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1 Introduction and statement of results

In 1912 M. Fekete and G. Pólya [1] proved the following theorem.

Theorem A Let f(u) = p0+ p1u+ . . .+ pnu
n be a polynomial of degree n with

real coefficients such that

f(u) > 0 for any u ≥ 0. (1)

Then there exists a positive number λε such that for any λ ≥ λε the entire
function exp(λu)f(u) has nonnegative Taylor coefficients.

We are going to give a continual analogue of this theorem. For a function
f : [0;+∞) → R we denote by L(x, f) its Laplace transform : L(x, f) :=∫∞
0

exp(xt)f(t)dt.
The main result of this paper is the following

Theorem 1 Let p : [0;+∞) → R be a function satisfying the following condi-
tions:

(a) p ∈ C[0;+∞),

(b) L(x, |p|) < ∞ for any x ≥ 0 ,

(c) there exist real numbers a, b, 0 < a ≤ b < +∞, such that p(t) ≥ 0 for
t ∈ [0, a] ∪ [b,+∞),
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(d) there exist t1 ∈ [0, a] and t2 ∈ [b,+∞), such that p(t1) > 0, p(t2) > 0,

(e) L(x, p) > 0 for any x ∈ R.

Then (∃ε0 > 0) (∀ε ∈ (0; ε0]) (∃λε > 0) (∀λ ≥ λε) the function

Fλ,ε(x) = L(x, p) exp(λeεx) (2)

is the Laplace transform of a nonnegative function qλ,ε(t) .

The following theorem about compact supported functions is an immediate
corollary of Theorem 1.

Theorem 2 Let p : [a; b] → R be a function satisfying the following conditions:

(a) p ∈ C[a; b],

(b) p(a) > 0, p(b) > 0,

(c) L(x, p) > 0 for any x ∈ R.

Then (∃ε0 > 0) (∀ε ∈ (0; ε0]) (∃λε > 0) (∀λ ≥ λε) the function

Fλ,ε(x) = L(x, p) exp(λeεx) (3)

is the Laplace transform of a nonnegative function qλ,ε(t).

This theorem can be viewed as a continual analogue of Theorem A by
M. Fekete and G. Pólya. In fact, if we interpret coefficients of the polyno-
mial f as values of the discrete measure µ, supported by the set {0, 1, 2, . . . , n},
µ({k}) = pk, then the Laplace transform of this measure at point x = log u,
u > 0, will be a polynomial f(u). In this interpretation condition (c) of Theo-
rem 2 transforms into condition (1) of Theorem A. Note that (1) implies p0 > 0
and pn > 0 which is an analogue of condition (b) of Theorem 2.

Condition (a) in Theorems 1, 2 could be weakened, but then the proof would
be too cumbersome.

The function exp(λeεx) is the Laplace transform of the measure µλ,ε sup-
ported by {εk}∞k=0, µλ,ε({εk}) = λk/k!. Therefore Theorems 1 and 2 mean that
the convolution p∗µλ,ε is nonnegative on [0,∞) for sufficiently small ε and large
λ. Conditions on a function p providing the existence of a non-negative Borel
measure µ such that p ∗ µ is nonnegative were investigated by H. Diamond and
M. Essén [2]. One of distinctions from their results is that the measure µλ,ε

in Theorems 1 and 2 is ”standard” i.e. its form does not depend on p. More
essential distinction is that the Laplace transform of µλ,ε does not vanish in the
whole plane and hence the zero-sets of L(x, p) and L(x, p ∗ µλ,ε) coincide. In
a bit different situation, when p and µ are supported by the whole real line R,
such a preservation of zero-sets plaid an important role in the solution (given
by I.P. Kamynin and I.V. Ostrovskii [4]) to the problem of characterization of
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zero-sets of entire Fourier transforms of nonnegative measures supported by R.
Therefore Theorems 1 and 2 are of interest in connection with the open problem
[3] of characterization of zero-sets of entire Fourier transforms of nonnegative
measures supported by a half-line or a finite interval.

The rest of this paper is devoted to the proof of Theorems 1 and 2.

2 Equivalence of Theorems 1 and 2

It is obvious that Theorem 2 is a particular case of Theorem 1. Let us show
that Theorem 1 follows from Theorem 2. We shall suppose that the statement
of Theorem 2 is true and the conditions of Theorem 1 are satisfied. Denote
by l and r the left and right endpoints of the interval supporting the function
p, 0 ≤ l ≤ t1, t2 ≤ r ≤ ∞ (the numbers t1 and t2 are from condition (d) of
Theorem 1). . It is clear that

f(x) :=

∫ r

l

exp(xt)p(t)dt > 0, x ∈ R. (4)

Since the number r is the right boundary point supporting p (maybe r = ∞) and
the conditions (c) and (d) of Theorem 1 are satisfied, it follows that there exists
a sequence of segments {[r‘k, r“k]}∞k=1, r

‘
1 < r“1 < r‘2 < r“2 < · · ·, limk→+∞ r“k = r,

such that p(t) > 0 for any t ∈ [r‘k, r
“
k] and k ∈ N .

Reasoning similarly, we obtain that there exists a sequence of segments
{[l‘k, l“k]}∞k=1, l

“
1 > l‘1 > l“2 > l‘2 > · · ·, limk→+∞ l‘k = l, such that p(t) > 0

for any t ∈ [l‘k, l
“
k] and k ∈ N . We suppose r‘1 ≥ b, l“1 ≤ a (the numbers a and b

are from condition (c) of Theorem 1). Set

fk(x) :=

∫ r“k

l‘
k

exp(xt)p(t)dt, k ∈ N. (5)

Let us show that fk0(x) > 0 for some k0 ∈ N and any x ∈ R. We have

fk(x) ≥
∫ r“1

l‘1

exp(xt)p(t)dt = f1(x), x ∈ R. (6)

Let x ≥ 0, then it follows from (6) that

fk(x) ≥
∫ r“1

l‘1

exp(xt)p(t)dt ≥
∫ r“1

(r‘1+r“1)/2

exp(xt)p(t)dt−

−
∫ r‘1

l‘1

exp(xt)|p(t)|dt ≥ K1 exp((r
‘
1 + r“1)x/2)−K2 exp(r

‘
1x), (7)
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where K1 > 0 and K2 > 0 are independent of x and k. Thus there exists a
positive number R1 such that fk(x) > 0 for any x ≥ R1 and k ∈ N . Reasoning
similarly for x ≤ 0 we obtain

fk(x) ≥ K3 exp((l
‘
1 + l“1)x/2)−K4 exp(l

“
1x), (8)

where K3 > 0 and K4 > 0 do not depend on x and k. So there exists a negative
number R2 such that fk(x) > 0 for any x ≤ R2 and k ∈ N . Thus fk(x) > 0 for
any k ∈ N and for any x ∈ (−∞;R2]∪ [R1; +∞) . It remains to show that there
exists k ∈ N such that fk(x) > 0, when x ∈ [R2;R1]. It follows from conditions
(a), (b) of Theorem 1 that fk(x) → f(x), k → +∞ uniformly on any compact
set in R. It follows from condition (e) of Theorem 1 that there exists k0 ∈ N
such that for any x ∈ [R2;R1] the inequality fk0

(x) > 0 holds. Therefore we
have fk0

(x) > 0 for any x ∈ R.
Denote

p1(t) = p(t)χ[l, l‘k0
](t), (9)

p2(t) = p(t)χ[l‘k0
, r“k0

](t), (10)

p3(t) = p(t)χ[r“k0
, r](t), (11)

where χ[m,n](t) means the characteristic function of segment [m,n]:

χ[m,n](t) =

{
1, t ∈ [m,n],
0, t ∈ (−∞;m) ∪ (n; +∞).

(12)

Then
p(t) = p1(t) + p2(t) + p3(t), (13)

where
p1(t) ≥ 0, p3(t) ≥ 0. (14)

It is clear that

exp(λeεx) =

∞∑

k=0

λk exp(kεx)

k!
=

∫ ∞

0

exp(xt)dΦλ,ε(t) (15)

where Φλ,ε(t) is the step function with jump λk/k! at the point εk, k =
0, 1, 2, . . .. Thus the function Fλ,ε(x) = f(x) exp(λeεx) has the representation

Fλ,ε(x) =

∫ ∞

0

exp(xt)qλ,ε(t)dt, (16)

where

qλ,ε(t) = (p ∗ Φλ,ε) (t) = (p1 ∗ Φλ,ε) (t) + (p2 ∗ Φλ,ε) (t) + (p3 ∗ Φλ,ε) (t). (17)
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For ε > 0, λ > 0 and t > 0 we have

(p1 ∗ Φλ,ε) (t) ≥ 0, (p3 ∗ Φλ,ε) (t) ≥ 0. (18)

Thus we have to prove that (p2 ∗ Φλ,ε) (t) ≥ 0 for 0 < ε ≤ ε0 and λ ≥ λε. This
follows from Theorem 2 (because the function p2 satisfies all conditions of this
theorem).

So, Theorem 1 will be proved if we prove Theorem 2.

3 The proof of Theorem 2

3.1

Without loss of generality we can suppose that [a, b] = [0, 1]. It follows from
conditions (a), (b) that there exists ∆ ∈ (0, 1) such that

p(t) > 0, when t ∈ [0,∆] ∪ [1−∆, 1]. (19)

We shall assume that p is defined at every point of the real axis by putting
p(t) = 0, when t ∈ (−∞, 0) ∪ (1;+∞).

We have

Fλ,ε(x) = f(x) exp(λeεx) =

∫ ∞

0

exp(xt)qλ,ε(t)dt, (20)

where
qλ,ε(t) = (p ∗ Φλ,ε) (t). (21)

Let us compute qλ,ε. By definition of Φλ,ε(t) ( see (15) ) we have

qλ,ε(t) =

∫ t

t−1

p(t− u)dΦλ,ε(u). (22)

By virtue of (22) it is clear that

qλ,ε(t) = 0, when t ≤ 0 (23)

moreover by (19) we have

qλ,ε(t) ≥ 0, when t ∈ [0,∆]. (24)

We are interested in the form of the function qλ,ε(t) for t ≥ ∆. Let us fix
such t.

We will use the following notations: m = m(ε, t) := [t/ε], δ = δ(ε, t) :=
t− [t/ε]ε, n = n(ε, t) := [(1− δ)/ε]∗, where [a] denotes the largest integer < a ,
[a]∗ denotes the smallest integer > a.
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Note that
n(ε, t) ≤ [ε−1] + 1. (25)

We have from (15) and (22)

qλ,ε(t) =

∫ t

t−1

p(t− u)dΦλ,ε(u) =

=
p(δ)λm

m!
+

p(δ + ε)λm−1

(m− 1)!
+ . . .+

+
p(δ + (n− 1)ε)λm−n+1

(m− n+ 1)!
=

=
λm

m!

(
p(δ) + p(δ + ε)

m

λ
+ p(δ + 2ε)

m

λ

(
m

λ
− 1

λ

)
+ . . .+

+p(δ + (n− 1)ε)
m

λ

(
m

λ
− 1

λ

)
· · ·

(
m

λ
− n− 2

λ

))
. (26)

3.2

Let us introduce the following system of polynomials on y:

Qn(y, µ, β) = p(µ) + p(µ+ ε)y + p(µ+ 2ε)y(y − β) + . . .+

+p(µ+ (n− 1)ε)y(y − β) · · · (y − (n− 2)β), (27)

where
0 ≤ µ ≤ ε, 0 ≤ β ≤ 1, 0 ≤ ε ≤ 1, n ≤ [ε−1] + 1, (28)

(compare with (25) and (26)).
From (26) we see that

qλ,ε(t) =
λm

m!
Qn

(
m

λ
, δ,

1

λ

)
, t ≥ 0. (29)

We shall study the system of the polynomials Qn(y, µ, β). Let ε > 0 be fixed
and sufficiently small. (The value of ε > 0 will be chosen later). By (27) the
degrees of Qn(y, µ, β) are bounded, when ε is fixed. Let us show that under these
conditions the polynomials Qn(y, µ, β) have the common boundary of positive
zeros for any µ ∈ [0, ε] and β ∈ [0, 1]. We shall use the following well-known
theorem.

Theorem B The polynomial P (z) = a0 + a1z + . . .+ anz
n has no zeros when

|z| ≥ R, where

R = 1 + (1/an)max {|aj | : 0 ≤ j ≤ n− 1} . (30)
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The number p(µ + (n − 1)ε) is the leading coefficient of the polynomial
Qn(y, µ, β). Let ε > 0 be a fixed number, ε < ∆/4 (see (19)). If µ ∈ [0, ε],
β ∈ [0, 1], n ≤ [ε−1] + 1 we have

p(µ+ (n− 1)ε) ≥ min {p(t) : t ∈ [1−∆, 1]} > 0. (31)

It is clear that the rest of the coefficients of Qn(y, µ, β) are bounded from above
by the constant depending only on max {|p(t)| : 0 ≤ t ≤ 1} if ε is fixed, ε ∈
(0,∆/4], µ ∈ [0, ε], β ∈ [0, 1]. Thus for fixed ε ∈ (0,∆/4] there exists a real
number R0 > 1 not depending on β such that

Qn(y, µ, β) > 0, y ≥ R0 (32)

3.3

Let ε > 0 be a fixed small number. If it is remembered that p is a continuous
function, the number n = n(ε, t) satisfies (25), we obtain the following :

lim
β→0

Qn(y, µ, β) = p(µ) + p(µ+ ε)y + p(µ+ 2ε)y2 + . . .+

+p(µ+ (n− 1)ε)yn−1 =: Qn(y, µ), (33)

where the limit is uniform with respect to µ ∈ [0, 1] and y ∈ C, for every
compact C ⊂ C.

Lemma 1 There exist positive numbers ε0 and ν0 such that

Qn(y, µ) ≥ ν0 > 0 (34)

for any ε ∈ (0, ε0], µ ∈ [0, ε] and y ≥ 0.

Before proving Lemma 1 we show that Theorem 2 follows from Lemma 1.

3.4

Let us assume that Lemma 1 is true. We choose and fix a positive number
ε ∈ (0, ε0] (ε0 is the same as in Lemma 1). Consider the system of polynomials
Qn(y, µ, β) on the segment [0, R0], where R0 is from (32). Since ε0 is fixed, by
(25) we have that the degrees of these polynomials are bounded by the number
[ε−1]+1. By (34) and uniform convergence Qn(y, µ, β) to Qn(y, µ) with respect
to y ∈ [0, R0] there exists a positive number β0 such that

Qn(y, µ, β) ≥ ν0/2 > 0 (35)

for any β ∈ (0, β0], y ∈ [0, R0] and µ ∈ [0, ε]. By (32) and (35) there exists a
positive number ε0 and for any ε ∈ (0, ε0] we can choose β0 > 0 such that for any
β ∈ (0, β0], y ≥ 0 the inequality Qn(y, µ, β) > 0 is valid. Putting λε = (1/β0)
and recalling (29) we obtain the statement of Theorem 2.

Thus Theorem 2 will be proved if we prove Lemma 1.
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3.5

To prove Lemma 1 we have to find more precise boundary of positive zeros of
the polynomial Qn(y, µ, β) than that given by Theorem B.

Lemma 2 Let F (t) = a0 + a1t + . . . + an−1t
n−1 be a polynomial with real

coefficients. Suppose that for some q ∈ N such that n/2 ≤ q < n the inequalities

aq > 0, aq+1 > 0, . . . , an−1 > 0 (36)

are valid. Let

max {|aj | : 0 ≤ j ≤ q − 1} ≤ B, min {aj : q ≤ j ≤ n− 1} ≥ b. (37)

Then F (t) > 0 for

t ≥ max

{
1,

(
Bq

b(n− q)

)1/(n−q)
}
. (38)

3.6 Proof of Lemma 2

We have ( for t ≥ 0 )

F (t) = an−1t
n−1 + . . .+ aqt

q + aq−1t
q−1 + . . .+ a0 ≥

≥ b
(
tn−1 + tn−2 + . . .+ tq

)−B
(
tq−1 + tq−2 + . . .+ 1

)
=

= btq
tn−q − 1

t− 1
−B

tq − 1

t− 1
=

= b
tn−q − 1

t− 1

[
tq − B

b

tq − 1

tn−q − 1

]
. (39)

It is not hard to see that under the conditions of Lemma 2

tq − 1

tn−q − 1
≤ q

n− q
t2q−n (40)

for t ≥ 1. (39) and (40) yield

F (t) ≥ b
tn−q − 1

t− 1

[
tq −Bq

t2q−n

b(n− q)

]
. (41)

Thus, if t ≥ 1 and satisfies the condition

tq −Bq
t2q−n

b(n− q)
> 0, (42)

then F (t) > 0. It is easily verified that (42) implies the statement of Lemma 2.
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3.7 Proof of Lemma 1

We shall find the upper and lower boundaries of the positive zeros of the poly-
nomial Qn(y, µ) with the help of Lemma 2. Put

B = max {|p(t)| : 0 ≤ t ≤ 1} ; b = min {p(t) : t ∈ [0,∆] ∪ [1−∆, 1]} > 0. (43)

The number p(µ+ kε) (see (33)) is the coefficient of the polynomial Qn(y, µ) of
yk. Under the condition we have p(t) > 0 for t ∈ [0,∆] ∪ [1 −∆, 1]. We apply
Lemma 2 to the polynomials

F1(y) = Qn(y, µ)− b/2 (44)

and

F2(y) = yn−1 (Qn(1/y, µ)− b/2) = (p(µ)− b/2) yn−1 +

+p(µ+ ε)yn−2 + p(µ+ 2ε)yn−3 + . . .+ p(µ+ (n− 1)ε). (45)

Put
ε1 = min {1/4,∆/4} . (46)

We shall choose ε0 < ε1 (recall that 0 < µ ≤ ε < ε0). Let us estimate the
positive integer numbers n and q from Lemma 2 for polynomials F1(y) and
F2(y). Note that the number n from Lemma 2 is the number of all coefficients
of the polynomial F and the number q is the number of the positive “leading”
coefficients. By (19) “leading” coefficients of polynomial F1(y) will be positive,
if the index k satisfies 1−∆ < µ+ kε < 1. So for polynomial F1(y) the number
of positive “leading” coefficients is not less than [∆/ε] − 1, and by (25) the
general number of the coefficients are not exceeding [1/ε]+1. Applying Lemma
2 to the polynomial F1(y) we obtain

F1(y) > 0, when y ≥ max

{
1,

(
2B([(1−∆)/ε] + 1)

b([∆/ε]− 1)

)1/([∆/ε]−1)
}
. (47)

Thus, there exists a constant C1 > 0 not depending on µ and ε such that

Qn(y, µ) > b/2, when y ≥ exp(C1ε). (48)

Reasoning similarly for polynomial F2(y) we obtain that there exists a constant
C2 > 0 not depending on µ and ε such that

Qn(y, µ) > b/2, when 0 ≤ y ≤ exp(−C2ε). (49)

It remains to prove that the polynomials Qn(y, µ) are bounded from below
by a positive constant, when exp(−C2ε) ≤ y ≤ exp(C1ε). We apply the sub-
stitution y = exp(xε). This substitution is correct, because we consider the
system of polynomials Qn(y, µ) for y > 0. Put

qn(x, µ) = Qn(e
xε, µ) = p(µ) + p(µ+ ε)exε +

+p(µ+ 2ε)e2xε + . . .+ p(µ+ (n− 1)ε)e(n−1)xε. (50)
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By virtue (48) and (49) we have

qn(x, µ) > b/2, when |x| ≥ C = max{C1, C2}, (51)

where C is independent of µ and ε. We shall consider the functions qn(x, µ) for
|x| ≤ C. By conditions (a), (c) of Theorem 2 there exists a positive number a1
such that

f(x) =

∫ 1

0

exp(xt)p(t)dt ≥ a1 (52)

for any |x| ≤ C. Note that

ε exp(xµ)qn(x, µ) = ε
(
p(µ) +

+p(µ+ ε)ex(ε+µ) + p(µ+ 2ε)ex(2ε+µ) + . . .+

+p(µ+ (n− 1)ε)ex(n−1)ε+µ)
)
→

→
∫ 1

0

exp(xt)p(t)dt ≥ a1, ε → 0, (53)

uniformly with respect to x ∈ [−C,C]. Thus, there exists a positive number
ε0(C) such that for any ε ∈ (0, ε0(C)] we have

ε exp(xµ)qn(x, µ) ≥ a1/2, when |x| ≤ C, µ ∈ [0, ε]. (54)

From (54) we obtain that

qn(x, µ) > a1 exp(−Cε0)/(2ε0), when |x| ≤ C. (55)

Put
ε0 = min {ε1, ε0(C)} , ν0 = min {b/2, a1 exp(−Cε0)/(2ε0)} . (56)

Then for any ε ∈ (0; ε0] and x ∈ [−C,C] the inequality

qn(x, µ) ≥ ν0 > 0 (57)

holds. By (51) and (57) we obtain qn(x, µ) ≥ ν0 > 0 for any ε ∈ (0; ε0],
µ ∈ (0; ε], x ∈ R . Recalling that Qn(y, µ) = qn(ε

−1 ln y, µ), we obtain

Qn(y, µ) ≥ ν0 > 0 (58)

for any ε ∈ (0; ε0], µ ∈ (0; ε], y ≥ 0. Thus Lemma 1 is proved. This completes
the proof of Theorem 2 and Theorem 1.

Remark. The function p in Theorems 1 and 2 can be viewed as a density
of some real-valued measure mp. Theorems 1 and 2 can be reformulated in such
a way. Let mp be a real-valued measure with a continuous density supported by
the positive half-axis or a segment. Let the Laplace transform of this measure
Lmp(x) > 0 for all x ∈ R and mp is positive in some neighborhoods of the
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endpoints of its support. Then for some ε > 0 and λε > 0 the convolution
mp ∗ µλ,ε ≥ 0 (where Lµλ,ε

(x) = exp(λeεx) ). A question can be asked: is such
statement true for any measure supported by half-axis or a segment which is
positive in some neighborhoods of the endpoints of its support and with positive
Laplace transform? The answer is negative. Let α, β ∈ (0, 1) be irrational non-
comeasurable numbers. Let m := D0 − εDα − εDβ +D1, where Dx is the Dirac
measure at the point x and ε > 0. It is clear that if ε is sufficiently small then

Lm(x) =
∫ 1

0
exp(xt)dm(t) > 0 for all real x. If the convolution m ∗ µλ,ε is

nonnegative in the point α then ε = α
k , k ∈ N , and if m ∗ µλ,ε is nonnegative

in the point β then ε = β
l , l ∈ N . So for any choice of ε, λ the convolution

m ∗ µλ,ε can not be nonnegative.
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