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Abstract. Biological materials change their mass, shape, and porosity during the growth
and possess high strength and durability at general lightweight design. Biological tissues are
considered to be inhomogeneous anisotropic multiphase composites reinforced by fibres. A
2D problem of the load transfer from the growing fibre into the growing plate with different
own growth rates and viscosity is considered in this paper. Rheology of the growing biological
tissue is described by a modified Maxwell model of viscoelastic media. Numerical calculations
of the growth velocity and stress fields are carried out. The influence of rheological parameters
of two media on the stress–strain state is investigated. It is shown that the stress field may
provide local coordinated growth of the fibres and the plate when the rheological parameters
of two materials are different and anisotropic growth is observed.
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1. INTRODUCTION

The modelling of the biological growth is a promising bias of the contemporary
mechanics of continuous media, which is connected with tissue engineering
and manufacturing the novel types of composites for biomedical and technical
applications. Biological tissues can be considered as multiphase continuous media
composed of a solid porous skeleton (cellular walls, membranes, extracellular
substances, conducting vessels) filled with liquids (intracellular, interstitial and
delivering fluids). The delivering fluids contain dissolved substances that can be
absorbed by a solid phase providing the mass increase of a growing body due to
increase in the volume (surface or volumetric growth) and decrease in porosity
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(inner growth or remodelling) [1,2]. In growing plants cell expansion is produced
by creating a driving force for water uptake by decreasing hydrostatic pressure
(turgor) through stress relaxation in the cell wall [3]. Orientation of the new-
formed cell walls, conducting elements, and extracellular fibres is determined by
the principals of the stress tensor. Cells are sensitive to the stress, and the threshold
is σ∗ = 0.03–0.05 MPa [4]. In that way the biomaterials with optimal mechanical
properties (maximal strength for the given external load at minimal total weight)
may be produced by the growth at certain conditions.

Numerous experimental observations and measurements of animal and plant
tissues have revealed that tension stimulates growth in the corresponding direction
while compression depresses it, and there is a linear dependence between the
growth rate and the stress tensors. The Maxwell model of the viscoelastic fluid has
been used for modelling the growth of the spine [5], plant roots [6] and leaves [7,8],
cellular monolayers [9], and laminated tissues [10] at different loads. Comparison
of the numerical calculations and experimental measurements of the growth
kinematics at different conditions poses an inverse problem for determination of
the rheological parameters of the Maxwell model. Many measurements for the
stress-free grown plant leaves of different size, shape, and venation type show that
the own growth rates eg ∼ 0.1, depending on the growth stage and availability of
water and nutrients [11]. Image analysis of daily-taken digital pictures of separate
leaves have revealed some regularities between the diameters and branching angles
of the conducting elements (veins) in the junctions, diameters, and lengths of the
separate veins and their influence domains (the areas of the leaf blade supplied by
water and nutrients by the corresponding vein) [11] that correspond to the model
of the optimal transportation network of the rigid tubes with permeable walls [12].
Since the veins reinforce the leaf blade, whose mechanical strength and stability
are determined by orientation, thickness, and branching angles of the main veins,
the problem of optimal reinforcement of the biological tissues can be solved and
the Nature-inspired composite materials may be constructed on the basis of our
measurement data [13]. In this paper, the important problem for the growing fibre-
reinforced composite, connected with load transfer from the elongating fibre into
the growing surrounding tissues, is considered.

2. MATERIAL AND METHODS

Plants of Abutilon hybridum, Plectrantus L., and Cissus rhombifolia were
cultured in a phytotron. Daily-taken digital pictures were analysed using the
computer software described in [11]. A set of Lagrange coordinates (ξ1

j , ξ2
j ) of

fixed marks (vein junctions) on a growing leaf blade (j = 1...N , N = 200–300
junctions depending on the leaf size) were chosen and their coordinates measured
on the consecutive pictures using the image analysis software. The Euler coordinate
system (x1, x2) was connected with the direction of the main vein and the point of
attachment of the leaf to the petiole (see Fig. 1). The corresponding transition
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Fig. 1. Experimentally observed shapes of the isotropic growth of the Abutilon leaf (a), and
anisotropic growth of the Plectrantus (b) and Cissus (c) leaves.

law x1,2 = X1,2(t, ξ1, ξ2) was determined in a usual way. The time series of
the Euler coordinates x1

j , x
2
j of the marks j = 1...N was used for numerical

calculations of the growth velocity field ~v and components of the strain rate tensor
eik = (5ivk +5kvi)/2.

It was established that for the Abutilon hybridum leaf the azimuthal component
of the growth rate was practically zero vθ ∼ 0 and the radial component vr = a(t)r,
where the function a(t) depends on the growth regime (light, nutrition, and water
availability) only (Fig. 1a). Hence growth deformations of the leaf plate are the
similarity transformations. In that case the anisotropic plate exhibits isotropic
growth. Anisotropy of the leaf is defined by the orientation of the main, secondary,
and minor veins whose growth is anisotropic and connected with the extension
of the veins in the longitudinal direction without any additional cell divisions
and appearance of new cell walls. Some typical examples of anisotropy in fibre
orientation and distribution are presented in [1,11]. Growth of the main leaf tissue
(mesophile) is determined by cell divisions in different directions and production
of the isomorphic cells, which may be slightly elongated and oriented along the
corresponding conducting element when they are near the vein. It means that
the cell orientation and stimulation of the cell divisions in the main tissue can
be determined by the load transfer from the growing vein into the mesophile.
Generalization of Melan’s problem of load transfer from the growing stringer into
viscoelastic media with different growth rheology can be obtained in [14].

Another growth kinematics was observed for Plectrantus and Cissus leaves,
where vr = ar(t)r, vθ = aθ(t)rθ, and ar > aθ for Plectrantus leaves (growth
elongation of a leaf blade, see Fig. 1b) and ar < aθ for Cissus leaves (growth
expansion that is especially noticeable for the leaf base, see Fig. 1c). The
straight lines in Fig. 1b,c correspond to the similarity transformations of the leaf
blade, while the marks “plus”, “rectangle”, and “multiplication sign” indicate the
positions of the corresponding Lagrange points on the real growing leaf surface.
In that case anisotropic growth (elongation) of the veins is combined with angle-
dependent growth of the mesophile.
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Theoretical aspects of anisotropic volumetric growth are discussed in [15,16].
As far as orientation of the growing veins in the leaf cannot be only determined
by genetic factors at variable natural conditions (wind and rain load, gravity) and
fixed in space, variation of the angles between the main veins may be determined
by the dependence of the growth of the main tissues on plant sap delivery through
the corresponding vessel, while the flow rate of the sap is defined by the diameter
of the vein [12,13] and load transfer between the tissues or layers with different own
growth rates [10,14]. In this paper the problem of the coordinated growth of the fibre
and the main tissue (mesophile) by means of the stress field is investigated.

3. PROBLEM FORMULATION AND SOLUTION

We consider a 2D problem for the growing leaf with pinnate venation as a
rectangular plate composed of the main vein S1 ∈ {x ∈ [0, L], y ∈ [−a, a]}
and the main tissue S2 ∈ {x ∈ [0, L], y ∈ [−h − a,−a] ∪ [a, a + h]} with
different rheological properties. Due to symmetry, the upper part of the leaf is
only considered (Fig. 2a). The strain tensor ε̂ is supposed to be a sum of the elastic
ε̂e and growth strain tensors ε̂g. The tensor ε̂e obeys Hook’s law σ̂ = Êε̂e, where
Ê is the tensor of elastic moduli and σ̂ is the stress tensor. In agreement with
experimental data D/Dt(ε̂g) = Â + B̂σ̂, where D/Dt is time derivative, Â is
the tensor of own growth rates (at zero stress growth), and B̂ is the tensor of the
growth viscosities [1]. Finally we obtain the Maxwell model of the viscoelastic
body with an additional source term. The momentum equation is considered in
the static form due to large characteristic growth times T ∗ = 1–2 days. Hence
the problem formulation is presented by the momentum equations and constitutive
equations for the two media m = 1, 2 with different rheological parameters:

êm = Âm + B̂mσ̂m +
D
Dt

(
(Êm)−1σ̂m

)
, div (σ̂m) = 0. (1)

The boundary conditions are symmetry conditions at y = 0; zero normal
stress at the perimeter; growth rate and stress continuity conditions at the interfaces
y = ±a and the attachment condition to the leaf petiole at x = 0, namely:

x = 0 : v1,2
x = 0; y = 0 : v1

y = 0, σ1
y = 0, σ1

xy = 0;

x = L : σ2
y = 0; y = a : v1

x,y = v2
x,y, σ1

x,y = σ2
x,y, σ1

xy = σ2
xy.

(2)

Solution of the problem (1)–(2) will be found as Fourier expansion on the basis
of the results for the laminated growing composites [10]. Let us introduce the Airy
functions Φm(x, y) =

∑inf
n=0 θm

n (y)cos(γnx). Then the boundary conditions at
x = L are satisfied and the components of the stress tensors are

σm
x =

∑inf
n=0 (θm

n (y))// cos(γnx), σm
y = −∑inf

n=0 θm
n (y)cos(γnx),

σm
xy =

∑inf
n=0 (θm

n (y))/ γnsin(γnx).
(3)
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Fig. 2. Geometry of the system under consideration (a) and the growth rate field for the
isotropic growth in two regions (b).

Substitution of (3) into (1) gives the fourth-order differential equations for
determination of the functions θm

n (y). Solution of the problem can be easily
obtained in the following form:

θm
n (y) = Cm

1neλm
n y + Cm

2ne−λm
n y + Cm

3ncos(µm
n y) + Cm

4nsin(µm
n y),

where

λm
n = ±

((
ζm ± (Υm)0.5

)
/2

)0.5
, ζm = (Bm

12 + Bm
21 + 2Bm

3 ) /Bm
11,

µ =
((

(Υm)0.5 − ζm
)

/2
)0.5

, κm = Bm
22/Bm

11, Υm = (ζm)2 + 4κm.

Substitution of (3) into (2) gives a set of algebraic equations for determination
of the eight unknown coefficients Cm

1−4,n, m = 1–2, which is not presented here
for brevity. Solution of the obtained system was computed for the following ranges
of the material and geometrical parameters that correspond to measurement data
for different plant leaves: L = 1–30 cm, a = 1–2 mm, H = 0.2–5 cm, A11 ∼
A22 = 0.05–0.2, A12 = A21 = 0, B11 ∼ B22 = 2.5× 10−6, B12 ∼ B21 =
−(0.1–0.5)B11, Eik ∼ 106–108 Pa.
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4. RESULTS AND DISCUSSIONS

When Aik = aik, the problem (1)–(2) has a trivial solution σ1
ik = σ2

ik = 0.
A typical growth rate field is presented in Fig. 2b. In this case the size of the plate
depends on the relation between a11 and a22 only. For instance, the kinematically
different growth types obtained for the growing leaves and presented in Fig. 1a–c
can be achieved here at a11 = a22, a11 > a22, and a11 < a22, respectively.
The relations may be connected rather with features of the growth at a cellular
level (fibre orientation and distribution in the cellular wall and concentration of the
phytohormones) than with the mechanical factors [3]. When the fibre exhibits the
anisotropic growth and A22 = 0 while a11 = a22 < A11, the stress concentration
is observed at the interface y = a only. For clarity the distribution of the stress
intensity σ◦ is given in Fig. 3a at a11 = a22 = 0.1, A11 = 0.2. Computer
simulations for the mentioned ranges of the material parameters revealed that the
region with σ◦ 6= 0 is placed along the interface and is quite narrow (d ≤ a).
As an illustration the growth rate field for the regions with different rheological
parameters Aik and Bik is plotted in Fig. 3b. Far from the interface the growth
is not affected by the stress field and is governed by the own growth rate aik

Fig. 3. Stress intensity distribution (a) and the growth rate field (b) for nonuniform growth.
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only. The same result has been obtained by FEM calculations for the plates with
a11 = a22 >> A11 (growth restriction along the fibre). In that way the stress
field provides a local growth coordination within several cellular layers. When
the parameters Aik and aik differ significantly, the rectangular shape of the form
is not maintained and the problem can be solved by the FEM. As far as in plant
leaves the initial shape (for instance, the considered initial rectangular shape) is
kept during the growth, it means that there are no significant differences in Aik and
aik, though growth mechanisms may be different in veins (elongation) and in the
attached mesophile (cell divisions). When a ∼ h, the differences in A11 and a11

may lead to growth instabilities and shape variations far from the allometric law as
discussed in [6,7]. This will make the subject of further investigation.
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Koormuse ülekanne kasvavalt kiult kasvavale keskkonnale:
rakendus taime lehe kasvu kirjeldamiseks

Natalya Kizilova

Bioloogilised materjalid muudavad kasvuprotsessis oma massi, kuju ning
poorsust, moodustades tugevaid ja vastupidavaid ning seejuures kergeid struk-
tuure. Artiklis on vaadeldud bioloogilisi kudesid mittehomogeensete aniso-
troopsete mitmefaasiliste komposiitidena, mida tugevdavad kiud. On vaadel-
dud kahemõõtmelist koormuse ülekannet kasvavalt kiult kasvavale plaadile, kui
kasvukiirused ja viskoossused kius ning plaadis on erinevad. Kasvavate bioloo-
giliste kudede reoloogiat on kirjeldatud Maxwelli viskoelastse keskkonna mudeli
abil. Numbriliselt on leitud kasvu kiiruste ja pingevälja väärtused. On uuritud
kahe keskkonna reoloogiliste parameetrite mõju pingeolukorrale. On näidatud, et
pingeväli võib kiu ja plaadi materjalide erinevate reoloogiliste parameetrite korral
tekitada omavahel seostatud kiu ja plaadi kohalikku anisotroopset kasvu.
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