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SPATIAL STRUCTURES IN MAGNETIZABLE FLUIDS 

N. F. Patsegon  and  L. N. Popova   UDC 532.528 

The conditions of existence and stability of spatial structures of ferroparticles of the type of isolated and 
periodic strata that are formed in fixed layers of magnetizable fluid in a constant homogeneous magnetic 
field are studied. 

1. Introduction 

Magnetizable fluids (magnetic fluids or ferrofluids) are artificial colloid solutions of ferroparticles with a 
characteristic size   ∼ 10   nm, coated with a layer of a surfactant, in a liquid carrier [14].  They are used as a lu-
bricant in plain bearings, providing minimum friction in assemblies of drives of magnetic and optical disks, 
sealants that protect the body of a hard disk of a computer from dust, acoustic loudspeakers for damping a mem-
brane, separators, and accelerometers, and find extensive use in modern high technologies [13, 20, 23]. 

In works published in recent years [16, 19, 22], a new field of possible application of magnetizable fluids, 
namely, magnetooptics, has been discussed.  Experiments with films of these fluids show that, under the action 
of a magnetic field, ferroparticles that enter into the fluid form structures, the configuration of which depends on 
the direction of the field and its value, the fluid becomes anisotropic, and, correspondingly, the conditions of its 
interaction with optical radiation change.  This property of magnetizable fluids can be used for the development 
of optical gates, light modulators, controlled filters, diffraction grating, and displays [13, 22]. 

New possibilities of application of magnetizable fluids are stimulated by theoretical and experimental inves-
tigation of processes occurring with ferroparticles in magnetic fields (see [2] and references in it). 

The change in the microstructure of magnetizable fluids is caused by the possibility of formation of aggre-
gates consisting of a finite number of ferroparticles in it [1, 15].  In [6], an appropriate model of a medium with 
a changing microstructure, which describes processes of formation and breakdown of aggregates of ferroparti-

cles, was proposed.  The state variables of this medium are the mean number of particles in aggregates  γ = ν−1   

and the parameter of the effective magnetic field  λ   that takes into account the field induced by ferroparticles.  
In this case, the change in the magnetic state of the medium is set by a system of two quasilinear equations of 
parabolic type for  λ   and  ν .  In [12], a qualitative investigation of a concentrated dynamic system that exists 
in the limiting case, when diffusion processes in a fluid are negligibly small, was performed.  Homogeneous 
equilibrium states of a medium were considered in [8, 21].  In these works, equilibrium magnetization curves of 
the fluid were constructed, and the conditions of existence of wave modes of the type of switching waves were 
obtained.  In [9–11, 21], spatial and spatial-time structures of the type of static and running autosolitons, which 
form in the volume of a magnetizable fluid in a constant homogeneous magnetic field, were studied.  They are 
realized in the form of parallel layers, strips, and cylindrical columns, oriented along the field, in which aggre-
gates of ferroparticles are concentrated.  As a result of a comparison of calculated and experimentally measured 
characteristics of the structures, estimates of the parameters of the model of the medium were obtained. 
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In the present work, we consider the problem of stability of spatial structures of the type of isolated and pe-
riodic strata, which is important for practical applications.  In the investigation of the stability, the general theory 
of autosolitons, the results and methods of which were presented in the monograph [4], is used. 

2. Stationary Structures in a Magnetizable Fluid 

Let us consider a layer of fluid of thickness   � ,  located between two parallel infinite nonmagnetic plates, in 
a constant homogeneous magnetic field parallel to the layer.  We choose the origin  O   of a Cartesian rectangu-
lar coordinate system at the center of the layer and direct the axis  Ox   perpendicularly to the layer, and the axis  
Oy   parallel to the magnetic field strength.  To describe the behavior of the fluid, we use a model of a medium 

with a changing microstructure [6].  The equilibrium magnetization of this medium is determined by the density 
of the medium  ρ ,  temperature  T ,  the magnetic field strength  H ,  the mean number of particles in aggre-

gates  γ = ν−1 ,  and the parameter of the effective magnetic field  λ .  The magnetic-dipole interaction between 

ferroparticles in the approximation of the self-consistent field is taken into account via the parameter  λ .  The 
strength of the magnetic field that acts on the liquid volume is represented in the form  He = H + λM ,  where  

λM   is the strength of the field induced by particles.  The change of the magnetic state of the medium is de-
scribed by a system of equations, which, in the one-dimensional case, has the form 

 τλ
∂λ
∂t

= Dλ
∂2λ
∂x2

+ Q(λ ) (λ,ν; H ), τν
∂ν
∂t

= Dν
∂2ν
∂x2

+ Q(ν) (λ,ν; H ) . (1) 

The functions  Q(λ ) (λ,ν; H )   and  Q(ν) (λ,ν; H )   are set by the expressions 

 Q(λ ) (λ,ν; H ) = 1
2

L2 − L∗
2 − 2β(λ − λ1∗ )(λ − λ2∗ )(λ − λ3∗ )⎡⎣ ⎤⎦ , 

 Q(ν) (λ,ν; H ) = f (ξ) − f (ξ∗ ) + α(ν − ν1∗ )(ν − ν2∗ )(ν − ν3∗ ) . 

Here,   ξ = m1He/(kTν) ,    n1 = c1ρ/M   is the volume density of ferroparticles,  c1   is the mass concentration of 

particles, which is assumed constant,   M   is the mass of an isolated ferroparticle, and  k   is the Boltzmann 
constant.  The magnetization of the fluid is determined by the equation  M = M s L(ξ) ,  where  

 L(ξ) = cothξ −1/ξ   is the Langevin function,  M∗   is the magnetization of structurization of the fluid,  

M∗ = M s L(ξ∗ ) = M s L∗ ,  M s  = m1n1   is the saturation magnetization of the fluid,  λi∗ ,  νi∗ ,  i = 1,2, 3 ,  are 

the equilibrium values of  λ   and  ν   for  M = M∗ ,  λ1∗ > λ3∗ > λ2∗ ,  λ1∗ + λ2∗ = 2λ3∗ ,  ν1∗ > ν3∗ > ν2∗ , 

 νi∗ − ν j∗  = m1M s L∗⋅(λi∗  –  
λ j∗ )/(kTξ∗ ) ,       α = (kT/(m1M s ))3 ⋅(ξ∗/L∗ )4β , 

and 

  f (ξ) = ln (sinhξ/ξ) − ξL(ξ) . 

The parameters  τλ ,  τν ,  Dλ ,  Dν ,  and  β   are assumed to be constant. 
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The homogeneous equilibrium states of the fluid  λ = const   and  ν = const   satisfy the equations 

 Q(λ ) (λ,ν; H ) = 0, Q(ν) (λ,ν; H ) = 0 . (2) 

For  λ1∗ ≠ λ2∗ ,  the considered medium is characterized by a smooth criss-cross magnetization curve and, in 

different intervals of change in the magnetic field strength, has from one to nine equilibrium states [21].  System 
(1) differs in this from monostable and bistable systems, for which the theory of autosolitons was constructed 
in [4]. 

We investigate the case of the  K-system  [4], for which   Dν � Dλ .  In the K-system, the characteristic 

scale of change in the parameter of the effective magnetic field in the space substantially exceeds the character-
istic scale of change in the mean number of particles in aggregates, i.e., the parameter  ν   is a fast variable, and 
the parameter  λ   is a slow variable.  Moreover, we assume that the following condition holds: 

   Dν � �2 � Dλ . (3) 

The change in the magnetic state of the medium under condition (3) is described by the following system of 

equations (if terms of order    �
2/Dλ   are neglected): 

 τν
∂ν
∂t

= Dν
∂2ν
∂x2

+ Q(ν) (λ,ν; H ) , (4) 

 

  

τλ
∂λ
∂t

= 1
�

Q(λ ) (λ,ν; H )dx
−�/2

�/2

∫ . (5) 

The second equation was obtained by averaging the first equation of system (1) over the thickness of the 
layer of the fluid. 

Let us find stationary solutions of the system of equations (4), (5) that satisfy the boundary conditions 
which correspond to the absence of flows of the parameters  λ   and  ν   through the boundary 

 
 
dλ
dx

− �
2( ) = dλ

dx
�
2( ) = 0, dν

dx
− �

2( ) = dν
dx

�
2( ) = 0 . (6) 

They are solutions of the boundary problem 

 Dν ′′ν + Q(ν) (λ s ,ν(x); H ) = 0 , (7) 

 
 
dν
dx

− �
2( ) = dν

dx
�
2( ) = 0 , (8) 

 

  

Q(λ ) (λ s ,ν(x); H )dx
−�/2

�/2

∫ = 0 , (9) 
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where  λ = λ s = const .  In the considered case, the equations of electrodynamics and boundary conditions for 

the magnetic field are automatically satisfied. 
In [10], it was shown that there exists a range of values of the magnetic field strength in which the curve of 

local coupling determined by the equation  Q(ν) (λ,ν; H ) = 0   for  H = const   is  И-shaped, i.e., the considered 

system is an  И-system [4].  The plot of the dependence of  Q(ν) (λ,ν; H )   on  ν   for a fixed value of  λ   repro-

duces qualitatively the curve of the local coupling and is also И-shaped. 
The phase portrait of the dynamic system to which Eq. (7) is reduced depends on the quantity  λ s .  If  

λ− < λ s < λ+ ,  where  λ−   and  λ+   are the minimum and maximum values of the function  λ(ν) ,  which sets 

the curve of the local coupling, the system has the following three fixed points (denote them by  ν1 ,  ν2 ,  and  

ν3   ( ν1 < ν2 < ν3 )):  the saddles  ν1 ,  ν3 ,  and the center  ν2 .  For the value of  λ s   that satisfies the condition 

 Q(ν) (λ s ,ν; H )dν
ν1

ν3

∫ = 0 , 

the phase portrait contains a cell bounded by two heteroclinic trajectories, namely, separatrices, one of which 
emanates from the saddle  ν1   and enters into the saddle  ν3 ,  and the other, vice versa, emanates from the sad-

dle  ν3   and enters into the saddle  ν1 .  The closed trajectory close to the boundary of the cell corresponds to a 

wide stratum at the center of the layer of the fluid.  The shape of the stratum contains segments of smooth and 
abrupt change in the parameter  ν :  on the plane  (λ,ν) ,  smooth changes in  ν   occur in small neighborhoods 

of the points  (λ s, ν1 )   and  (λ s, ν3 ) ,  and the abrupt changes take place along the segment  ν1 < ν2 < ν3   of 

the straight line  λ = λ s .  

To construct the shape of the stratum, we approximate the function  Q(ν) (λ s ,ν; H )   by a cubic polynomial 

that has the same roots  ν1 ,  ν2 ,  ν3   and nearly the same derivatives at the points  ν1 ,  ν2 ,  and  ν3   

 Q(ν) (λ s ,ν; H ) ≈ Q(ν) = − B(ν − ν1 )(ν − ν2 )(ν − ν3 ), B > 0 , 

 
∂Q(ν) (λ s ,νi ; H )

∂ν
i=1

3

∑ = dQ
dν ν=νii=1

3

∑ . 

The constant  B   is determined from the last condition 

 B = −

∂Q(ν) (λ s ,νi ; H )
∂νi=1

3∑
(ν2 − ν1 )2 + (ν3 − ν1 )(ν3 − ν2 )

. 

The equation  Dν ′′ν +Q(ν) = 0   has the solutions 

 

 
ν(x) =

ν1 + ν3 exp ± B/(2Dν )(ν3 − ν1 )x⎡⎣ ⎤⎦
1+ exp ± B/(2Dν )(ν3 − ν1 )x⎡⎣ ⎤⎦

, 
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 (а) (b) 

Fig. 1. Wide strata in the magnetizable fluid: curves 1–3 correspond to  H = 15, 18, 21 Oe;  γ   is the number of particles in aggre-

gates. 

which correspond to the separatrices of the saddle points.  Joining these solutions at the center of the segment  

  − �/2 < x < �/2 ,  we obtain an approximate expression for the wide stratum at the center of the layer of the flu-

id.  For a hot (cold) stratum, the mean number of particles in aggregates at the center of the segment is larger 
(smaller) than that near the boundary.  Replacing the stratum by a step function, from the integral condition (9) 
we can determine its size 

  – for a hot stratum 

 

 

� s =
Q(λ ) (λ s ,ν1; H )

Q(λ ) (λ s ,ν1; H ) −Q(λ ) (λ s ,ν3; H )
� , 

  – for a cold stratum 

 

 

� s =
Q(λ ) (λ s ,ν3; H )

Q(λ ) (λ s ,ν3; H ) −Q(λ ) (λ s ,ν1; H )
� . 

A solution of the wide-stratum type exists only in the case where the expression that sets its size is positive. 
In Fig. 1, we show strata that form in a layer of a magnetizable fluid at different values of the magnetic field 

strength (Fig. 1а shows a hot stratum, and Fig. 1b shows a cold stratum).  Calculations were performed for the 

following values of the parameters of the model:  m1 = 10−16 erg/gf,  M s = 40 gf,  ξ∗ = 1 ,  β = −0.1,  λ1∗ = 5 ,  

λ3∗ = 4 ,  and  ν3∗ = 0.2 .  

In the indicated range of the magnetic field strength, with increase in  H ,  the width of the hot stratum in-
creases, and the width of the cold stratum decreases.  In this case, the height of the stratum   Δγ = 1/ν3 −1/ν1   

changes insignificantly and agrees with an estimate for the number of particles in chain aggregates presented in 
[18].  In Fig. 2, we show the corresponding distributions of the magnetization of the medium. 

Along with a singular hot and a cold stratum, problem (7)–(9) has a set of periodic solutions in the form of a 
sequence of identical strata of period  

  
Lp = �/N   ( N   is a natural number).  These solutions describe periodic 

structures in the form of layers of the more or less aggregated medium in the layer of the fluid that are equidis-
tant from one another. 
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 (а) (b) 

Fig. 2.  Distribution of the magnetization in the layer of the fluid: curves 1–3 correspond to  H = 15, 18, 21Oe. 

The solutions of system (7)–(9) model the formation of stationary structures in the fluid also in the case 
where the axis  Ox   is parallel to the layer.  They are realized in the form of one or several strips oriented along 
the magnetic field in which aggregates of ferroparticles are concentrated. 

The strip structures of ferroparticles are observed experimentally in films of magnetizable fluids [17, 19, 
22].  The authors of [17] used a kerosene-based ferrofluid with magnetite particles stabilized by oleic acid in 
experiments.  A layer of the fluid with a thickness of several micrometers was deposited on the bottom of a 
closed glass rectangular cell and placed in a magnetic field.  Observations with an optical microscope showed 
that within 10 sec after switching a field parallel to the layer of the fluid, initially randomly distributed ferropar-
ticles are arranged in needle-like chains oriented along the field; with time, aggregates become longer and 
thicker, and within 2 h, a quasiperiodic strip structure of nanoparticles with a width of strips   ∼ 1μm  and a dis-
tance of   ∼ 20 μm between them forms.  Similar experiments were described in [13, 19, 22].  

In [7, 11], a comparison of computed characteristics of stationary structures in a layer of a magnetizable flu-
id with experimental data was performed, as a result of which the following estimates for the parameters of a 
model of a medium with a changing microstructure were obtained:  τν ∼ 10 sec,  τλ ∼ 7200 sec,  Dλ ∼ 2 μm2,  

and   Dν � 1μm2. 

3. Stability of Stationary Structures 

Let us consider the stability of the stationary solution  ν = ν(x) ,  λ = λ s = const   of system (4), (5) for 

relatively small perturbations. 
In dimensionless variables, Eqs. (4) and (5) have the form 

 ∂ν
∂t

= ∂2ν
∂x2

+ Q(ν) (λ,ν; H ), α−1 ∂λ
∂t

= Q(λ ) (λ,ν; H ) . (10) 

Here, we use  Dν   as a characteristic linear size and  τν   as a characteristic time; we retain the same notation 

for dimensionless variables  x   and  t   as earlier for dimensional variables   α := τν/τλ ;  the angle brackets 

mean averaging over the dimensionless thickness of the layer of the fluid. 
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Let us represent perturbations in the form 

 δν(x, t ) = δν(x)exp(−ηt ), δλ(t ) = δλ exp(−ηt ) , (11) 

where  δν(x)   satisfies the cyclic boundary conditions. 

The investigation of the stability of the inhomogeneous distribution  ν = ν(x) ,  λ = λ s = const   is reduced 

to the problem for eigenvalues 

 (A − η)δν = Qλ
(ν) (λ s ,ν(x); H )δλ , (12) 

 δλ = (μ − ηα−1 )−1 Qν
(λ )δν , (13) 

 
 
δν − �

2( ) = δν �
2( ), dδν

dx
− �

2( ) = dδν
dx

�
2( ) , (14) 

where 

 A := − d2

dx2
− Qν

(ν) (λ s ,ν(x); H ), μ := − Qλ
(λ ) (λ s ,ν(x); H ) . 

The solution  ν = ν(x) ,  λ = λ s   is stable if  Reη > 0 ,  otherwise, it is unstable. 

In contrast to systems considered in [4], for the magnetizable fluid, the parameter  μ   can take both positive 

and negative values. 
In a medium whose magnetic state is determined by only one variable  ν ,  for  λ = const   and, correspond-

ingly,  δλ = 0 ,  the inhomogeneous distributions  ν = ν(x)   are unstable.  In this case, the investigation of sta-

bility is reduced to the determination of the eigenvalues  η = pn   of the differential equation 

 Aδν = pδν  (15) 

with the boundary conditions (14).  It follows from the oscillation theorem [3, 5] that, for this problem, there 
exists an infinite set of eigenvalues, and all eigenvalues are real and can be arranged in the form of the infinitely 
increasing sequence   p0 < p1 < p2 <…,  and the eigenfunction  δνn ,  which corresponds to the eigenvalue  

p n ,  has exactly  n   zeros in the interval    −�/2 < x < �/2 .  The differentiation of the first equation of system 

(10) with respect to  x   in the stationary case shows that   dν/dx   is the eigenfunction of the operator  A ,  
which corresponds to a zero eigenvalue [4].  The function  ν(x) ,  which determines the shape of the stratum, 

attains an extremum at the point  x = 0 ,  and, therefore, the derivative   dν/dx   has a zero at this point, i.e., it is 

not an eigenfunction of  δν0 ,  and  η = p0 < 0 .  

Consider the general case where  δλ ≠ 0 .  Substituting the expression for  δλ   from (13) in (12), we get 

 (A − η)δν = Qλ
(ν) Qν

(λ )δν (μ − ηα−1 )−1 . (16) 
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The expansion of  δν(x)   in series in terms of the eigenfunctions  δνn   of problem (15), (14) 

 δν(x) = cnδνn (x)
n=0

∞

∑  (17) 

and the substitution of this expansion into (16) leads to the following system of linear homogeneous equations 
for the coefficients  ci :  

 

 
ci ( pi − η) + cn (ηα−1 − μ)−1 Qλ

(ν)δνi Qν
(λ )δνn

n=0

∞

∑ = 0, i = 0, 1,… . (18) 

Here, we take into account that the system of the functions  δνn   is orthonormal. 

Let us introduce the notation 

 ai := − 1
μ Qλ

(ν)δνi Qν
(λ )δνi . (19) 

In the considered case, 

 Qν
(λ ) = kT

m1M s
Qλ

(ν) , 

and, therefore, 

 ai = − 1
μ

kT
m1M s

Qλ
(ν)δνi( )2 , 

i.e., all values of  ai   have the equal signs opposite to the sign of  μ .  They can be expressed in terms of the pos-

itive values of  bi :  

 ai = − 1
μ bi , (20) 

which are determined as follows: 

 bi = kT
m1M s

Qλ
(ν)δνi( )2 ; 

where  bi = 0   for odd  i   because  δνi   are odd functions,  Qλ
(ν) (λ s ,ν(x); H )   is an even function, and  bi > 0   

for even  i .  
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Taking into account (20), we write system (18) in the form 

 

 
pi − η+ (ηα−1 − μ)−1bi⎡⎣ ⎤⎦ci + ′i (ηα−1 − μ)−1 Qλ

(ν)δνi Qν
(λ )δνn cn

n=0

∞

∑ = 0, i = 0, 1,… . 

The equality of the determinant of this system to zero gives the following equation for the determination of  
η   [4]: 

 1− bn ( pn − η)−1(μ − ηα−1 )−1

n=0

∞

∑⎡

⎣
⎢

⎤

⎦
⎥

n=0

∞

∏ ( pn − η) = 0 . (21) 

If the function  ν(x)   describes a periodic function in the volume of the fluid containing two or more strata, 

then its derivative   dν/dx   has more than one root in the segment    (−�/2,  �/2) .  In this case, Eq. (21) is satis-

fied for  η = p1 < 0 ,  and the structure is unstable. 

Consider the distribution of  ν(x)   in the form of a stratum.  In this case, the derivative   dν/dx   has a root, 

and to it there corresponds the eigenfunction  δν1 ,  which corresponds to a zero eigenvalue  p1 = 0 .  Hence,  

p0 < 0 ,  and, for  n ≥ 2 ,  all eigenvalues  p n   are positive. 

Equation (21) is satisfied for  η = pn ,  n ≥ 1 , or in the case where the expression in brackets becomes zero.  

The values  η = pn ≥ 0   for  n ≥ 1   are not dangerous from the viewpoint of loss of stability.  Therefore, the sta-

bility of the stratum is determined by the values of  η   that make the brackets in (21) vanish.  

If we introduce the notation  η = iω ,  the condition of stability takes the form  Imω < 0 .  The stratum is 

unstable if the function in brackets in Eq. (21) 

 D(ω) := 1 − bn ( pn − iω)−1(μ − iωα−1 )−1

n=0

∞

∑ , (22) 

has zero in the upper half-plane  ω (Reω, Imω) .  
The real part of  D(ω)   is set by the equation 

 Re D(ω) = 1 + α
ω2 + α2μ2

ω2 − μαpn

pn
2 + ω2

bn
n=0

∞

∑ , (23) 

and is an even function of  ω ,  and  Re D(±∞) = 1 .  
The imaginary part of  D(ω)   is set by the expression 

 Im D(ω) = − αω
ω2 + α2μ2

μα + pn

pn
2 + ω2

bn
n=0

∞

∑ ; (24) 

it is an odd function of  ω ,  and, furthermore,  Im D(0) = 0   and  Im D(±∞) = 0 .  The value of the derivative of 

this function at the point  ω = 0   
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 d
dω Im D(ω) ω=0 ≈ −

b0

μp0
2

 (25) 

is negative for  μ > 0   and positive for  μ < 0 .  

The function  Im D(ω)   can vanish for nonzero finite values of  ω .  Let us denote this root, if it exists, by  

ω 1 .  It follows from (24) that 

 b0 = −
p0

2 + ω1
2

αμ + p0

αμ + pn

pn
2 + ω1

2
bn

n=2

∞

∑ . (26) 

This equality is possible only in the case where  αμ + p0 < 0 ,  i.e., for  αμ < − p0 .  Substituting the value for  

b0   from (26) into (23), we obtain 

 Re D(ω1 ) = 1 − α
αμ + p0

pn − p0

pn
2 + ω1

2
bn

n=2

∞

∑ > 1 . (27) 

In [4], it was shown that  p0   is a small negative value , and, hence, 

 D(0) = 1 −
b0
μp0

− 1
μ

bn

pnn=2

∞

∑ ≈ −
b0
μp0

. (28) 

Let us use the argument principle for the analysis of the function  D(ω)   

 N = P + 1
2π Δ arg D(ω) , (29) 

where  N   and  P   are the numbers of zeros and poles of the function  D(ω)   in the upper half-plane. 

It can be seen from expression (22) that  D(ω)   has poles at the points  ω = − ipn ,   n = 0,2, 4,… ,  and  

ω = − iμα ;  the poles  ω = − ipn   for  n ≠ 0   are located in the lower half-plane. 

Let  μ > 0 .  It follows from (25) and (28) that  D(0) > 1 ,   
d(Im D(ω))/dω ω=0 < 0 ,  and that the function  

D(ω)   has only one pole  ω = − ip0   in the upper half-plane, i.e.,  P = 1 .  In Fig. 3, we show the behavior of the 

function  D(ω)   in the traversal of the upper half-plane: in Fig. 3a, the function  Im D(ω)   does not have non-
zero finite toots; in Fig. 3b, the function  Im D(ω)   has one such root.  In both cases,  Δ arg D(ω) = 0 ,  N = 1,  

and the stratum is unstable.  If the function  Im D(ω)   has several roots, then since, for each of them,  
Re D(ω) > 1,  they do not influence the value of  Δ arg D(ω) .  

Let  μ < 0 .  In this case,  D(0) < 0 ,  and the function  D(ω)   has two poles in the upper half-plane  ω  = 

− ip0   and  ω = − iμα ,  i.e.,  P = 2 .  The behavior of  D(ω)   in the traversal of the upper half-plane is shown in 

Fig. 4.  In Fig. 4a, the function  Im D(ω)   does not have nonzero finite roots, and, in Fig. 4b, the function  

Im D(ω)   has one such root.  If  μ < 0 ,  then  Δ arg D(ω) = − 2π ,  i.e., as follows from (29),  N = 1,  and the 
stratum is unstable.  If the function  Im D(ω)   has several roots, then, since, for each of them,  Re D(ω) > 1,  

they do not affect the value of  Δ arg D(ω) .  
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 (а) (b) 

Fig. 3.  Behavior of the function  D(ω )   in the traversal of the upper plane for  μ > 0 . 

   

 (а) (b) 

Fig. 4.  Behavior of the function  D(ω )   in the traversal of the upper half-plane for  μ < 0 . 

For   α � 1,  we can obtain an approximate value of the smallest eigenvalue  η   of the boundary-value 

problem (12)–(14):   η ≈ p0 + b0α/p0 .  In this case, the quantity   τ = −1/η ,  which characterizes the lifetime of 

the stratum, is much larger than the relaxation times  τλ   and  τν ,  and the stationary inhomogeneous distribu-

tions of ferroparticles in the magnetizable fluid can exist for a fairly long time. 

4. Conclusions 

We investigate inhomogeneous distributions of aggregates of ferroparticles that form in fixed layers of a 
magnetizable fluid under the action of a homogeneous external magnetic field.  Equations that describe the 
change in the magnetic state of the fluid determine the  KИ-system, in which the mean number of particles in 
aggregates is a fast variable, and the parameter of the effective magnetic field is a slow variable.  We analyze the 
stationary solutions of these equation of the type of wide isolated and periodic strata and investigate their stabil-
ity with respect to small perturbations by the methods of the theory of autosolitons.  It is shown that, in small 

volumes of the fluid, i.e., under the condition   Dν � �2 � Dλ ,  strata are unstable but can exist for a fairly long 

time.  Under the action of perturbations, the breakdown of wide strata into strata of smaller sizes, in particular, 
into narrow strata, which exist at the same values of the magnetic field strength, but, as shown in [9], are unsta-
ble, is possible.  In this case, strip structures of ferroparticles, which are similar to those observed in experiments 
with films of magnetizable fluids, form. 
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