
Everything counts in small amounts

John P. T. Moore,
Thames Valley University, UK,

moorejo@tvu.ac.uk

Abstract

This paper describes an encoding tool which utilises
the ”data is code” principle of symbolic expressions avail-
able in Lisp-like languages to allow the scripting of tightly-
packed, cross-platform network protocols. This dynamic
approach provides specific flexibility when working on em-
bedded systems as it reduces the amount of cross compi-
lation and deploy cycles that occur following more tradi-
tional development approaches. In addition, the separation
of how the data is encoded from the compiled application
facilitates a concept known as extensibility of the network
protocol without requiring special handling.

1 Introduction

Serialising data structures for transmission across a network
is a common technique. The programmer might have to
handle differences in byte ordering if communication takes
place across different hardware platforms. In addition, the
protocol designer is restricted to describing the network
protocol in terms of the native data structures available in
the language used. Although languages such as Erlang pro-
vide excellent support for working with binary data [1], an
alternative more abstract approach is often taken.

Describing network protocols in a way that is indepen-
dent of the application programming language used intro-
duces some complexity. Ultimately this abstract syntax will
need to be represented by the programming language. The
traditional way of handling this is not dynamic and involves
code generation. A compiler is used to transform the ab-
stract syntax into native language code. Typically the code
generated will be combined with application specific code
and linked with vendor supplied code. This is the approach
of Abstract Syntax Notation One (ASN.1) [2] which origi-
nates from the world of telecommunications. The philoso-
phy of ASN.1 is to provide a rich abstract syntax to describe
network protocols and this syntax should be transferred into
binary before transmission. Different techniques, or encod-
ing rules, can be applied to make this transition from ab-

stract syntax to binary. The abstract syntax allows the pro-
tocol designer to think at a higher level and provides a com-
mon ground between application developers working in dif-
ferent programming languages. Google’s Protocol Buffers1

adopts a similar approach where the abstract syntax used to
describe a message is transformed into classes together with
methods to set, query and encode the data.

In this paper we describe Packedobjects [7], a tool which
takes a more dynamic approach. Packedobjects uses s-
expressions from the Scheme programming language to ex-
ploit the concept of ”data is code” and therefore bypasses
the need for code generation. In keeping with a minimalist
tradition adopted by Scheme, Packedobjects uses a simpli-
fied subset of the ASN.1 standard when describing proto-
cols. By simplifying the abstract syntax we can provide
a dynamic runtime representation within an s-expression
which encourages exploration in the Read-Eval-Print-Loop
(REPL).

A novel aspect of the tool originates from its foundations
as an extension language. In the following sections we will
introduce this concept and also explain how this supports
a feature such as extensibility. The remaining sections of
the paper will describe the language used by Packedobjects
as well as illustrate the encoding process. Finally we will
present a simple example, describe some challenges and
then conclude.

2 Extension language

Packedobjects is available2 as a module for GNU Guile
which in turn is available3 as a C library. By linking with
this library you gain access to a Scheme interpreter which
amongst other things will allow manipulation of structured
data in the form of symbolic expressions (s-expressions).
This approach of embedding an interpreter allows a sepa-
ration of the network code and the compiled C program.
Being able to script a binary protocol means we can dy-
namically alter its structure without the need to recompile

1
http://code.google.com/apis/protocolbuffers/

2
http://gitorious.org/packedobjects/

3
http://www.gnu.org/software/guile/

Proceedings of SIMPAR 2010 Workshops
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Darmstadt (Germany) November 15-16, 2010
ISBN 978-3-00-032863-3

pp. 278-283

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UWL Repository

https://core.ac.uk/display/46596721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://code.google.com/apis/protocolbuffers/
http://gitorious.org/packedobjects/
http://www.gnu.org/software/guile/


the main program. This facilitates a development cycle
which reduces the amount of cross compilation that would
be required for an embedded device if we exclusively used
the traditional programming languages such as C and C++.
Often, the traditional methods which require a compiler to
transform an abstract syntax into program code are untested
in cross compilation environments and therefore may not
work. In addition to this added flexibility we also obtain a
degree of extensibility of the network protocol.

3 Extensibility

The concept of extensibility can be confusing, especially to
those who have worked exclusively with text-based network
protocols that highly structure the data they communicate.
With this extra structure comes flexibility. It allows an ap-
plication to receive a message and silently ignore parts of
the message it does not understand or recognise. XML is
a good example of a technology which facilitates this ap-
proach. The structure or tags placed around the data within
the message provide all the information required to under-
stand the real payload. This approach is in direct conflict
for a protocol designer who strives to minimise every bit
of information communicated. Although binary protocols
can still follow a similar tag based approach it is common
to try and further optimise the solution so only the mini-
mal amount of data required to be decoded successfully is
actually communicated. The challenge is producing binary
protocols which are not fragile or easily broken by simple
changes in the protocol definition. This future proof de-
sign approach is known as extensibility. Thus, extensibility
refers to the way that network communications can continue
between parties A and B even though party B may have
updated the way it communicates. The following will illus-
trate a simple example. Party A uses the following protocol:

(define protocol-version-1
’(foo choice
(message-A boolean)
(message-B boolean)))

Party B updates its protocol to the following:

(define protocol-version-2
’(foo choice
(message-A boolean)
(message-B boolean)
(message-C boolean)))

At this point parties A and B may produce incompatible en-
codings. For example, it is not possible for party B to com-
municate message-C with party A because party A has no
knowledge of such a message. Party A would be expecting
an encoding based on a choice between 2 messages. Encod-
ing standards such as Packed Encoding Rules (PER) handle
this situation using special notation in the protocol syntax

to indicate the likelihood that specific parts of the specifi-
cation will be extended and then encode some extra struc-
ture to facilitate this [3]. Packedobjects does not require
this. What is required is that both parties obtain the same
version-2 protocol. In this case, even though party A will
never use message-C, it can still receive the message and
can choose to silently ignore it. The party A program does
not need to be recompiled because the protocol is available
via a Scheme script which can be dynamically loaded or
bootstrapped over a simple HTTP request. This provides a
more stable upgrade option for deployed devices allowing
them to continue working with restricted functionality until
a software upgrade can be authorised by the user. The abil-
ity to maintain communication across mass-deployed de-
vices can be a key goal in the domain of embedded commu-
nication technologies. Having introduced some of the novel
aspects of the tool we will now describe the language used.

4 Integer Encoding Rules

The domain specifc language (DSL)4 used by
Packedobjects consists of two categories of data type:
atomic and compound. An atomic data type specifies a
single value to be encoded whereas a compound data type
consists of one or more atomic and/or compound data
types. The compound data types include the various se-
quence types and the choice type. The process of encoding
types involves combining a protocol and some data and
transforming this into an integer form. The integer form is
then transformed into a core form before being supplied
to the low-level encoder [6]. In the following subsections
we will describe the transformation which we call Integer
Encoding Rules. The integer form can be summarised as
follows

(integer (range x y) n)

where x and y restrict the range of values n may take. We
can then determine whether we need to encode signed or
unsigned values and how many bits are required to encode
this range. The resulting core form can be expressed as

(or (signed (bits z) n)
(unsigned (bits z) n))

where we show a choice between the signed and unsigned
representation and z which represents the number of bits
required to encode value n.

Integers may be unconstrained, semi-constrained or con-
strained. All unconstrained and semi-constrained integers
require a length encoding to represent the number of bytes
required to encode the value. In the following subsections
we will first describe length encoding and then show by ex-
ample how other types are handled.

4
http://zedstar.org/packedobjects/#Protocol-grammar

Proceedings of SIMPAR 2010 Workshops
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Darmstadt (Germany) November 15-16, 2010
ISBN 978-3-00-032863-3

pp. 278-283

http://zedstar.org/packedobjects/#Protocol-grammar


4.1 Length encoding

Values are encoded within 8, 16 or 32 bit ranges. This
choice of 3 sizes can be represented with 2 bits using the
following function:

(lambda (n)
(cond
((and (>= n SCHAR_MIN) (<= n SCHAR_MAX))
‘(unsigned (bits 2) 0))

((and (>= n SHRT_MIN) (<= SHRT_MAX))
‘(unsigned (bits 2) 1))

((and (>= n INT_MIN) (<= INT_MAX))
‘(unsigned (bits 2) 2))))

Currently Packedobjects supports 32 bit architectures how-
ever, the 2 bits used to encode the length category can sup-
port an additional value for 64 bit platforms.

4.2 Unconstrained integers

The integer data type is a core type. All other types are
transformed into this type before being mapped onto the en-
coder. The integer type uses visible subtype constraints to
optimise the encoding. Subtyping in this case is used to re-
strict the range of values allowed for an integer value. The
ability to customise data types produces efficient encodings.
Not only are less bits sent across the communications link
but also more optimised encoder/decoder implementations
can be built to handle specific protocols. Constraints are
specified using the range syntax. Given the following pro-
tocol

(foo integer (range min max))

and corresponding data

(foo 1066)

we combine the protocol and data together to form

(integer (range min max) 1066)

As this example has no range limits it is unconstrained and
will need to be encoded as a signed value. It is transformed
into a list containing the following:

((unsigned (bits 2) 1)
(signed (bits 16) 1066))

The first item in the list specifies which length category the
value will be encoded in. The second item in the list is the
value encoded in the number of bits dictated by this cate-
gory.

4.3 Semi-constrained integers

Encoding a semi-constrained integer follows a similar ap-
proach to an unconstrained integer except that a lower

bound restricts the size of the value we encode. The off-
set result will always be positive and is therefore encoded
as an unsigned variant. For example, the protocol

(foo integer (range -1000 max))

is combined with the value

(foo -1000)

to produce

(integer (range -1000 max) -1000)

Instead of encoding the value -1000 we first subtract the
lower bound. This allows us to encode the result as a posi-
tive value as follows:

((unsigned (bits 2) 0)
(unsigned (bits 8) 0))

4.4 Constrained integers

Encoding a constrained integer bypasses the need to pro-
vide a length encoding. We determine the number of bits
required to encode the value based on the range. For exam-
ple the protocol

(foo integer (range -100 100))

is combined with the value

(foo 100)

to produce

(integer (range -100 100) 100)

This is transformed into

((unsigned (bits 8) 200))

As with semi-constrained integers, the lower-bound means
we will always encode positive values.

4.5 String types

There are various string types that differ according to the
type of characters they represent and therefore the amount
of bits they need when encoded. For example, a string con-
taining only the characters one and zero requires just 1 bit,
whereas a string containing characters which can represent
hexadecimal requires 4 bits per character when encoded.
The default string type encodes in 7 bits. There is also an
8 bit string type which could be used to contain non-string
data. As with integers, the various string types employ sub-
typing to optimise the encodings. This time the constraints
are specified using the size syntax and are used to restrict
the length of strings. Rather than show how every string
type is first converted to integer form and then to core form,
we will provide one example to illustrate the principles in-
volved. For example, the protocol

Proceedings of SIMPAR 2010 Workshops
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Darmstadt (Germany) November 15-16, 2010
ISBN 978-3-00-032863-3

pp. 278-283



(foo bit-string (size 1 10))

is combined with the value

(foo "101010")

to produce

(bit-string (size 1 10) "101010")

This is then transformed into integer form where the first
item in the list represents the length encoding followed by
each character converted to a decimal value.

((integer (range 1 10) 6)
(integer (range 0 1) 1)
(integer (range 0 1) 0)
(integer (range 0 1) 1)
(integer (range 0 1) 0)
(integer (range 0 1) 1)
(integer (range 0 1) 0))

The length is encoded as a constrained integer as specified
in section 4.4. From this form we convert to core form as
follows

((unsigned (bits 4) 5)
(unsigned (bits 1) 1)
(unsigned (bits 1) 0)
(unsigned (bits 1) 1)
(unsigned (bits 1) 0)
(unsigned (bits 1) 1)
(unsigned (bits 1) 0))

The end result of supplying this list to the low-level encoder
is a string containing just 2 bytes.

4.6 Enumerated types

Enumeration is common in many high-level languages. The
DSL used by Packedobjects restricts the sequence of values
to be of type symbol or integer. An enumerated encoding
is very similar to a choice encoding, however we count the
first item from 0. For example, if we have the following
protocol

(foobar enumerated
(foo bar baz))

and supply

(foobar bar)

we obtain

((integer (range 0 2) 1))

From this we can easily obtain the core form

((unsigned (bits 2) 1))

4.7 Boolean types

A boolean type encodes a true or false value and concisely
maps to 1 bit. For example, if we have the following proto-
col

(foo boolean)

and supply

(foo #f)

we obtain

((integer (range 0 1) 0))

From this we arrive at the core form

((unsigned (bits 1) 0))

4.8 Null types

A null type encodes no value and therefore does not require
any call to the encoder. Although a null type encodes no
value its significance comes from its context. There are
specific circumstances where no extra data needs to be en-
coded to convey information. An analogous scenario would
be the acknowledgement system employed by the Trans-
mission Control Protocol (TCP). It is possible that a TCP
acknowledgement is explicitly sent across a network where
no actual TCP data is communicated other than the TCP
header itself.

4.9 Sequences

The sequence type provides a useful way of logically group-
ing together named values so that each belongs to a unique
name space. Although it has no impact on the data encoded
it is an important mechanism for structuring data.

4.10 Sequences with optionality

It may not be feasible to encode every value within a se-
quence. To handle this optionality we must use a variation
of the sequence type that informs the encoder to include the
required extra information. In addition to encoding a small
amount of extra data, the added flexibility of optionality will
result in a loss of performance as we need to determine what
is present in the sequence at runtime. For example, if we
have the following protocol

(foobar sequence-optional
(foo boolean)
(bar boolean)
(baz boolean))

and supply

Proceedings of SIMPAR 2010 Workshops
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Darmstadt (Germany) November 15-16, 2010
ISBN 978-3-00-032863-3

pp. 278-283



(foobar
(foo #t)
(baz #t))

we obtain

((integer (range 0 7) 5)
(integer (range 0 1) 1)
(integer (range 0 1) 1))

The first item of the list encodes the value 5 as a constrained
integer to represent the bitmap 101 which informs us that
the second item in the sequence was not supplied. The inte-
gers are then mapped to the core form

((unsigned (bits 3) 5)
(unsigned (bits 1) 1)
(unsigned (bits 1) 1))

This example also used the boolean type which is explained
in subsection 4.7.

4.11 Sequences that repeat

Another important feature of sequences is they may repeat.
From a low-level encoding point of view this is straight for-
ward. All we need to know is how many times the sequence
repeats. From a higher-level perspective we must employ
special handling of our values to group together each indi-
vidual sequence. In the example that follows we can see
how each sequence of values foo and bar are surrounded by
an extra pair of brackets to denote this grouping. Encoding
this sequence requires a value to represent how many times
it repeats. This value is encoded as a semi-constrained inte-
ger as illustrated in subsection 4.3. For example, if we have
the following protocol

(foobar sequence-of
(foo boolean)
(bar boolean))

and supply

(foobar
((foo #t)
(bar #t))

((foo #f)
(bar #f))

((foo #t)
(bar #f)))

we obtain

((integer (range 0 max) 3)
(integer (range 0 1) 1)
(integer (range 0 1) 1)
(integer (range 0 1) 0)
(integer (range 0 1) 0)
(integer (range 0 1) 1)
(integer (range 0 1) 0))

Note how the first item informs us that the sequence repeats
3 times and is encoded without an upper bound. Applying
the usual integer transformation techniques we end up with

((unsigned (bits 8) 1)
(unsigned (bits 8) 3)
(unsigned (bits 1) 1)
(unsigned (bits 1) 1)
(unsigned (bits 1) 0)
(unsigned (bits 1) 0)
(unsigned (bits 1) 1)
(unsigned (bits 1) 0))

The first two items represent a semi-constrained integer en-
coding of the value 3. The remaining items represent the
boolean values repeatedly encoded as part of the sequence.

4.12 Making choices

Typically a network protocol will consist of a selection of
different messages or Protocol Data Units (PDUs). The
simple protocol in section 3 provides an example of this
type of choice. In addition, within a PDU itself decisions
may need to be made that selectively encode only parts of
the message. A choice encoding requires an index value
to be encoded corresponding to the position of the chosen
item in the sequence. For example, if we have the following
protocol

(foobar choice
(foo boolean)
(bar boolean))

and we supply

(foobar
(bar #f))

we obtain

((integer (range 1 2) 2))
(integer (range 0 1) 0))

The first item in the list indicates the second choice was
made in the sequence. The choice index is encoded as a
constrained integer as described in subsection 4.4 and then
mapped to a core form as follows

((unsigned (bits 1) 1)
(unsigned (bits 1) 0))

The following section will provide a complete example of
the encode and decode process.

5 Example

We will describe a simple phone book entry by first defin-
ing the protocol and then encoding and decoding the values
within the Scheme interpreter.

Proceedings of SIMPAR 2010 Workshops
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Darmstadt (Germany) November 15-16, 2010
ISBN 978-3-00-032863-3

pp. 278-283



(use-modules (packedobjects packedobjects))
(use-modules (ice-9 pretty-print))

(define protocol
’(person sequence-optional

(name string (size 1 100))
(id integer (range 1 max))
(email string (size 3 320))
(phone-number sequence-of
(number numeric-string (size 8 20))
(type enumerated (mobile home work)))))

(define data
’(person
(name "John Doe")
(id 1234)
(email "johnd@example.com")))

From the interpreter we can try out our code
guile> (define pdusize 100)
guile> (define pdu (encode protocol data pdusize))
guile> (string-length pdu)
27
guile> (pretty-print (decode protocol pdu pdusize))
(person
(name "John Doe")
(id 1234)
(email "johnd@example.com"))

guile>

This example shows the use of the sequence-optional type
which allowed us to add an entry for John Doe without in-
cluding a phone number. The reference manual [7] con-
tains a variety of other examples. Before concluding we
will highlight some challenges developing the tool.

6 Challenges

The main disadvantage of adopting such a dynamic ap-
proach is a loss of runtime performance, the significance
of which depends on the type of embedded device used and
the nature of the network [4]. For example, Packedobjects
has been tested successfully on various embedded Linux
devices5 which resemble the performance of desktop com-
puters from perhaps a decade ago. The software has also
been tested over latency bound networks where CPU per-
formance has little relevance [5].

Another potential difficulty is providing sophisticated er-
ror and exception handling without directly impacting on
performance. Scheme has a powerful macro system which
could be used to map to the s-expression-based DSL. This
could help provide a consistent approach to handling errors.

7 Conclusion

The designer of a network protocol must make a number of
choices. The choices taken will have an impact on the size
and structure of the data communicated. In some cases it is
necessary to try and encode the data as efficiently as pos-
sible, in which case a binary format may be used. Similar

5
http://zedstar.org/packedobjects/#Embedded-Linux

to the way we might migrate from a low-level language and
think about a problem in a high-level language, the proto-
col designer should not think in terms of a low-level binary
format. Instead the designer should use a more expressive
alternative, one that will still produce equivalent concise bi-
nary output. In this paper we presented Packedobjects, a
tool which provides such an alternative where developers
are allowed to express their protocol using an abstract syn-
tax. As with similar tools, an application produced takes the
form of a compiled binary. However, with Packedobjects
a Scheme interpreter is embedded into the application to
provide the ability to represent a network protocol and its
values using an s-expression. By exploiting the concept of
”data is code” we eliminate the need for using a compiler
to transfer the abstract syntax into a concrete syntax which
is usable in the native programming language. The benefits
we gain from this approach are amplified in the tool’s target
application area of embedded systems. We are able to script
the network protocol on an embedded device without the ex-
tra complication typically present when cross compilation
is required. In addition, the separation of the data encoding
and decoding process away from the compiled application
facilitates extensibility of the communication. This in turn
provides the opportunity to maintain communication across
mass-deployed devices even when a change in protocol oc-
curs. Such flexibility can be a key goal for embedded com-
munication technologies. The main disadvantage of taking
such a dynamic approach is the negative impact on perfor-
mance that might occur, the significance of which depends
on the nature of both the hardware and network used.

References

[1] P. Gustafsson and K. F. Sagonas. Bit-level binaries and gen-
eralized comprehensions in Erlang. In K. F. Sagonas and
J. Armstrong, editors, Erlang Workshop, pages 1–8. ACM,
2005.

[2] International Telecommunication Union. Specification of Ab-
stract Syntax Notation One (ASN.1). ITU-T Recommenda-
tion X.208, 1988.

[3] International Telecommunication Union. Abstract Syntax
Notation One (ASN.1): Specification of Packed Encoding
Rules (PER). ITU-T Recommendation X.691, July 2002.

[4] L. Kleinrock. The Latency/Bandwidth Tradeoff in Gigabit
Networks. IEEE Communications Magazine, 30(4):36–40,
Apr. 1992.

[5] J. P. T. Moore. Thumbtribes: Low Bandwidth, Location-
Aware Communication. In M. S. Obaidat, V. P. Lecha, and
R. F. S. Caldeirinha, editors, WINSYS, pages 197–202. IN-
STICC Press, 2007.

[6] J. P. T. Moore. Get stuffed: Tightly packed abstract protocols
in Scheme. The 10th Scheme and Functional Programming
Workshop, 2009.

[7] J. P. T. Moore. Packedobjects Reference Manual.
http://zedstar.org/packedobjects/, Aug. 2010.

Proceedings of SIMPAR 2010 Workshops
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Darmstadt (Germany) November 15-16, 2010
ISBN 978-3-00-032863-3

pp. 278-283

http://zedstar.org/packedobjects/#Embedded-Linux

	Introduction
	Extension language
	Extensibility
	Integer Encoding Rules
	Length encoding
	Unconstrained integers
	Semi-constrained integers
	Constrained integers
	String types
	Enumerated types
	Boolean types
	Null types
	Sequences
	Sequences with optionality
	Sequences that repeat
	Making choices

	Example
	Challenges
	Conclusion

