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SUMMARY 
Formal mathematical procedure of developed Spectral Independent Component Analysis (SICA) of heart 

rate variability (HRV) allows to obtain no more than three components forming the rhythmogramm of healthy 
person. This fact rationally represents physiological hypotheses about regulation systems taking part in 
forming HRV phenomenon. Applying SICA to HRV approves itself on timing intervals form 3 to 15 minutes. 
Вreaking the low limit of this timing interval causes essential worsening of quality of ICA components 
forming the rhythmogramm. Optimal application of SICA for splitting initial registered HRV signal into 
components is using SICA with five-minute HRV registering protocol. 
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The phenomenon of heart rate variability 
(HRV) was noticed by physicians long ago: first 
mention about HRV in European scientific 
literature attributed to Stephen Hales in 1733. 
However, wide development of HRV-based 
diagnostic methods and their applications in 
medicine dates from the end of last century, 
because of development of high-precision 
digital computer electrocardiography (ECG) and 
standardization of HRV-technology, carried out 
by the workgroup of the European Society of 
Cardiology and the North American Society of 
Pacing and Electrophysiology 

5-minute, 15-minute and 24-hour protocols 
are most often used for researches of heart rate 
variability. In HRV analysis the most valuable 
information can be achieved with the 
application of dimensional-spectral methods: 
quick transformation by Furrier, autoregressive, 
and others. Important spectrum descriptions are: 
its power, and powers of its separate zones 
(domains). In 5-minute and 15-minute 
protocols, 3 inherent zones can be differed: VLF 
- zone of very low frequencies (0.0033-0.04 
Hz), LF - zone of low frequencies (0.04-0.15 
Hz), HF - zone of high frequencies (0.25-0.4 

Hz) [1]. Thus, clear correlation of the power of 
every spectral domain with its corresponding 
regulating unit of an organism was determined. 
Parasympathic link of the vegetative nervous 
organism regulation influences fast rate 
variations of a cardiac rhythm (HF); sympathic 
link of the vegetative nervous organism 
regulation influences medium rate variations of 
a cardiac rhythm (LF); humoral link of the 
neurohumoral organism regulation influences 
slow rate variations (VLF). At the same time, 
traditional approach has certain drawbacks, 
generally related to formal techniques of 
selecting regulation domains in the spectrum. 
Essential progress in solution of the current 
problem can be attained by application of more 
complex mathematical methods, which allow 
separating of initial registered rhythmogram 
into independent components. Two non-formal 
approach in selecting spectral-regulating 
domains in HRV can be noted marked: 

- statistical methods of analysis, based on 
common approaches in time series analysis; 

- mathematical modeling, representing phy-
siological features of regulating processes of 
heart activity. 

The article is devoted to statistical approach 
that is based on the method of separating 
registered composite rhythmogram to its 
independent components, each formed by 
corresponding regulating unit of an organism. 
It’s clear that the application of well known 
methods (such as factor analysis – principal 
component analysis) that use a linear 
decorellation of components, for this purpose is 
limited and almost incompetent, because of 
essential non-linearity of the phenomenon being 
considered - the heart rate variability. The 
appearance of non-linear statistical analysis 
method - independent component analysis (ICA) 
[2] and its successful development in solving of 
composite medical problems (for example, in 
encephalogram analysis) show it being very 
perspective for application in HRV analysis. 

MATERIALS AND METHODS 
 To determine ICA application for HRV 

more strictly, we’ll use statistical “hidden 
variables” of models [3, 4]. Let’s consider that 
we have n linear mixes of x1,...,xn independent 
components (directing influence of each 
regulating unit). 

 
1 1 2 2j j j jn nx a s a s a s= + + +K

 
                     for each meaning of j       (1) 

 
Timing index t is omitted here. In the ICA 

model, instead of corresponding timing reckon, 
both mix xj(t) and independent component sk  
supposed to be a random value. Observable 
values of xj(t) are a sample of this random value 
(not regarding that the scalar function HR used 
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in HRV as an initial observable value, due to 
well known F.Takens theorem [5]). We can 
suppose without loss of generality, that both 
mix variables and independent components 
average value is zero. If that is not so, then the 
observable variable xi always can be centred by 
subtraction its sample average of it, that forward 
us to a model with average value of zero. 

Instead of using sums in the previous 
equation, we can use matrix-vector form of 
designation. Let x represent random vector 
which components are x1,...,xn  mixes, and the 
similar way s - random vector which 
components are s1,...,sn. Matrix A is a matrix 
with elements aij. Bold small letters usually 
indicate vectors, and bold capital symbols 
identify matrixes. All vectors represent column 
vectors, thus, xT (transponsed x) is a string 
vector. With the application of this vector-
matrix nomenclature, the above-mentioned 
mixing model can be written like this: 
 
          x = As          (2) 

Sometimes we might need the columns of 
the matrix A, marked as aj. The model also can 
be written like this: 

1

n

i i
i

s
=
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Statistical model in equation (3) called the 

independent component analysis, or the ICA 
model. The model is an ICA-originative model, 
that means it describes the way observable data 
are generated by the mixing process si. 
Independent components are hidden variables, 
that means they cannot be observed directly. 
Also it is accepted that the mixing matrix value 
is unknown. The only thing we observe is the 
random vector x, and we have to estimate A and 
s using it. That must be done in suppositions as 
common as it is possible. 

ICA initial point - the simpliest supposition, 

that components si are statistically independent. 
We also must suppose, that the independent 
component must have non-Gaussian 
distribution. Besides, in the initial model we not 
suppose these distributions to be known (if they 
are known - the problem can be substantially 
simplified). For simplicity purpose, we also 
suppose, that the unknown mixing matrix is a 
square matrix, but this condition can be widened 
sometimes. Then, after estimation of matrix A, 
we can calculate its inverse matrix, marked W, 
and to obtain an independent component just 
like this: 

 
s = Wx  

 
We note that for every random stationary 

process s(t) with a continual covariant function 
the representation by the way of [6] is allowed: 

 

           ∫
∞

∞−

Φ= λλ dets ti)( ;                  (5) 

 
where Φ is a generalized measure on the real 
axis -∞<λ<∞ with values in Hilbert space, Φ 
must be such that the ortogonality condition 
must be carried out for non-overlapping 
measurable sets: 

 
0)}()(M{))(),(( 2121 =∆Φ∆Φ=∆Φ∆Φ ;  (6) 

 
where М is the average of distribution. The 
orthogonal measure Φ is specified at σ-algebra 
of the sets, that are measurable relating to non-
negative bounded spectral measure F(Δ)= М 
│Φ(Δ)│2 , and Φ is concerned with the 
covariant function B(t) by the correlation: 

 

              ∫
∞

∞−

= λλ FdetB ti)( .                    (7) 

The transformation of the stationary process 
s(t) in the form of 

 
           ∫ Φ= λλϕη λ det ti )()(                   (8)  

 
will be the linear transformation with the 
spectral characteristic 2L∈ϕ , setting the 
stationary process η(t) with the spectral measure 
 
                      ∫

∆

=∆ λλϕ FdG 2)()(   .               (9) 

 
If the initial stationary process s(t) has the 

spectral density f(λ), i.e. there is absolutely 
continuous spectral measure 

 

                        ∫
∆

=∆ λλ dfF )()( ,               (10) 

 
then the corresponding process η(t) has the 
spectral density 
 
                      )()()( 2

λλϕλ fg = .             (11) 
 

The stationary process η(t) allows the 
spectral representation 

 
                         ∫ Ψ= λη λ det ti)( ,                (12) 

 
where the stochastic spectral measure Ψ 
concerns to measure Φ this way: 

    (3) 

 (4) 



 
                    ∫

∆

Φ=∆Ψ λλϕ d)()(                 (13)  

 
Next, the stationary process s(t) can be 

obtained with the reverse transformation  
 
              ∫ Ψ= λλψλ dets ti )()( ;             (14) 

 
where the spectral characteristic of the 
transformation ψ(λ) is set by formula 
 
                        )(1)( λϕλψ =                     (15)  

 
This way, the linear transformations, being 

carried out by ICA algorithm, are tottaly 
equivalent on timing and frequency intervals, 
i.e. we can transfer ICA process to the spectral 
area of representation of the required s(t), 
without loss of commonality. Also, we note 
important features of the transfer of ICA to the 
frequency interval, determining advantages of 
the ICA spectral algorithm (SICA): 

1. In case of the ergodic process s(t) spectral 
moments have the feature of independency at 
spaces of any measurable sets ),(

1
11 lkL⊆∆  and 

),(
1

22 lkL⊆∆  [7]: 
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where for the pair of processes s(t) and η(t), 
concerned with the linear transformation, the 
correlation exists: 
 

∫ ∫
∆ ∆

=∆×∆
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Next, at the initial timing interval the 

correlation moments do not have such feature, 
and the condition of independency is one of the 
ICA principles, which holds true by completing 
the minimization process. So, the suggested 
spectral algorithm is more accurate and has an 
increased convergence, in comparison with the 
classic ICA scheme for ergodic process 
analysis, to which the HRV belongs, too. 

2. The covariation at the spectral interval is a 
power measure of independency of the 
components, because in the spectral area it 
always gives us estimation from above. At the 
timing interval we cannot apply such measure 
of independency of the ICA components [2]. 

Hence, in the subsequent text we imply that 
ICA process shifted from time domain to 
frequencies domain. The ICA method in 
frequencies domain we will call Spectral ICA 
(SICA). Where it is important to separate ICA 

and SICA we will take notice.  
Intuitively speaking, the key to the 

estimation of ICA models is the non-Gaussivity. 
Without the non-Gaussivity, the computation is 
almost totally impossible. In most applications 
of the classic statistical theory it is supposed, 
that random values have Gaussian distribution, 
so this way it hinders the ICA application. The 
central limit theorem, the classical result of 
probability theory, claims that with known 
initial conditions, the distribution of the sum of 
independent random values aims the Gaussian 
distribution. Hence the sum of two independent 
random values usually has distribution more 
close to Gaussian distribution than any of both 
initial random values.Now let’s suppose, that 
the data vector x is distributed in 
correspondence with the ICA data model in the 
equation 4, so that it is a mix of independent 
components.or simplicity, let’s suppose that all 
of the independent components have identical 
distributions. To estimate one of the 
independent components, we consider the linear 
combination xi,  

marking
1 i

i

y w x= = ∑Tw x
,  

where w is a vector that we must determine. If 
w would be equal one of the strings of the 
inversed matrix A, then, in fact, this linear 
combination equals one of the independent 
components. Now, here is the question: how we 
should use the central limit theorem to 
determine w that way, so it equals one of the 
inversed A strings? In fact, we cannot determine 
this w precisely, because we know nothing of 
matrix A, but we are able to find an estimation 
function, that gives us a good approach. 

To find out, how it leads us to the basic 
principle of the ICA estimation, let’s replace the 

variables, by claiming = Tz A w . Then we have 
y = =T T Tw x w As = z s . Thus, y is the linear 

combination of si with the data weights zi. The 
sum of two independent random values is more 

Gaussian than initial variables, that’s why 
Tz s  

is more Gaussian than any of the si, and it 
becomes minimally Gaussian, when it actually 
equals one of the si. In this case, obviously, only 
one of the zi elements is non-zero (attention: we 
accept here, that si have identical distributions). 

Consequently, we can consider w as a 
vector, that maximizes the non-Gaussivity of 

Tw x . Such vector must certainly correspond 
(in measures of transformed coordinate system) 
to vector z, that has only one non-zero 

component. It means, =T Tw x z s  equals one of 
the independent components! 



This way, non-Gaussivity maximization of 
Tw x  gives us one of the independent 

components. In fact, the optimization relief for 
non-Gaussivity in the n-dimensional space of w 
vectors has 2n local maximums, two for every 
independent component, in correspondence with 
si and -si (confirming that independent 
components can be precisely estimated only up 
to a multiplicative sign). To find out a number 
of independent components, we have to find all 
of this local maximums. That is not very 
difficult, because different independent 
components are non-correlating: we can always 
look for them in the space only, this way 
estimations we achieve, are non-correlating with 
any of the previous. This corresponds to an 
ortogonalization in the accordingly transformed 
space. 

Mathematical method of Spectral ICA 
andalgorithm described above were developed 
based on a standard fast ICA software kit for 
MATLAB-compatible system [2]. For a 
dimensional-spectral of the HRV analysis, the 
quick Furiet transformation were used. We used 
24-hour rhythmogramm samples of health 
volunteers of both male and female gender in 
the research. We analysed fragments of the 
rhythmogramm of an arbitrary length and an 
arbitrary placement into a monitor record. The 
aim of the research was: 

 - to determine the adequacy of mathematical 
method (Spectral ICA) in application to heart 
rate variability analysis, due to physiological 
hypotheses about regulating systems, forming 
HRV phenomenon; 

 - to determine limits of the ICA application 
in HRV analysis; 

 - to find out optimum conditions for using 
the Spectral ICA in HRV analysis. 

RESULTS AND DISCUSSIONS 
An example of 8-minute rhythmogramm 

shown at the figure 1. At figures 2-4, 
components selected from the initial 

rhythmogramm (a), and their spectrums (b) are 
shown in pairs. Specific of method is a strict 
satisfaction to the Pirson decorrelation of 
separated components, this, however, does not 
provides the decorrelation of their spectrums. 
Figures 5 and 6 show timing dependencies 
(heart beat quantities) of correlation coefficients 
(corr) between the spectrums of separated 
components of the initial rhythmogramm. Well 
shown, that the application of ICA in HRV 
analysis is limited by timing interval from 3 to 
15 minutes, with the selectable optimum about 
5-7 minutes. Table 1 shows correlation 
coefficients for the case of separating the initial 
rhythmogramm into 4 components. It can be 
found out easily, that adding of the fourth 
component is not necessary: the offered method 
determines a high correlation between 3rd and 
4th signal, that means impossibility of their 
separation (fig. 4) (tabl. 1). 

Thereby, Spectral ICA applied to HRV 
analysis used to determine the quantity of the 
independent variables, in which rhythmogramm 
can be decomposed by natural appearance. If 
the quantity of the variables was equal to 
expected number of regulating systems of an 
organism, that is, three, then every spectrum of 
each of these signals appears to be at the only of 
the regions: low-frequency, medium-frequency 
or high-frequency one. Also, if there was an 
attempt to use four or more independent 
components, then it turned out, that at least two 
of them appear to be at the same frequency 
region, and moreover, their spectrums are 
sufficiently correlated (fig. 4). 

Similar results were obtained in all cases, 
when we use decomposition more then in 3 
independent components, - only 3 signals 
appear to be independent indeed (that is, 
insignificantly correlative in the spectral area). 
This sustains the abscence of any other 
regulating systems of an organism, and also 
competence of the offered method of analysis. 

Table 1 
Spectrum domains pairwise correlations 

Heart beats Pairwise correlations (corr) 
400 0.027 0.038 0.084 0.156 0.285 0.842 
450 0.002 0.046 0.053 0.118 0.278 0.9 
500 0.004 0.023 0.1 0.147 0.226 0.869 
550 0.061 0.075 0.078 0.14 0.167 0.985 
600 0.018 0.044 0.121 0.163 0.174 0.998 
650 0.036 0.057 0.15 0.136 0.164 0.994 
700 0.04 0.043 0.047 0.254 0.266 0.983 
750 0.012 0.02 0.075 0.315 0.324 0.997 
800 0.061 0.078 0.234 0.234 0.356 0.996 
850 0.016 0.037 0.176 0.186 0.224 0.997 
900 0.036 0.063 0.079 0.152 0.254 0.979 
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   Fig. 1a. The initial rhythmogramm (8-minute sample) 
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 Fig. 1b. The spectrum of the initial rhythmogramm 
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              Fig. 2a.  The rhythmogramm, separated in two components 
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Fig. 2b. The spectrum of the components (correlation  
        coefficient of the components corr=0.1) 
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      Fig. 3a. The rhythmogramm, separated in three components 
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Fig. 3b. The spectrum of the components 
(corr=0.32;0.24;-0.04) 
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             Fig. 4a. The rhythmogramm, separated in four components 
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Fig. 3b. The spectrum of the components       
         (corr=0.99;0.31;0.3;0.28;0.26;0.06) 
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Important questions, that were considered in 
the work, are the area of application of ICA in 
HRV analysis and the problem of the optimal 
rhythmogramm length. To discover this, 
calculations on a different duration intervals 
(from 150 to 1350 heart beats) were carried out 
(total time 15 minutes). Thus, it turned out that 
when the length of the ICA processed interval is 
less then 400 points, the low-frequency 
decomposition component represents 

incorrectly due to natural loss of low 
frequencies. At the same time, increasing the 
length of the processed interval over than 900 
points, in fact do not provided any kind of 
additional information, but simultaneously the 
correlation of obtained by ICA signals was 
growing sharply. That’s why the use of 5-
minute protocol for Spectral ICA in HRV 
analysis is optimal. 
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        Fig. 5. The correlation between spectrums for two components 
                     separated by SICA(solid), ICA(dashed).              
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         Fig. 6. The correlation between spectrums for three  

  components separated by SICA 

 
The SICA advantages over ICA have shown 

at the figures 5, 6, 7 and 8. At the figures 5 and 
6 we can see that SICA does not have any data 
length using limitation unlike ICA. At the 
figures 7 and 8 presents that ICA cannot 
separate initial RR (fig.1a) for LF and HF 
signals (the largest corr=0.88) but SICA made 
separation clearly (the largest corr=0.32). Note, 
that in the case of ICA we have convergence 
after 9 iterations, in case of SICA – 6 iterations. 
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Fig. 7. The spectrum of the ICA components 
                              (corr=0.88;0.25;0.21) 
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   Fig. 8. The spectrum of the SICA components 
                            (corr=0.32;0.24;-0.041) 
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