
European Congress on Computational Methods in Applied Sciences and Engineering 
ECCOMAS 2004 

P. Neittaanmäki, T. Rossi, K. Majava, and O. Pironneau (eds.) 
V. Capasso and W. Jäger (assoc. eds.) 

Jyväskylä, 24—28 July 2004 

1 

OPTIMIZATION OF BRANCHING PIPELINES ON BASIS 
OF DESIGN PRINCIPLES OF NATURE  

Natalya N.Kizilova * 

* Department of Theoretical Mechanics 
Svobody sq.,4, 61077 Kharkov National University, Ukraine 

e-mail: knn__@ukr.net  
 

Key words: Optimal networks, Murray’s law, Design principles, Computational Methods. 

Abstract. Structure of the optimal rectangular microcirculatory cell of a leaf is investigated 
on the model of liquid motion through the bifurcating tubes with permeable walls and its 
filtration into the cell filled with anisotropic porous biological medium. The relation between 
the diameters of the tubes in the bifurcation as well as coordinates of the bifurcation point at 
given width and length of the cell which provides minimum total energy consumptions are 
obtained.  
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1 INTRODUCTION 

Branching pipelines are widely used in Nature for long-distance liquid delivering. Special 
conducting structures in biological systems are designed for transport of liquid and dissolved 
substances on distances comparable to the characteristic size of the bio logical system. In 
animals they are represented by arterial, venous and lymphatic vessels.  In plants special 
conducting systems consist of hollow rigid vessels in a series connection. In spite of the 
complicated topology of the networks the experimental investigations revealed some common 
design principles of the conducting systems construction in animals and plants [1-5]. The 
principles include certain relations between the lengths jL , diameters jd  of the consecutive 
vessels and branching angles jα  in bifurcations. Here j is branching order that is introduced 
as follows (fig.1) 

1. The largest vessel has 1j = ; 
2. When two vessels with the orders l  and k  join into a parent vessel then its branching 

order is 
{ } kl

kl
at
at

k,lmin
1l

j
≠
=



 −

=  

The statistical dependence γγγ += 2k1k0k ddd  (Murray’s law) have been obtained for the 

arterial [1,4-6,8], venous [1,4-5], respiratory [1,8-9] mammal systems, astrorhizal systems in 
sponge [1], tree trunks and shoots [10-11], plant leaves of different types [2-3,12-13]. Here 

2k1k0k d,d,d  (fig.2) are the diameters of the parent and daughter’s vessels at the bifurcation 

k . For the most part of the investigated networks 3≈γ  ( 02.355.2 −=γ  for arterial systems, 
02.376.2 −=γ  for venous systems, 91.261.2 −=γ  for respiratory systems) and the higher 

the animal’s position at the evolutionary scale, the closer γ  to =γ 3 [14]. For large vessels 
where flow is not laminar (aorta, respiratory trunk) it was obtained 33.2~γ  [7]. For small 
vessels where the fluid rheology should be taken into account  92.2~γ . 

 
 

Figure 1: Branching orders 41k −=  of the conducting system. 
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Figure 2: Geometry of the vascular bifurcation. 

 

 
 

Figure 3: Cotinus obovatus  leaf venation with vein segments jL and the corresponding areas jS  of the leaf 

blade. 
 

The branching angles 2k1k ,αα  (fig.2) at the bifurcation k  depend on the diameters 

2k1k0k d,d,d  as 
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where 1j2jj dd=ξ asymmetry of the bifurcation, { }2j1j2j d,dmind = . 

These relations between 2k1k2k1k0k ,,d,d,d αα  correspond to the model of the optimal 

pipeline that minimizes the total energy costs W  for the liquid delivering and the transport 

system construction and maintenance [1,2]. At the same time the relation 21
jj aSL =  between 

the area jS  of a leaf blade and the length jL  of the corresponding vessel that provide the 
liquid delivering to the alive cells of the area has been revealed (fig.3), where ]25.2;76.1[a ∈  
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for different types of leaves [3,17]. This relation is well-known in geology as Hack's law for 
river basins [18] that reflects general properties of branching transport systems construction in 
Nature.  

2 GEOMETRY OF CONDUCTING SYSTEMS IN PLANT LEAVES 

 
Here some statistical data on geometry of the Cotinus obovatus leaves (Fig.3) are 

presented. Geometrical parameters 10, −jL , 10, −jD  of the conducting system have been 

measured on the high-resolution digital pictures of the fresh-cutting leaves using image 
analysis software (SciImage 3b). The total numbers of elements of each branching order 

51−=i  have been calculated. The results showed that the diameters 20,jd −  in the 
bifurcations obey Murray’s law with 3≈γ  (fig.4). The numerical solution of the equation  

 
Figure 4: Calculated values γ  for separate 350n =  vein bifurcations of Cotinus obovatus  leaf. 

 
Figure 5: Dependences )d( 0λ  for 21 ,αα  Cotinus obovatus  leaf. 
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1)dd)()dd(1( 0j1j1j2j =+ γγ  that has been derived  form Murray’s law, give 72.369.2 −=γ  
for 45 specimens of Cotinus obovatus leaf. For symmetrical dichotomous bifurcations 

2j1j dd =  the recurrent relations 1i
/1

i d2d +
γ=  can be obtained from Murray’s law. For 3=γ  

it gives 1i
3/1

i D2d +=  that had been used by Tomas Joung in the historically first model of a 
branching arterial tree. The same relation have been obtained for the conducting systems of 
several leaf types [2,3,12,13,17].  

Statistical dependence )d( 0λ , where optmeas / αα=λ , measα   are measured values, 

optα   are optimal values for the corresponding point that have been calculated by (1) are 
presented in fig.5. Two black lines in fig.5 represent mean values λ  for 1α  and 2α  values 
separately. Within the total range ]1;5.0[d 0 ∈ the mean values lie close to 1=λ  when 

optmeas α=α .  

The relation between the geometrical parameters jL , jD  of each conducting element 

and its domain of influence (i.e. the area jS  of the leaf blade region provided with water by 

this element) have been investigated for Cotinus obovatus leaf as well [3]. The walls of the 
leaf vessels are permeable and the transporting fluid filters through the wall pores into the 

cells. The linear dependence jjj LkS =  has been found out for all the specimens.  When 

jj aRL =  [3] hence it follows jj
2
j

2
j

2
ji DLakLkS == .  As jjj Ldπ=Σ  is the lateral surface of 

the conducting element, then )2/(akS j
2
jj πΣ= . It implies that jj ~S Σ  for each conducting 

element and the inflow of the liquid in the conducting element and the outflow through its 
lateral surface of an element are balanced. 

The comparative analysis of the data fo r Cotinus obovatus as well as for some other 
leaves [2,3,12,13,17] and mammal vascular systems [1,4-6] shows, that both transport 
structures are characterized by a similar kind of statistical dependences. It means that long-
distance transport systems design principles in animals and high plants are the same. 

3 LIQUID MOTION IN AN OPTIMAL BIFURCATION 

Arterial system formation in a developing tissue is provided with mechanoreceptors in 
vascular vessel wall [1,7]. The mechanoreceptors exe rcise control over network self-
organization by maintaining shear rate at the wall wτ  in the certain limits [1]. Under steady 
flow condition (Poiseuille’s flow in a cylindrical tube with rigid wall) the shear rate at the 

wall is )d(Q32 3
w πµ=τ . At constw =τ  it gives 3d~Q , that corresponds to the optimal (in 

the meaning of Murray’s law) tube. In such a manner the mechanoreceptors provided the local 
optimality conditions at each tube in the developing branching vascular tree. For a bifurcation 

j  of the optimal vessels with  3
10,j20,j d~Q −−  the continuity condition 210 jjj QQQ += , 
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where 20, −jQ  - volumetric rate in the tube with diameter 10,jd −  leads to the Murray’s law for 

10,jd −  with 3=γ . Under these circumstances the global optimality conditions for the whole 

transport system are the same [16] and the transport system possessing the minimal hydraulic 
resistance at a given total volume develops in the tissue.  

The mechanisms of the vein systems with the same geometrical properties formation in 
plant tissues are unknown yet. The hypothesis of the optimal transport structure formation in 
plant tissues was proposed in our previous works [12-13,17]. It based on the model of the 
branching pipeline with permeable walls and jj Qν=Σ  for each tube. At such a condition the 
diameters id  of the optimal pipeline with permeable wall obey Murray’s law and similarity 
between the long-range transport systems in animal and plant tissues takes place. The control 
over the optimal transport system construction is exercised by alive cells in leaf blade by 
prevention the vessels’ desolation by means of regulation of the balance between the plant sap 
inflow and consumption by the cells. 

Steady motion of a viscous fluid through a single bifurcation (fig.2) of vessels with 
permeable walls is considered as a model of sap motion in the conducting system of the plant 
leaf. Each vessel is represented as a thin long round tube with radius R , 1L/R << . The mass 
and impulse continuity conditions in the cylindrical coordinate system at 1Re <<   are 
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where p  is pressure, ),0,( xr VVV =
r

 is velocity, µ  is viscosity of the fluid. The boundary 
conditions are defined as: 
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where w  - outflow speed. By integrating (2) with respect to r  taking into account (3), we 
shall receive: 
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and the equation for the pressure field: 
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Pressure is obtained from (6), (4) as  
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at )1(2 0 yww −= , where Lxy /=  or, in other form  

)2()( 2
1

)1( yQyZpxp p Φ−−=   

))3(()( 32
1

)2( yyQyZpxp p −Φ−−=   

where  drrrVQ
R

x∫=
0

)0,(2π , )R(L8Z 4p πµ= , 0wΣ=Φ . In both cases of w  distribution 

along the wall the full outflow 0RLw2π=Φ  remains the same. Substitution (7),(8) in (5) 
gives the velocity fields. Then we obtain that the hydraulic resistance QLppZ /))(( 1 −=  of 
the tube is  

))2/(1()1( QZZ p Φ−= , ))3/(21()2( QZZ p Φ−=  
 For a symmetrical bifurcation ( 12 LL = , 12 dd = ) of the tubes with diameters 1,0d  and 

lengths 1,0L  Poiseuille’s  law for the tubes in a bifurcation is  

1121 ZQpp =− ,    2232 ZQpp =−   
where 1Q , 2/)( 112 Φ−= QQ , 2,1Z  – the volumetric rates at the inlet and the hydraulic 

resistances  of the first- and second-order tubes are )0(1 pp = , )( 12 Lpp = , 
)( 213 LLpp += . The x-axis is continuous along two tubes and ],0[ 1Lx ∈  for the first-order 

tube and ],[ 211 LLLx +∈  for the second-order ones. Then we obtain for the total hydraulic 
resistance of the bifurcation 131 /)( QppZ −= : 

1
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Here ),,,( 102,12,1 QwRLZZ =  at the constant 10 ,Qw  depends on the bifurcation 
geometry only. The extreme problem for a bifurcation can be considered in the form of 

 
min),( 2,12,1 →RLZ , constRLG =),( 2,12,1       (9) 
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where G  is a geometrical restriction. Problem (9) for { }DSVG ,,= , where V - full volume, 
S - full lateral surface, D - full dissipation in the system, and a few other criteria was solved 
for a single tube and a bifurcation of tubes with non-permeable walls as applied to the arterial 
vessels. As a result the criterion VG =  fits the experimental data best of all. Problem (9) with 
a number of criteria G  was solved for a single tube with permeable walls as applied to plant 
leaves and the same result was obtained [10,11]. Taking into account this conclusion, we 
consider here the problem (9) with VG =  as applied to the bifurcation of tubes with 
permeable walls. The Lagrange function is GZ λ+=Ξ . The conditions 0/

, 2,12,1
=Ξ RL  bring 

finally to the nonlinear system of equations { }0),( =lrf i , where 10 d/dr = , 10 / LLl = . Here 
in contrast to the tubes with non-permeable walls the relative diameters and lengths are not 
independent. The results of the numerical solution of this system are presented in fig.6. 
Different curves correspond to the different pairs ),( VZ j of optimal criteria in (9), where 

0=j  correspond to the motion in the tube with non-permeable walls, 2,1=j  – the tube with 
permeable walls at constww == 0  and )1(2 0 yww −=  respectively. Two dashed lines in 
fig.6 correspond to the upper and lower boundaries of the measured data ( ]91.1;52.1[dd 10 ∈ , 

]81.2;22.0[10 ∈LL  [10,11]) for a number of leaves with different venation types including 
Cotinus obovatus leaf.  

 
Figure 6:  The dependences )LL(dd 1010  for the optimal symmetrical bifurcation. 

 
The models of the optimal bifurcation of the tubes with permeable walls both at 

constant  and linearly decreasing functions w  agree closely with the measured data. Two 
cases of )(yw  slightly differ. For comparison the results of solution of the problem (9) at 

SG =  are presented in fig.6 as well. All these curves lie closely to parameters of the optimal 
bifurcation of tubes with non-permeable walls and do not agree with the real data. 
Consequently the model of optimal bifurcation of the tubes with permeable walls, which 



Natalya N.Kizilova 

9 

deliver the liquid with a minimal hydraulic resistance at a given volume is best suited to the 
measured data. This model perfectly corresponds to physics of the sap motion through the 
vein systems of the leaves.  

4 POSSIBLE MECHANISMS OF THE OPTIMAL BIFURCATION FORMATION 

 In contrast to the tubes with non-permeable walls (blood vessels) the total resistances 
)2,1(Z  depend on the relation between the inflow 1Q  at the point of entry and the outflow 

1Φ through the permeable wall. In the event of 111 <<Φ Q  or constQ =Φ 11  in each tube of 

the branching system the total resistances of the bifurcation differ from 221
)0( pp ZZZ +=  by 

the constant only. Thus the optimal bifurcation of the tubes with the permeable walls obeys 
the same Murray’s law with 3=γ  as described in the section 2 and the similarity between the 
geometry of mammal and plant transport systems take place. The first condition ( 1<<Φ Q ) 
is possible for the 1-2 order vessels but is quite impossible for the last-order vessels 
where Q≈Φ . The second limitation can underlie the formation of the self-similar transport 
system in plant leaves.  

Unlike the mammal vasculature the plant vessels are empty rigid tubes without alive 
cell contents so they can not estimate either wall shear stress or any other mechanical 
parameters. Only the alive plant cells in the influence domains would do that. The possible 
mechanism of the optimal transport system formation can be connected with the balance 
between the sap amount that is needed for all the cells in the domain jS  and the 

corresponding jΦ  that can be provided by the lateral surface jj LDπ of the tube. Assuming 

)Ld2(Sw jjjj π= the model of the branching system of the tubes with optimal bifurcations 

where jj QΦ is the same for each vessel a constant was constructed (fig.3).  
On the basis of the model of the viscous liquid motion in a tube with permeable walls 

the generalization of the Murray’s law can be obtained [19]. 

5 LIQUID MOTION IN AN ELEMENTARY MICROCIRCULATORY CELL OF 
THE LEAF 

 
 A part of the leaf blade which is bounded either veins or leaf edge can be considered 
as an elementary physiological unit of the leaf construction. Measurements of the branching 
angles in the leaf venation revealed a scatter away from the theoretical optimal values (figs 
4,5). The scatter can indicate the real cost of the optimality for the plant. In the chapter the 
cost penalty of nonoptimal branching angles is estimated for the rectangular model of the 
elementary microcirculatory cell of the plant leaf (fig.7). Here AB is a parent vessel, BC,BL 
are daughters’ vessels, B is a branching point with coordinates )q,p()y,x( = , aOA =  is given 
from the experimental data. In the cell HC, CL and OL are impermeable volumes that is the 
boarders HC, CL and OL separate different influence domains so that the liquid moves 
through the tubes AB, BC and BL and their permeable walls into the continuous media of the 
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main tissue of the plant leaf due to the active absorption of the alive cells of the rectangular 
OHCL.  
 

 
Figure 7: Schema of the elementary microcirculatory cell of the plant leaf. 

 
 The concept of the elementary microcirculatory cell is similar to the :junction box” 
that has been proposed for the arterial branching [5]. In a leaf the bifurcation ABCL is 
considered and the line OH is constructed parallel to the CL so that three values L,H,a are 
characterized the cell and a can vary so that for different bifurcations ]H,0[a ∈ . For a given 

set L,H,a the dimensionless values H/aa,1,H/LL == oo  can be introduced and ]1,0[a ∈o . It is 
assumed that (p,q) are the coordinate of the optimal bifurcation so that  

min)R,L(Z)R,L(Z)R,L(Z 221100 →++       (10) 

The problem (10) has been solved numerically for a given oa  and the coordinates )q,p(  have 
been determined on the basis of the theory introduced in chapter 3. Three tubes AB,BC,BL 
have been regarded as optimal in the meaning of the criterion (9). Then the total energy 
expenses 

 )LR)Z(Q(W j
2
j

2

0j

2)j(
j χπ+= ∑

=
   

where χ   is a metabolic constant have been estimated for different small  variations of the 
coordinates (p,q) of the bifurcation point. Some results of the calculations are presented in 
fig.8. Relatively large variations led to comparatively small increasing in the cost penalty.  
 

 
Figure 8: Cost of the nonoptimal branching angles of a bifurcation. 
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Large resulting variations in the branching angles )%2520(2,1 −±=α  will increase the total 
energy costs in 7% only. The result correspond to the calculations for the  “junction box” and 
the bifurcation with impermeable walls [5]. So in terms of the energy expenses the measured 
branching angles in the plant leaf venations are highly consistent with the theoretical optimal 
principles. 

6 CONCLUSIONS 

• Relations between the diameters jd , branching angles jα and the influence domains jS  
are the same for blood vessels in mammals, the vein systems of  leaves, branching of 
the trees and shoots and correspond to the model of the optimal pipeline that provide 
liquid delivering at the minimum total energy costs for the liquid motion and the 
pipeline construction and maintenance. 

• Control over the optimal pipeline formation in the developing plant tissue can be 
connected with the maintenance of the balance between the delivery and consumption, 
i.e. between form and function. The retardation of the cell divisions and growth in the 
domains of influence at the insufficient water delivering by a given vessel provides for 
the optimal transport system formation in plant leaves. 

• Large scatter of the measured parameters of the geometrical parameters of the plant 
leaf veins can be explained by the relatively small energy costs of large variations in 
the branching angles of the bifurcation. 
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