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TOPOLOGY OF SUPERBANANA ORBITS IN TOKAMAKS WITH TF RIPPLES
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The topology of banana guiding center orbits of fast ions in tokamaks with toroidal field (TF) ripples is considered. Analytical

expressions determining the stagnation orbits and boundaries of regions with the closed orbits in the phase space are derived. 

Thoroughly studied is the modification of the topology of superbanana orbits due to the variation of the TF ripple magnitude δ.

Contour plots of the adiabatic invariant of banana guiding center motion are presented for different values of δ. A comparison of the 

results of semi-analytical consideration and graphical interpretation of the adiabatic invariant is provided. 
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In axisymmetric approximation the tokamak magnetic field is treated as a toroidally uniform one. However in 

reality, the toroidal field in tokamaks is corrugated due to the finite number of toroidal field coils. These toroidal field 

ripples are generally strongest and consequential for particle transport in the low-B side of a tokamak while being of 

less significance at the high-B side. Field perturbations of 1% are typical in the outer edge of a tokamak plasma and 

appear a few orders of magnitude smaller at the magnetic axis. 

Toroidal field ripples are known to create secondary magnetic wells at the outer plasma edge, most dominantly in 

the vicinity of the mid-plane [1]. Particles trapped in these wells are subject to enhanced radial transport and hence 

poorly confined in the plasma. The criterion for the existence of secondary ripple wells in a circular tokamak with large 

aspect ratio is ( )sin 1Nqα ε ϑ δ≡ < , where ε  denotes the local inverse aspect ratio, ϑ  the poloidal angle, N  the 

number of toroidal field coils, q  the safety factor and ( ) ( )max min max mint t t tB B B Bδ ≡ − +  the ripple amplitude. Note that 

at the plasma periphery, where δ exceeds the critical value GWBδ  given by the Goldstone-White-Boozer stochastisity 

threshold, toroidally trapped particles are nearly promptly lost from the plasma during a time small in comparison with 

Coulomb collision times [1,2]. Here we examine the ripple impact on toroidally trapped fast ions orbits with the banana 

tips in the core plasma region where there are no ripple wells and the ripple magnitude is below the stochasticity 
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threshold, i.e. where 1α >  and 
GWBδ δ< . The most significant effect of TF ripples occurs for toroidally trapped fast ions 

which are in resonance with the ripple perturbations [6], i.e. for ions satisfying the resonance condition 

0, 0, 1, 2,...b dl N lω ω− = = ± ± , where ωb and ωd are the particle’s bounce and toroidal precession frequencies. 

Such resonant toroidally trapped particles, tracing out so-called superbananas, are seen to undergo an even more 

increased radial diffusion and thus are responsible for a substantial share in TF ripple losses of energetic ions [6-7, 10-

13].

We note that direct measurements of fast ions lost in ripple wells were performed on TFTR [4-7], JET [8, 5] and 

TORE SUPRA [9, 5]. Relevant theoretical treatment of fast ion ripple transport based on Fokker-Planck calculations 

(3D in constants-of-motion (COM) space) is found in some of our previous studies [6, 7, 10-13]. Other approaches were 

recently developed [18-19]. It should be mentioned that this problem of TF ripple induced transport stays actual 

nowadays, especially for ITER [14-17]. Other approaches are developed in [18-19] recently.

In this paper, we analyze the toroidally trapped particle motion using the adiabatic invariant on superbanana orbits 

[11]. This invariant can be represented as ( )2 2 cos cosp M p h constξ ψ− + = = , where ( ),p ψ  denote the guiding 

center coordinates, ξ  can be assumed as a constant parameter and 
3 2( )M Nqδ ε≅ .

Our aim here is to derive analytical expressions describing the separatrices between the domains of closed orbits 

and of orbits with infinite motion in ψ  [20]. Those expressions are necessary to provide an algorithm for the 

superbanana averaging procedure required for the derivation of the 3D Fokker-Planck equation in COM variables. 

Because of singularities of the thus averaged transport coefficients at the boundary between these domains [11] it is 

important to analytically treat these separatrices as modified by the value of M .

The paper is organized as follows. In the sections THE COORDINATES OF THE STAGNATION POINTS, THE 

TYPE OF THE STAGNATION POINTS the coordinates and the type of the stagnation points of the Hamiltonian h
are determined. Further an effect of the ripple magnitude on the separatrices between the domains of closed orbits and 

of orbits with infinite motion in angular coordinate is analyzed for different values of parameterM  in section 

SEPARATRICES BETWEEN THE DOMAINS OF CLOSED ORBITS AND OF ORBITS WITH INFINITE 

MOTION IN ψ. The conclusions are given in section SUMMARY AND DISCUSSION.

THE COORDINATES OF THE STAGNATION POINTS

As it was mentioned in Introduction the analysis of superbanana orbits can be reduced to consideration of 1D 

problem with effective Hamiltonian h  given by following equation 

( )2 2 cos cosh p M pξ ψ= − + , (1)

where ( ),p ψ  is the banana guiding center coordinates in the phase space, M  and ξ  can be assumed as the constant 

parameter near the chosen resonance. Rather complex dependence ( ),h p ψ  does not allow to find the explicit 

analytical expressions describing the stagnation points for arbitrary values of parameterM . However, required analysis 

can be carried out numerically. 

To investigate the stagnation points of Hamiltonian h  we calculate the following derivatives

( ) ( )sin cos
h

p M p
p

ξ ψ
∂

= + +
∂

, (2)

( ) ( )cos sin
h

M pξ ψ
ψ

∂
= +

∂
, (3)

( ) ( )
2

2
1 cos cos

h
M p

p
ξ ψ

∂
= + +

∂
, (4)

( ) ( )
2

2
cos cos

h
M pξ ψ

ψ

∂
= +

∂
, (5)

( ) ( )
2

sin sin
h

M p
p

ξ ψ
ψ

∂
= +

∂ ∂
. (6)

Solving the system of equations resulting from Eqs. (2,3) 

( ) ( )sin cos 0p M pξ ψ+ + = (7)
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( ) ( )cos sin 0M pξ ψ+ = (8)

one can find the two groups of stationary points: 

i -group

i iψ π= , ( ) ( )
1

1 sin
i i

i

p
p

M
ξ

+
− = + , (9)

and j -group

( )
1

1
cos

2

j

j j
M

π
ψ ξ π

+
−

= − + ,
2

jp j
π

ξ π= − + , (10)

where i and j ∈ .

It follows from Eqs. (9), (10) that position of stagnation points in the phase space is essentially dependent on the 

values of M andξ . Furthermore, j -points can exist only if 2M jπ ξ π> − + . For qualitative analysis we use the 

graphic representation of Eqs. (9), (10) in Figs.1 and 2.

As it seen from Fig.1 the value of parameter M  defines the inclination angel of the line given by equation 

( )i iy p p M= ±  and thus it determines the quantity of the intersections between the line and the sine graphs, i.e. the 

quantity of roots. The same conclusion for the j -group can be done from Fig.2 because only the lines with 

( )2M jπ ξ π> − +  can intersects the graph of the cosine.

It should be noted that under the certain values M  the type of the i -th stagnation point changes. The particular 

feature of j -th stagnation points is that these points are placed by pairs around the stagnation point from i -group. The 

location symmetry of this pair resulting from the cosine parity is seen from Fig.2.

THE TYPE OF THE STAGNATION POINTS

To find out the type of stagnation points we investigate the sign of the determinant D  given as

2
2 2 2

2 2

h h h
D

p pψ ψ

∂ ∂ ∂
= −

∂ ∂ ∂ ∂
. (11)

Using the explicit expressions for derivatives (Eqs.(4)-(6)) and for stationary coordinates (Eqs. (9)-(10)) we 

represent this determinant as

( )2 2cos ( ) cos( ) 1
i

i i iD M p M pξ ξ= + + + − ,  for i -group (12)

and

Fig. 1. Graphical representation of Eq.(9) determining i-points. Fig. 2. Graphical representation of Eq.(10) determining j-points.
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2 2sin ( )j jD M ψ= − , for j -group. (13)

Taking into account that 0D >  for the stable stagnation points (O-points) and correspondingly 0D <  for the 

unstable stagnation points (X-points) we concluded that j -group consists of X-points only, while i -group includes 

both O-points and X-points depending on the values of ip . For example, for 0,3M =  even i corresponds to O-point 

and odd i to X-point.

To determine the maximums and minimums of h  one should estimate the sign of the 
2 2h ψ∂ ∂  or 

2 2h p∂ ∂ . In 

our case it is convenient to use 
2 2h ψ∂ ∂ :

( )

( )
2

2

,

cos( ) 1

i i

i

i

p

h
M p

ψ

ξ
ψ

∂
= + −

∂
. (14)

In the mentioned above case 0,3M =  for 0iψ =  and 0ipξ− < <  ( 0i = is even) and therefore 

2 2 0h ψ∂ ∂ > , i.e. this stagnation corresponds to minimum of h . In another case 2M π=  for iψ π=  and 

2 ipπ ξ π ξ− < < −  (see Fig.1.) ( 1i = is odd) and therefore 
2 2 0h ψ∂ ∂ < , i.e. this stagnation point corresponds 

to maximum of h .

It should be pointed out that the direction of rotation in domain with the maximum of h  is opposite to the domains 

with the minimum of h . It can be easily seen from analyzing the sign of the p h ψ= −∂ ∂ .

SEPARATRICES BETWEEN THE DOMAINS OF CLOSED ORBITS AND OF ORBITS WITH 

INFINITE MOTION IN ψ
Figure 3 displays the contour plots of ( ),h p ψ  for the different M  values.

Fig. 3. Phase portraits of superbanana orbits determined by the Hamiltonian of Eq. ((1)) for the case of ξ=0.3 for different TF ripple 

parameters: (a) M=0.3, (b) M=1, (c) M=π/2-ξ and (d) M=π/2.

These graphs were obtained calculating h  at the mesh points with the equal step on p  and ψ  with the magnitude 

0,01 and following 2D splinting.

As it seen from carried out analysis for the small values of 2M π ξ< −  there is only one domain with the closed 

orbits. These orbits correspond to the trapped bananas (superbananas). The later ones correspond to the passing 

bananas.

These different kinds of orbits are separated in the phase space by separatrix given by ( )1,sep ih h pπ == . In the 

general case the separatrix of the chosen domain is given by the following expression 

( ), seph p hψ = , (15)

where ( ),sep X Xh h p constψ= − , ( ),X Xpψ  are the coordinates of the X-point of the chosen domain. 

If 2M π ξ> −  and therefore upper boundary of the separatrix exceeds value 2π ξ− , another domain with the 

closed orbits is formed above line 2p π ξ= − . It should be noted that the direction of rotation in this domain is 

opposite to the mentioned above domain. Continuing the increasing the value of M  the new domains are formed. The 

direction of rotation in these new domains depends on kind of O-point: minimum h  – clockwise rotation, maximum h  – 

counter rotation. 

SUMMARY AND DISCUSSIONS 

The topology of banana guiding center orbits in phase space is considered. The domains with the different 
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behavior of superbanana orbits are found ( see Fig.3. d ). The effect of the toroidal field ripple magnitude on the domain 

with the closed orbits formation, location and size is analyzed.

The coordinates of the stagnation points of these orbits are derived. It is shown that the quantity of stagnation 

points depends on the toroidal field ripple magnitude. The two qualitatively different groups of stagnation points are 

obtained. Eqs.(9) and (10). It is marked that stagnation points located on the horizontal lines 2 ,p j jπ ξ π= − + ∈

have the threshold of existence, that is 2M π ξ> − .

The kinds of the stagnation points are determined. It is shown that the stagnation points located on the horizontal 

lines 2 ,p j jπ ξ π= − + ∈  are X-points (Eq.(13)). And the stagnation points located on the vertical lines 

,i iψ π= ∈  can be O-points and X-points depending on the values of M  and ξ  parameters (Eq.(12)). Besides that 

it is pointed out that the O-points corresponds to both the minimums and maximums of adiabatic invariant h  and the 

direction of the rotation along the closed orbits are opposite in these two cases (Eq.(14)). 

The analytical expressions for boundary of regions with the closed particles are derived (Eq.(15)).

The contour plots of the adiabatic invariant of motion for banana guiding center equation are presented for the set 

of the toroidal field ripple values. The comparison between the results of semianalytical consideration and graphical 

interpretation of the adiabatic invariant is provided. It is shown that the semianalytical analysis is in good agreement 

with the behavior of orbits in the phase space. 
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