,
the ContextListener.onReceive(Message m) method in ContextListener is invoked
and operations listed in Algorithm 6.3 are performed. The context message speci-
fies context name, thereby, the corresponding MobWELContext object is found, and
its lastContextValue and lastContextChangeDate values are changed to the values
obtained from the message.

Algorithm 6.3 Obtaining context notification from Context Provider
Input: A message M received from ContextProvider.
Output: New context value persisted in Context Manager.
Begin
//obtain data from the message
workflowID ←M.getString(”contextApplicationKey”)
contextName←M.getString(”contextName”)
if workflowID exist in ContextListener.workflowIDs then

MobWELContextO ← ContextManager.findObject(workflowID; con-
textName)

O : lastContextV alue←M : getString(”contextInformation”)
O : lastContextChangeDate←M : getString(”contextDate”)
ContextManager.onContextChange(O)

end if
End

Finally, Context Manager is informed about the context change through the Con-
textManager.onContextChange(MobWELContext O) method and based on the work-
flowUse attribute, the context message is delivered to the right internal component.

6.4.1 Context Manager Interface

Context Manager provides support to other components of the workflow manage-
ment system through the methods defined in Context Manager Interface:

• registerContextDefinition and removeContextDefinition - The methods are used
to register or remove workflow-specific context definitions. The path to the XML
description is an input. Also workflowID has to be specified to keep association
between the workflow case and active contexts.

• getContextValue - Context Manager holds the last context values which can
be provided upon a request at real time.

This section described the Context Manager component of the MobWEL work-
flow management system. In next section, the component for content management,
Content Manager is presented.

124

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

6.5 Content Manager

This section presents Content Manager. Content Manager provides advanced con-
tent management functionalities and its role is to control and manage lifecycles of
content items manipulated in workflows. This component parses Context-aware
content lifecycle, the MobWEL workflow part that describes: a) content-related
metadata; and b) content lifecycle. One lifecycle definition describes the behaviour
of corresponding content objects processed in all running workflow instances of the
particular workflow. Content Manager monitors the evolution of the content ob-
jects in running workflow instances and maintains information about their current
states according to the lifecycle description. If a content state of a content object
is changed, it informs the particular workflow instance about the change, and the
instance can act upon that change. The structure of Content Manager is shown in
Figure 6.9.

Figure 6.9: Content Manager

125

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

Three elements have been constructed, each focusing on a different functional
aspect. Firstly, ContentLifecycleParser is an XML parser that interprets the context-
aware content lifecycles and build internal data structures. Secondly, content-related
metadata is persisted and managed by using Content Provider. Finally, Content
State Transition System is used to manage content lifecycles and maintain content
states. The Content Manager class, at the top of the hierarchy, manages these
three components. The manager implements methods specified in the Content
Manager Interface.

Next sections describe the elements in details.

6.5.1 Content Provider

Access to a structured set of content-related metadata is managed by the element
called Content Provider. The structure of data in Content Provider is described in
the data model depicted in Figure 6.10.

Figure 6.10: Data Model of Content Provider

The data model shows two entities: Content and Metadata. As the names
suggest, the first entity is created for content objects and the other entity for their
associated metadata. The Content entity contains properties that define the char-
acteristics of each content object processed in a workflow instance. The contentID
attribute identifies uniquely a particular content object. The identifier of each object
is formed by the workflowInstanceID concatenated with the name of the correspond-
ing content variable in the process flow. Content objects are stored in the mobile file
system and the contentLocation attribute specifies the actual path to the given con-
tent object. The contentName and contentType attributes correspond to name and
type of the content object. The attributes created and updated refer to the creation

126

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

date and date of last update of the record in this entity. The contentState and con-
tentOwner attributes define the recent content state, and the owner or creator of the
content object.

Other fields in this entity are workflow-specific. To determine whether the content
object is or is not processed in a running workflow instance, the workflowActive at-
tribute is used to describe the information. The workflowID and workflowInstanceID
attributes correspond to the identifiers of the workflow and the workflow instance that
processes the given content object. The last field, lifecycleID, refers to the identifier
of the relevant context-aware content lifecycle.

A content object can be associated with one or more metadata. The Metadata
entity has attributes corresponding to the associated metadata. The metadataName,
dataType and metadataType fields in this entity is populated with the metadata de-
tails described in the context-aware content lifecycle description. The actual value
of metadata is stored in the metadataValue field. The created, creator, modifier and
modified fields are used to keep track when was the metadata record created or last
modified and by whom.

6.5.2 Content Lifecycle Parser

Content Lifecycle XML Parser converts content lifecycles described in XML docu-
ments into internal data structures illustrated in Figure 6.11.

Content Lifecycle Parser constructs corresponding ContentLifecycle objects.
Each ContentLifecycle object is associated with a set of Metadata objects, Con-
tentState and ContentTransition objects. The source and target states, called pre-
State and postState, of each ContentTransition object refer to the corresponding
ContentState objects. After that, guards of transitions are mapped into expres-
sion objects which are further parsed into Condition objects. To enable condition
evaluation, in each Condition object, the left and the right side of the expression
are separated, and the relation operator is exempted. To enable context moni-
toring, the context name and expected context value are extracted and set in the
ContentAwareCondition and ContextDrivenCondition. For the AttributeCondition ob-
jects, the attribute (metadata name) and expected attribute value are extracted from
the expression. When a condition is evaluated, the evaluateCondition() method is
invoked. In this evaluation process, the actual values of left side and right side are
obtained by calling the obtainValues() method and persisted in the leftSideValue
and rightSideValue fields. Finally, the relational operator for comparison of these
two values and either true or false is returned for the condition evaluation.

However, there have been some issues identified in the parsing process of the

127

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

Figure 6.11: Internal Structures of Content Lifecycles

same content lifecycle on devices with different roles. Firstly, distributed workflow ex-
ecution imposes lack of consistency in the evolution of the content lifecycle across
multiple devices because a content object can be in two different content states
on two different devices. Secondly, context transitions requires context monitoring
which is role-specific. Attempts to fire the transitions between two states on all de-
vices is inefficient as certain transitions are associated only with certain workflow
partitions, and relevant context should be monitored only on the devices which have
the partitions deployed. Thereby, to overcome these issues, the concept of Pool-
ContentState has been introduced. PoolContentState is basically a specific content
state that is also a pool of other content states. In the parsing process, all content
states, which are not associated with the particular role and parsed workflow parti-
tion, are placed into the pool and the transitions between these states are neglected
in the parsing process and not mapped into ContentTransition objects. The excep-
tion is for the transitions between a role-specific content state and a content state
within the pool state. In this case, the transition is mapped into the ContentTransition
object that connects the role-specific content state and the pool state. The concept
of the pool state is illustrated in Figure 6.12.

128

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

Figure 6.12: Lifecycle Example in Different Representations

There is a part of the picture lifecycle illustrated. The lifecycle contains six con-
tent states, three content states are associated with the role of designer, and three
of them with the role of reviewer. Consider that there are two guards, g1 and g2,
placed on the transitions between the Rated and Ready To Review content states,
and between the Reviewed and Ready To Assess content states. When this lifecy-
cle is parsed with the workflow partition defined for the role of designer, all states
not owned by designer are placed in the pool state, and corresponding transitions
(g1 and g2) become transitions between the actual content states and the pool state.
Similarly, in the parsing process for the role of reviewer, the irrelevant content states
for this role are placed in the pool state. These two perspectives, the Designer’s
perspective and Reviewer’s perspective, are illustrated in the same figure.

The benefits of using pool states are twofold:

1. Context-related guards are evaluated only on relevant devices. Thus context
is monitored only on those devices that need it.

2. There is no need for full content state synchronisation over devices. Each
device can act upon local information. If content is in a state that belongs to
the pool state, it means that the content is processed on another device.

The parsing process of a context-aware content lifecycle description is described
in Algorithm 6.4.

The parsing process constructs a corresponding ContentLifecycle object. The
constructed objects become a part of the Content State Transition System which is
described next.

129

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

Algorithm 6.4 Adding of Context-Aware Content Lifecycle
Input: A path to the XML description, XMLsource, role R and the ID of the work-
flow, workflowID.
Output: ContentLifecycle object named Lobject.
Begin
get XML with the XMLsource path
construct pool content state Spool

if XMLsource not empty then
construct a new ContentLifecycle object Lobject

while exist metadata M in XML do
construct a new Metadata object Mobject with attributes of M
Lobject.add(Mobject)

end while
while exist state S in XML do

construct a new ContentState object Sobject with attributes of S
Lobject.add(Sobject)
if Sobject.roleName equals R then

Spool.add(Sobject)
end if

end while
while exist transition T in XML do

if T.sourceState is not in Spool then
construct a new ContentTransition object Tobject with attributes of T
sourceState← T.sourceState
sourceStateobject ← L.findState(sourceState)
if T.destinationState is not in Spool then

targetState← T.targetState
targetStateobject ← L.findState(targetState)

else
targetStateobject ← Spool

end if
Tobject.setPreState(sourceStateobject)
Tobject.setPostState(targetStateobject)
if exist guard G for T in XML then

construct Expression E corresponding to G
construct condition C
C ← E.parseExpression
Tobject.add(C)

end if
Lobject.add(Tobject)

end if
end while

end if
return Lobject

130

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

6.5.3 Content State Transition System

The last element of Content Manager is the Context-Aware Content State Tran-
sition System which is a finite state transition system that has been designed and
developed to support management of context-aware content lifecycles. The system
is defined as follows:

Definition 6.2 (Context-Aware Content State Transition System). Let L be a context-
aware content lifecycle. Then Context-Aware Content State Transition System for
the lifecycle L is described as a 4-tuple <S,s0,C,7→>, where

• Sdef
= {si : i ∈ [0, n]} is a finite, non-empty set of content states;

• s0 is an initial state;

• Cdef
= {ci : i ∈ [0, p]} is a set of conditions;

• CCA ⊂ C are context-aware conditions, CCD ⊂ C are context-driven conditions,
and CAT ⊂ C are attributes-related conditions, CCA ∩ CCD ∩ CAT = ∅;

• 7→ ⊂ S × C × S is a transition function from a source content state to the
destination content state under a certain condition.
If si, sj ∈ S, ck ∈ C, (si, ck, sj) ∈7→, then the transition can be written as:

si
ck7→ sj

There are three important aspects of the system explored next.

1. A number of content items processed in multiple workflow instances will have
the same content lifecycle. Therefore, the idea of content spaces used in
Alfresco, as described in Chapter 3, has been adapted in the Context-Aware
Content State Transition System. Smart folders, as the content spaces are
called in Alfresco, have been mapped into our system content states. It means
that each content state in the content lifecycle behaves as a folder that can
contains the references to the content items which are in this particular state
at the given point of time. As has been shown in Figure 6.11, each state
has an array list of presentContents that contains the content items IDs. This
approach also enables to add rules when a content item enters the state, is in
the state, or leaves the state.

2. Functioning of the Context-Aware Content State Transition System is associ-
ated with the following set of possible input events:

• Context information change when a notification is received from Context
Manager;

131

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

• Content update when a content item has been manipulated by an in-
voked and executed activity in the workflow process;

• External content state change when the state of a content item has
been changed on another device and notification has been received.

3. At any time, a content item is in a certain state of its lifecycle. As already out-
lined, movement to a new state is triggered when an associated condition is
evaluated to true. At the basic level, the system is a variant of state transition
system, therefore, it inherits its behaviour. By integrating context awareness,
conditions are evaluated in a different manner and content flow between two
states becomes more specific. Context-driven and context-aware conditions
must be well placed and designed as a context-driven condition is evaluated
only once when a content item enters the content state with such transition,
whereas a context-aware condition is evaluated when a context change oc-
curs.

Operating of the state transition system follows Algorithm 6.5.

6.5.4 Content Manager Interface

Content Manager provides content management support to other components of
the workflow management system. Other components communicates with Content
Manager via its interface. The following functions are made accessible through its
interface:

addContentLifecycle - This method is called when a new workflow definition is
added and it includes a context-aware content lifecycle that needs to be parsed.

getContentLifecycle - It returns a content lifecycle object identified by its name.

removeContentLifecycle - Tho remove the lifecycle from Content Manager.

createContent - The method is used to create a content object in Content Provider.

addContent - If a content item is obtained from another device, it can be added to
Content Manager by using this method.

onContextChange A context notification can be delivered to this component through
this method.

addAttribute/updateAttribute/deleteAttribute Methods used to add, update or de-
lete an attribute value.

132

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

Algorithm 6.5 Transition of content object O: si
c7→ sj

Input: A content object O in a content state Si. A set of outgoing transitions
from the state Si. Conditions placed on the transitions belong to one of the three
disjoint sets CCA, or CCD, or CAT .
Output: A content object O in a new content state Sj.

Require: A context change listener is set up for any condition c ∈ CCA

if onContentUpdate operation for object O has been performed then
for each transition t with condition c ∈ CAT do

if evaluate(c) then
fire transition t and move O into the target state Sj of t
inform state machine that O in a new content state Sj

exit
end if

end for
for each transition t with condition c ∈ CCD do

contextV alue← c.obtainContextInformation(contextName)
if c.expectedContextValue = contextValue then

fire transition t and move O into the target state Sj of t
inform state machine that O in a new content state Sj

exit
end if

end for
end if
if onContextChange notification received then

contextName← notification.obtainContextName
contextV alue← notification.obtainContextV alue
for each transition t with condition c ∈ CCA do

if c.expectedContextName = contextName AND
c.expectedContextValue = contextValue then

fire transition t and move O into the target state Sj of t
inform state machine that O in a new content state Sj

exit
end if

end for
end if

133

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

This section has described Content Manager. Next section outlines the MobWEL
engine.

6.6 MobWEL Engine

The MobWEL engine is the heart of the system that interprets MobWEL workflow
definitions, instantiate and executes MobWEL workflows. Thereby, the engine needs
to contain a parser and the execution unit. The MobWEL Parser and the parsing
process has been already described in Section 5.4.

As the engine extends a BPEL engine, the execution unit is already capable of
managing BPEL processes, thereby, only the support of execution of the constructs
introduced in the MobWEL language, such as interactionActivity and contentActivity,
has to be added. The semantics for interactionActivity is inherited from BPELlight.
The contentActivity is an extended BPEL activity which has a simple role to inform
Content Manager. Therefore, it is handled in the same manner as other BPEL activ-
ities and its internal execution is shown in Algorithm 6.6.

Algorithm 6.6 The internal execution of contentActivity
Input: A set of data: action A, content variable C, element E and value V.
if A = ”add” then

ContentManager.addAttribute(workflowInstanceID, C, E, V)
exit

end if
if A = ”update” then

ContentManager.updateAttribute(workflowInstanceID, C, E, V)
exit

end if
if A = ”remove” then

ContentManager.deleteAttribute(workflowInstanceID, C, E, V)
exit

end if

Support for context and content awareness needs to be developed in the Mob-
WEL engine. The MobWEL built-in functions presented in Section 4.3.5 are sup-
ported in the engine. When a condition containing a MobWEL function is evaluated,
context information or content state is queried and obtained from Context Manager
or Content Manager. The MobWEL engine handles the results of the condition eval-
uation in the same way as any other condition. Notifications from Context or Content
Manager need to be handled by two methods are developed: onContextChange and
onContentStateChange. These methods handle incoming events notifications and

134

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

route the information to the relevant workflow process. Event notifications are han-
dled by event handlers.

The last component of the MobWEL workflow management system, Peer-to-Peer
Interaction Manager, is presented next.

6.7 Peer-To-Peer Interaction Manager

The role of Peer-to-peer Interaction Manager is to manage transmissions of mes-
sages between mobile devices. This component cooperates with communication
middleware which is responsible for the actual transmission and is not a part of the
workflow management system. Peer-to-peer Interaction Manager is informed about
successful or failed message delivery and acts upon the notification events by pass-
ing the message back to the workflow execution engine.

Peer-to-peer Interaction Manager contains the following elements:

Event Handlers: Event Handler handles incoming messages from other devices
and requests coming from mobile applications or services. An event handler
can be designed for each form of communication such as for incoming data,
SMS, MMS messages or messages coming via Bluetooth connection. Event
handlers are platform-specific.

Message Parser: Structured information and messages are sent between devices
as a sequence of bytes. Message Parser is a component used to convert
workflow-related data and objects into such message format that can be trans-
mitted across the network. The parser also extracts workflow objects from
incoming messages.

Identity Manager: In peer-to-peer workflow execution, the devices are aware of
other fellow workflow participants and their devices. The identifiable elements
of the participating mobile devices are phone number, Wi-Fi and Bluetooth
MAC addresses. Identity Manager is used to store and manage the details
about participating collaborators. The details include collaborators’ names,
their roles, and other data needed for device-to-device communication. In addi-
tion, a record of collaborator’s availability based on the last known collaboration-
related context value, is managed in this element.

6.7.1 Interaction and Message Handling

Once the MobWEL workflow was deployed, its workflow instances can be created.
A mobile application creates a request to instantiate the workflow case. The work-

135

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

flow management system handles the request and instantiates the corresponding
workflow. The workflow instance is created on a single mobile device. However,
to complete the workflow instance, other collaborators and their devices must be
involved in its execution. There are several ways how this can be achieved. For
example:

• Static group of collaborators (defined for each instance): Each device holds
collaboration-related context information about collaborators’ availability. Based
on this information, the group of collaborators can be defined when the in-
stance is created. All participating devices are informed about the new in-
stance so they can prepare resources for the instance execution. However,
the disadvantage of this method is that by fixing the group of collaborators
at the time of instance creation, the flexibility to choose collaborators anytime
during the workflow instance execution is impossible.

• Static group of collaborators (shared for a number of instances): Another sim-
ilar option is to use the same group of collaborators for a number of workflow
instances if they are created within certain amount of time. This option is prac-
tical when a large number of instances is created within short period of time
but in terms of flexibility has more disadvantages than the previous option.

• Dynamic group of collaborators (defined on-the-fly): The best option is to
choose fellow workflow participants at any time during the instance execution.

• Collaborator’s ability to participate is considered: Collaborator can set own
preferences, for example, whether is currently available, or how many request
wishes to handle in a certain period of time.

The options are listed to show the possible interactions and how knowing the
collaborators’ context situation can add value to the MobWEL workflow execution.
However, it is out of the scope of this thesis to optimise the interaction model and this
will be addressed in the future. To achieve the objectives of this work, the first option
has been chosen as the most convenient one. Thus a group of collaborators is fixed
when an instance is created and all messages related to the workflow instance are
shared only among the group. All participants are informed about creation of a new
workflow instance. Similarly, when the workflow instance is completed or terminated,
all participants are informed. While the workflow instance is running, messages are
exchanged between workflow participants.

Basically, from high-level perspective there are only three types of messages that
can be shared between two mobile devices as shown in Figure 6.13.

136

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

Figure 6.13: Incoming Message from Another Mobile Device

The first message type informs about collaborator’s context, the second type
informs about the state of a workflow instance and the last one contains data or
content related to already running instance. If the message contains context infor-
mation, the message is passed to Identity Manager which finds the collaborator and
sets collaborator’s availability to the context information included in the message. If
the message contains workflow-related data, the particular workflow type identified
by workflowID is found. Next, if the message is related to a running workflow in-
stance then the message is passed to it. If not, the message contains information
about new workflow instance that has been created on the other mobile device and
the corresponding instance is created also on this device and message is passed to
the created instance.

Based on the high-level analysis, the structure and format of messages has been
designed and is described in next section.

6.7.2 MobWEL Communication Protocol

This section describes a protocol specification for exchanging structured information
among peers who participate in the execution of MobWEL workflows. The message
protocol simplifies the exchange and handling of message between peers. Firstly,
the structure of messages is defined. Next, processing of messages is examined.

137

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

6.7.3 Message Structure

At high-level, there have been three types of messages identified. To design a uni-
formed message format suitable for all types, each message is examined and anal-
ysed in details:

1. Context-related message informing about collaborator’s current availability: This
message evidently needs to contain information about the workflow type that
it belongs to, identified by workflowID, and the context information itself. The
context information must be specified by the context name and context value.
It needs to be clearly stated that the data in the message is context-related.

2. Message informing about the state of a workflow instance: To identify the
workflow type which has been instantiated, workflowID has to be given. Ad-
ditionally, the id of the workflow instance needs to be given in order to keep
the execution of the workflow instance consistent across devices. There are
three possible states the instances can be in: New, Running, and Terminated.
The state needs to be indicated in the message. If the state is new or termi-
nated, either new instance is created or running instance is terminated. If the
state is set to running, it means that the message includes other, the workflow
instance-related data.

3. Message includes workflow-related data: As outlined, if the state of instance
is defined as running, the message contains some workflow instance-related
data. There are three options regarding the data type considered in this work:

• Text-based data that represent inputs or outputs of workflow activities;

• Content and its metadata that is sent to other device;

• Content-state to communicate progress.

Based on the analysis, the MobWEL message has been built by using the fol-
lowing constructs:

Workflow State - identifies the workflow state:
NEW - informing about a new workflow instance;
RUNNING - indicating that the message is related to an existing instance;
END - informing about termination of an instance;

Workflow ID and Workflow Instance ID - unique identifiers of the particular workflow case
and workflow instance;

Sender’s Phone ID - identifies the sender of the message (using the phone number);

138

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

Data Type - specifies the type of data that are included in the message:
CONTEXT - context-related data;
CONTENTSTATE - data that drives the correct execution of workflow;
VARIABLE - text-based data (inputs or outputs of the performed tasks);
CONTENT - information about content and its metadata;

Content ID and Content Object - if a piece of content is shared between devices, these
fields are filled with corresponding information about content id and content object
itself;

Action - specifies an action, task or activity that needs to be performed by other device;

Workflow Data[(name,value)] - actual workflow data;

Timestamp - a point of time at which the message has been created.

6.7.4 Message Processing

When a message from another device is received, the message is processed by
following Algorithm 6.7.

6.8 Internal Cooperations

In previous section, the logical architecture of the MobWEL workflow management
system has been presented. This section focuses on interactions between the in-
dividual components of the system. The goal is to emphasise context and content
awareness in the MobWEL approach.

Internal interactions which are related to context awareness are illustrated in
Figure 6.14.

As already described, MobWEL Parser registers the Context Definition part of
a MobWEL workflow description in Context Manager. The appKey attribute in the
XML context definition refers to workflowID. Context Manager extracts and manages
only active contexts for the workflow type. After that, Context Manager registers the
context definition in Context Provider.

Synchronous and asynchronous communication between the components is sup-
ported. Context Manager can query context information by specifying context name
and workflowID. Based on this information, Context Provider responds and provides
the most recent context value. On the other hand, when a context change occurs,
Context Provider sends a notification about the event to Context Manager. Context
Manager contains a listener that captures and handles the notification. Based on

139

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

Algorithm 6.7 Message Processing by Event Handler
Input: Incoming message m.
(Note: WE = Workflow Engine, IM = Identity Manager)
workflowState← m.WorkflowState
workflowID ← m.WorkflowID
workflowInstanceID ← m.WorkflowInstanceID
if workflowState = ”NEW” then

we.create newInstance{workflowID, workflowInstanceID}
exit

end if
if workflowState = ”END” then

we.remove workflowInstance{workflowID, workflowInstanceID}
exit

end if
if workflowState = ”RUNNING” then

dataType← m.DataType
if dataType = ”CONTEXT” then

contextName← m.WorkflowData.name
contextV alue← m.WorkflowData.value
im.setCollaboratorContext{m.SenderPhone ID), workflowID,
contextName, contextValue}
exit

end if
if dataType = ”CONTENTSTATE” then

we.informContentState{workflowID, workflowInstanceID,
m.ContentName,m.WorkflowData.value}
exit

end if
if dataType = ”VARIABLE” then

we.handleRequest{workflowID, workflowInstanceID, m.Action,
m.WorkflowData.name, m.WorkflowData.value}
exit

end if
if dataType = ”CONTENT” then

i← 0
while exist m(Workflow Data) do

variableData(name, value)[i++]← m.WorkflowData
next

end while
we.handleRequest{workflowID, workflowInstanceID, m.Action,
variableData[], m.ContentName, m.ContentItem}
exit

end if
end if

140

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

Figure 6.14: Context-Related Interactions

the consumption type, the notification is sent to either MobWEL Engine or Content
Manager.

Context Manager also keeps the latest context values of all active contexts.
Hence Workflow Engine or Content Manager can query context values by speci-
fying context name and workflowID at any point of time. The important fact to notice
is that all running workflow instances share the same context definition, therefore
there is no need to keep different context information for each workflow instance.
Basically Context Manager is workflow instance-agnostic. One context event noti-
fication is disseminated to all running instances. However, each instance might be
in a different point of its execution, thus the same context event might be handled
differently.

The second interaction model between MobWEL Engine and Content Manager,
illustrated in Figure 6.15, relates to the exchange of content state-related informa-
tion.

Figure 6.15: Content-Related Interactions

Similarly, when a MobWEL workflow description is parsed, the integrated content

141

6. MOBWEL WORKFLOW MANAGEMENT AND EXECUTION

lifecycles are registered within Content Manager. In contrast to Context Manager,
Content Manager needs to know about workflow instances as it manages content
objects processed in each instance. Content Manager processes content objects
through their lifecycles and notifies MobWEL Engine when a content object has
reached a new content state. MobWEL engine handles the notification related to
the content state change accordingly. Content Manager also can respond to content
state-related queries at real time.

With this section, the chapter is concluded and its summary is given next.

6.9 Summary

This chapter has described the logical architecture of the mobile MobWEL workflow
management system, and outlined functioning of all its components. The MobWEL
workflow management system is composed of five components: Context Provider,
Context Manager, Content Manager, MobWEL Engine, and Peer-to-peer Interaction
Manager.

With this chapter, the main part of this thesis in which the MobWEL workflow
approach has been introduced is concluded. The next part of this thesis is dedicated
to validation of the MobWEL workflow approach.

142

Part III

Validation

143

Chapter 7

From Design To Implementation

Contents
7.1 Introduction . 144

7.2 ContextEngine . 145

7.3 CAWEFA . 151

7.4 Summary . 160

7.1 Introduction

In Chapter 5, the components of the MobWEL workflow management system have
been described. To prove that the theory is functional, a prototype of the MobWEL
workflow management system has been implemented on the Android platform. The
Android platform has been chosen for the implementation because it is an open
source platform written in a customised version of Java, and thereby, it is possible
directly map UML classes from the system design into corresponding Java classes
and structures. Furthermore, the platform provides powerful and rich communication
facilities for implementation of peer-to-peer interaction model.

The MobWEL workflow management system is composed of a number of com-
ponents. As outlined in Chapter 5, Context Provider can be implemented as an
internal or external component. Because of the need to use Context Provider in two
different projects, Context Provider has been implemented as an external compo-
nent called ContextEngine. Thereby, the implementation has been driven by two
different sets of requirements. The general design and implementation details of
ContextEngine have been described in the work of Kramer et al. (2011).

Secondly, a prototype of the MobWEL workflow management system has been
built and named CAWEFA (Context-Aware Workflow Engine For Android). The initial

144

7. FROM DESIGN TO IMPLEMENTATION

version of CAWEFA has used ContextEngine as a context provider. However, for the
validation purposes and easier workflow behaviour monitoring, Context Provider has
been also added as an internal component to CAWEFA.

This chapter outlines some implementation details of the software prototypes.
The remainder of this chapter is organised as follows. Section 7.2 describes the
implementation details of the externalised Context Provider. CAWEFA, the prototype
of the MobWEL workflow management system is explored in Section 7.3. Finally,
this chapter is summarised in Section 7.4.

7.2 ContextEngine

This section describes the implementation details of ContextEngine.

7.2.1 Context Data Processing Layer

The self-contained Context Component has been implemented as an abstract
class that provides the base for each context. However, there are different platform-
specific context source types and ways for gathering raw context data. Based on the
context source type and context acquisition principle, there have been four different
subtypes of Context Component defined for the Android platform: ListenerCom-
ponent, MonitorComponent, PreferenceChangeComponent and LocationCon-
text, see Figure 7.1.

A variety of built-in sensors such as a light sensor or accelerometer in mobile
phones act as primary sources of environmental conditions. The ListenerCompo-
nent type has been designed to process raw context data captured by sensors. This
component type implements SensorEventListener interface and has the following at-
tributes: sensorManager needs to be specified in order to access the device’s sen-
sors, sensorType is used to specify the particular type of sensor, and delayType de-
fines the rate sensor events are delivered at. To capture incoming notifications from
sensors, the onSensorChanged() method has been implemented and this method
is called when a change of context data occurs. LightContext for monitoring the light
sensor values has been implemented as the concrete realisation of the listener type.

Another type of context component is MonitorComponent. There are context
sources and services running on the Android platform which send broadcasts if a
change occurs. To be able to receive the broadcasts, an Android-specific element
called Broadcast Receiver needs to be registered within the context component.
Thereby, MonitorComponent has been created for context data that are obtained by
receiving broadcasts. Context broadcasters are, for example, bluetooth manager

145

7. FROM DESIGN TO IMPLEMENTATION

Figure 7.1: Component Types

146

7. FROM DESIGN TO IMPLEMENTATION

that broadcasts bluetooth on/off status, wifi manager that informs about wifi status,
or battery manager that informs about battery level. To demonstrate its use, there
have been three corresponding realisations of this MonitorComponent type imple-
mented: WifiContext, BatteryContext and BluetoothContext. Each component has
the contextMonitor attribute which specifies the name of the Broadcast Receiver ob-
ject, and the additional attributes, filterAction and monitoringKey, which are needed
to filter out the relevant broadcasts. To support context data processing, the obtain-
ContextInformation and checkContext are the only context-specific methods which
have to be implemented for each realisation. The obtainContextInformation method
has been designed to support derivation of high-level context information, for in-
stance, if battery level value is 50, then the context information is MEDIUM. Once
the high-level information is obtained, the checkContext method is called to deter-
mine whether there has been change in the context information. For example, if the
previous value of battery level was 51 and the derived context information was as
MEDIUM, then there is no need to broadcast this is context change as the derived
context information is MEDIUM again.

The third type called PreferenceChangeComponent is defined for user pref-
erences. On Android, the component type implements the OnPreferenceChange-
Listener interface. Changes in user preferences are obtained by invoking the on-
SharedPreferenceChanged() method. Each preference is described by the prefer-
ence attribute which defines its name, identifier or key. The data type such as string,
int or boolean is provided by the preferenceType attribute. This type of ContextCom-
ponent is used to monitor user preferences, thus the UserPreferenceContext rep-
resents its concrete realisation and can be used to obtain the user preference for
number of reviews or rating.

Finally, the LocationContext component type is implemented to deal with data
obtained from GPS. The following attributes has been added to the type: location-
Manager to provide access to the system location services, provider to specify
name of the GPS location provider, location to indicate the last known location,
minTime to specify minimum time interval between location updates in milliseconds,
minDistance to specify the minimum distance between location updates in meters
and distanceBetween to define the area of the nearby locations from current location
in meters. To control the frequency of location updates, the setUpdatesCriteria(int
time,int distance) method is used. The onLocationChanged method is implemented
to receive notifications from the system location services. The context-aware appli-
cation can list a number of locations in the XML context definition, the purpose of the
isNearby method is to return those locations that can be found within the distance
determined by distanceBetween parameter in the nearest-first order.

147

7. FROM DESIGN TO IMPLEMENTATION

This section has demonstrated the implementation of the particular context com-
ponents to obtain context data. These context component realisations are packed
with the ContextEngine package, however, there might be other context variables de-
fined later when ContextEngine is running. ContextEngine supports dynamic class
loading which gives the programmer the ability to install software components at
runtime (Liang & Bracha, 1998). Wissen et al. (2010) pointed out that the benefits of
using DCL include the capability to lazy load classes, reducing memory usage; the
ability to instantiate a component without explicit referencing, allowing more generic
code; and finally allow the programmer to add additional context components to the
engine without needing to alter or access the engine source code.

Broadcast Engineering

Apart from the atomic context components, the Composite Component has been
implemented to support context aggregation. This component has to interact with
its child contexts and be regularly informed about child context changes. The inter-
action is supported by using the sendNotification and onReceive methods shown in
Listing 7.1.

Listing 7.1: Implementation of the sendNotification and onReceive methods
/ / spec i f y the name of the i n t e n t
p u b l i c s t a t i c f i n a l S t r i n g CONTEXT INTENT = ” uk . ac . uwl . mdse . contextengine .CONTEXT CHANGED” ;

/ / method to send n o t i f i c a t i o n
p u b l i c vo id s e n d N o t i f i c a t i o n () {

I n t e n t i n t e n t = new I n t e n t () ;
i n t e n t . se tAc t ion (CONTEXT INTENT) ;
i n t e n t . pu tEx t ra (CONTEXT NAME, name) ;
i n t e n t . pu tEx t ra (CONTEXT DATE, Calendar . ge t Ins tance () . t o S t r i n g ()) ;
i n t e n t . pu tEx t ra (CONTEXT INFORMATION, con tex t I n fo rma t i on) ;
sendBroadcast (i n t e n t) ;

}

/ / method to rece ive n o t i f i c a t i o n
I n t e n t F i l t e r f i l t e r = new I n t e n t F i l t e r (CONTEXT INTENT) ;
p r i v a t e vo id setupMoni tor () {

contex tMon i to r = new BroadcastReceiver () {
@Override

p u b l i c vo id onReceive (Context c , I n t e n t i n) {
S t r i n g contex t = i n . ge tExt ras () . g e tS t r i ng (CONTEXT NAME) ;
S t r i n g value = i n . getExt ras () . getBoolean (CONTEXT INFORMATION) ;
. . .

checkContext () ;
}
}

}
} ;

con tex t . r eg i s t e rRece i ve r (contextMoni tor , f i l t e r) ;
}

148

7. FROM DESIGN TO IMPLEMENTATION

The sendNotification() method is implemented in each component and is invoked
when a change of context information occurs. Generally, messages in Android ap-
plications which facilitate run-time binding between objects are called intents. A
custom, ContextEngine-specific, intent for the internal context broadcasting purpose
has been implemented in the Context Component class. Intents are characterised
by an action name, and the intent in ContextEngine has been named as

”uk.ac.uwl.mdse.contextengine.CONTEXT CHANGED” .
The listing also shows the implementation of the sendNotification() method, and how
various data such as context name, context information, and date are associated
with the intent, and then broadcasted.

Once the messages are broadcasted, a broadcast receiver must be registered
within the components that are interested in receiving the messages. The setup-
Monitor method is used to register the broadcast receiver. The receiver is imple-
mented with a filter that specifies which types of intents should be received. The
filter is set for the same intent, defined with the action:

”uk.ac.uwl.mdse.contextengine.CONTEXT CHANGED” .
The receiver implements the onReceive method in which the data is extracted and
further processed as needed.

This section has explored messages exchange internally within ContextEngine.
However, ContextEngine has to broadcast relevant context information to mobile ap-
plications. A supportive mechanism for external message broadcasting is explored
next.

7.2.2 ContextEngine Manager

The ContextEngine provides context provisioning services to third-party context-
aware applications, therefore, it needs to be capable of performing long running
operations in background. The ContextEngine Manager element has been imple-
mented as an Android-specific element called Service.

ContextEngine Manager has two roles: a) to manage lifecycles of context compo-
nents; and b) to manage communication and interaction with external applications.

ContextEngine publishes its services through two interfaces declared by using
Android Interface Definition Language (AIDL), see Listing 7.2. The first interface
enables any mobile application running on the same mobile device to deploy their
context definitions by calling the setupContexts(String path) method. The entry pa-
rameter of the method is the actual path to the context definition XML document.
The referred XML documents must conform to the XML schema for context defi-
nition defined in Chapter 4. The other method in the first interface, the register-

149

7. FROM DESIGN TO IMPLEMENTATION

ContextPath(String path) method, is used for dynamic class loading. The second
interface supports synchronous communication and context querying. An applica-
tion can query ContextEngine at any time and obtain a context value of any context
specified by its name.

Listing 7.2: Interfaces
I n t e r f a c e 1 :
i n t e r f a c e I C o n t e x t s D e f i n i t i o n {

/ / to add contex t d e f i n i t i o n i n XML document :
vo id setupContexts (S t r i n g path) ;
/ / to add ex te rna l con tex t components :
boolean reg is te rCon tex tPa th (S t r i n g path) ;

}
I n t e r f a c e 2 :
i n t e r f a c e ISynchronousCommunication {

S t r i n g getContextValue (i n S t r i n g componentName) ;
}

Asynchronous communication is supported through messages broadcasting. Con-
textEngine Manager has implemented a broadcast receiver that receives internally
broadcasted messages with the action name:

uk.ac.uwl.mdse.contextengine.CONTEXT CHANGED

The messages are further broadcasted to external applications by using the send-
BroadcastToApps() method. The body of the method is the same as the body of the
sendNotification method, however, an external intent is specified for it. The action
name for the external intent is

”uk.ac.uwl.mdse.contextengine.REMOTE SERV ICE”

Mobile application can receive the broadcasted context messages if they set up a
listener and a filter for this external action.

In this section the implementation details of ContextEngine have been described.
Next section gives the implementation details of CAWEFA.

150

7. FROM DESIGN TO IMPLEMENTATION

7.3 CAWEFA

This section describes the distributed mobile workflow management system called
CAWEFA. The system has not been built from scratch. An open source BPEL work-
flow engine named Sliver1 has been adapted and extended to run on the Android
platform. The architecture of Sliver execution engine has been presented in Chapter
2. The separation of communication and processing concerns as initially outlined in
Sliver’s architecture remains same in CAWEFA. However, the communication layer
has been extended to exchange direct messages between peers and the process-
ing layer has been extended to support the execution of MobWEL workflows. In
addition, components for context management and content management have been
built. Components are encapsulated, and each component exists autonomously
from other components which means that the internal functioning of any component
is not visible to other components and they communicate with each other through
interfaces. The singleton pattern has been used to restrict the instantiation of each
component to one object.

A CAWEFA service used for the interaction with mobile applications is explored
in next section.

7.3.1 CAWEFA Service

Sliver’s BPEL Server has been replaced by two components: CAWEFA Service and
Workflow Manager. The CAWEFA Service class extends an Android base com-
ponent called Service, implements its abstract methods and overrides its lifecycle
methods. This service runs as a background ongoing process and serves as en-
try point for communication with mobile applications. Mobile applications do not
directly call methods in CAWEFAService but connect to remote interfaces specified
by using AIDL (Listing 7.3). Mobile applications can add or remove their defined
MobWEL workflow processes by connecting through the IBusinessProcessDefini-
tion interface. The IWorkflowClient interface has been implemented to handle other
workflow-related requests, for example, for workflow instantiation.

Listing 7.3: CAWEFA Interfaces
i n t e r f a c e IBus inessProcessDef in i t i on {

vo id addBusinessProcess (i n S t r i n g operationNamespace , S t r i n g processResource) ;
vo id removeBusinessProcess (i n S t r i n g operationNamespace) ;

}
i n t e r f a c e IWork f lowCl ien t {

i n t handleRequest (i n S t r i n g operationNamespace , i n Object message) ;
}

1http://mobilab.cse.wustl.edu/projects/sliver/

151

7. FROM DESIGN TO IMPLEMENTATION

When the addBusinessProcess method is invoked, the MobWEL workflow defi-
nition is parsed and converted into internal data structures as described next.

7.3.2 MobWEL Process Parsing

The BPEL parser of the Sliver engine has been adapted and extended to parse Mob-
WEL XML documents. The Process1 class in Sliver has been adapted to handle the
additional tags and parse the whole MobWEL specification correctly, see Listing 7.4.

Listing 7.4: The adapted and extended constructor of the Sliver’s Process class
p u b l i c Process (XmlPul lParser parser)

throws XmlPul lParserExcept ion , IOException , MalformedDocumentException
{

parser . r equ i re (XmlPul lParser .START TAG, namespace , ” process ”) ;
name = parser . g e t A t t r i b u t e V a l u e (n u l l , ”name”) ;
i f (name == n u l l)

throw new MalformedBPELException (parser ,
”<process> must spec i f y name”) ;

. . .
a n y A t t r i b u t e = parser . g e t A t t r i b u t e V a l u e (n u l l , ” a n y A t t r i b u t e ”) ;
i f (a n y A t t r i b u t e == n u l l)

throw new MalformedBPELException (parser ,
”<process> must spec i f y a n y A t t r i b u t e ”) ;

. . .
/ / Read and v a l i d a t e the process ’ s name and a t t r i b u t e s

parser . nextTag () ;

pa r tne rL inks = new Par tnerL inks (parser) ;
/ / Read the <par tnerL inks> c h i l d
par tne rs = new Par tners (parser) ;
/ / Read the <par tners> c h i l d
co l labora torsGroups = new Col laboratorsGroups (parser) ;
/ / Read the <Col laboratorsGroups> c h i l d
parseCol laboratorsGroups (co l labora torsGroups) ;
/ / parse co l labora torsGroups to I d e n t i t y Manager
v a r i a b l e s = new Var iab les (parser) ;
/ / Read the <var iab les> c h i l d
l i f e c y c l e s = new L i f e c y c l e s (parser , v a r i a b l e s) ;
/ / Read the < l i f e c y c l e s > c h i l d
parseConten tL i fecyc les (l i f e c y c l e s) ;
/ / parse c o n t e n t L i f e c y c l e s to Content Manager
c o n t e x t D e f i n i t i o n s = new C o n t e x t D e f i n i t i o n s (parser) ;
/ / Read the <c o n t e x t D e f i n i t i o n s> c h i l d
pa rseCon tex tDe f i n i t i ons (c o n t e x t D e f i n i t i o n s) ;
/ / parse c o n t e x t D e f i n i t i o n s to Context Manager

c o r r e l a t i o n S e t s = new Cor re la t i onSe ts (parser) ;
/ / Read the <co r re l a t i onSe ts> c h i l d
ScopeData scopeData = new ScopeData (name, par tnerL inks ,

va r iab les , co r re l a t i onSe ts , suppressJo inFa i lu re) ;

1The name of the Process class has not been renamed to ’Workflow’ in CAWEFA. The name is
preserved due to backward compatibility with Sliver engine.

152

7. FROM DESIGN TO IMPLEMENTATION

scopeData . mobwelPartners = par tne rs ;
Enumeration e = l i f e c y c l e s . g e t L i f e c y c l e s () ;
wh i le (e . hasMoreElements ()) {

L i f e c y c l e l i f e c y c l e = (L i f e c y c l e) e . nextElement () ;
scopeData . con ten tVar iab les . put (l i f e c y c l e . ge tVar iab le () , l i f e c y c l e . c o n t e n t L i f e c y c l e)

;
}
/ / Create a new scope wi th the scope data we ’ ve read so f a r

f au l tHand le r s = new Faul tHandlers (parser , scopeData) ;
/ / Read the <f au l tHand le rs> c h i l d

eventHandlers = new EventHandlers (parser , scopeData) ;
/ / Read the <eventHandlers> c h i l d

a c t i v i t y = A c t i v i t y . parse (parser , scopeData) ;
s t a r t A c t i v i t i e s = a c t i v i t y . g e t S t a r t A c t i v i t i e s () ;
i n t e r a c t i o n A c t i v i t i e s = a c t i v i t y . g e t I n t e r a c t i o n A c t i v i t i e s () ;
/ / Read the roo t a c t i v i t y

parser . r equ i re (XmlPul lParser .END TAG, namespace , ” process ”) ;
/ / Read the c los ing tag

}

MobWEL workflows encoded in XML documents are converted into executable
Java workflow objects. Each tag in the BPEL specification is represented in Sliver by
a corresponding Java class, e.g., the<variable> tag is mapped to the Variable class
or the <variables > tag is mapped to the Variables class. There are two different
categories of tags. The first category is formed by tags for global declarations, and
the second category for the process control flow activities. As the set of global
declarations has been extended in MobWEL, parsing of content lifecycles, group
identification and context definition tags has been added to the Process constructor.
The global declaration tag parsing is shown next.

Global Declaration Tag Parsing

To demonstrate parsing of a global declaration tag, a simplified version of the Life-
cycles class is shown in Listing 7.5.

Listing 7.5: The Lifecycles class
p u b l i c c lass L i f e c y c l e s {

p u b l i c f i n a l Hashtable l i f e c y c l e s = new Hashtable () ;
L i f e c y c l e s (XmlPul lParser parser , Var iab les v a r i a b l e s) throws

XmlPul lParserExcept ion , IOException , MalformedDocumentException
{

i f (! parser . getName () . equals (” l i f e c y c l e s ”))
r e t u r n ;

/ / I f there ’ s no < l i f e c y c l e s > block , then don ’ t parse anyth ing

parser . r equ i re (XmlPul lParser .START TAG, namespace , ” l i f e c y c l e s ”) ;
/ / r equ i res < l i f e c y c l e s > opening tag

153

7. FROM DESIGN TO IMPLEMENTATION

parser . nextTag () ;
/ / move cursor to s t a r t o f f i r s t c h i l d

Vector l i n k s = new Vector () ;
wh i le (parser . getName () . equals (” l i f e c y c l e ”))
l i n k s . addElement (new L i f e c y c l e (parser , va r i a b l e s)) ;
/ / parse every c h i l d element , the < l i f e c y c l e > tag

i f (l i n k s . isEmpty ())
throw new MalformedBPELException (parser ,

”< l i f e c y c l e s > must spec i f y a t l e a s t one < l i f e c y c l e >”) ;
/ / Va l i da te t h a t there ’ s a t l e a s t one l i f e c y c l e

Enumeration e = l i n k s . elements () ;
wh i le (e . hasMoreElements ())
{

L i f e c y c l e next = (L i f e c y c l e) e . nextElement () ;
l i f e c y c l e s . put (next . getName () , next) ;

}
/ / a l l l i f e c y c l e s are s tored i n hashtable

parser . r equ i re (XmlPul lParser .END TAG, namespace ,
” l i f e c y c l e s ”) ;

/ / r equ i res </ l i f e c y c l e s > c los i ng tag
parser . nextTag () ;
/ / moves cursor to the next tag

}
p u b l i c L i f e c y c l e g e t L i f e c y c l e (S t r i n g name)
{

r e t u r n (L i f e c y c l e) l i f e c y c l e s . get (name) ;
}
p u b l i c Enumeration g e t L i f e c y c l e s ()
{

r e t u r n l i f e c y c l e s . elements () ;
}

}

So all global declarations tags are similarly parsed into corresponding Java classes.
Parsing of activity tags is slightly different, as is explored next.

MobWEL Activity Parsing and Implementation

Activity tags such as contentActivity, sequence, assign etc. represent actual ex-
ecutable actions, thereby their parsing and implementation differs from the global
declaration tags. In Sliver, the abstract Activity class is implemented that provides
parse method. The parse method is called when an activity tag is parsed. Each
control flow activity extends the Activity class, and is mapped into a corresponding
Java class, for example, the sequence tag is mapped into the Sequence class which
extends the Activity class.

To support the runtime execution of a control flow activity, the ActivityInstance
class is created in Sliver which implements the execute method. this method returns

154

7. FROM DESIGN TO IMPLEMENTATION

a signal. The signal (COMPLETED, EXITED, CANCELED, CLOSED, COMPEN-
SATED) is sent among activity instances. A typical case to illustrate the use of the
signal pattern is a situation where a parent activity instance can only proceed when
its child activity instance(s) have been completed successfully, or at least achieved
a certain state. The execute method is implemented with respect to the global work-
flow instance execution which means that it does the bookkeeping regarding the
instance’s state, and the actual activity execution is performed by invoking the ex-
ecuteImpl() method. The execute method in a given activity instance is invoked
when all activity’s precedors have been completed. Consequently the executeImpl
method is called from the inside of the execute method. All activity instance classes
override the executeImpl method so the actual action specified for the given activity
can be performed.

In Sliver, Java classes for all BPEL activities have been created, and Sliver sup-
ports 14 workflow patterns. In CAWEFA, only parsing of contentActivity and inter-
actionActivity tags has had to be added and supported. To extend the set of BPEL
activities, the MobWELActivityExtension class has been created in which the addi-
tional activities are specified. To illustrate the implementation of a MobWEL activity,
the implemented ContentActivity class is presented in Listing 7.6.

Listing 7.6: The ContentActivity class
p u b l i c c lass C o n t e n t A c t i v i t y extends CawefaAc t i v i t y {

p r i v a t e f i n a l S t r i n g name ;
p r i v a t e f i n a l S t r i n g ac t i on ;
p r i v a t e f i n a l S t r i n g element ;
p r i v a t e f i n a l S t r i n g value ;
S t r i n g var ;
V a r i a b l e S p e c i f i c a t i o n con ten tVar iab le ;

p u b l i c C o n t e n t A c t i v i t y (XmlPul lParser parser , ScopeData scopeData) throws IOException ,
XmlPul lParserExcept ion , MalformedDocumentException

{
super (parser , scopeData , ” c o n t e n t A c t i v i t y ”) ;
parseStar tTag () ;
name = parser . g e t A t t r i b u t e V a l u e (n u l l , ”name”) ;
ac t i on = parser . g e t A t t r i b u t e V a l u e (n u l l , ” ac t i on ”) ;

i f (! (ac t i on . equals (” add ”) | | ac t i on . equals (” update ”) | | ac t i on . equals (” remove ”)))
throw new MalformedBPELException (parser ,

”<Con ten tAc t i v i t y> must spec i f y ac t i on : add , update , remove ”) ;

var = parser . g e t A t t r i b u t e V a l u e (n u l l , ” v a r i a b l e ”) ;
con ten tVar iab le = g e t V a r i a b l e S p e c i f i c a t i o n (var) ;
element = parser . g e t A t t r i b u t e V a l u e (n u l l , ” element ”) ;
value = parser . g e t A t t r i b u t e V a l u e (n u l l , ” value ”) ;

parser . nextTag () ;
parseStandardElements () ;
parseEndTag () ;
parser . nextTag () ;

155

7. FROM DESIGN TO IMPLEMENTATION

}

@Override
p u b l i c A c t i v i t y I n s t a n c e newInstance (ProcessInstance processInstance) {

r e t u r n new A c t i v i t y I n s t a n c e (t h i s , processInstance) {
pro tec ted Signa l executeImpl ()

{
ContentManager cm = processInstance . getContentManager () ;
Object varva lue = processInstance . ge tOb jec tVar iab le (value) ;
Con ten tL i fecyc le l i f e c y c l e = processInstance . process . ge tCon ten tL i f ecyc le (var) ;
i f (ac t i on . equals (” add ”)) {

cm. addContent (processInstance , var , l i f e c y c l e , S t r i n g . valueOf (varva lue)) ;
}

i f (ac t i on . equals (” update ”)) {
cm. upda teA t t r i bu te (processInstance . processInstanceID , var , l i f e c y c l e , element , S t r i n g .

valueOf (varva lue)) ;
}
i f (ac t i on . equals (” remove ”)) {

cm. removeContent (processInstance , var , l i f e c y c l e) ;
}
r e t u r n Signa l .COMPLETED;
}

pro tec ted synchronized vo id cancel Impl () {
. . .

r e t u r n Signa l .CANCELED;
}
} ;
}

pro tec ted V a r i a b l e S p e c i f i c a t i o n g e t V a r i a b l e S p e c i f i c a t i o n (S t r i n g variableName)
throws MalformedBPELException

{
i f (variableName == n u l l)

r e t u r n n u l l ;
V a r i a b l e S p e c i f i c a t i o n var iab leSpec =

scopeData . ge tVar iab le (variableName) ;
i f (var iab leSpec == n u l l)

throw new MalformedBPELException (parser , ”No v a r i a b l e named ”
+ variableName + ” i n scope ”) ;
r e t u r n var iab leSpec ;

}
}

The parsing process also deploying of context definition to context provider. The
interaction between CAWEFA and ContextEngine is explored next.

7.3.3 Interaction with ContextEngine

If Context Provider is implemented as an external component and its service is run-
ning, the ContextDefinitionDeployer class in Context Manager can be used to deploy
the context definition model to it and use its features. The features are specified in
AIDL files which have been provided by ContextEngine and imported in CAWEFA.
The files generate a Java interface and an inner Stub class. The class is used to

156

7. FROM DESIGN TO IMPLEMENTATION

create a remotely accessible object, and the deployer can use it to invoke a method.
The IBinder interface is the base of the remoting protocol in Android and IBinder is
returned to any caller that binds to the ContextEngine Service. The ContextDefini-
tionDeployer class binds to the ContextEngine service and invokes the setupCon-
texts method in order to pass the path to the context definition file, as shown in
Listing 7.7.

Listing 7.7: ContextDeployer
I C o n t e x t D e f i n i t i o n contex tServ ice ;
S t r i n g contextDefSource = ” data / mnt / c o n t e x t D e f i n i t i o n . xml ” ;
p r i v a t e ServiceConnect ion mConnection = new ServiceConnect ion () {

p u b l i c vo id onServiceConnected (ComponentName className , IB inder se rv i ce) {
t r y {

contex tServ ice = I C o n t e x t D e f i n i t i o n . Stub . as In te r f ace (se rv i ce) ;
t r y {

contex tServ ice . setupContexts (contextDefSource) ;
} catch (RemoteException e) {

e . p r in tS tackTrace () ;
}
} catch (NotFoundException e) {

e . p r in tS tackTrace () ;
}

}

The ContextListener class has been implemented to monitor messages broad-
casted by ContextEngine. If the broadcasted application key matches any workflow
key, the context value of corresponding context component is changed, and Context
Manager is informed about the change in order to deal with the context information
further. The implementation details of the broadcast receiver within the ContextLis-
tener class is shown in Listing 7.8.

Listing 7.8: ContextListener
p r i v a t e s t a t i c f i n a l S t r i n g CONTEXT INFORMATION = ” c o n t e x t i n f o r m a t i o n ” ;
p r i v a t e s t a t i c f i n a l S t r i n g CONTEXT NAME = ” context name ” ;
p r i v a t e s t a t i c f i n a l S t r i n g CONTEXT DATE = ” con tex t da te ” ;
p r i v a t e s t a t i c f i n a l S t r i n g CONTEXT APPLICATION KEY = ” c o n t e x t a p p l i c a t i o n k e y ” ;
p r i v a t e vo id setupContextMoni tor () {

contex tMon i to r = new BroadcastReceiver () {
@Override
p u b l i c vo id onReceive (Context context , I n t e n t i n t e n t) {

i f (i n t e n t . ge tAc t ion () . equals (” uk . ac . tvu . mdse . contextengine .REMOTE SERVICE”)) {
t r y {

Bundle bundle = i n t e n t . ge tExt ras () ;
S t r i n g workflowKey = bundle

. g e t S t r i n g (CONTEXT APPLICATION KEY) ;
S t r i n g contextName = bundle

. g e t S t r i n g (CONTEXT NAME) ;
S t r i n g contextValue = bundle

. g e t S t r i n g (CONTEXT INFORMATION) ;
S t r i n g contextDate = bundle

. g e t S t r i n g (CONTEXT DATE) ;
MobWELContext ac t i veContex tOb jec t = n u l l ;

157

7. FROM DESIGN TO IMPLEMENTATION

i f (ctxManager . workf lowIDs . conta ins (workflowKey)) {
Ar rayL i s t<MobWELContext> ac t i veContex ts = (A r rayL i s t<MobWELContext>) ctxManager .

ac t i veContex ts . get (workflowKey) ;
f o r (MobWELContext mc: ac t i veContex ts) {

i f (mc. contextName . equals (contextName)) {
/ / se t new contex t value

mc. lastContextChangeDate = contextDate ;
mc. las tContex tVa lue = contextValue ;
ac t i veContex tOb jec t = mc;

}}
/ / in fo rm contex t manager t h a t a contex t change occured
ctxManager . onContextChange (ac t i veContex tOb jec t) ;

}}
catch (Except ion ex) {
. . .
}}}} ;
appContext . r eg i s te rRece i ve r (contex tMoni tor , f i l t e r) ;

}

This section explored the interaction with ContextEngine. CAWEFA is a system
running on each mobile device, thus these systems have to interact. In next section,
the implementation details of peer-to-peer interaction and message exchange are
described.

7.3.4 Peer-to-Peer Message Exchange

The MobWEL message serialisation has been supported by using Protocol Buffers -
Google’s data interchange format. Using Protocol Buffers is a way of encoding struc-
tured data in an efficient, extensible, language-neutral and platform-neutral format.
Its advantage over XML-based message format is that protocol buffers are smaller,
faster and simpler 1, therefore more suitable for frequent message exchange be-
tween mobile devices. The message format, called MobwelData, is specified by
defining protocol buffers message type in a .proto file as shown in Listing 7.9. The
format is simple and contains all message constructs. Moreover, fields are specified
as required, optional or repeated. The fields such as workflowID, workflowInstan-
ceID, senderPhoneID and msgtype are required and values for the fields must be
provided in all messages. Optional fields are, for instance, contentID and workflow-
State. The values for the fields are provided only when content is sent between
devices. Workflow data is specified by its dataName, and dataValue. As a message
can contain numerous data, the workflowData field of Data type is specified as re-
peated. In addition, a number of MobwelData messages can be packed and sent
together by using the MobwelDataCollection message.

1https://developers.google.com/protocol-buffers/docs/overview

158

7. FROM DESIGN TO IMPLEMENTATION

Listing 7.9: Protocol buffer data structure described by using .proto file syntax
message MobwelData {

enum State {
NEW = 0;
RUNNING = 1;
END = 2;

}
enum MessageType {

CONTEXT = 0;
CONTENTSTATE = 1;
VARIABLE = 2;
CONTENT = 3;

}
requ i red MessageType msgtype = 1;
requ i red s t r i n g processInstanceID = 2;
requ i red s t r i n g processID = 3;
requ i red s t r i n g senderPhoneID = 4;
o p t i o n a l State workf lowState = 5;
o p t i o n a l s t r i n g ac t i on = 6;
o p t i o n a l s t r i n g timestamp = 7;

o p t i o n a l s t r i n g content ID = 8;
o p t i o n a l bytes content I tem = 9;

message Data {
o p t i o n a l s t r i n g dataName = 1;
o p t i o n a l s t r i n g dataValue = 2;

}
repeated Data workf lowData = 10;

}
message MobwelDataCol lect ion {

repeated MobwelData mobwelData = 1;
}

A data access class can be easily generated, thus protocol buffers are easier to
use programmatically. MobwelDataProtos, a class generated by the compiler from
the mobweldata.proto file, is used to automatically serialise and deserialise workflow
messages. The creation of a message is demonstrated in Listing 7.10.

Listing 7.10: Create a message
p u b l i c vo id createContextMessage () {

MobwelData mobwelData ;
mobwelData =

MobwelData . newBui lder ()
. setMsgtype (msgType)
. setWorkf lowID (” workf lowID ”)
. setWorkf lowInstanceID (” workf lowInstanceID ”)
. setSenderPhoneID (phoneNo)
. setWorkf lowState (MobwelData . MessageType .CONTEXT)
. setTimestamp (”now”)
. addWorkflowData (

MobwelData . Data . newBui lder ()
. setDataName (” dataName ”)
. setDataValue (” dataValue ”))

. b u i l d () ;
}

159

7. FROM DESIGN TO IMPLEMENTATION

There have been two assistants implemented to support the exchange of mes-
sages among collaborators: BluetoothAssistant, and BinarySMSAssistant. Blue-
toothAssistant supports the transfer of messages over Bluetooth. The bluetooth
Mac address has to be known to connect two devices and enable data transfer. This
data transfer method can be used if collaborators are situated within a particular
distance, for example, located in a meeting room.

BinarySMSAssistant enables sending binary data messages to recipients iden-
tified by their phone numbers. Sending binary data messages is easier and more
convenient approach as the messages can go to multiple collaborators in a short
time.

These two assistants are concrete realisations of the message exchange assis-
tant to demonstrate the message exchanges between peers, however, other proto-
cols and interaction techniques are supported in CAWEFA.

This section concludes the description of the most significant concepts and de-
tails implemented in CAWEFA. A chapter summary is provided next.

7.4 Summary

This chapter presented the implementation details of two prototypes built for the
Android platform. ContextEngine has been implemented as an external context pro-
visioning platform that provides its services to other context-aware mobile applica-
tions running on the same device. CAWEFA is a workflow management system that
interprets, manages and executes MobWEL workflows. CAWEFA has been built on
top of the existing BPEL engine called Sliver, and uses context provisioning ser-
vices provided by ContextEngine. Both prototypes will be released as open source
software.

160

Chapter 8

Evaluation

Contents
8.1 Introduction . 161

8.2 Experimental Design . 162

8.3 Scenario-Based Evaluation . 163

8.4 Workflow Instantiation . 168

8.5 Discussing Findings . 175

8.6 Summary . 176

8.1 Introduction

So far, the MobWEL workflow language has been presented and details about the
designed and developed workflow management system have been given. This
chapter focuses on the final evaluation of the produced research artifacts. The vali-
dation goal is to determine whether the MobWEL workflow language is a suitable
technology to define mobile distributed context-aware content-centric workflows.
The usage scenario described in Chapter 2 is used for the validation purposes and
experimentation.

The remainder of this chapter is organised as follows. An overview of the ex-
perimentation strategy is outlined in Section 8.2. The construction of a MobWEL
workflow process by using the work pattern described in the usage scenario is dis-
cussed in Section 8.3. The constructed MobWEL workflow definition is deployed to
CAWEFA and the experiment is conducted by workflow instantiating and monitoring
the behaviour of running workflow instances. The results of the experimentation are
presented in Section 8.4 and findings are discussed in Section 8.5. This chapter is
summarised in Section 8.6.

161

8. EVALUATION

8.2 Experimental Design

This section presents the design of the experimentation process in which the work-
flow presented in the usage scenario is constructed and instantiated.

The overview of the experimentation strategy is depicted in Figure 8.1.

Figure 8.1: Experimentation Strategy

Firstly, the MobWEL workflow definition for the usage scenario is constructed by
following the design methodology provided in Appendix A. Non-probability purposive
sampling is used to select what context variables influence the workflow process.

Based on the workflow definition, quantitative data such as a number of exe-
cution paths, or a number of monitored contexts is collected. The data outlines
how many different variants of the workflow can be built. After that, the MobWEL
workflow definition is deployed to the MobWEL workflow management system. The
workflow process is instantiated and the behaviour of each instance is monitored.
Two strategies are used for workflow instantiation:

1. Sequential Instantiation: Workflow is instantiated sequentially, which means
that only one instance runs at any given point of time. That enables to simu-
late various context data and monitor the behaviour of each instance from its
start to the end. The expected behaviour of the instance is derived by using
MobWEL semantics, and then the expected behaviour is compared with its
actual behaviour.

2. Parallel Instantiation: In this strategy, workflow instances run in parallel. The
workflow process can end at different final process flow states, and the picture

162

8. EVALUATION

can reach different content object states. While the workflow instances are
running, context situations are randomly generated. There are two aspects
monitored: a) whether each workflow instance reached a final state; b) if a
final process state has been reached, whether the reached content state cor-
responds to it.

To observe workflow instantiation and execution, the actual steps in the execution
process have to be visualised. Data logging is a method that is used to print out the
required steps on the screen. After the data are collected, the results are analysed
and presented.

This section has described the experimentation strategy. Next section outlines
the experimentation process.

8.3 Scenario-Based Evaluation

Experimentation is a validation method that involves two activities: construction of
a MobWEL workflow process for the usage scenario, and running its workflow in-
stances. By constructing the workflow process, completeness and language ex-
pressiveness are verified. By workflow instantiation, the workflow executability and
change realisation are monitored and evaluated.

8.3.1 Construction of a MobWEL workflow process

This section describes the MobWEL workflow process defined for the usage sce-
nario. The basic high-level work flow described in the scenario is shown in Fig-
ure 8.2.

This workflow has been used as a base for the construction of the MobWEL
workflow process.

Workflow-Specific Context Model

To validate the workflow-specific context modelling approach, the several context
situations have been modelled. The following factors have influenced the selection
of context situations:

Group A - complexity of the context situation (A1: atomic context, A2: composite
context);

Group B - derivation of context values (B1: context with pre-defined values, B2:
context with derived high-level values, B3: composite context with values
derived from its children values);

163

8. EVALUATION

Figure 8.2: The Basic Work Flow in the Usage Scenario

Group C - workflow-active or auxiliary context (C1: workflow-active context, C2: not
workflow-active context);

Group D - types of context information and source (D1: user preference, D2: loca-
tion, D3: device-related context);

Group E - context association type (E1: communication, E2: content (E21: content
metadata, E22: content behaviour), E3: workflow, E4: collaboration);

Group F - collaborator’s role (F1: designer, F2: reviewer, F3: customer);

Based on the factors, the following context situations have been derived (the
object models are provided in Appendix C):

• BatteryContext (A1, B2, C2, D3, E1) is related to all roles;

• BluetoothContext (A1, B1, C2, D3, E1) and WifiContext(A1, B1, C2, D3, E1) are
related to all roles;

164

8. EVALUATION

• DataSync (A2, B3, C2, D3, E1) and Connectivity (A2, B3, C1, D3, E1) are related
to all roles;

• NoOfReviewsUP (A1, B1, C1, D1, E22) and RatingUP (A1, B1, C1, D1, E22) are
related to the role of designer;

• AtWork (A1, B1, C2, D1, E4), Status (A1, B1, C2, D1, E4), and Availability (A2,
B3, C1, D1, E4) are related to the role of designer and reviewer;

• AddCommentUP (A1, B1, C1, D1, E3) is related to the role of reviewer;

• LocationContext (A1, B2, C1, D2, E21) is related to the role of designer.

The selected sample of contexts ensures that there is at least one representant
for each group. The sample has been chosen intentionally. Predominantly, most
of them have been defined as a user preference context type because values of
user preferences can be easily simulated and changed while workflow instances
are running.

Group Identification Model

There are three roles involved in the workflow: designer, reviewer, and customer.
In each running workflow instance, there can be only one actor performing the role
of designer and one actor performing the role of customer. However, the role of
reviewer can be performed by numerous actors. To keep the scope of the experiment
manageable, three actors play the role of reviewer.

Context-Aware Content Lifecycle Model

There is one content object processed in the workflow process: picture. A context-
aware content lifecycle is constructed for the picture, see Figure 8.3. The lifecycle
outlines the states the picture moves through during its lifetime.

The actual content states are derived from the workflow process control flow,
in particular, from workflow activities that modify the content object. The logical
content states are created to enrich the lifecycle and enable integration of context
conditions. Both types of context conditions are incorporated in the picture lifecycle.
The conditions depend on context variables defined in previous section. The object
models for the picture lifecycle are presented in Appendix C.

165

8. EVALUATION

Figure 8.3: Picture Lifecycle

Process Flow Models

Process control flows for designer, reviewer, and customer have been defined. The
models of process control flows are presented in Appendix C. Content activities, and
decisions based on the use of the MobWEL extension functions: getContentState
and getContextValue, have been appropriately integrated in the process control
flows.

Anatomy of the Workflow Process

All workflow parts have been constructed, thus they could be assembled together
to build the whole workflow process. The anatomy of the whole MobWEL work-
flow process defined for the usage scenario is depicted in Figure 8.4. The Group
Identification and Picture Lifecycle parts are role-independent and are included in
all workflow partitions. Context Definition and Process Flow are role-specific, thus

166

8. EVALUATION

these elements have been defined for each role.

Figure 8.4: Anatomy of the Workflow Process

The workflow process has been mapped into a set of XML documents and de-
ployed to the MobWEL workflow management system which runs on mobile de-
vices. In addition, quantitative data has been collected from the workflow model as
presented next.

8.3.2 Quantitative Data

Table 8.1 gives statistics for the MobWEL workflow process model developed in
previous section.

As can be seen from the table, the data is divided into two groups. The first
group provides details related to the particular workflow process, the second group
gives details related to the content lifecycle. The table gives numbers of content ac-
tivities that have been integrated in workflow process, outlines numbers of possible
execution paths. The number of execution paths for the entire workflow depends on
the number of participating actors. In this case, the number has been calculated for
5 actors. The table also shows how many context variables have direct impact on

167

8. EVALUATION

Table 8.1: Workflow Model - Quantitative Data

Number Of

D
es

ig
ne

r

R
ev

ie
w

er

C
us

to
m

er

O
ve

ra
ll

C
O

N
TR

O
L

FL
O

W

Content Activities 10 3 2 15

Execution Paths 10 2 1 28

Monitored Contexts 4 3 1 8

Content Objects 1 1 1 1

Actors 1 3 1 5

C
O

N
TE

N
T

LI
FE

C
Y

C
LE

States 11 2 3 16

Transition Firing Sequences 4 3 2 4

Monitored Contexts 2 0 0 2

the workflow execution. In addition, it shows that there is only one content object
processed.

The second part of the table summarises content states which have been defined
in the picture lifecycle. The table also outlines the number of possible transition firing
sequences and content-related context variables. The next section describes the
workflow instantiation process.

8.4 Workflow Instantiation

In this section, the workflow instantiation is described. The first set of experiments
has been conducted by running individual workflow instances in a sequence, as
presented next.

8.4.1 Sequential Workflow Instantiation

Firstly, all activities in the developed workflow process have been labeled as follows:
activities performed by designer are labeled as AD1 − AD22, activities performed by
reviewer are labeled as AR1−AR9, and activities performed by designer are labeled

168

8. EVALUATION

as AC1 − AC6. Final process flow states are labeled as FD1, FD2, andFD3 in the de-
signer’s process flow, FR1 in the reviewer’s process flow, and FC1 in the customer’s
process flow. Let Content Object O be the picture. Content states in the picture
lifecycle are labeled with S1 − S16.

To demonstrate the steps involved in the validation method, one execution path has
been chosen and is visualised in Figure 8.5 through

• activities that are expected to be activated;

• the process flow sequence that is expected to be executed;

• the state transition sequence that is expected to be fired;

• the context situations required at certain points.

Figure 8.5: Workflow Instance

169

8. EVALUATION

Next, based on the selected execution path, the expected behaviour of the par-
ticular workflow instance is derived by using MobWEL semantics as follows:

• Designer

Number of Actors: 1

Workflow-active Context:
CtxD = {Connectivity,NoOfReviewsUP,RatingUP,Availability, LocationContext}

D1 - Execution Sequence:
ωD
0

AD1, c̃−−−−→ ωD
1

AD2, c̃−−−−→ ωD
2

AD3, c̃−−−−→ ωD
3

AD4, c̃−−−−→ ωD
4

AD5, c̃−−−−→ ωD
5

AD8, c̃−−−−→ ωD
6

AD9, c̃−−−−→
ωD
7

AD10, c̃−−−−→ ωD
8

AD11, c̃−−−−→ ωD
9

AD12, c̃−−−−→ ωD
10

AD10, c̃−−−−→ ωD
11

AD11, c̃−−−−→ ωD
12

AD12, c̃−−−−→
ωD
13

AD13, c̃−−−−→ ωD
14

AD14, c̃−−−−→ ωD
15

AD15, c̃−−−−→ ωD
16

AD6, c̃−−−−→ ωD
17

AD7, c̃−−−−→ ωD
18

D1 - Reachable Final State: FD2

D1 - Fired State Transition for O:
s1

g1−−→s2
g2−−→s3

g3−−→sPOOL g5−−→s6
g6−−→s7

g7−−→s8
g12−−→s15

g17−−→s16

D1 - Reachable Content State for O: s16

D1 - Reachable Execution States with corresponding content states for O:
(ωD

9 , S16, O)

D1 - Required context situations:
c/RatingUP =< (RatingUP, 2) >;
c/NoOfReviewsUP =< (NoOfReviewsUP, 2) >

• Reviewer

Number of Actors: 3 (R1, R2, R3)

Workflow-active Context: CtxR = {Connectivity, AddCommentUP,Availability}

R1 - Execution Sequence:
ωR
0

AR1, c̃−−−→ ωR
1

AR2, c̃−−−→ ωR
2

AR3, c̃−−−→ ωR
3

AR4, c̃−−−→ ωR
4

AR5, c/AddCommentUP−−−−−−−−−−−−−−→ ωR
5

AR8, c̃−−−→
ωR
6

AR9, c̃−−−→ ωR
7

R1 - Reachable Final State: FR1

R1 - Fired State Transition for O:
sPOOL g3−−→s4

g4−−→s5
g5−−→sPOOL

R1 - Reachable Content State for O: SPOOL

R1 - Reachable Execution States with corresponding content states for O:
(ωR

7 , S
POOL, O)

170

8. EVALUATION

R1 - Required context situations:
c/AddCommentUP =< (AddCommentUP,NO) >

R2 - Execution Sequence:
ωR
0

AR1, c̃−−−→ ωR
1

AR2, c̃−−−→ ωR
2

AR3, c̃−−−→ ωR
3

AR4, c̃−−−→ ωR
4

AR5, c/AddCommentUP−−−−−−−−−−−−−−→ ωR
5

AR6, c̃−−−→
ωR
6

AR7, c̃−−−→ ωR
7

AR8, c̃−−−→ ωR
8

AR9, c̃−−−→ ωR
9

R2 - Reachable Final State: FR1

R2 - Fired State Transition for O:
sPOOL g3−−→s4

g4−−→s5
g5−−→sPOOL

R2 - Reachable Content State for O: SPOOL

R2 - Reachable Execution States with corresponding content states for O:
(ωR

7 , S
POOL, O)

R2 - Required context situations:
c/AddCommentUP =< (AddCommentUP, Y ES) >

R3 - Execution Sequence:
ωR
0

AR1, c̃−−−→ ωR
1

AR2, c̃−−−→ ωR
2

AR3, c̃−−−→ ωR
3

AR4, c̃−−−→ ωR
4

AR5, c/AddCommentUP−−−−−−−−−−−−−−→ ωR
5

AR8, c̃−−−→
ωR
6

AR9, c̃−−−→ ωR
7

R3 - Reachable Final State: FR1

R3 - Fired State Transition for O:
sPOOL g3−−→s4

g4−−→s5
g5−−→sPOOL

R3 - Reachable Content State for O: SPOOL

R3 - Reachable Execution States with corresponding content states for O:
(ωR

7 , S
POOL, O)

R3 - Required context situations:
c/AddCommentUP =< (AddCommentUP,NO) >

• Customer

Number of Actors: 0

Workflow-active Context: CtxC = {Connectivity}

After the behaviour is predicted and expressed by using the MobWEL semantics,
the workflow process is instantiated and required context situations simulated. Steps
involved in the testing procedure are demonstrated in Figure 8.6. Assuming that the
corresponding workflow partition has been added by pressing the ’Add Workflow’
button in CAWEFA, the ’Run Workflow’ button can be clicked to instantiate it (Step

171

8. EVALUATION

Figure 8.6: Testing

1). The inputs for activities are set in advance for easier execution and monitoring
of the workflow instance (Step 2). To enable easier simulation of context data, pref-
erences are created for all atomic context components. Thus the context data can
be simulated or changed as required (Step 3 and 4). Context Provider processes
atomic context data and derives the aggregated context values. Both atomic and
aggregated context values are displayed in the LogCat, the Android logging system.
The log outputs are checked to determine whether the aggregated contexts are de-
rived correctly and the required context situation is achieved (Step 5). After that, the
workflow is instantiated by pressing the ’Run Workflow’ button (Step 6). LogCat is
used to derive the important information about the running workflow instances (Step
7). To monitor content states of the picture processed in the workflow instance, the
’StateMachine’ filter is applied (Step 7a). To observe and collect data about the ex-
ecuted activities, the ’ActivityInstance’ filter is applied (Step 7b). Then the actual
results are collected and compared to the predicted results.

172

8. EVALUATION

Results

Table 8.2 gives results gathered by performing the sequential instantiation testing.

Table 8.2: Sequential Instantiation - Results Summary

Running workflow instances 20

Completed workflow instances 20

Correct execution sequences (Overall) 18

Reached the expected final states (Designer) 18

Reached the expected final states (Reviewer1) 12

Reached the expected final states (Reviewer2) 11

Reached the expected final states (Reviewer3) 7

Reached the expected final states (Customer) 5

Correct fired state transitions (Overall) 18

Correct fired state transitions (Designer) 18

Correct fired state transitions (Reviewer1) 12

Correct fired state transitions (Reviewer2) 11

Correct fired state transitions (Reviewer3) 7

Correct fired state transitions (Customer) 5

Number of recorded errors 2

Next section describes the parallel instantiation method and presents the ob-
tained results.

8.4.2 Parallel Workflow Instantiation

Parallel workflow instantiation has been conducted in order to monitor the behaviour
of multiple workflow instances running at the same time. Context data is changed
randomly, therefore, the behaviour of each workflow instance from its start to the end
would be difficult. Therefore, it is monitored whether instances reached final process

173

8. EVALUATION

flow states and whether the reached content state corresponds to the expected
content state associated with the particular final process flow state.

Milestones

Table 8.3 gives an overview of the key milestones which have been set to determine
the possible final states of workflow instances. To each final process flow state, a
corresponding final content state is assigned.

Table 8.3: Milestones

Reachable Final Flow State Reachable Content State

FD1 S16

FD2 S16

FD3 S13

FR1 SPOOL

FC1 SPOOL

Results

Table 8.4 gives results gathered by performing the parallel workflow instantiation.

Table 8.4: Parallel Instantiation - Results Summary

Max of parallel running workflow instances 5

Completed workflow instances 95%

Correct execution sequences 92%

Correct fired state transitions 88%

Number of recorded errors 5

The results have been analysed and the findings are discussed next.

174

8. EVALUATION

8.5 Discussing Findings

In this section, the results of the evaluation are discussed. The evaluation has been
based on the usage scenario described in Chapter 2. The scenario represents
a certain class of workflows. However, using only one scenario in the validation
process means that the results cannot be generalised, and their implication is limited
only to the class of scenarios.

The results of this validation indicate that the MobWEL workflow language can be
used to build mobile context-aware content-centric workflows. The experiment was
successful. It has been shown that the particular MobWEL workflow for the usage
scenario could be constructed and its instances could be managed and executed.

By constructing the workflow description for the teamwork described in the usage
scenario, it was demonstrated that the proposed MobWEL metamodel provides all
constructs needed to build the context-aware content-centric workflow.

Using two different workflow instantiation approaches allowed monitoring be-
haviour of workflow instances and its partitions. Based on the obtained results and
equivalence checking between the expected and actual behaviour of workflow in-
stances, it is concluded that MobWEL workflows are manageable and executable.
Although there were errors recorded, the errors could arise from mistakes made in
the source code.

Context situations have been monitored in the LogCat system. Successful deliv-
ery and consumption of context information has been particularly shown in the se-
quential workflow instantiation where the workflow instances behaved as expected.
It means that context and content state changes have been realised. Propagation
of context and content state changes to all running workflow instances adequately
have been demonstrated in the parallel workflow instantiation.

However, the findings might not be transferable to all MobWEL workflows. It is
difficult to accept the hypotheses generally as the designed artifact is a workflow
language that can be used to build workflows, and this activity is slightly subjective
depending on the intent of the particular workflow designer. The MobWEL workflow
language provides constructs and elements which can be combined in several ways,
and it is hard to validate the correctness of the constructed workflow models without
its extensive testing.

In addition, more research on this topic needs to be undertaken in order to clearly
establish the consistency between the process-based workflow model and the as-
sociated content lifecycle(s).

With this section, this chapter is concluded and its summary is given next.

175

8. EVALUATION

8.6 Summary

This chapter has described the evaluation process of the proposed MobWEL work-
flow approach. It has been shown that mobile context-aware content-centric work-
flows can be constructed, managed and executed. However, more extensive testing
is needed in order to generalise the findings.

With this chapter, the validation part of the thesis is concluded. The next part
provides the overall summary of the thesis and outlines the possibilities for future
work.

176

Part IV

Conclusion

177

Chapter 9

Conclusion and Future Work

Contents
9.1 Summary of This Thesis . 178

9.2 Contributions of This Thesis . 179

9.3 Future Work . 181

In this thesis, a context-aware content-centric workflow approach for mobile peer-
to-peer collaboration has been presented. This final chapter concludes this thesis
by providing the overall summary in Section 9.1, summarising the main contributions
and the impact of this work in Section 9.2, and discussing possible future work and
research in Section 9.3.

9.1 Summary of This Thesis

With mobile devices becoming a part of human daily life, people’s expectations and
demands on the services the mobile devices offer have been increased. By us-
ing mobile devices, workers can collaborate and remain productive regardless their
location, thereby, they expect to have tools which would enable easier, faster and
more convenient collaboration process. Activity-oriented workflow management has
become a crucial technology that has been implemented by many organisations to
automate their business processes and enhance collaboration among workers. This
technology has been also adapted for mobile collaboration, however, there are still
research challenges as shown in first part of this thesis. The successful execution
of mobile workflows depends on various factors such as the execution environment,
collaborators’ preferences or individual situations. Therefore, there is a need to
monitor the context situations the mobile devices reside in and adapt the workflow
technology to react to the constantly changing context.

178

9. CONCLUSION AND FUTURE WORK

Collaborators share mobile content such as pictures or documents. Although
these content objects can be processed in activity-oriented workflows, their be-
haviour is hardly visible. Visualising the states of the content objects during their
lifecycle brings a number of benefits. Firstly, an additional dimension to workflow is
added which means that two complementary views on such workflow are available.
Secondly, information about content states can be used to communicate progress
among collaborators who do not need to know the workflow execution logic of their
peers. Finally, content objects can be associated or dependent on each other.
Knowing the content state of a certain content object can influence the behaviour of
another object. Therefore, the behaviour of content objects needs to be expressed
similarly as the control flow logic is, and these two workflow aspects have to be
integrated.

The main objective of this thesis was to contribute to the long-term vision of an
intelligent mobile collaborative environment by adapting the collaborative workflow
technology for mobile peer-to-peer collaboration. This work was undertaken to de-
sign a workflow model that defines context-aware content-centric processes at an
abstract level and in a machine-interpretable form, and a generic workflow manage-
ment software package that is capable of managing and executing of such workflow
processes and operates in a peer-to-peer manner on mobile devices.

Our research focused on bringing a solution to these challenges. Although there
have been existing workflow approaches presented in Chapter 2 which partially ful-
fill the objectives, none of the approaches has been designed to a) be context-
aware; and b) integrate content behaviour; and c) be designed for mobile devices.
Therefore, following the scenario-based design, the MobWEL workflow approach
has been designed and introduced in this thesis. The MobWEL workflow approach
addresses all three requirements. The MobWEL language allows to define mobile
context-aware content-centric workflows. MobWEL workflows are carried out by
the MobWEL workflow management system which logical and run-time architecture
have been described.

The contributions of this thesis are described next.

9.2 Contributions of This Thesis

This thesis contributes to the existing knowledge domain of collaborative workflow
in the following ways:

• Mobile Workflow Execution Language (MobWEL) Metamodel: Four work-
flow parts of the MobWEL workflow language (Workflow-specific context defi-

179

9. CONCLUSION AND FUTURE WORK

nition, Context-aware content lifecycle, Group identification, and Process Con-
trol Flow) allow to define workflows which are context-aware, have content be-
haviour integrated and support peer-to-peer interaction. The solution benefits
from the well-defined syntax and semantics provided by BPEL, a light inter-
action model specified in BPELlight, the workflow contextualisation approach
used in Context4BPEL, and by adopting the dimensions defined in BALSA,
the artifact-centric workflow model.

• MobWEL Syntax and Semantics: Syntax and semantics of MobWEL pro-
cess control flow and content lifecycles have been formalised. A context situ-
ation has been formalised to capture the state of the execution environment.
Formal semantics of MobWEL process control flow has been defined and can
be used to express the possible workflow execution sequences. The process
control flow semantics has been extended with data flows. Semantics has
been defined for processing of content lifecycles and possible paths in content
behaviour. Finally, definitions for consistency between the process control flow
and content lifecycle has been provided to determine whether both workflow
parts evolve consistently and dependably. The provided MobWEL semantics
can be used to describe the behaviour of MobWEL workflows in a formal way.

• MobWEL Workflow Management System Specifications: The logical and
run-time architecture of the MobWEL workflow management system that ex-
tends BPEL engine has been described. The system consists of a number of
components (Context Provider, Context Manager, Content Manager, MobWEL
Engine, and Peer-to-peer Interaction Manager). The system carries out work-
flows described by using the MobWEL workflow language. Context Provider
monitors, acquired, processes and disseminates context information. Context
Manager is able to filter workflow-active and relevant context information, and
route it to right internal component. Content Manager provides advanced con-
tent management functionalities and a state transition system that manages
content behaviour. The MobWEL engine manages and executes workflow in-
stances. Peer-to-peer Interaction Manager is responsible for handling interac-
tion and message exchange among collaborators.

• Workflow-Specific Context Management Approach: The context definition
approach has been designed in a workflow-specific way. The same context
definition model is parsed into Context Provider and Context Manager, how-
ever, each component extracts different bits of information. While Context
Provider extracts context hierarchies, Context Manager focuses on workflow-
specific parts related to the consumption of context information within the Mob-

180

9. CONCLUSION AND FUTURE WORK

WEL workflow management system. This approach supports separation of the
context acquisition logic from context adaptation logic which enables to exter-
nalise Context Provider. As an external component, Context Provider can be
used by multiple context aware applications running on the same mobile de-
vice.

• Context-Aware Content Management Approach: In activity-oriented work-
flows, the business processes are described by stating the actions that need
to be taken to achieve a common goal and mobile content objects are seen
only as side products produced by the workflows. In MobWEL workflows, a
mobile content object is considered as a significant workflow artifact, and its
lifecycle is visualised and managed independently from the main control flow
logic. This enables to constantly monitor the state of content objects. The
information is consumed by the process control flow, and is used either within
the same workflow instance, or to communicate progress to fellow collabora-
tors. In addition, context awareness has been integrated into content lifecycle
so the transitions between two content states can be based also on external
events related to the execution environment and collaborator’s personal needs.

• Software Prototypes: Two prototypes have been built for the Android platform
and will be released as open source software. The prototype of an externalised
Context Provider is ContextEngine. The prototype of the MobWEL workflow
management system has been named CAWEFA.

To sum up, design research adopted in this work has produced a viable artefacts
for workflow designers and software developers. The MobWEL workflow language
is a tool that can be used by workflow designers to model context-aware content-
centric mobile workflows. A detailed description of a logical architecture of the mo-
bile workflow management system can be used by software developers who would
be able to develop and implement such mobile workflow management system on
any mobile platform. In this thesis, first milestone to the definition, management
and execution of the MobWEL workflows has been presented, and several possible
extensions and directions for future work have been envisioned as presented next.

9.3 Future Work

Integration of context and content awareness into the workflow technology offers
numerous benefits, however, there have been also some limitations discovered that
should be addressed in future work. This section lists several possible extensions

181

9. CONCLUSION AND FUTURE WORK

and directions for future work. As described next, some extensions would improve
the designed MobWEL workflow model, whereas others would expand its applica-
tion use for other classes of usage scenarios.

Although integration of context awareness enables workflow adaptation to indi-
vidual user needs and situation in the current run-time environment, the proposed
approach requires a prediction of possible context situations beforehand. The con-
sensus of ambient intelligence includes a vision that context emerges in the moment
and cannot be fully predicted. Thus it would be beneficial to add functionality that de-
termines the future context states based on prognosis, past context states or other
machine-learning technique. In addition, produced context information can be incor-
rect, or inaccurate, thus a context validation technique should be employed to deal
with information imperfection. On the other hand, there can be situations that con-
text information cannot be provided at certain times, for instance when a sensor is
switched off. In this case, if context definition model is enhanced by adding priorities
to context values, the context value with the highest priority is supplied instead.

In addition, content sharing between devices might be a time consuming and
costly operation, especially when one collaborative task may be accomplished by a
number of actors with the same role but only few of them might be able to perform
the task. Sending the piece of content to all of them would be inefficient in terms
of transfer cost, device resource usage and user time consumption. A workflow
management system running on each device would need to cope with the incom-
ing content, store it and trigger an according action. Every participant would be
informed about the task despite the fact that he might not be able to accomplish it
within the required time. So another valuable extension of this work would be in the
development of an appropriate content sharing strategy.

Further, the proposed approach to model MobWEL workflows from start to finish
before its deployment to the mobile workflow management system limits its flexibility
at run-time. Some approaches towards more flexible workflows, presented in Chap-
ter 3, suggest the change and evolution of workflow schema and workflow definition
at run-time. This can include addition or removing of activities, or building workflow
cases on-the-fly. It indicates that it would be valuable to investigate how MobWEL
workflows schema can be modified and adapted at run-time.

There is also lots of potential to further develop and enhance the components
of the MobWEL workflow management system. For example, Communication Man-
ager could be optimised by grouping messages that are supposed to be sent to one
collaborator. Identity Manager could be improved by enabling modification of the
team of collaborators at run-time.

Also, task management is another key area that should be investigated in the

182

9. CONCLUSION AND FUTURE WORK

future. With context awareness integrated, there are many possibilities to design a
component for task management that would manage tasks in a suitable way that is
also adapted to individual user needs and situation.

Finally, the development of the MobWEL language has been tailor-made for a
specific class of workflows. It would be interesting to use and validate the MobWEL
workflow approach in other scenarios. Furthermore, creating MobWEL workflows is
a slightly subjective activity based on the workflow designer’s perception and domain
expertise. Although a MobWEL design methodology is proposed in Appendix A, this
methodology is too general and should be amended in order to simplify the design
of MobWEL workflows.

183

Appendix A - Design Methodology

for MobWEL workflows

The following design methodology determines the steps that need to be taken to
fully define MobWEL workflows:

STEP.1: Group Identification

1.a Identify roles.

1.b Identify actors and their assigned roles.

STEP.2: Define Workflow Partitions

2.a Define activities that are performed by each role.

2.b Define the flow of the activities and identify the decision points where
the decisions are based on context information.

STEP.3: Design Context Model

3.a For each role, identify atomic contexts and possible context values
which may have an indirect influence the execution of the particular
workflow partition.

3.b Aggregate contexts and define rules for context aggregations.

3.c Define active contexts (direct influence on workflow) and type of con-
sumption.

STEP.4: Content Discovery

4.a Identify key content objects that are processed in the given workflow
and which behaviour should be monitored.

4.b Define content-related metadata and content information model.

184

. APPENDIX A - DESIGN METHODOLOGY FOR MOBWEL WORKFLOWS

STEP.5: Design of Content Lifecycles

5.a Discover key stages of content behaviour.

5.b Logical design of lifecycles (including transitions).

5.c Identify Context-Driven Conditions and Context-Aware Conditions for
transitions.

5.d Add content-related context to the context model.

STEP.6: Describe the whole workflow process in MobWEL

6.a Describe roles and collaborators in an XML document that conforms
to the groupIdentification.xsd XML schema listed in Appendix 2.

6.b Describe lifecycles of the identified content objects (business artifacts)
in an XML document that conforms to the contentLifecycle.xsd XML
schema listed in Appendix 2.

6.c Describe a context model for each role in XML documents which con-
form to the contextDefinition.xsd XML schema listed in Appendix 2.

6.d Describe a workflow partition for each role by using the MobWEL pro-
cess flow language definition described in Chapter 4.

STEP.7: Workflow Realisation

7.a Deploy to the MobWEL workflow management system.

185

Appendix B - XML schemas

Context Definition XML Schema

Listing 1: Context Definition XML Schema
<?xml vers ion= ” 1.0 ” encoding= ”UTF 8 ”?>

<xs : schema xmlns : xs= ” h t t p : / / www.w3 . org /2001/XMLSchema”>

< ! targetNamespace= ” h t t p : / / uk . ac . uwl . mdse /MobWEL/ C o n t e x t D e f i n i t i o n ” >

< ! d e f i n i t i o n o f complex elements >

<xs : element name= ” C o n t e x t D e f i n i t i o n ”>

<xs : complexType>

<xs : sequence>

<xs : element r e f = ” Context ” maxOccurs= ” unbounded ” />

<xs : element r e f = ” CompositeContext ” minOccurs= ” 0 ” maxOccurs= ” unbounded ” />

</xs : sequence>

<xs : a t t r i b u t e name= ” AppKey ” type= ” xs : s t r i n g ” />

</xs : complexType>

</xs : element>

<xs : element name= ” CompositeContext ”>

<xs : complexType>

<xs : sequence>

<xs : element r e f = ” ContextValue ” maxOccurs= ” unbounded ” />

<xs : element r e f = ” Chi ldContext ” minOccurs= ” 2 ” maxOccurs= ” unbounded ” />

<xs : element r e f = ” Rule ” maxOccurs= ” unbounded ” />

</xs : sequence>

<xs : a t t r i b u t e r e f = ” ContextName ” use= ” requ i red ” />

<xs : a t t r i b u t e r e f = ” Contex tAssoc ia t ion ” use= ” requ i red ” />

<xs : a t t r i b u t e r e f = ” Workf lowAct ive ” d e f a u l t = ” no ” />

</xs : complexType>

</xs : element>

<xs : element name= ” Context ”>

<xs : complexType>

<xs : choice>

<xs : element r e f = ” ContextValue ” maxOccurs= ” unbounded ” />

<xs : element r e f = ” Range ” maxOccurs= ” unbounded ” />

<xs : element r e f = ” Spec i f i cContex tVa lue ” maxOccurs= ” unbounded ” />

186

. APPENDIX B - XML SCHEMAS

</xs : choice>

<xs : a t t r i b u t e r e f = ” ContextName ” use= ” requ i red ” />

<xs : a t t r i b u t e r e f = ” ContextType ” d e f a u l t = ” De fau l t ” />

<xs : a t t r i b u t e r e f = ” Contex tAssoc ia t ion ” use= ” requ i red ” />

<xs : a t t r i b u t e r e f = ” Workf lowAct ive ” d e f a u l t = ” no ” />

</xs : complexType>

</xs : element>

<xs : element name= ” Range ”>

<xs : complexType>

<xs : a l l >

<xs : element r e f = ”RangeName” />

<xs : element r e f = ” Min ” />

<xs : element r e f = ”Max” />

</xs : a l l >

</xs : complexType>

</xs : element>

<xs : element name= ” Spec i f i cContex tVa lue ”>

<xs : complexType>

<xs : a l l >

<xs : element r e f = ” ContextValue ” />

<xs : element r e f = ” NumericValue1 ” />

<xs : element r e f = ” NumericValue2 ” />

</xs : a l l >

</xs : complexType>

</xs : element>

<xs : element name= ” Rule ”>

<xs : complexType>

<xs : sequence>

<xs : element r e f = ” Chi ldValue ” maxOccurs= ” unbounded ” />

<xs : element r e f = ” ParentValue ” maxOccurs= ” 1 ” />

</xs : sequence>

</xs : complexType>

</xs : element>

< ! d e f i n i t i o n o f s imple elements >

<xs : element name= ” ContextValue ” type= ” xs : s t r i n g ” />

<xs : element name= ” Min ” type= ” xs : decimal ” />

<xs : element name= ”Max” type= ” xs : decimal ” />

<xs : element name= ”RangeName” type= ” xs : s t r i n g ” />

<xs : element name= ” NumericValue1 ” type= ” xs : decimal ” />

<xs : element name= ” NumericValue2 ” type= ” xs : decimal ” />

<xs : element name= ” Chi ldContext ” type= ” xs : s t r i n g ” />

<xs : element name= ” Chi ldValue ” type= ” xs : s t r i n g ” />

<xs : element name= ” ParentValue ” type= ” xs : s t r i n g ” />

< ! d e f i n i t i o n o f a t t r i b u t e s >

187

. APPENDIX B - XML SCHEMAS

<xs : a t t r i b u t e name= ” ContextName ” type= ” xs : s t r i n g ” />

<xs : a t t r i b u t e name= ” AppKey ” type= ” xs : s t r i n g ” />

<xs : a t t r i b u t e name= ” ContextType ”>

<xs : simpleType>

<xs : r e s t r i c t i o n base= ” xs : s t r i n g ”>

<xs : enumeration value= ” Locat ion ” />

<xs : enumeration value= ” UserPreference ” />

<xs : enumeration value= ” De fau l t ” />

</xs : r e s t r i c t i o n >

</xs : simpleType>

</xs : a t t r i b u t e >

<xs : a t t r i b u t e name= ” Contex tAssoc ia t ion ”>

<xs : simpleType>

<xs : r e s t r i c t i o n base= ” xs : s t r i n g ”>

<xs : enumeration value= ” Communication ” />

<xs : enumeration value= ” Use rP ro f i l e ” />

<xs : enumeration value= ” Workflow ” />

<xs : enumeration value= ” Content ” />

<xs : enumeration value= ” Co l l abo ra t i on ” />

</xs : r e s t r i c t i o n >

</xs : simpleType>

</xs : a t t r i b u t e >

<xs : a t t r i b u t e name= ” Workf lowAct ive ”>

<xs : simpleType>

<xs : r e s t r i c t i o n base= ” xs : s t r i n g ”>

<xs : enumeration value= ” yes ” />

<xs : enumeration value= ” no ” />

</xs : r e s t r i c t i o n >

</xs : simpleType>

</xs : a t t r i b u t e >

</xs : schema>

188

. APPENDIX B - XML SCHEMAS

Content Lifecycle XML Schema

Listing 2: Content Lifecycle XML Schema
<?xml vers ion= ” 1.0 ” encoding= ”UTF 8 ”?>

<xs : schema xmlns : xs= ” h t t p : / / www.w3 . org /2001/XMLSchema”>

< ! targetNamespace= ” h t t p : / / uk . ac . uwl . mdse /MobWEL/ Con ten tL i fecyc le ” >

<xs : element name= ” L i f e c y c l e ”>

<xs : annotat ion>

<xs : documentation>This i s the roo t element f o r a content l i f e c y c l e </xs : documentation>

</xs : annotat ion>

<xs : complexType>

<xs : a l l >

<xs : element r e f = ” Content ” minOccurs= ” 1 ” maxOccurs= ” 1 ” />

<xs : element r e f = ” States ” minOccurs= ” 1 ” maxOccurs= ” 1 ” />

<xs : element r e f = ” T r a n s i t i o n s ” minOccurs= ” 1 ” maxOccurs= ” 1 ” />

</xs : a l l >

<xs : a t t r i b u t e name= ” l i fecyc leName ” type= ” xs : s t r i n g ” />

<xs : a t t r i b u t e name= ” targetNamespace ” type= ” xs : anyURI ” use= ” requ i red ” />

<xs : a t t r i b u t e name= ” queryLangauge ” type= ” xs : anyURI ” d e f a u l t = ” h t t p : / / uk . ac . uwl . mdse /

Cawefa /CEQL” />

<xs : a t t r i b u t e name= ” expressionLangauge ” type= ” xs : anyURI ” d e f a u l t = ” h t t p : / / uk . ac . uwl . mdse

/ Cawefa /CEQL” />

</xs : complexType>

</xs : element>

<xs : element name= ” Content ”>

<xs : complexType>

<xs : sequence>

<xs : element r e f = ” ContentType ” />

<xs : element r e f = ” Metadata ” minOccurs= ” 1 ” maxOccurs= ” unbounded ” />

</xs : sequence>

</xs : complexType>

</xs : element>

<xs : element name= ” ContentType ”>

<xs : simpleType>

<xs : r e s t r i c t i o n base= ” xs : s t r i n g ”>

<xs : enumeration value= ”IMAGE” />

<xs : enumeration value= ”AUDIO” />

<xs : enumeration value= ”VIDEO” />

<xs : enumeration value= ”SMS” />

<xs : enumeration value= ”CONTACT” />

<xs : enumeration value= ”CAWEFA” />

<xs : enumeration value= ”NONE” />

</xs : r e s t r i c t i o n >

</xs : simpleType>

189

. APPENDIX B - XML SCHEMAS

</xs : element>

<xs : element name= ” Metadata ”>

<xs : complexType>

<xs : a l l >

<xs : element name= ” MetadataName ” />

<xs : element r e f = ” DataType ” />

<xs : element r e f = ” MetadataType ” />

<xs : element r e f = ” M u l t i p l i c i t y A l l o w e d ” />

</xs : a l l >

</xs : complexType>

</xs : element>

<xs : element name= ” M u l t i p l i c i t y A l l o w e d ”>

<xs : simpleType>

<xs : r e s t r i c t i o n base= ” xs : s t r i n g ”>

<xs : enumeration value= ” yes ” />

<xs : enumeration value= ” no ” />

</xs : r e s t r i c t i o n >

</xs : simpleType>

</xs : element>

<xs : element name= ” DataType ”>

<xs : simpleType>

<xs : r e s t r i c t i o n base= ” xs : s t r i n g ”>

<xs : enumeration value= ” t e x t ” />

<xs : enumeration value= ” number ” />

<xs : enumeration value= ” date ” />

</xs : r e s t r i c t i o n >

</xs : simpleType>

</xs : element>

<xs : element name= ” MetadataType ”>

<xs : simpleType>

<xs : r e s t r i c t i o n base= ” xs : s t r i n g ”>

<xs : enumeration value= ” l o c a t i o n ” />

<xs : enumeration value= ” management ” />

<xs : enumeration value= ” c o n t r o l ” />

</xs : r e s t r i c t i o n >

</xs : simpleType>

</xs : element>

<xs : element name= ” States ”>

<xs : complexType>

<xs : sequence>

<xs : element r e f = ” State ” minOccurs= ” 1 ” maxOccurs= ” unbounded ” />

</xs : sequence>

</xs : complexType>

</xs : element>

190

. APPENDIX B - XML SCHEMAS

<xs : element name= ” State ”>

<xs : complexType>

<xs : sequence>

<xs : element name= ” StateName ” type= ” xs : s t r i n g ” />

</xs : sequence>

</xs : complexType>

</xs : element>

<xs : element name= ” T r a n s i t i o n s ”>

<xs : complexType>

<xs : sequence>

<xs : element r e f = ” T r a n s i t i o n ” minOccurs= ” 1 ” maxOccurs= ” unbounded ” />

</xs : sequence>

</xs : complexType>

</xs : element>

<xs : element name= ” T r a n s i t i o n ”>

<xs : complexType>

<xs : sequence>

<xs : element name= ” SourceState ” minOccurs= ” 1 ” maxOccurs= ” 1 ” />

<xs : element name= ” Des t i na t i onS ta te ” minOccurs= ” 1 ” maxOccurs= ” 1 ” />

<xs : element r e f = ” Guard ” minOccurs= ” 0 ” maxOccurs= ” unbounded ” />

</xs : sequence>

</xs : complexType>

</xs : element>

<xs : element name= ” Guard ”>

<xs : complexType>

<xs : complexContent mixed= ” t r ue ”>

<xs : extens ion base= ” tExpress ion ” />

</xs : complexContent>

</xs : complexType>

</xs : element>

<xs : complexType name= ” tExpress ion ” mixed= ” t r ue ”>

<xs : sequence>

<xs : any minOccurs= ” 1 ” maxOccurs= ” unbounded ” processContents= ” lax ” />

</xs : sequence>

</xs : complexType>

</xs : schema>

191

. APPENDIX B - XML SCHEMAS

Group Identification XML Schema

Listing 3: Group Identification XML Schema
<?xml vers ion= ” 1.0 ” encoding= ”UTF 8 ”?>

<xsd : schema elementFormDefault= ” q u a l i f i e d ” xmlns : xsd= ” h t t p : / / www.w3 . org /2001/XMLSchema”>

< ! targetNamespace= ” h t t p : / / uk . ac . uwl . mdse /MobWEL/ G r o u p I d e n t i f i c a t i o n ” >

<xsd : element name= ” co l labora to rsGroup ”>

<xsd : complexType>

<xsd : sequence>

<xsd : element r e f = ” c o l l a b o r a t o r s ” />

<xsd : element r e f = ” r o l es ” />

</xsd : sequence>

</xsd : complexType> </xsd : element>

<xsd : element name= ” ro l es ”>

<xsd : complexType>

<xsd : sequence>

<xsd : element r e f = ” r o l e ” maxOccurs= ” unbounded ” />

</xsd : sequence>

</xsd : complexType>

</xsd : element>

<xsd : element name= ” r o l e ”>

<xsd : complexType>

<xsd : sequence>

<xsd : element r e f = ” ac to r ” maxOccurs= ” unbounded ” />

</xsd : sequence>

<xsd : a t t r i b u t e name= ” roleName ” type= ” xsd : s t r i n g ” use= ” requ i red ” />

</xsd : complexType> </xsd : element>

<xsd : element name= ” ac to r ” type= ” xsd : s t r i n g ” />

<xsd : element name= ” c o l l a b o r a t o r s ”>

<xsd : complexType>

<xsd : sequence>

<xsd : element r e f = ” c o l l a b o r a t o r ” maxOccurs= ” unbounded ” />

</xsd : sequence>

</xsd : complexType>

</xsd : element>

<xsd : element name= ” c o l l a b o r a t o r ”>

<xsd : complexType>

<xsd : a t t r i b u t e name= ”name” type= ” xsd : s t r i n g ” use= ” requ i red ” />

<xsd : a t t r i b u t e name= ” number ” type= ” xsd : s t r i n g ” use= ” requ i red ” />

<xsd : a t t r i b u t e name= ” w i f i ” type= ” xsd : s t r i n g ” use= ” requ i red ” />

<xsd : a t t r i b u t e name= ” b lue too th ” type= ” xsd : s t r i n g ” use= ” requ i red ” />

</xsd : complexType> </xsd : element>

</xsd : schema>

192

Appendix C - MobWEL Workflow

Models

Figure 1: Model for Battery Context

Figure 2: Models for Bluetooth Context and Wifi Context

193

. APPENDIX C - MOBWEL WORKFLOW MODELS

Figure 3: Model for DataSync

Figure 4: Model for Connectivity

Figure 5: Models for User Preferences

194

. APPENDIX C - MOBWEL WORKFLOW MODELS

Figure 6: Model for Collaborator’s Availability

Figure 7: Model for Location

Figure 8: Picture Information Object Model

195

. APPENDIX C - MOBWEL WORKFLOW MODELS

Figure 9: Picture Lifecycle Object Model

196

. APPENDIX C - MOBWEL WORKFLOW MODELS

Figure 10: Process Control Flow for Designer

197

. APPENDIX C - MOBWEL WORKFLOW MODELS

Figure 11: Process Control Flow for Reviewer and Customer

198

Bibliography

Aalst, W., Barthelmess, P., Ellis, C. A., & Wainer, J. (2001). Proclets: A framework for
lightweight interacting workflow processes. International Journal of Cooperative
Information Systems, 10(4), pp. 443–481.

Aalst, W., Basten, T., Verbeek, H. M. W., Verkoulen, P. A. C., & Voorhoeve, M. (2000).
Adaptive workflow. (pp. 63–70). Norwell, MA, USA: Kluwer Academic Publishers.

Aalst, W., & Hee, K. (2004). Workflow management: models, methods, and sys-
tems. MIT Press.

Aalst, W., Pesic, M., & Schonenberg, H. (2009). Declarative workflows: Balancing
between flexibility and support. Computer Science-Research and Development ,
23(2), pp. 99–113.

Aalst, W. M., Ter Hofstede, A. H., Kiepuszewski, B., & Barros, A. P. (2003). Workflow
patterns. Distributed and parallel databases, 14(1), 5–51.

Ableson, F., Sen, R., & King, C. (2011). Android in Action. Manning Publications
Co., 2nd. ed.

Adams, M., Hofstede, A., Russell, N., & Aalst, W. (2009). Dynamic and context-
aware process adaptation. Handbook of research on complex dynamic pro-
cess management: techniques for adaptability in turbulent environments/Ed. MM
Wang, Z. Sun, (pp. 104–136).

Androutsellis-Theotokis, S., & Spinellis, D. (2004). A survey of peer-to-peer content
distribution technologies. ACM Comput. Surv., 36(4), pp. 335–371.

Bardram, J. E., & Hansen, T. R. (2004). The AWARE architecture: supporting
context-mediated social awareness in mobile cooperation. In Proceedings of the
2004 ACM conference on Computer supported cooperative work , (pp. 192–201).
Chicago, Illinois, USA: ACM.

199

BIBLIOGRAPHY

Battista, D., De Leoni, M., De Gaetanis, A., Mecella, M., Pezzullo, A., Russo, A., &
Saponaro, C. (2008). ROME4EU: a web service-based process-aware system for
smart devices. Service-Oriented Computing–ICSOC 2008, (pp. 726–727).

Bellavista, P., Corradi, A., Fanelli, M., & Foschini, L. (2013). A survey of context data
distribution for mobile ubiquitous systems. ACM Computing Surveys, 45(1), pp.
1–49.

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A.,
& Riboni, D. (2010). A survey of context modelling and reasoning techniques.
Pervasive and Mobile Computing, 6(2), pp. 161–180.

Bhattacharya, K., Hull, R., & Su, J. (2009). A data-centric design methodology for
business processes. In Handbook of Research on Business Process Modeling,
chapter 23.

Bierig, R. (2008). Event and Map Content Personalisation in a Mobile and Context-
Aware Environment . Ph.D. thesis, The Robert Gordon University.

Blessing, L. T. M., & Chakrabarti, A. (2009). DRM, A Design Research Methodology .
Springer.

Boiko, B. (2005). Content management bible. Wiley Pub.

Bolchini, C., Curino, C. A., Orsi, G., Quintarelli, E., Rossato, R., Schreiber, F. A.,
& Tanca, L. (2009). And what can context do for data? Communications of the
ACM, 52(11), pp. 136–140.

Buhler, P. A., & Vidal, J. M. (2003). Adaptive workflow = web services+agents. In
Proceedings of the International Conference on Web Services, 3, 131–137.

Clark, T., Sammut, P., & Williams, J. (2008). Applied metamodelling: A foundation
for language driven development | lambda the ultimate. [Online] Available at:
http://lambda-the-ultimate.org/node/2711 [Accessed on 24 July 2012].

Cook, D. J., Augusto, J. C., & Jakkula, V. R. (2009). Ambient intelligence: Technolo-
gies, applications, and opportunities. Pervasive and Mobile Computing, 5(4), pp.
277–298.

Coulouris, G. F., Dollimore, J., & Kindberg, T. (2005). Distributed systems: concepts
and design. Addison-Wesley Longman.

200

BIBLIOGRAPHY

Daniele, L. M., Silva, E., Pires, L. F., & Sinderen, M. (2009). A SOA-based platform-
specific framework for context-aware mobile applications. In Enterprise Interoper-
ability , vol. 38 of Lecture Notes in Business Information Processing, (pp. 25–37).
Springer Berlin Heidelberg.

Dawson, L., Ling, S., Indrawan, M., Weeding, S., & Fernando, J. (2008). Towards
a framework for mobile information environments: a hospital-based example. In
Proceedings of the 6th International Conference on Advances in Mobile Comput-
ing and Multimedia, (pp. 490–494). Linz, Austria: ACM.

Decker, G., Kopp, O., Leymann, F., & Weske, M. (2007). BPEL4Chor: extending
BPEL for modeling choreographies. In IEEE International Conference on Web
Services, 2007. ICWS 2007 , (pp. 296–303). IEEE.

Denning, P. J. (2001). The Invisible future: the seamless integration of technology
into everyday life. McGraw-Hill, Inc. New York, NY, USA.

Dey, A., Abowd, G., & Salber, D. (2001). A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human-Computer
Interaction, 16(2-4), pp. 97–166.

Ellis, C., Keddara, K., & Rozenberg, G. (1995). Dynamic change within workflow
systems. In Proceedings of conference on Organizational computing systems,
COCS ’95, (pp. 10–21). New York, NY, USA: ACM.

Erickson, J., Rhodes, M., Spence, S., Banks, D., Rutherford, J., Simpson, E., Bel-
rose, G., & Perry, R. (2009). Content-Centered collaboration spaces in the cloud.
IEEE Internet Computing, pp. 34-42, September/October, 2009.

Fling, B. (2009). Mobile Design and Development . O’Reilly Media, Inc.

Grossmann, M., Bauer, M., Honle, N., Kappeler, U., Nicklas, D., & Schwarz, T.
(2005). Efficiently managing context information for large-scale scenarios. In
Proceedings of the Third IEEE International Conference on Pervasive Computing
and Communications, (pp. 331–340).

Hackmann, G., Haitjema, M., Gill, C., & Roman, G. (2006b). Sliver: A BPEL work-
flow process execution engine for mobile devices. Service-Oriented Computing–
ICSOC 2006, (pp. 503–508).

Hackmann, G., Sen, R., Haitjema, M., Roman, G., & Gill, C. (2006a). MobiWork:
mobile workflow for MANETs. Tech. rep., Washington University, Department of
Computer Science and Engineering.

201

BIBLIOGRAPHY

Henricksen, K., & Indulska, J. (2006). Developing context-aware pervasive comput-
ing applications: Models and approach. Pervasive and Mobile Computing, 2(1),
pp. 37–64.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information
systems research. MIS Quarterly , 28(1), pp. 75–105.

Hollingsworth, D. (1995). Workflow management coalition: The workflow reference
model. [Online]. www.wfmc.org [Accessed on 15 march 2011].

Hull, R. (2008). Artifact-centric business process models: Brief survey of research
results and challenges. On the Move to Meaningful Internet Systems: OTM 2008,
(pp. 1152–1163).

Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath, F., Hobson, S., Linehan,
M., Maradugu, S., Nigam, A., Sukaviriya, P., et al. (2011). Introducing the guard-
stage-milestone approach for specifying business entity lifecycles. Web Services
and Formal Methods, (pp. 1–24).

Informatica (2007). BPEL process structure. [Online] Available at:
www.activevos.com/content/developers/education/bpel/unit04 bpelprocesses.pdf
[Accessed on 20 May 2012].

Kloppmann, M., Koenig, D., Leymann, F., & Pfau, G. (2005). WS-BPEL extension
for peopleBPEL4People.

Korpipaa, P., Mantyjarvi, J., Kela, J., Keranen, H., & Malm, E. J. (2003). Managing
context information in mobile devices. Pervasive Computing, IEEE , 2(3), pp. 42–
51.

Kramer, D., Kocurova, A., Oussena, S., Clark, T., & Komisarczuk, P. (2011). An
extensible, self contained, layered approach to context acquisition. In Proceed-
ings of the Third International Workshop on Middleware for Pervasive Mobile and
Embedded Computing, M-MPAC ’11, (pp. 6:1–6:7). New York, NY, USA: ACM.

Kumaran, S., Liu, R., & Wu, F. (2008). On the duality of information-centric and
activity-centric models of business processes. In Proceedings of the 20th interna-
tional conference on Advanced Information Systems Engineering, (pp. 32–47).

Kunze, C. P., Zaplata, S., & Lamersdorf, W. (2006). Mobile process description and
execution. In Proceedings of the 6th IFIP WG 6.1 international conference on
Distributed Applications and Interoperable Systems, (pp. 32–47).

202

BIBLIOGRAPHY

Kunze, C. P., Zaplata, S., & Lamersdorf, W. (2007). Mobile processes: Enhancing
cooperation in distributed mobile environments. Journal of Computers, 2(1), pp.
1–11.

Künzle, V., & Reichert, M. (2011). PHILharmonicFlows: towards a framework for
object-aware process management. J. Softw. Maint. Evol., 23(4), pp. 205–244.

Liang, S., & Bracha, G. (1998). Dynamic class loading in the java virtual machine.
SIGPLAN Not., 33, pp. 36–44.

Liu, R., Bhattacharya, K., & Wu, F. (2007). Modeling business contexture and be-
havior using business artifacts. In Advanced Information Systems Engineering,
(pp. 324–339).

Love, S. (2009). Handbook of Mobile Technology Research Methods. Nova Science
Publishers.

Mahmoud, Q. H. (2004). Middleware for communications. John Wiley and Sons.

March, S. T., & Smith, G. F. (1995). Design and natural science research on infor-
mation technology. Decision Support Systems, 15(4), pp. 251–266.

Nandi, P., & Kumaran, S. (2005). Adaptive business objectsa new component model
for business integration. In Proceedings of International Conference on Enterprise
Information Systems (ICEIS), (pp. 179–188).

Nitzsche, J., Van Lessen, T., Karastoyanova, D., & Leymann, F. (2007a). BPEL for
semantic web services (BPEL4SWS). In Proceedings of the 2007 OTM confeder-
ated international conference: On the move to meaningful internet systems, (pp.
179–188).

Nitzsche, J., Van Lessen, T., Karastoyanova, D., & Leymann, F. (2007b). BPEL
light. In Proceedings of the 5th international conference on Business process
management , (pp. 214–229).

Nurcan, S. (2008). A survey on the flexibility requirements related to business pro-
cesses and modeling artifacts. In Proceedings of the Proceedings of the 41st
Annual Hawaii International Conference on System Sciences, (pp. 378–387).

OASIS (2007). BPEL specification, version 2. [Online] Available at:
http://docs.oasisopen.org/wsbpel/2.0/OS/wsbpelv2.0OS.pdf [Accessed on 13
March 2011].

203

BIBLIOGRAPHY

OMG (2007). Unified Modelling Language - UML. [Online] Available at:
http://www.uml.org/ [Accessed on 11 October 2012].

OMG (2011). BPMN specification, version 2. [Online] Available at:
http://www.omg.org/spec/BPMN/2.0/PDF/ [Accessed on 10 April 2012].

Oren, E., & Haller, A. (2005). Formal frameworks for workflow modelling. Digital
Enterprise Research Institute, National University of Ireland, Technical Report ,
(pp. 4–7).

Pajunen, L., & Chande, S. (2007). Developing workflow engine for mobile devices.
In Enterprise Distributed Object Computing Conference, 2007. EDOC 2007. 11th
IEEE International . IEEE.

Peltz, C. (2003). Web services orchestration and choreography. Computer , 36(10),
46–52.

Potts, J. (2008). Alfresco Developer Guide. Packt Publishing.

Pryss, R., Tiedeken, J., Kreher, U., & Reichert, M. (2011). Towards flexible process
support on mobile devices. Information Systems Evolution, (pp. 150–165).

Redding, G., Dumas, M., Hofstede, A. H. M., & Iordachescu, A. (2010). A flexible,
object-centric approach for business process modelling. Service Oriented Com-
puting and Applications, 4, pp. 191–201.

Reichle, R., Wagner, M., Khan, M., Geihs, K., Lorenzo, J., Valla, M., Fra, C., Paspal-
lis, N., & Papadopoulos, G. (2008). A comprehensive context modeling framework
for pervasive computing systems. In Distributed applications and interoperable
systems, (pp. 281–295).

Rosemann, M., Recker, J., & Flender, C. (2008). Contextualisation of business pro-
cesses. International Journal of Business Process Integration and Management ,
3(1), pp. 47–60.

Rosemann, M., & Recker, J. C. (2006b). Context-aware process design: Exploring
the extrinsic drivers for process flexibility. In The 18th International Conference
on Advanced Information Systems Engineering. Proceedings of Workshops and
Doctoral Consortium, (pp. 149–158).

Rosemann, M., Recker, J. C., Flender, C., & Ansell, P. D. (2006a). Understanding
context-awareness in business process design. Faculty of Science and Technol-
ogy; Institute for Creative Industries and Innovation.

204

BIBLIOGRAPHY

Rosson, M. B., & Carroll, J. M. (2002). Scenario-based design. In The human-
computer interaction handbook , (pp. 1032–1050).

Saidani, O., & Nurcan, S. (2007). Towards context aware business process mod-
elling. In Proceedings of Workshop on Business Process Modelling, Development,
and Support .

Saidani, O., & Nurcan, S. (2009). Context-awareness for adequate business pro-
cess modelling. In Third International Conference on Research Challenges in
Information Science, 2009. RCIS 2009, (pp. 177–186). IEEE.

Salber, D., Dey, A. K., & Abowd, G. D. (1999). The context toolkit: aiding the develop-
ment of context-enabled applications. In Proceedings of the SIGCHI conference
on Human factors in computing systems: the CHI is the limit , (pp. 434–441).

Schoder, D., & Fischbach, K. (2003). Peer-to-peer prospects. Commun. ACM,
46(2), pp. 27–29.

Schonenberg, H., Mans, R., Russell, N., Mulyar, N., & Aalst, W. (2008a). Process
flexibility: A survey of contemporary approaches. Advances in Enterprise Engi-
neering I, (pp. 16–30).

Schonenberg, H., Mans, R., Russell, N., Mulyar, N., & van der Aalst, W. (2008b).
Towards a taxonomy of process flexibility. In CAiSE Forum, (pp. 81–84).

Sen, R. (2008). Supporting collaboration in mobile environments. Ph.D. thesis,
Washington University.

Shariff, M., Bhandari, A., Majumdar, P., & Choudhary, V. (2009). Alfresco 3 Enter-
prise Content Management Implementation. Birmingham: Packt Publishing.

Sipser, M. (2006). Introduction to the Theory of Computation. Thomson Course
Technology: Boston, 2 ed.

Smanchat, S., Ling, S., & Indrawan, M. (2008). A survey on context-aware workflow
adaptations. In Proceedings of the 6th International Conference on Advances in
Mobile Computing and Multimedia, (pp. 414–417). ACM Press.

Vaishnavi, V., & Kuechler, W. (2004). Design science research in information
systems. [Online]. Available at: http://www.desrist.org/desrist. [Accessed on 13
March 2011].

Vanderfeesten, I., Reijers, H., & Aalst, W. (2008). Product based workflow support:
dynamic workflow execution. In Advanced Information Systems Engineering, (pp.
571–574).

205

BIBLIOGRAPHY

Vanderfeesten, I., Reijers, H. A., & Aalst, W. M. P. (2011). Product-based workflow
support. Information Systems, 36(2), pp. 517–535.

Vara, J. L., Ali, R., Dalpiaz, F., Snchez, J., & Giorgini, P. (2010). COMPRO: a
methodological approach for business process contextualisation. In R. Meersman,
T. Dillon, & P. Herrero (Eds.) On the Move to Meaningful Internet Systems: OTM
2010, (pp. 132–149). Berlin, Heidelberg: Springer Berlin Heidelberg.

Wahler, K. (2009). A Framework for Integrated Process and Object Life Cycle Mod-
eling. Ph.D. thesis, University of Zurich.

Weber, B., Sadiq, S., & Reichert, M. (2009). Beyond rigidity dynamic process
lifecycle support. Computer Science-Research and Development , 23(2), pp. 47–
65.

Wieland, M., Kopp, O., Nicklas, D., & Leymann, F. (2007). Towards Context-Aware
workflows. In CAiSE´ 07 Proceedings of the workshops and doctoral consortium,
(pp. 11–15).

Wissen, B., Palmer, N., Kemp, R., Kielmann, T., & Bal, H. (2010). ContextDroid: An
expression-based context framework for Android. In Proceedings of PhoneSense
2010.

Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Regnell, B., & Wessln, A. (2012).
Experimentation in Software Engineering. Springer.

Yan, J., Yang, Y., & Raikundalia, G. K. (2006). SwinDeW-a P2P-based decentralized
workflow management system. Systems, Man and Cybernetics, Part A: Systems
and Humans, IEEE Transactions on, 36(5), pp. 922–935.

Yu, J., & Buyya, R. (2006). A taxonomy of workflow management systems for grid
computing. Journal of Grid Computing, 3, pp. 171–200.

206

Published Papers

• Kocurova, A., Oussena, S., Komisarczuk, P. and Clark, T. (2013) MobWEL
- Mobile Context-Aware Content-Centric Workflow Execution Language. 3rd
International Conference on Advanced Collaborative Networks, Systems and
Applications (COLLA 2013), Nice, France, July 21 - 26, 2013.

• Kocurova, A., Oussena, S., Komisarczuk, P. and Clark, T. (2012) Context-
Aware Content- Centric Collaborative Workflow Management for Mobile De-
vices. 2nd International Conference on Advanced Collaborative Networks,
Systems and Applications (COLLA 2012), Venice, Italy, June 24 - 29, 2012.

• Kocurova, A., Oussena, S., Komisarczuk, P., Clark, T. and Kramer, D. (2012)
Towards improved distributed collaborative workflow management for mobile
devices. In Lecture Notes in Business Information Processing: Data-Driven
Process Discovery and Analysis, 2012.

• Kramer, D., Kocurova, A., Oussena, S., Clark, T., Komisarczuk, P. (2011) An
extensible, self contained, layered approach to context acquisition. M-MPAC,
Middleware 2011.

• Kocurova, A. (2011) Towards improved distributed collaborative workflow man-
agement for mobile devices. In Pre-proceedings of 1st Symposium on Data-
driven Process Discovery and Analysis (SIMPDA’11), PhD Seminar, Campi-
one d’Italia, Italy, June 29 - July 1, 2011.

• Sauer, Ch., Kocurova, A., Kramer, D., and Roth-Berghofer, T. (2012) Using
canned explanations within a mobile context engine. Exact 2012

• Kocurova, A., Clark, T., and Oussena, S. (2012) Applied metamodelling to Col-
laborative Document Authoring. 2nd Workshop on Model Driven Approaches
in System Development (FedCSIS/MDASD 2012), Wroclaw, Poland, Septem-
ber 9-12, 2012.

207

. PUBLISHED PAPERS

208

	Contents
	List of Figures
	List of Algorithms
	I Foundations
	1 Introduction
	1.1 Motivation
	1.1.1 The Vision of Mobile Collaboration
	1.1.2 Challenges of Mobile Collaborative Workflows

	1.2 Research Aim and Objectives
	1.3 Research Questions and Focus
	1.4 Contributions
	1.5 Approach
	1.5.1 Research Methodology
	1.5.2 Development Methodology
	1.5.3 Validation Approach

	1.6 Scope and Structure of Thesis

	2 Background and Concepts
	2.1 Introduction
	2.2 Mobile Peer-to-Peer Collaboration Scenario
	2.3 Workflow Management
	2.3.1 Basic Terminology and Concepts
	2.3.2 Workflow Management

	2.4 Mobile Peer-to-Peer Workflow Management
	2.4.1 Workflow Standards
	2.4.2 BPEL

	2.5 Content/Object Awareness
	2.6 Context Awareness
	2.6.1 Context Classification
	2.6.2 Context Management for Mobile Systems

	2.7 Summary

	3 Related Work
	3.1 Introduction
	3.2 Techniques for Workflow Adaptation
	3.3 Context Management
	3.3.1 Workflow Contextualisation
	3.3.2 Context Modelling and Management

	3.4 Object Behaviour Modelling and Management
	3.4.1 Artifact-Centric and Object-Aware Workflows
	3.4.2 Support for Content Lifecycle Management

	3.5 Mobile Peer-To-Peer Workflow Execution
	3.6 Summary

	II Contribution
	4 MobWEL Definition and Syntax
	4.1 Introduction
	4.2 MobWEL Workflow Approach
	4.2.1 Adapted Collaborative Workflow
	4.2.2 MobWEL Workflow Process Anatomy
	4.2.3 Overview of MobWEL Metamodel

	4.3 MobWEL Workflow Process Definition
	4.3.1 MobWEL Process Control Flow Representation
	4.3.2 MobWEL Global Declarations
	4.3.3 Peer-To-Peer Interaction Model
	4.3.4 Content Management Support
	4.3.5 Support for Context and Content Awareness

	4.4 Representation of Collaborators Group
	4.4.1 MobWEL Group Identification Metamodel
	4.4.2 Group Identification XML Schema

	4.5 Representation of Workflow-Specific Context Definition
	4.5.1 MobWEL Context Definition Metamodel
	4.5.2 Context Definition XML Schema

	4.6 Representation of Context-Aware Content Lifecycles
	4.6.1 MobWEL Context-Aware Content Lifecycle Definition
	4.6.2 Context-Aware Content Lifecycle XML Schema

	4.7 Summary

	5 MobWEL Semantics
	5.1 Introduction
	5.2 Context Situation
	5.3 Control Flow Semantics
	5.4 Extended Semantics with Data Flow
	5.5 Content Behaviour
	5.6 Consistency of Process Flow and Content Lifecycle
	5.7 Summary

	6 MobWEL Workflow Management and Execution
	6.1 Introduction
	6.2 Architecture of MobWEL Workflow Management System
	6.3 Context Provider
	6.3.1 Context Data Processing Layer
	6.3.2 Interaction and Context Management Layer
	6.3.3 Context Provider Interface
	6.3.4 Context Provider Usage

	6.4 Context Manager
	6.4.1 Context Manager Interface

	6.5 Content Manager
	6.5.1 Content Provider
	6.5.2 Content Lifecycle Parser
	6.5.3 Content State Transition System
	6.5.4 Content Manager Interface

	6.6 MobWEL Engine
	6.7 Peer-To-Peer Interaction Manager
	6.7.1 Interaction and Message Handling
	6.7.2 MobWEL Communication Protocol
	6.7.3 Message Structure
	6.7.4 Message Processing

	6.8 Internal Cooperations
	6.9 Summary

	III Validation
	7 From Design To Implementation
	7.1 Introduction
	7.2 ContextEngine
	7.2.1 Context Data Processing Layer
	7.2.2 ContextEngine Manager

	7.3 CAWEFA
	7.3.1 CAWEFA Service
	7.3.2 MobWEL Process Parsing
	7.3.3 Interaction with ContextEngine
	7.3.4 Peer-to-Peer Message Exchange

	7.4 Summary

	8 Evaluation
	8.1 Introduction
	8.2 Experimental Design
	8.3 Scenario-Based Evaluation
	8.3.1 Construction of a MobWEL workflow process
	8.3.2 Quantitative Data

	8.4 Workflow Instantiation
	8.4.1 Sequential Workflow Instantiation
	8.4.2 Parallel Workflow Instantiation

	8.5 Discussing Findings
	8.6 Summary

	IV Conclusion
	9 Conclusion and Future Work
	9.1 Summary of This Thesis
	9.2 Contributions of This Thesis
	9.3 Future Work

	Appendix A - Design Methodology for MobWEL workflows
	Appendix B - XML schemas
	Appendix C - MobWEL Workflow Models
	Bibliography
	Published Papers

