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An oxygen vacancy driven structural response at the epitaxial interface between La0.7Sr0.3MnO3

films and SrTiO3 substrates is reported. A combined scanning transmission electron microscopy

and electron energy loss spectroscopy study reveal the presence of an elongated out-of-plane lattice

parameter, coupled to oxygen vacancies and reduced manganese oxidation state at the

La0.7Sr0.3MnO3 side of the interface. Density functional theory calculations support that the

measured interface structure is a disordered oxygen deficient brownmillerite structure. The effect

of oxygen vacancy mobility is assessed, revealing an ordering of the vacancies with time. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4906920]

Perovskite oxide materials exhibit interesting magnetic,

electric, dielectric, and piezoelectric properties, which make

them a promising and important class of functional materi-

als. For example, La0.7Sr0.3MnO3 (LSMO) is a mixed-

valence system where the interplay between Mnþ3 and Mnþ4

gives properties such as colossal magnetoresistance through

double-exchange.1 In particular, the LSMO/SrTiO3 (STO)

heterostructure has been considered a promising system for

devices such as magneto-tunneling junctions, metal-based

spintronics, and magnetic memory. A recent development is

the fabrication of oxygen-poor modulations of the perovskite

structure as thin films. Ferguson et al.2 induced oxygen

vacancies in LSMO grown on STO, using a top layer of oxy-

gen deficient STO as an oxygen getter. This resulted in a

brownmillerite phase, where the oxygen vacancies ordered

into a superstructure. Similar structures have also been

reported in La0.5Sr0.5CoO3�d (LSCO) heterostructures.

Growing the LSCO on substrates with different lattice mis-

match led to different kinds of oxygen vacancy ordering,

driven by strain relief accommodation.3 These structures are

not only interesting for the ionic transport4 properties but

also for their effect on other functional properties. Ab-initio
calculations predict oxygen vacancies close to the interface

of tensilely strained films.5 There have also been several

observations of changes in cation oxidation state6–8 and lat-

tice parameter9 close to interfaces in similar systems.

Understanding the correlation between oxygen vacancies

and B-site cation oxidation state, and how the oxygen vacan-

cies behave and order over time is important for implementa-

tion in devices.

In this letter, we report on a combined Scanning

Transmission Electron Microscopy-Electron Energy Loss

Spectroscopy (STEM-EELS) and Density Functional Theory

(DFT) study of a LSMO/STO heterostructure, where a

coupling between oxygen vacancies, the manganese oxida-

tion state, and an elongated out-of-plane lattice parameter in

the LSMO film close to the interface is observed. We attrib-

ute these observations to a brownmillerite structure with dis-

ordered oxygen vacancies, which order over time.

35 nm thick epitaxial LSMO films were grown on (001)-

oriented STO substrates using pulsed laser deposition and

in-situ RHEED analysis.10 The substrates were annealed for

1 h at 950 �C in oxygen ambient before the deposition. A

KrF excimer laser (k¼ 248 nm) with a fluency of �2 J cm�2

and a repetition rate of 1 Hz was employed on a stoichiomet-

ric La0.7Sr0.3MnO3 target.10 Cross sectional TEM foils were

prepared using mechanical tripod wedge polishing followed

by low-energy Ar-ion milling. A combined STEM-EELS

and STEM-high angle angular dark field (HAADF) study

was performed to probe the electronic and lattice structure at

the interface using a probe corrected FEI Titan 80–300, with

a beam energy of 300 keV. The energy resolution of EELS

was found to be 1.0 eV from the full width at half maximum

(FWHM) of the zero loss peak. The STEM and EELS study

on the ordered brownmillerite after 1.5 years was performed

on a probe- and image-corrected cold-FEG Jeol ARM 200F.

For the EELS analysis, principal component analysis

(PCA)11 was used to reduce noise and standard power law

background subtraction was done using HyperSpy.12 To

increase the electron count statistics, the EELS data were not

collected at atomic resolution, but with a larger probe. To

rule out the effect of the electron beam inducing changes in

the material, the same EELS experiments were performed in

similar regions with shorter exposure and at a beam energy

of 120 keV, showing the same results as the 300 keV data at

3 s exposure time. In addition, electron beam exposure tests

were performed, where the same area was exposed to the

electron beam for 30 s under the same experimental condi-

tions as the data in this work. No significant changes in the

EELS data were observed. The DFT calculations were done

with the Projector Augmented Wave (PAW) method13 as
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implemented in the Vienna Ab-initio Simulation Package

(VASP),14,15 using the PBEsol functional16 with a GGA þ U

approximation.17 The La, Sr_sv, Mn_sv, and standard O

PBE PAW potentials supplied with VASP were used, and a

Hubbard U correction of 3 eV and 10 eV was applied to the

Mn 3d electrons and La 4f orbitals, respectively, in concord-

ance with previous related investigations.5,18 A 36 atom

La6Sr2Mn8O20 unit cell with a 6� 6� 2 gamma centered k-

point mesh and a plane wave cutoff energy of 550 eV was

used for the calculations of the oxygen deficient LSMO unit

cells. The in-plane lattice constants were fixed at the equilib-

rium calculated value for cubic STO, while the ionic coordi-

nated and out-of-plane lattice constant were allowed to relax

until the Hellmann-Feynman forces on the ions were smaller

than 0.01 eV/Å.

The structural quality of the thin film and substrate was

investigated by STEM-HAADF. Fig. 1(a) shows typical

data, revealing a coherent interface, and X-ray analysis con-

firms that the films are epitaxial.10

Possible strain around the epitaxial interface was ana-

lyzed relying on geometrical phase analysis (GPA)19 of the

STEM-HAADF data. Fig. 1(a) shows a STEM-HAADF

image of the LSMO/STO heterostructure, and the corre-

sponding out-of-plain strain data from GPA is displayed in

Fig. 1(b). Using the lattice parameter of bulk STO, 3.905 Å,

as a reference, the substrate averages as expected to 0% out-

of-plane strain, with a standard deviation of 0.17%. For the

film, an elongated out-of-plane lattice parameter is observed

in the first 3 nm. This corresponds to a relative out-of-plane

strain of 2.5% compared to the LSMO bulk pseudo cubic lat-

tice parameter of 3.876 Å. Similar strain has been reported in

BFO grown on LSMO/STO,9 where the first few unit cells

closest to the interface are elongated in the out-of-plane

direction.

To further investigate the region with enlarged out-of-

plane LSMO lattice parameter, we probe the electronic struc-

ture by EELS, providing information on both the manganese

and oxygen electronic state through the Mn-L2,3 and O-K

core loss edges. EELS line scans were acquired in a line or-

thogonal to the film/substrate interface, as schematically

shown in Fig. 2(a), with STEM-EELS data representative for

(i) the bulk LSMO film (red), (ii) the interface on the film

side (green), and (iii) the bulk STO (blue), presented in Fig.

2(b). The manganese edge consists of two peaks: L3 (Mn

2P3/2 ! 3d) and L2 (Mn 2P1/2 ! 3d),11 see Fig. 3(a). There

is a clear difference between the Mn-L2,3 spectra acquired at

the interface and those acquired away from the interface.

The intensity ratio between the L3 and L2 peaks (L3/L2-ratio)

FIG. 1. (a) Cross-sectional STEM-HAADF image of the LSMO/STO heter-

ostructure, showing a coherent interface. (b) Map of the out-of-plane strain

in (a), using the STO-substrate (3.905 Å) as a reference.

FIG. 2. (a) Cross-sectional STEM-HAADF image of the LSMO/STO heter-

ostructure. (b) Results of an EELS line scan across the LSMO/STO

interface.

FIG. 3. (a) Manganese L2- and L3-edges from the middle of the LSMO film,

and LSMO film side of the interface. (b) Oxygen K-edge from the LSMO

film side of the interface, in the middle of the LSMO film, and STO sub-

strate. (c) Integrated out-of-plane strain from Fig. 1(b), manganese oxidation

state and integrated oxygen K-edge peak A intensity normalized on the total

O-K edge intensity (shown in Fig. 3(b)).

041604-2 Nord et al. Appl. Phys. Lett. 106, 041604 (2015)
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is larger at the interface. This is indicative of a lower Mn ox-

idation state at the interface as compared to bulk LSMO, as

the intensity of the L3 peak increases relative to the L2 peak

when the Mn oxidation state is lowered.11,20 We note that

the FWHM line width of the Mn-L3 peak is smaller at the

interface as compared to the rest of the film, supporting a

lower Mn oxidation state at the interface.20 The Mn-

oxidation state was estimated as in Varela et al.11 and plotted

in Fig. 3(c) (blue dashed line). As can be seen in Fig. 3(c), a

clear trend for the Mn oxidation state was observed: starting

at 3.2 far from the interface and monotonically decreasing

towards 2.3 close to the interface. This trend of a reduction

in Mn oxidation state has also been observed in

(La,Ca)MnO3/STO6 and TbMnO3/STO,7 and has been pro-

posed to explain the observed magnetic “dead layer” in simi-

lar systems.21

In order to investigate the possible presence of oxygen

vacancies, known to be present in similar thin film systems,2

the oxygen electronic structure was investigated. As seen in

Fig. 2(b), large spectral differences are observed between the

oxygen K-edges across the interface. The oxygen K-edges

from the (i) middle of the film, (ii) film side of the interface,

and (iii) STO bulk are shown in detail in Fig. 3(b). The main

fine structure peaks are labeled as A, B, and C. The O-K

edges from the bulk of the film, and the STO substrate, are

consistent with LSMO8 and STO bulk22 data previously

reported. However, the O-K edge at the LSMO side of the

interface is not consistent with LSMO bulk. We observe that

peak A is weak or not present in the LSMO interface region.

Peak A is attributed to the covalent interaction between O 2p

and Mn 3d states in the LSMO perovskite structures,11 and is

known to be sensitive to the Mn oxidation state. In addition,

a weakening of peaks A and C in conjunction with a broad-

ening of peak B has been correlated with oxygen vacan-

cies.23 The bond between Mn and O becomes more ionic as

the Mn oxidation state decreases, reducing the interaction

between the orbitals. A low Mn oxidation state then corre-

sponds to a less intense peak,11 consistent with the Mn

L-edge data. We take the integrated intensity of peak A nor-

malized over the total O-K intensity as a measure of oxygen

content, the results of this shown in Fig. 3(c) (red dotted

line). As can be seen, the amount of oxygen vacancies

increases towards the interface, and subsequently decreases

to a constant value in the substrate.

The strain, shift in Mn oxidation state and the changes

in oxygen signal imply a deviation from the perovskite struc-

ture at the film side of the interface. The formal valence for

Mn in La0.7
þ3 Sr0.3

þ2Mnþ3.3O3
�2 (valence shown in super-

script) is 3.3. Removing oxygen lowers the Mn oxidation

state as the charge compensating electrons localize on Mn,

consistent with the data. We note that oxygen vacancies can

be expected close to the interface in thin films that are ten-

siled strained by the substrate.5 Assuming that the whole

shift in Mn oxidation state is due to oxygen vacancies, an ox-

ygen deficiency of d¼ 0.5 (LSMO3�d) is found (correspond-

ing to La0.7Sr0.3MnO2.5). This amount of oxygen vacancies

is also consistent with the oxygen fine structure, which is

similar to the one reported by Yao et al.23 This large number

of oxygen vacancies breaks the MnO6 octahedron, and

hence, destroys the perovskite structure.24 A known cation

non-stoichiometric phase is the Ruddlesden-Popper struc-

ture.25 However, our high-resolution STEM-HAADF data

are not consistent with the clear signature of such a phase.

Other cation non-stoichiometries, such as La- or Mn- defi-

cient phases, correspond to an increase in the formal Mn va-

lence, not consistent with our EELS data. A possible

reduction in Sr-content would lower the Mn oxidation state,

however, this is not consistent with the O-K edge.26

Therefore, we do not attribute the observed changes to cation

non-stoichiometry.

The oxygen deficient brownmillerite structure, ABO2.5

is compatible with the experimental data. Recently, there

have been several reports on thin film synthesis of brown-

millerites in multiple material systems.2,27–29 For example,

a brownmillerite phase, where oxygen vacancies are or-

dered, was shown in a LSMO/STO heterostructure by

Ferguson et al.2 In that work, the vacancies were ordered in

preferred layers resulting in an out-of-plane lattice parame-

ter of 16.47 Å, corresponding to four pseudo-cubic LSMO

unit cells with a 6.1% elongation of the out-of-plane lattice

parameter compared to the stoichiometric perovskite. This

is considerably larger than the 2.5% elongation we measure

close to the interface in this work. However, one possibility

is that disordered oxygen vacancies result in a lower out-of-

plane strain state. In order to test this hypothesis, we have

performed DFT calculations on brownmillerites with or-

dered and disordered oxygen vacancy structures. The calcu-

lations were performed on structures with different oxygen

vacancy positions (see supplementary material30), the

results shown in Table I. There is a clear trend that struc-

tures with oxygen vacancies ordered in layers are more sta-

ble than oxygen vacancies distributed in all the Mn layers.

The most stable structure, corresponding to the one

observed by Ferguson et al.,2 is 0.223 eV/f.u. more stable

than the most stable disordered structure. However, the

DFT calculations also reveal that the disordered structures

all show an elongated out-of-plane lattice parameter in the

order of 1%–2%, in good agreement with our experimental

strain data, while the ordered structures show an elongation

in the order of 6%–7%.

TABLE I. DFT calculated energy differences between the different oxygen vacancy brownmillerite structures and the most stable ordered structure, given per

ABO2.5 formula unit, and the corresponding out-of-plane strain compared to stoichiometric bulk LSMO. The different structures (A, B, C, and D) referring to

different positioning of the oxygen vacancies, see supplementary material30 for details.

Ordered

structure A

Ordered

structure B

Ordered

structure C

Disordered

structure A

Disordered

structure B

Disordered

structure C

Disordered

structure D

DE/f.u. (eV) 0.014 0 0.035 0.304 0.357 0.223 0.238

Strain (%) 6.72 6.52 7.00 2.38 2.39 1.55 2.11

041604-3 Nord et al. Appl. Phys. Lett. 106, 041604 (2015)
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Based on the above discussion, a brownmillerite phase

with disordered oxygen vacancies at the LSMO side of the

interface towards STO is the only interpretation that agrees

with both STEM and EELS data and DFT calculations. Fig.

4(a) shows STEM-HAADF data taken on the same TEM

lamellas after approximately 1.5 years. Here, we find an or-

dered, layered structure at the interface, compatible with an

ordered brownmillerite phase.2 Figs. 4(b) and 4(c) display

representative O-K and Mn-L2,3 EELS edges from the or-

dered structure, confirming the presence of oxygen vacancies

and manganese oxidation state corresponding to the one

observed close to the interface in the disordered phase. GPA

of the layered structure reveals an elongated lattice parame-

ter of 5%–6% compared to LSMO bulk, consistent with the

DFT-calculations. However, just at the interface a larger

elongation is observed. This ordering of the oxygen vacan-

cies with time is in agreement with the �0.2 eV energy dif-

ference between the ordered and disordered structures found

using DFT.

In conclusion, we have studied the strain and electronic

structure of a LSMO/STO heterojunction using STEM-

HAADF and STEM-EELS. The results reveal a region with

an elongated out-of-plane lattice parameter, reduced oxygen

content, and lowered manganese oxidation state extending

from the interface to about 3 nm into the LSMO film. These

properties are attributed to the presence of a brownmillerite

phase with disordered oxygen vacancies, in agreement with

DFT calculations, not previously reported in as-grown

LSMO/STO thin films. After approximately 1.5 years, the

same TEM lamella show a brownmillerite phase with or-

dered oxygen vacancies. These finding shed light on the

effect of oxygen vacancies on the structure of complex per-

ovskite oxide interfaces, and reveal that they can order over

time possibly affecting functional properties.
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FIG. 4. (a) Cross sectional STEM-HAADF image from the same TEM

lamella as Figs. 1(a) and 2(a), after approximately 1.5 years showing an or-

dered brownmillerite superstructure at the film side of the interface. (b)

Representative STEM-EELS data from the superstructure in (a), showing an

oxygen K-edge consistent with oxygen vacancies. (c) The same as (b) but

for the Mn-L2,3 edge, with the spectra from Fig. 3(a) as comparison.
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