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The topology of banana guiding center orbits of fast ions in tokamaks with toroidal field (TF) ripples is considered. Analytical
expressions determining the stagnation orbits and boundaries of regions with the closed orbits in the phase space are derived.
Thoroughly studied is the modification of the topology of superbanana orbits due to the variation of the TF ripple magnitude 0.
Contour plots of the adiabatic invariant of banana guiding center motion are presented for different values of 8. A comparison of the
results of semi-analytical consideration and graphical interpretation of the adiabatic invariant is provided.
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PaccmarpuBaeTcst Tonmosiorust OpoUT BeAyIMX HEHTPOB OaHAHOB B TOKaMakax Ipy HAJIMYHK roppupoBky ToporaisHoro mois (TII).
[Momy4yeHsl aHATUTHYECKHE BBIPAKCHHUS, ONPEIEIOINe KOOPAMHATEL 0COOBIX TOUEK OPOMT M I'paHHUIbI 001acTeil ¢ 3aMKHYTHIMH
opbutamMu B KOOpAMHATax (ha3oBOr0 IPOCTPAHCTBA. I[IpoaHANM3MPOBAHO W3MEHEHHE TOIOJOTHH CynepOaHaHOBBIX OpOMT,
BCIICACTBUE BapbUpoBaHus aMILIUTy bl rodpos TII. ITocTpoeHb! IMHUKM PABHOTO YPOBHS aa0aTHYECKOr0 MHBAPUAHTA ABMKECHHSA
BEIYILEro LEHTpa OaHaHa /Ul pa3IMYHbIX 3Ha4YeHWid aMmmauTyasl rodpuposku TII. IIpoBeneHO cpaBHEHHE pE3yJIbTaTOB
KBa3HAHAJIMTHYECKOTO PACCMOTPEHHS M TPaIECKOT0 MPEACTABICHHS aJHabaTH4eCKOro HHBApHUAHTA.

KJIKOYEBBIE CJIOBA: 0anaH, cynep0OaHaH, JOKAJIbHO 3alepTble YacTHIBI, TOQpPHPOBKAa TOPOHIAIHLHOTO MArHUTHOTO IIOJIA,
annabaTHIeCKNii MHBApUAHT JBHKEHHS, TOKAMaK

TOMOJIOTISI CYIEPBAHAHOBUX OPBIT B TOKAMAX 3 FTO®PYBAHHSIM TOPOIJAJIBHOI'O ITOJIS
A.O. Mocksirin', B.O. IBopcskuii™, K. Ilond*
! Xapriscoruii nayionansuuii ynisepcumem iveni B.H.Kapaszina, n1. Ceo6oou. 4, Xapxis, Ypaina, 61077
2Inemumym sdeprux docnioacens Hayionanshoi akademii nayk Yxpainu, np. Hayku 47, Kuis, Yxpaina, 03680
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JocmimKyeTbes TONONOTISE OpOIT BeXydnx LEHTPiB OaHaHIB y TOKamMakax 3 roppyBaHHAM TopoimambHoro moist (TII). Otpumano
AQHANITHYHI BUPa3H JUIl KOOPIMHAT OCOOJIMBMX TOYOK OpOIT Ta rpaHmmi obiacted i3 3aMKHEHHMH OpOiTaMH y KOOpAMHATAX
(azoBoro npocropy. [IpoananizoBano 3MiHy Tomoorii cynepOaHHHOBHX OpOIT BHACIIIOK BapiloBaHH: aMIuIiTyqu ro¢pysanns TII.
IToGynoBano JiHil piBHOrO 3HaueHHs aaiabaTUYHOrO iHBapiaHTy PyXy BEIydYOro LEHTPY OaHaHa A PI3HMX 3HAYEHb aMILIITYIH
rodpysanns TII. [IpoBeneHo mopiBHSAHHS pe3yJbTaTiB KBa3iaHATITUYHOIO PO3MJIAY Ta rpadivHOro MpeaCcTaBlICHHs aniabaTHYHOro
iHBapiaHTa.

KJIIOYOBI CJIOBA: Ganan, cymepOaHaH, JIOKajdbHO 3alepTi YacTHHKH, TO(pyBaHHS TOPOIAaIbHOrO MArHiTHOTO IIOJIs,
amiadaTUYHUI iHBapiaHT pyXy, TOKaMaK

In axisymmetric approximation the tokamak magnetic field is treated as a toroidally uniform one. However in
reality, the toroidal field in tokamaks is corrugated due to the finite number of toroidal field coils. These toroidal field
ripples are generally strongest and consequential for particle transport in the low-B side of a tokamak while being of
less significance at the high-B side. Field perturbations of 1% are typical in the outer edge of a tokamak plasma and
appear a few orders of magnitude smaller at the magnetic axis.

Toroidal field ripples are known to create secondary magnetic wells at the outer plasma edge, most dominantly in
the vicinity of the mid-plane [1]. Particles trapped in these wells are subject to enhanced radial transport and hence
poorly confined in the plasma. The criterion for the existence of secondary ripple wells in a circular tokamak with large
aspect ratio is aEg|sin 1}| / ( Ngé)<1, where € denotes the local inverse aspect ratio, ¢ the poloidal angle, N the

number of toroidal field coils, g the safety factor and §=(B,,,. —B,,.;,) / (B, s + Biin ) the ripple amplitude. Note that

at the plasma periphery, where § exceeds the critical value 0, given by the Goldstone-White-Boozer stochastisity
threshold, toroidally trapped particles are nearly promptly lost from the plasma during a time small in comparison with

Coulomb collision times [1,2]. Here we examine the ripple impact on toroidally trapped fast ions orbits with the banana
tips in the core plasma region where there are no ripple wells and the ripple magnitude is below the stochasticity
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threshold, i.e. wherear >1 and § < The most significant effect of TF ripples occurs for toroidally trapped fast ions

5GWB'
which are in resonance with the ripple perturbations [6], i.e. for ions satisfying the resonance condition

lo,-Nw, =0, [=0,£1,12,..., where w, and @; are the particle’s bounce and toroidal precession frequencies.

Such resonant toroidally trapped particles, tracing out so-called superbananas, are seen to undergo an even more
increased radial diffusion and thus are responsible for a substantial share in TF ripple losses of energetic ions [6-7, 10-
13].

We note that direct measurements of fast ions lost in ripple wells were performed on TFTR [4-7], JET [8, 5] and
TORE SUPRA [9, 5]. Relevant theoretical treatment of fast ion ripple transport based on Fokker-Planck calculations
(3D in constants-of-motion (COM) space) is found in some of our previous studies [6, 7, 10-13]. Other approaches were
recently developed [18-19]. It should be mentioned that this problem of TF ripple induced transport stays actual
nowadays, especially for ITER [14-17]. Other approaches are developed in [18-19] recently.

In this paper, we analyze the toroidally trapped particle motion using the adiabatic invariant on superbanana orbits

[11]. This invariant can be represented as p2 / 2-M cos(f + p)cost// = h=const , where ( )R 74 ) denote the guiding

center coordinates, & can be assumed as a constant parameter and M = 5(Nq)3/ g / £.

Our aim here is to derive analytical expressions describing the separatrices between the domains of closed orbits
and of orbits with infinite motion in ¥ [20]. Those expressions are necessary to provide an algorithm for the
superbanana averaging procedure required for the derivation of the 3D Fokker-Planck equation in COM variables.
Because of singularities of the thus averaged transport coefficients at the boundary between these domains [11] it is
important to analytically treat these separatrices as modified by the value of M .

The paper is organized as follows. In the sections THE COORDINATES OF THE STAGNATION POINTS, THE
TYPE OF THE STAGNATION POINTS the coordinates and the type of the stagnation points of the Hamiltonian 4
are determined. Further an effect of the ripple magnitude on the separatrices between the domains of closed orbits and

of orbits with infinite motion in angular coordinate is analyzed for different values of parameter M in section
SEPARATRICES BETWEEN THE DOMAINS OF CLOSED ORBITS AND OF ORBITS WITH INFINITE

MOTION IN . The conclusions are given in section SUMMARY AND DISCUSSION.

THE COORDINATES OF THE STAGNATION POINTS
As it was mentioned in Introduction the analysis of superbanana orbits can be reduced to consideration of 1D
problem with effective Hamiltonian % given by following equation

h=p’[2—Mcos(&+ p)cosy, 1)
where ( p,l//) is the banana guiding center coordinates in the phase space, M and & can be assumed as the constant

parameter near the chosen resonance. Rather complex dependence h( p,l//) does not allow to find the explicit

analytical expressions describing the stagnation points for arbitrary values of parameter M . However, required analysis
can be carried out numerically.
To investigate the stagnation points of Hamiltonian / we calculate the following derivatives

oh

=p+Msin(&+ p)cos(y), 2
dp
O Meos(E+ p)sin(y). ®
oy
9°h
—2=1+Mcos(§+p)cos(w), 4)
dp
Bzhz =M cos(&+ p)cos(y), ®)
oy
2
aiahy/ = Msin(E+ p)sin(v). ©)

Solving the system of equations resulting from Egs. (2,3)

p+Msin(E+ p)cos(y)=0 (7
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Mcos(&+ p)sin(y)=0 (8)
one can find the two groups of stationary points:
i -group
. i+1 p; .
y, =i, (-1) —:s1n(§+pi), 9)
M
and j -group
()7 E+rmj 2 _&Evzj (10)
cosy, =———| ——c+7xnj|,p,=——6+7xj,
v, iY; > J |- P; > J

where i and j € Z.
It follows from Egs. (9), (10) that position of stagnation points in the phase space is essentially dependent on the
values of M and & . Furthermore, j -points can exist only if M > |IZ'/ 2-¢+rmj | For qualitative analysis we use the

graphic representation of Egs. (9), (10) in Figs.1 and 2.
As it seen from Fig.1 the value of parameter M defines the inclination angel of the line given by equation

y( D, ) =+ p,/M and thus it determines the quantity of the intersections between the line and the sine graphs, i.e. the

quantity of roots. The same conclusion for the j-group can be done from Fig.2 because only the lines with

15 % 15
’ N i n- ’
I~ e 7 I
I N W
T . ~ & 4 N 1
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.. T [
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|78
j
Fig. 1. Graphical representation of Eq.(9) determining i-points.  Fig. 2. Graphical representation of Eq.(10) determining j-points.

M > (ﬂ'/ 2-¢+rmj ) can intersects the graph of the cosine.

It should be noted that under the certain values M the type of the i-th stagnation point changes. The particular
feature of j -th stagnation points is that these points are placed by pairs around the stagnation point from i -group. The

location symmetry of this pair resulting from the cosine parity is seen from Fig.2.

THE TYPE OF THE STAGNATION POINTS
To find out the type of stagnation points we investigate the sign of the determinant D given as

*ho*h (o*n Y
p=2"on_ .
oy’ dp® | opoy

Using the explicit expressions for derivatives (Egs.(4)-(6)) and for stationary coordinates (Egs. (9)-(10)) we
represent this determinant as

D, =M’ cosz(§+pi)+Mcos(f+pi)(—1)i, for i -group (12)

(In

and
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Dj =—M?sin’ (W}) , for j -group. (13)

Taking into account that D >0 for the stable stagnation points (O-points) and correspondingly D <0 for the

unstable stagnation points (X-points) we concluded that j-group consists of X-points only, while i -group includes

both O-points and X-points depending on the values of p, . For example, for M =0,3 even i corresponds to O-point
and odd 7 to X-point.

To determine the maximums and minimums of / one should estimate the sign of the 0°4/dy? or 9°4/dp® . In

our case it is convenient to use %4/’ :

9’h

oy’

= Mcos(¢+p)(-1)'. (14)

(vi.pi)

In the mentioned above case M =0,3 for ¥, =0 and —&<p,<0 (i = 0 is even) and therefore
azh/ oy’ >0, ie. this stagnation corresponds to minimum of /. In another case M =7z/2 for ¥, =z and
7[/2—{,: <p,<m—& (see Fig.1.) (i = 1 is odd) and therefore azh/a l,//2 <0, i.e. this stagnation point corresponds
to maximum of /.

It should be pointed out that the direction of rotation in domain with the maximum of / is opposite to the domains
with the minimum of /2. It can be easily seen from analyzing the sign of the p = —dh/dy .

SEPARATRICES BETWEEN THE DOMAINS OF CLOSED ORBITS AND OF ORBITS WITH
INFINITE MOTION IN ¥
Figure 3 displays the contour plots of h( p,l//) for the different M values.

c) f,_:
37"

Fig. 3. Phase portraits of superbanana orbits determined by the Hamiltonian of Eq. ((1)) for the case of £=0.3 for different TF ripple
parameters: (a) M=0.3, (b) M=1, (¢) M=n/2-£ and (d) M=n/2.
These graphs were obtained calculating / at the mesh points with the equal step on p and ¥ with the magnitude
0,01 and following 2D splinting.
As it seen from carried out analysis for the small values of M < /2 —¢& there is only one domain with the closed

orbits. These orbits correspond to the trapped bananas (superbananas). The later ones correspond to the passing
bananas.

These different kinds of orbits are separated in the phase space by separatrix given by hsep = h(ﬂ', Disy ) . In the

general case the separatrix of the chosen domain is given by the following expression
h(y.p)=h,, (15)
where £, =h (l//X » Dy ) —const , (l//X D X) are the coordinates of the X-point of the chosen domain.

If M >7/2—¢& and therefore upper boundary of the separatrix exceeds value 7/2—¢& , another domain with the
closed orbits is formed above line p = ﬂ'/ 2—¢& . 1t should be noted that the direction of rotation in this domain is

opposite to the mentioned above domain. Continuing the increasing the value of M the new domains are formed. The
direction of rotation in these new domains depends on kind of O-point: minimum / — clockwise rotation, maximum / —
counter rotation.

SUMMARY AND DISCUSSIONS
The topology of banana guiding center orbits in phase space is considered. The domains with the different
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behavior of superbanana orbits are found ( see Fig.3. d ). The effect of the toroidal field ripple magnitude on the domain
with the closed orbits formation, location and size is analyzed.

The coordinates of the stagnation points of these orbits are derived. It is shown that the quantity of stagnation
points depends on the toroidal field ripple magnitude. The two qualitatively different groups of stagnation points are
obtained. Eqs.(9) and (10). It is marked that stagnation points located on the horizontal lines p = 717/ 2-¢+rmj,je

have the threshold of existence, thatis M >7/2—¢& .
The kinds of the stagnation points are determined. It is shown that the stagnation points located on the horizontal
lines p=r/2—-&+7mj,jeZ are X-points (Eq.(13)). And the stagnation points located on the vertical lines

W =7i,i€ Z can be O-points and X-points depending on the values of M and & parameters (Eq.(12)). Besides that

it is pointed out that the O-points corresponds to both the minimums and maximums of adiabatic invariant /4 and the
direction of the rotation along the closed orbits are opposite in these two cases (Eq.(14)).

The analytical expressions for boundary of regions with the closed particles are derived (Eq.(15)).

The contour plots of the adiabatic invariant of motion for banana guiding center equation are presented for the set
of the toroidal field ripple values. The comparison between the results of semianalytical consideration and graphical
interpretation of the adiabatic invariant is provided. It is shown that the semianalytical analysis is in good agreement
with the behavior of orbits in the phase space.
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