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ELECTROMAGNETIC DIFFRACTION BY METAL CYLINDER COATED WITH
INHOMOGENEOUS MAGNETOACTIVE PLASMA SHEATH.I
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Physical-Technical Department , V.Karazin Kharkiv National University, 61077, Svobody sq.4, Kharkiv, Ukraine

This paper is devoted to the problem of diffraction of low frequency electromagnetic waves incident from a homogeneous
magnetoactive plasma by a metal circular cylinder surrounded by radially inhomogeneous plasma sheath. The external magnetic
field is parallel to a cylinder axis; the wavevector of incident plane wave is perpendicular to this axis. It is assumed that plasma is
cold and perturbations in it are governed by Maxwell’s and two-liquid hydrodynamic equations. The exact solutions for fields in
both linear and power plasma sheath profile are obtained. The cross-sections for backward and forward scattering as a function of
incident wave vector are derived for various parameters of task. The dependences of these cross-sections upon these parameters are
analyzed. The inhomogeneous plasma sheath enhances the oscillation amplitude of the back scattering cross-section and changes in
several times the value of the forward scattering cross-section.
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Problem of electromagnetic wave diffraction by a metal cylinder embedded into magnetoactive plasma is of
interest for solving a number of problems such as antenna radiation in a plasma, probe measurements, remote sensing
and generally speaking a metal object influence on the electromagnetic wave propagation in various plasma-like media
from modern metamaterials to space. Diffraction by metal bodies of various shape in vacuum has been investigated
carefully enough in [1]. Electromagnetic scattering by a metal cylinder immersed into homogeneous plasma or/and
coated with homogeneous sheaths has been studied in many works ([2] and Refs. in [3]). But within adjacent sheath the
plasma density varies with radius under real experiment conditions.

STATEMENT OF THE PROBLEM
In present paper, we have solved the problem of diffraction of low frequency (w<®,) magnetohydrodynamic
(MHD) waves propagating in a homogeneous magnetoactive plasma on a metal circular cylinder of radius R,,

surrounded by radially inhomogeneous plasma sheath (1<r<p); here and further the radius r is normalized by R, .

The homogeneous plasma occupies region » > p . The external magnetic field H, is parallel with a cylinder axis, the
wavevector of incident plane wave is perpendicular to this axis. It is assumed that plasma is cold and disturbances in it
are governed by Maxwell’s and two-liquid hydrodynamic equations.
An incident plane low frequency (w<w,) wave propagates in homogeneous magnetoactive plasma and has such
components (TM -polarization)
HY = E,exp(=ik,x—iot) ; EV = (@, 0) (k/k ) H 3 EV = ~(k/kp) HY. (M
Here E, is amplitude, w, =eH,/mc is the ion gyrofrequency, e, m, - are ion charge and mass, respectively, H, - value of
external magnetic field, c - speed of light in vacuum. The frequency « and the wavevector &, of incident plane wave
are connected by linear dispersion relation
ky = (@fc)(Q/@,) 5 (2)
where Q,, = (47re2n0 / m,.)l/2 - ion Langmuir frequency, n, - undisturbed density of the homogeneous plasma.
Because in the incident wave E, =0 and other components are independent on z and the inhomogeneity is unlimited on
z (i.e. 9/6z=0), therefore these properties remain the same in the scattered wave, i.e. there is no depolarization of

wave. We will assume that normally incident plane wave (1) as a result of diffraction on the given structure generates a
divergent cylindrical wave. It is possible to consider this wave as the locally plane wave of TM- polarization far from a
cylinder.

Set of equations that governs the disturbances which propagates perpendicularly to the external magnetic field

ﬁo is reduced to two uncoupled subsystems that describe 7E - and TM - waves.

At low frequencies w < @, in a dense (Qfo >> cof) plasma, it is possible to obtain the following set of equations for
TM-wave components in the form A(r,p,)=A(r)-exp[i(mp - ar)] [4]:

aH, -{l—ilnN(r)} 2 {kﬁN(r)—[mT —m“)dlnN(r)]Hz =0, )

dr’ rodr r r r o dr
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where n(r) - the unperturbed plasma densities in the inhomogeneous regions, N(r)=n(r)/n,;, m - azimuthal

wavenumber.
A continuous plane MHD wave propagating in an homogeneous region (r > p) may be represent in the form
i . > -\ im i /¢ i i i
Hi) = Eyexp(—ik;x) = E, - Z (=i)" T, (kyr)e™ Ei) :_(ki/)'Hi) ;EE) :_(wi/a))(k/kT)HE] . 5)
m=-o0 T
Taking into account the conditions for all components (4) at infinity in the cylindrical coordinate system [5] :
r-(64/or+ik,4) =0 (6)

the diffraction field components in the homogeneous plasma region may be chosen in the following form :

Z oz ] k}") imp

_ )
BV =L My g @A) 7
kJNO\ T e dr
i )
o dH.” |
kp[N(r) ; r

It is possible to express the fields inside the inhomogeneous sheath (1<r<p) via two linearly-independent

solutions of equation (3):

H&) :Eo . i (_l)m .e[m(/) |:bm 'Fim(r)-'_cm 'FZW(F)]’

B0 S e[ ) e A0 20 ®)
E) = WZ( iy"e’ { {’fZm@)%ﬂﬁ}e{’fzﬂm(mF;m(r)}}-

Three boundary relations were used for determining the coefficients a,,,b,,c, in (8). The two of them consist of
the continuity of the tangential component of the electric field £, and of the magnetic field #, at the boundary r = p
EV4EV =EY ; HO+HY =H" 9)
The third is zero relation for tangential component of the electric field E, at the metal surface at r=1:
EV(r=1)=0. (10)
From obtained set of equations we have
am:Dma‘Dr;l’ Dm:_Hr(nl)( ) Alm-‘_G AZm’D Jm(xT).Alm_Qm'AZm;
A= Py (1) B (9)= (1) Py (9): Do = Py Fo(9)= B (1) Fo (0): Po(r) = aF (1) - (). =12
Py, (r)=uF,, (r)+r-F,(r),j =126, =q, - H (x,):0, = 4, -/, (x; )3 4 =% + 5%, = plepRe 3 p=m(ef@,).
As a characteristic of scattering, the differential scattering cross-section per unit length o (¢) may be introduced. It is

equal to the ratio of the power diffracted at an angle ¢ to the magnitude of the Poynting vector [5]
= hm—(‘H

i {1 i ) an
At far field zone (k. >>1) it is possible to use the well known asymptotic of Hankel's function and the expression for

o(p) can be written as
2

O'((ﬂ):k“RZ(—l)”’ a,e"| . (12)

Graphs in Fig.1 show the cross-sections for backward o(0) and forward scattering o(z) as a function of kR, for a

metal cylinder in homogeneous magnetoactive plasma without any surrounding sheaths. In the diffraction theory
observed oscillations of the back scattering cross-section are qualitatively explained by the effect of the superposition
of the diffractional field (‘leakage wave’) and the field reflected from a metal surface [8].
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Let us consider the differential cross-section (12) of the metal
cylinder surrounded by a rarefied inhomogeneous plasma sheath.
For modeling the rarefied adjacent plasma sheath, we have chosen
the plasma density distribution inside inhomogeneous region in a
such form:

N(r):(r/p)S ,1<r<p , s is real. (13)

This type of dependence allows us to use the well-known solutions
of equations (3) and, on the other hand, under varying values of p

and s, to take into account quite a wide class of density profiles.
kiR, For such profiles (13), we can write down two linearly-independent
5 p y p 5 ” solutions (3) (see [6])

Fig.1. Differential cross-sections (18) of the metal

cylinder in a homogeneous magnetoactive plasma

E, (r)=r", (k):Fy,, (r) =Y, (x), where 5= 12#2*4(’"2”#)%:*22@ prt, (14)
S+ s+

-

and J ns Yn are the 1 th-order Bessel’s and Neumann’s functions; p=N(r=1)=p

To clarify the influence of inhomogeneity properly, we have calculated the differential cross-sections o (0),o(7)
using formula (12) for "averaged” model. The latter means the homogeneous sheath of the average density <N>, which
has a thickness equal to that of the inhomogeneous one. The dotted line in Fig.2,3 corresponds to this model.

(N) =p1_ljzv(r)dr . (15)

The influence of the inhomogeneous region on the wave diffraction varies depending on the model parameters. The
analysis of the obtained results allows interpreting some regularity.

The influence of increasing (deep into plasma) density region on the backscattering cross-section G(O) depends
upon rarefiedness of the coating plasma sheath. While a rarefiedness parameter value is 1> p > 0.5, graphs for both
inhomogeneous and averaged models are very similar to corresponding ones in Fig.1. There are quantitative (not
qualitative) differences that consist on the faster decreasing of oscillations of &(0). The considerable rarefiedness

strongly enhances the oscillations of the back-scattering cross-section o (0) and increase o () in several times (Fig. 2).
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Fig. 2. The cross-section for back scattering 6(0) (a), and forward scattering (b) as a function of kR, for the power sheath
profile N(r)= (r/p)s .

Consider the influence of the sheath of decreased (deep into plasma) plasma density on the wave diffraction.
Another words, cylinder is surrounded by more dense plasma then background. Let choose the N () in the form

N@F)=A+B-r. (16)
Two linearly independent solutions of equations (3) will be obtained by Frobenius’ method [7]:
F,(r)=2ar' B, (r)=a-Inr-F,(r)+ > B ™", (17)
1=0 k=0

where all the coefficients must be found with the help of the recurrence relationships (see [4]).
The power series (17) converges under the condition 4+ B >0 [7]. The inhomogeneity region of small (p<1.1)

density gradient does not change considerably the cross-section similarly to the previous case. Under the increasing of
modulus of the gradient we have the enhancement of the oscillation amplitude o(0) versus k,R. under kR >2 (see
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Fig. 3). As for the forward scattering o () we can establish a fact of decreasing of value and appearance of oscillation
on k,R. under kR, >5. With the increasing of the gradient modulus oscillation amplitude o(0) (as a function of &, R.)
increases when kR, >2 (see Fig. 3). For the forward scattering cross-section o () we have fixed the decreasing of its
value and appearance of oscillation when kR, >5.
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Fig. 3. The cross-section for back scattering 0(0) (a), and forward scattering o-(;z) (b), as a function of kR, for the linear
sheath profile N(r)=A+B-r; A=4, B=-2, p=15, p=2.

To perform the calculations, the typical plasma parameters of the Earth ionosphere were chosen:
(m,/m,)~30;(NO",05); R.=5m; oR./c=24-10".

So in present paper, it has been shown that a radially inhomogeneous plasma sheath surrounding an ideal
conducting cylinder which is immersed into homogeneous magnetoactive plasma can change significantly scattering of
low frequency plane wave. The inhomogeneous sheath leads to the enhancement of the oscillation amplitude of back
scattering cross-section and to the considerable (in several times) change of forward scattering cross-section. Sign of
that change depends on the sign of sheath density gradient.
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PACCESHUE 3JJEKTPOMAI'HUTHBIX BOJIH HA METAJIVNIMYECKOM HUJMWH/PE, OKPYKEHHOM
CJIOEM HEOI[HOPOI[HOI[HOfI MATHUTOAKTUBHOM IJIA3MBI
H.A. A3zapenkos, B.K. I'anaiiaprua
XHY um. B.H. Kapasuna,
61077, na. Ceoboowul 4, Xapvros, Yxpauna

B nmanHOl pabore pemieHa 3agavya AWQPAKIUM HU3KOYACTOTHOW DJIEKTPOMArHUTHOM BOJHBI, Majalolled W3 OJHOPOAHOM
MarHUTOAKTUBHOM IUIa3Mbl Ha METAJUIMYECKOM LMIMHAP, OKPY>KEHHBIH paJuaabHO HEOJHOPOAHBIM CIIOEM ILIa3Mbl. BHeminee
MarHMTHOE I10JI€ NapajIeIbHO OCU LMJIMH/IPa; BOJHOBOM BEKTOp Majarouiel MI0CKOoN BOIHBI HEpHIEHANKYISIpEH K 3Toi ocu. [lnazma
MpEANoNaraeTcsi XOJNOJHOM M BO3MYILIEHHS B HEH ONUCHIBAIOTCA ypaBHEHUSIMH MakcBelmaa M ABYX)KHUAKOCTHBIMHU
THAPOANHAMUYECKHMH ypaBHeHUsIMU. [loiydeHbl TOYHBIE pEIISHWS Uil THOJISH JUIS JIMHEHHOro W CTEHEeHHOro mpoduieit
HEOHOPOHOCTH IUIOTHOCTH ITa3MEHHOTO cinost. CeueHust paccessHUS BIiepe]] M Ha3al Kak (D)yHKIHMS BOJHOBOTO BEKTOpa Majaromieit
BOJIHBI MTOTYYCHBI JUIS PA3INYHBIX MapaMeTPoB 3a4adr. [IpoaHann3upoBaHbl 3aBHCHMOCTH 3THX CEUCHHUH paccesHus OT MapaMeTpoB
3anauu. Cioii HEOJHOPOAHOM IIa3Mbl YBEIMYHMBAET AMILTUTY Iy KoneOaHHi ceueHust 00paTHOrO paccessHUs U U3MEHSET B HECKOJIBKO
pa3 BeJIMUYUHY CEYEHUs pacCesiHUsS BIEpeNl.

KJIFOYEBBIE CJIOBA: siekTpoMarHuTHas BOJIHA, AU(paKnus, MarHUTOAKTHBHAS IUIa3Ma, HEOAHOPOAHAs IUIa3Ma, CEUCHHE
paccesHus.





