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Abstract. We present a modular approach to automatic complexity
analysis. Based on a novel alternation between finding symbolic time
bounds for program parts and using these to infer size bounds on pro-
gram variables, we can restrict each analysis step to a small part of the
program while maintaining a high level of precision. Extensive experi-
ments with the implementation of our method demonstrate its perfor-
mance and power in comparison with other tools.

1 Introduction

There exist numerous methods to prove termination of imperative programs,
e.g., [2,6,8,9,12,13,15–17,19,25,33–35]. In many cases, however, termination is
not sufficient, but the program should terminate in reasonable (e.g., (pseudo-)
polynomial) time. To prove this, it is often crucial to derive (possibly non-linear)
bounds on the values of variables that are modified repeatedly in loops.

We build upon the well-known observation that rank functions for termina-
tion proofs also provide a runtime complexity bound [3,4,6,7,32]. However, this
only holds for proofs using a single rank function. Larger programs are usually
handled by a disjunctive [16,28,35] or lexicographic [6,12,13,17,19,21,23,25] com-
bination of rank functions. Here, deriving a complexity bound is much harder.

while i > 0 do
i = i− 1

x = x + i

done
while x > 0 do
x = x− 1

done

To illustrate this, consider the program on the right and
a variant where the instruction “x = x + i” is removed. For
both variants, the lexicographic rank function 〈f1, f2〉 proves
termination, where f1 measures states by the value of i and
f2 is just the value of x. However, the program without the
instruction “x = x+i” has linear runtime, while the program
on the right has quadratic runtime. The crucial difference be-
tween the two programs is in the size of x after the first loop.

To handle such effects, we introduce a novel modular approach which alter-
nates between finding runtime bounds and finding size bounds. In contrast to
standard invariants, our size bounds express a relation to the size of the variables
at the program start, where we measure the size of integers by their absolute
values. Our method derives runtime bounds for isolated parts of the program
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and uses these to deduce (often non-linear) size bounds for program variables at
certain locations. Further runtime bounds can then be inferred using size bounds
for variables that were modified in preceding parts of the program. By splitting
the analysis in this way, we only need to consider small program parts in each
step, and the process continues until all loops and variables have been handled.

For the example, our method proves that the first loop is executed linearly
often using the rank function i. Then, it deduces that i is bounded by the size of
its initial value |i0| in all loop iterations. Combining these bounds, it infers that
x is incremented by a value bounded by |i0| at most |i0| times, i.e., x is bounded
by the sum of its initial size |x0| and |i0|2. Finally, our method detects that the
second loop is executed x times, and combines this with our bound |x0| + |i0|2
on x’s value when entering the second loop. In this way, we can conclude5 that
the program’s runtime is bounded by |i0|+ |i0|2 + |x0|. This novel combination
of runtime and size bounds allows us to handle loops whose runtime depends on
variables like x that were modified in earlier loops. Thus, our approach succeeds
on many programs that are beyond the reach of previous techniques.

Sect. 2 introduces the basic notions for our approach. Then Sect. 3 and Sect. 4
present our techniques to compute runtime and size bounds, respectively. Sect. 5
discusses related work and provides an extensive experimental evaluation. Proofs
for all theorems as well as several extensions of our approach can be found in [14].

2 Preliminaries

Input: List x

`0: List y = null

`1: while x 6= null do
y = new List(x.val, y)
x = x.next

done
List z = y

`2: while z 6= null do
List u = z.next

`3: while u 6= null do
z.val += u.val
u = u.next

done
z = z.next

done

Consider the program on the right. For an input
list x, the loop at location `1 creates a list y by
reversing the elements of x. The loop at location
`2 iterates over the list y and increases each el-
ement by the sum of its successors. So if y was
[5, 1, 3], it will be [5+1+3, 1+3, 3] after the sec-
ond loop. This example is a representative for
methods using several algorithms in sequence.

We regard sequential imperative integer pro-
grams with (potentially non-linear) arithmetic
and unbounded non-determinism. Our approach
is compatible with methods that abstract fea-
tures like heap usage to integers [2,4,15,19,29,34]. So the above program could
be abstracted automatically to the integer program below. Here, list variables
are replaced by integer variables that correspond to the lengths of the lists.

We fix a (finite) set of program variables V = {v1, . . . , vn} and represent in-
teger programs as directed graphs. Nodes are program locations L and edges are
program transitions T . The set L contains a canonical start location `0. W.l.o.g.,
we assume that no transition leads back to `0 and that all transitions T are reach-
able from `0. All transitions originating in `0 are called initial transitions. The

5 Since each step of our method over-approximates the runtime or size of a variable,
we actually obtain the bound 2 + |i0|+ max{|i0|, |x0|}+ |i0|2, cf. Sect. 4.2.

2



transitions are labeled by formulas over the variables V and primed post-variables
V ′ = {v′1, . . . , v′n} which represent the values of the variables after the transi-
tion. In the following graph, we represented these formulas by imperative com-

`0

`1

`2

`3

t0:y = 0

t1: if(x > 0)
y = y + 1
x = x− 1

t2: if(x ≤ 0)
z = y

t3: if(z > 0)
u = z− 1

t4: if(u > 0)
if(z > 0)
u = u− 1

t5: if(u ≤ 0)
if(z > 0)
z = z− 1

mands. For instance, t3 is labeled by the for-
mula z > 0∧u′ = z−1∧x′ = x∧y′ = y∧z′ = z.
We used standard invariant-generation tech-
niques (based on the Octagon domain [30]) to
propagate simple integer invariants, adding the
condition z > 0 to the transitions t4 and t5.

Definition 1 (Programs). A transition is a
tuple (`, τ, `′) where `, `′ ∈ L are locations and
τ is a formula relating the (pre-)variables V
and the post-variables V ′. A program is a set
of transitions T . A configuration (`,v) consists
of a location ` ∈ L and a valuation v : V → Z.
We write (`,v) →t (`′,v′) for an evaluation
step with a transition t = (`, τ, `′) iff the valuations v, v′ satisfy the formula τ
of t. We drop the index t if we do not care about the used transition and write
(`,v)→k (`′,v′) if k evaluation steps lead from configuration (`,v) to (`′,v′).

So for the program above, we have (`1,v1) →t2 (`2,v2) for any valuations
where v1(x) = v2(x) ≤ 0, v1(y) = v2(y) = v2(z), and v1(u) = v2(u).

Let T always denote the analyzed program. Our goal is to find bounds on the
runtime and the sizes of program variables, where these bounds are expressed as
functions in the sizes of the input variables v1, . . . , vn. For our example, our meth-
od will detect that its runtime is bounded by 3+4·|x|+|x|2 (i.e., it is quadratic in
|x|). We measure the size of variable values v(vi) by their absolute values |v(vi)|.
For a valuation v and a vector m = (m1, ...,mn) ∈ Nn, let v ≤ m abbreviate
|v(v1)| ≤ m1 ∧ . . . ∧ |v(vn)| ≤ mn. We define runtime complexity by a function
rc that maps the sizes m of the program variables to the maximal number of
evaluation steps that are possible from a start configuration (`0,v) with v ≤m.
To analyze complexity in a modular way, we construct a runtime approximation
R such that for any t ∈ T , R(t) over-approximates the number of times that t
can be used in an evaluation. In Def. 2, →∗ ◦ →t is the relation that allows to
perform arbitrary many evaluation steps followed by a step with transition t.

As we generate new bounds by composing previously found bounds, we only
use weakly monotonic functions R(t) (i.e., mi ≥ m′i implies (R(t))(m1, . . . ,mi,
. . . ,mn) ≥ (R(t))(m1, . . . ,m

′
i, . . . ,mn)). We define the set of upper bounds C as

the weakly monotonic functions from Nn → N and ?, where ?(m) = ω for all
m ∈ Nn. We have ω > n for all n ∈ N. In our implementation, we restrict R(t)
to functions constructed from max, min, ?, and polynomials from N[v1, . . . , vn].

Definition 2 (Runtime Complexity and Approximation). The runtime
complexity rc : Nn → N∪{ω} is defined as6 rc(m) = sup{k ∈ N | ∃v0, `,v .v0 ≤
6 Here, rc(m) = ω means non-termination or arbitrarily long runtime. Such programs

result from non-determinism, e.g., i = nondet(); while i > 0 do i = i− 1 done.
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m ∧ (`0,v0) →k (`,v)}. A function R : T → C is a runtime approximation iff
(R(t))(m) ≥ sup{k ∈ N | ∃v0, `,v .v0 ≤ m ∧ (`0,v0) (→∗ ◦→t)

k (`,v)} holds
for all transitions t ∈ T and all m ∈ Nn. The initial runtime approximation R0

is defined as7 R0(t) = 1 for all initial transitions t and R0(t) = ? otherwise.

For size complexity, we analyze how large the value of a program variable
can become. Analogous to R, we use a size approximation S, where S(t, v′) is
a bound on the size of the variable v after a certain transition t was used in an
evaluation. For any transition t ∈ T and v ∈ V, we call |t, v′| a result variable.

Definition 3 (Result Variables and Size Approximation). Let RV =
{|t, v′| | t ∈ T , v ∈ V} be the set of result variables. A function S : RV → C
is a size approximation iff (S(t, v′))(m) ≥ sup{|v(v)| | ∃v0, `,v .v0 ≤ m ∧
(`0,v0) (→∗ ◦ →t) (`,v)} holds for all |t, v′| ∈ RV and all m ∈ Nn. The initial
size approximation S0 is defined as S0(t, v′) = ? for all |t, v′| ∈ RV. A pair (R,S)
is a complexity approximation if R is a runtime and S is a size approximation.

Our approach starts with the initial approximation (R0,S0) and improves it
by iterative refinement. An approximation for the runtime complexity rc of the
whole program T can be obtained by adding the runtime bounds R(t) for its
transitions, i.e., (

∑
t∈T R(t)) ≥ rc. The overall bound

∑
t∈T R(t) = 3+4·|x|+|x|2

for our example was obtained in this way. Here for f, g ∈ C, the comparison,
addition, multiplication, maximum, and the minimum are defined point-wise.
So f ≥ g holds iff f(m) ≥ g(m) for all m ∈ Nn and f + g is the function with
(f + g)(m) = f(m) + g(m), where ω + n = ω for all n ∈ N ∪ {ω}.

3 Computing Runtime Bounds

To find runtime bounds automatically, we use (lexicographic combinations of)
polynomial rank functions (PRFs). Such rank functions are widely used in ter-
mination analysis and many techniques are available to generate PRFs auto-
matically [6, 8, 9, 12, 19–21, 33]. In Sect. 3.1 we recapitulate the basic approach
to use PRFs for the generation of time bounds. In Sect. 3.2, we improve it to
a novel modular approach which infers time bounds by combining PRFs with
information about variable sizes and runtime bounds found earlier.

3.1 Runtime Bounds from Polynomial Rank Functions

A PRF Pol : L → Z[v1, . . . , vn] assigns an integer polynomial Pol(`) over the
program variables to each location `. Then configurations (`,v) are measured as
the value of the polynomial Pol(`) for the numbers v(v1), . . . ,v(vn). To obtain
time bounds, we search for PRFs where no transition increases the measure of
configurations, and at least one transition decreases it. To rule out that this
decrease continues forever, we also require that the measure has a lower bound.

Definition 4 (PRF). We call Pol : L → Z[v1, . . . , vn] a polynomial rank func-
tion ( PRF) for T iff there is a non-empty T� ⊆ T such that the following holds:

7 Here, “1” denotes the constant function which maps all arguments m ∈ Nn to 1.
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• for all (`, τ, `′) ∈ T , we have τ ⇒ (Pol(`))(v1, . . . , vn) ≥ (Pol(`′))(v′1, . . . , v
′
n)

• for all (`, τ, `′)∈T�, we have τ ⇒ (Pol(`))(v1, . . . , vn) > (Pol(`′))(v′1, . . . , v
′
n)

and τ ⇒ (Pol(`))(v1, . . . , vn) ≥ 1

The constraints on a PRF Pol are the same constraints needed for termi-
nation proofs, allowing to re-use existing PRF synthesis techniques and tools.
They imply that the transitions in T� can only be used a limited number of
times, as each application of a transition from T� decreases the measure, and no
transition increases it. Hence, if the program is called with input m1, . . . ,mn,
no transition t ∈ T� can be used more often than (Pol(`0))(m1, . . . ,mn) times.
Consequently, Pol(`0) is a runtime bound for the transitions in T�. Note that
no such bound is obtained for the remaining transitions in T .

In the program from Sect. 2, we could use Pol1 with Pol1(`) = x for all ` ∈ L,
i.e., we measure configurations by the value of x. No transition increases this mea-
sure and t1 decreases it. The condition x > 0 ensures that the measure is positive
whenever t1 is used, i.e., T� = {t1}. Hence Pol1(`0) (i.e., the value x at the
beginning of the program) is a bound on the number of times t1 can be used.

Such PRFs lead to a basic technique for inferring time bounds. As mentioned
in Sect. 2, to obtain a modular approach afterwards, we only allow weakly mono-
tonic functions as complexity bounds. For any polynomial p ∈ Z[v1, . . . , vn], let
[p] result from p by replacing all coefficients and variables with their absolute
value (e.g., for Pol1(`0) = x we have [Pol1(`0)] = |x| and if p = 2 · v1 − 3 · v2

then [p] = 2 · |v1| + 3 · |v2|). As [p](m1, . . . ,mn) ≥ p(m1, . . . ,mn) holds for all
m1, . . . ,mn ∈ Z, this is a sound approximation, and [p] is weakly monotonic. In
our example, the initial runtime approximation R0 can now be refined to R1,
with R1(t1) = [Pol1(`0)] = |x| and R1(t) = R0(t) for all other transitions t.

Theorem 5 (Complexities from PRFs). Let R be a runtime approximation
and Pol be a PRF for T . Let8 R′(t) = [Pol(`0)] for all t ∈ T� and R′(t) = R(t)
for all other t ∈ T . Then, R′ is also a runtime approximation.

3.2 Modular Runtime Bounds from PRFs and Size Bounds

The basic method from Thm. 5 only succeeds in finding complexity bounds for
simple examples. In particular, it often fails for programs with non-linear run-
time. Although corresponding SAT- and SMT-encodings exist [20], generating
a suitable PRF Pol of a non-linear degree is a complex synthesis problem (and
undecidable in general). This is aggravated by the need to consider all of T at
once, which is required to check that no transition of T increases Pol ’s measure.

Therefore, we now present a new modular technique that only considers iso-
lated program parts T ′ ⊆ T in each PRF synthesis step. The bounds obtained
from these “local” PRFs are then lifted to a bound expressed in the input values.
To this end, we combine them with bounds on the size of the variables when
entering the program part T ′ and with a bound on the number of times that

8 To ensure that R′(t) is at most as large as the previous bound R(t), one could also
define R′(t) = min{[Pol(`0)],R(t)}. A similar improvement is possible for all other
techniques in the paper that refine the approximations R or S.
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T ′ can be reached in evaluations of the full program T . This allows us to use
existing efficient procedures for the automated generation of (often linear) PRFs
for the analysis of programs with (possibly non-linear) runtime.

For instance, consider the subset T ′1 = {t1, . . . , t5} of the transitions in our
program. Using the constant PRF Pol2 with Pol2(`1) = 1 and Pol2(`2) =
Pol2(`3) = 0, we see that t1, t3, t4, t5 do not increase the measure of configura-
tions and that t2 decreases it. Hence, in executions that are restricted to T ′1 and
that start in `1, t2 is used at most [Pol2(`1)] = 1 times. To obtain a global result,
we consider how often T ′1 is reached in a full program run. As T ′1 can only be
reached by the transition t0, we multiply its runtime approximation R1(t0) = 1
with the local bound [Pol2(`1)] = 1 obtained for the sub-program T ′1 . Thus, we
can refine the runtime approximation R1 to R2(t2) = R1(t0) · [Pol2(`1)] = 1 ·1 =
1 and we set R2(t) = R1(t) for all other t.

In general, to estimate how often a sub-program T ′ is reached in an evalu-
ation, we consider the transitions t̃ ∈ T that lead to an “entry location” ` in T ′.
We multiply the runtime bound of such transitions t̃ with the bound [Pol(`)]
for runs starting in `. In our example, t0 is the only transition leading to T ′1 =
{t1, . . . , t5} and thus, the runtime boundR1(t0) = 1 is multiplied with [Pol2(`1)].

Next, we consider the remaining transitions T ′2 = {t3, t4, t5} for which we
have no bound yet. We use Pol3(`2) = Pol3(`3) = z where (T ′2 )� = {t5}. So
restricted to the sub-program T ′2 , t5 is used at most [Pol3(`2)] = |z| times. Here,
z refers to the value when entering T ′2 (i.e., after transition t2). To translate this
bound into an expression in the input values, we substitute the variable z by its
maximal size after using the transition t2, i.e., by the size bound S(t2, z

′). As the
runtime of the loop at `2 depends on the size of z, our approach alternates be-
tween computing runtime and size bounds. Our method to compute size bounds
will determine that the size of z after the transition t2 is at most |x|, cf. Sect. 4.
Hence, we replace the variable z in [Pol3(`2)] = |z| by S(t2, z

′) = |x|.
So in general, the polynomials [Pol(`)] for the entry locations ` of T ′ only pro-

vide a bound in terms of the variable values at location `. To find bounds ex-
pressed in the variable values at the start location `0, we use our size approxima-
tion S and replace all variables in [Pol(`)] by our approximation for their sizes
at location `. For this, we define the application of polynomials to functions.
Let p ∈ N[v1, ..., vn] and f1, ..., fn ∈ C. Then p(f1, ..., fn) is the function with
(p(f1, ..., fn))(m) = p(f1(m), . . . , fn(m)) for all m ∈ Nn. Weak monotonicity of
p, f1, ..., fn also implies weak monotonicity of p(f1, ..., fn), i.e., p(f1, ..., fn) ∈ C.

For example, when analyzing how often t5 is used in the sub-program T ′2 =
{t3, t4, t5} above, we applied the polynomial [Pol3(`2)] for the start location
`2 of T ′2 to the size bounds S(t2, v

′) for the variables x, y, z, u (i.e., to their
sizes before entering T ′2 ). As [Pol3(`2)] = |z| and S(t2, z

′) = |x|, we obtained
[Pol3(`2)](S(t2, x

′),S(t2, y
′),S(t2, z

′),S(t2, u
′)) = |x|.

To compute a global bound, we also have to examine how often T ′2 can be
executed in a full program run. As T ′2 is only reached by t2, we obtain R3(t5) =
R2(t2)·|x| = 1·|x| = |x|. For all other transitions t, we again have R3(t) = R2(t).

In Thm. 6, our technique is represented by the procedure TimeBounds. It
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takes the current complexity approximation (R,S) and a sub-program T ′, and
computes a PRF for T ′. Based on this, R is refined to the approximation R′.

Theorem 6 (TimeBounds). Let (R,S) be a complexity approximation and
T ′ ⊆ T such that T ′ contains no initial transitions. Let L′ = {` | (`, τ, `′) ∈
T ′} contain all entry locations of T ′ and let Pol be a PRF for T ′. For any
` ∈ L′, let T` contain all transitions (˜̀, τ̃ , `) ∈ T \ T ′ leading to `. Let R′(t) =∑
`∈L′, t̃∈T` R(t̃) · [Pol(`)](S(t̃, v′1), . . . ,S(t̃, v′n)) for t ∈ T ′� and R′(t) = R(t) for

all t∈T \T ′�. Then, TimeBounds(R,S, T ′)=R′ is also a runtime approximation.

Here one can see why we require complexity bounds to be weakly monotonic.
The reason is that S(t̃, v′) over-approximates the size of v at some location `.
Hence, to ensure that [Pol(`)](S(t̃, v′1), . . . ,S(t̃, v′n)) correctly over-approximates
how often transitions of T ′� can be applied in parts of evaluations that only use
transitions from T ′, [Pol(`)] must be weakly monotonic.

By Thm. 6, we now obtain bounds for the remaining transitions in our
example. For T ′3 = {t3, t4}, we use Pol4(`2) = 1, Pol4(`3) = 0, and hence
(T ′3 )� = {t3}. The transitions t2 and t5 lead to T ′3 , and thus, we obtain R4(t3) =
R3(t2) · 1 +R3(t5) · 1 = 1 + |x| and R4(t) = R3(t) for all other transitions t.

For T ′4 = {t4}, we use Pol5(`3) = u with (T ′4 )� = T ′4 . The part T ′4 is only en-
tered by the transition t3. So to get a global bound, we substitute u in [Pol5(`3)]
= |u| by S(t3, u

′) (in Sect. 4, we will determine S(t3, u
′) = |x|). Thus, R5(t4) =

R4(t3) ·S(t3, u
′) = (1+ |x|) · |x| = |x|+ |x|2 and R5(t) = R4(t) for all other t ∈ T .

So while the runtime of T ′4 on its own is linear, the loop at location `3 is reached
a linear number of times, i.e., its transition t4 is used quadratically often. Thus,
the overall program runtime is bounded by

∑
t∈T R5(t) = 3 + 4 · |x|+ |x|2.

4 Computing Size Bounds

The procedure TimeBounds improves the runtime approximation R, but up to
now the size approximation S was only used as an input. To infer bounds on the
sizes of variables, we proceed in three steps. First, we find local size bounds that
approximate the effect of a single transition on the sizes of variables. Then, we
construct a result variable graph that makes the flow of data between variables
explicit. Finally, we analyze each strongly connected component (SCC) of this
graph independently. Here, we combine the local size bounds with our runtime
approximation R to estimate how often transitions modify a variable value.

By a series of SMT queries, we find local size bounds Sl(t, v′) that describe
how the size of the post-variable v′ is related to the pre-variables of a transition
t. So while S(t, v′) is a bound on the size of v after using t in a full program run,
Sl(t, v′) is a bound on v after a single use of t.

Definition 7 (Local Size Approximation). We call Sl : RV→ C a local size
approximation iff (Sl(t, v′))(m) ≥ sup{|v′(v)| | ∃`,v, `′,v′ .v ≤ m ∧ (`,v) →t

(`′,v′)} for all |t, v′| ∈ RV and all m ∈ Nn.

In our example, we obtain Sl(t1, y′) = |y|+1, as t1 increases y by 1. Similarly,
|t1, x′| is bounded by |x|. As t1 is only executed if x is positive, decreasing x by
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1 does not increase its absolute value. The bound max{0, |x| − 1} would also be
allowed, but our approach does not compute better global size bounds from it.

To track how variables influence each other, we construct a result variable
graph (RVG) whose nodes are the result variables. An RVG for our example is
shown below. Here, we display local size bounds in the RVG to the left of the
result variables, separated by “≥” (e.g., “|x| ≥ |t1, x′|” means Sl(t1, x′) = |x|).

|x|≥|t0, x′| 0≥|t0, y′| |z|≥|t0, z′| |u|≥|t0, u′|

|x|≥|t1, x′| |y|+1≥|t1, y′| |z|≥|t1, z′| |u|≥|t1, u′|

|x|≥|t2, x′| |y|≥|t2, y′| |y|≥|t2, z′| |u|≥|t2, u′|

|x|≥|t3, x′| |y|≥|t3, y′| |z|≥|t3, z′| |z|≥|t3, u′|

|x|≥|t4, x′| |y|≥|t4, y′| |z|≥|t4, z′| |u|≥|t4, u′|

|x|≥|t5, x′| |y|≥|t5, y′| |z|≥|t5, z′| |u|≥|t5, u′|

The RVG has an edge
from a result variable |t̃, ṽ′|
to |t, v′| if the transition t̃ can
be used directly before t and
if ṽ occurs in the local size
bound Sl(t, v′). Such an edge
means that the size of ṽ′ in
the post-location of the tran-
sition t̃may influence the size
of v′ in t’s post-location.

To state which variables
may influence a function f ∈
C, we define its active variables as actV(f) = {vi ∈ V | ∃m1, . . . ,mn,m

′
i ∈ N .

f(m1, . . . ,mi, . . . ,mn) 6= f(m1, . . . ,m
′
i, . . . ,mn) }. Let pre(t) denote the tran-

sitions that may precede t in evaluations, i.e., pre(t) = {t̃ ∈ T | ∃v0, `,v .
(`0,v0)→∗ ◦ →t̃ ◦ →t (`,v)}. While pre(t) is undecidable in general, there exist
several techniques to compute over-approximations of pre(t), cf. [19,21]. For ex-
ample, one can disregard the formulas of the transitions and approximate pre(t)
by all transitions that end in t’s source location.

Definition 8 (RVG). Let Sl be a local size approximation. An RVG has T ’s re-
sult variables as nodes and the edges {(|t̃, ṽ′|, |t, v′|) | t̃∈pre(t), ṽ∈actV(Sl(t,v′))}.

For the transition t2 which sets z = y, we obtain Sl(t2, z′) = |y|. Hence,
we have actV(Sl(t2, z′)) = y. The program graph implies pre(t2) = {t0, t1}, and
thus, our RVG contains edges from |t0, y′| to |t2, z′| and from |t1, y′| to |t2, z′|.

Each SCC of the RVG represents a set of result variables that may influence
each other. To lift the local approximation Sl to a global one, we consider each
SCC on its own. We treat the SCCs in topological order, reflecting the data flow.
As usual, an SCC is a maximal subgraph with a path from each node to every
other node. An SCC is trivial if it consists of a single node without an edge to
itself. In Sect. 4.1, we show how to deduce global bounds for trivial SCCs and in
Sect. 4.2, we handle non-trivial SCCs where transitions are applied repeatedly.

4.1 Size Bounds for Trivial SCCs of the RVG

Sl(t, v′) approximates the size of v′ after the transition t w.r.t. t’s pre-variables.
But our goal is to obtain a global bound S(t, v′) that approximates v′ w.r.t.
the initial values of the variables at the program start. For trivial SCCs that
consist of a result variable α = |t, v′| with an initial transition t, the local bound
Sl(α) is also the global bound S(α), as the start location `0 has no incoming
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transitions. For example, regard the trivial SCC with the result variable |t0, y′|.
As 0 ≥ |t0, y′| holds, its global size bound is also 0, and we set S(t0, y

′) = 0.
Next, we consider trivial SCCs α = |t, v′| with incoming edges from other

SCCs. Now Sl(α) (m) is an upper bound on the size of v′ after using the tran-
sition t in a configuration where the sizes of the variables are at most m. To
obtain a global bound, we replace m by upper bounds on t’s input variables.
The edges leading to α come from result variables |t̃, v′i| where t̃ ∈ pre(t) and
vi ∈ actV(Sl(α)). Thus, a bound for the result variable α = |t, v′| is obtained by
applying Sl(α) to S(t̃, v′1), . . . ,S(t̃, v′n), for all t̃ ∈ pre(t).

As an example consider the result variable |t2, z′|. Its local size bound is Sl(t2,
z′) = |y|. To express this bound in terms of the input variables, we consider the
predecessors |t0, y′| and |t1, y′| of |t2, z′| in the RVG. So Sl(t2, z′) must be applied
to S(t0, y

′) and S(t1, y
′). If SCCs are handled in topological order, one already

knows that S(t0, y
′) = 0 and S(t1, y

′) = |x|. Thus, S(t2, z
′) = max{0, |x|} = |x|.

Thm. 9 presents the resulting procedure SizeBounds. Based on the current
approximation (R,S), it improves the global size bound for the result variable
in a non-trivial SCC of the RVG. Non-trivial SCCs will be handled in Thm. 10.

Theorem 9 (SizeBounds for Trivial SCCs). Let (R,S) be a complexity ap-
proximation, let Sl be a local size approximation, and let {α} ⊆ RV be a trivial
SCC of the RVG. We define S ′(α′) = S(α′) for α′ 6= α and

• S ′(α) = Sl(α), if α = |t, v′| for some initial transition t
• S ′(α) = max{Sl(α) (S(t̃, v′1), . . . ,S(t̃, v′n)) | t̃ ∈ pre(t)}, otherwise

Then SizeBounds(R,S, {α}) = S ′ is also a size approximation.

4.2 Size Bounds for Non-Trivial SCCs of the RVG

Finally, we show how to improve the size bounds for result variables in non-trivial
SCCs of the RVG. Such an SCC corresponds to a loop and hence, each of its local
changes can be applied several times. By combining the time bounds R(t) for its
transitions t with the local size bounds Sl(t, v′), we approximate the overall effect
of these repeated changes. To simplify this approximation, we use the following
classification of result variables α depending on their local size bound Sl(α):

• α ∈ .
= (α is an “equality”) if the result variable is not larger than its pre-

variables or a constant, i.e., iff there is a number eα ∈ N with max{eα,m1,
. . . ,mn} ≥ (Sl(α))(m1, . . . ,mn) for all m1, . . . ,mn ∈ N.

• α ∈ u (α “adds a constant”) if the result variable only increases over the
pre-variables by a constant, i.e., iff there is a number eα ∈ N with eα +
max{m1, . . . ,mn} ≥ (Sl(α))(m1, . . . ,mn) for all m1, . . . ,mn ∈ N.

• α ∈ Σ̇ (α “adds variables”) if the result variable is not larger than the sum
of the pre-variables and a constant, i.e., iff there is a number eα ∈ N with
eα +

∑
i∈{1,...,n}mi ≥ (Sl(α))(m1, . . . ,mn) for all m1, . . . ,mn ∈ N.

So for our example, we get {|t3, z′|, |t4, z′|, |t5, z′|} ⊆
.
= since Sl(t3, z′) =

Sl(t4, z′) = Sl(t5, z′) = |z|. Similarly, we have |t1, y′| ∈ u as Sl(t1, y′) = |y|+ 1.
In the following, local size bounds like 2 · |x| are not handled because we
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are currently interested only in bounds that can be expressed by polynomials
(and max and min). If a change bounded by 2 · |x| is applied |y| times, the
resulting value is bounded only by the exponential function 2|y| · |x|. Of course,
our approach could be extended to infer such exponential size bounds as well.
In Sect. 5, we discuss the limitations and possible extensions of our approach.

Similar to pre(t) for transitions t, let pre(α) for a result variable α be those
α̃ ∈ RV with an edge from α̃ to α in the RVG. To deduce a bound on the size of
the result variables α in an SCC C, we first consider the size of values entering
the SCC C. Hence, we require that the resulting size bound S(α) for α ∈ C
should be at least as large as the sizes S(α̃) of the inputs α̃, i.e., of those result
variables α̃ outside the SCC C that have an edge to some α ∈ C. Moreover, if the
SCC C contains result variables α = |t, v′| ∈ .

=, then the transition t either does
not increase the size at all, or increases it to the constant eα. Hence, the bound
S(α) for the result variables α in C should also be at least max{eα | α ∈

.
=}.9

For example, when computing the global size bounds for the result variables
in the SCC C = {|t3, z′|, |t4, z′|, |t5, z′|} in our example, the only predecessor
of this SCC is |t2, z′| with S(t2, z

′) = |x|. For each α ∈ C, the corresponding
constant eα is 0. Thus, for all α ∈ C we obtain S(α) = max{|x|, 0} = |x|.

To handle result variables α ∈ u\ .= that add a constant eα, we consider how
often this addition is performed. Thus, while TimeBounds from Thm. 6 uses the
size approximation S to improve the runtime approximation R, SizeBounds uses
R to improve S. We define R(|t, v′|) = R(t) for all result variables |t, v′|. Then,
since R(α) is a bound on the number of times that eα is added, the repeated
traversal of α’s transition increases the overall size by at most R(α) · eα.

For instance, consider the result variable α = |t1, y′| in our example. Its
local size bound is Sl(t1, y′) = |y| + 1, i.e., each traversal of t1 increases y by
eα = 1. As before, we use the size bounds on the predecessors of the SCC {α}
as a basis. So the input value when entering the SCC is S(t0, y

′) = 0. Since
t1 is executed at most R(α) = R(t1) = |x| times, we obtain the global bound
S(α) = S(t0, y

′) +R(α) · eα = 0 + |x| · 1 = |x|.
`0

`1

`2

t0
t1: if(i > 0)

i = i− 1
x = x + i

t2: if(i ≤ 0)

t3: if(x > 0)
x = x− 1

Finally, we discuss how to handle result variables α ∈
Σ̇\u. To this end, consider the program from Sect. 1 again.
Its program graph is depicted on the right. Our method
detects the runtime bounds R(t0) = 1, R(t1) = |i|, and
R(t2) = 1. To obtain size bounds, we first generate the
RVG (see the next page). Now we can infer the global size
bounds S(t, i′) = |i| for all t ∈ T and S(t0, x

′) = |x|. Next
we regard the result variable α = |t1, x′| with the local
bound Sl(α) = |x|+ |i|. Thus, we have α ∈ Σ̇ \u.

For result variables α that sum up several program variables, we require that
only one comes from α’s own SCC in the RVG. Otherwise, we would also consider
loops like while z > 0 do x = x + y; y = x; z = z − 1; done that increase
the size of x exponentially. To express our requirement formally, let Vα = {v |
|t, v′| ∈ pre(α)∩C} be those variables whose result variables in C have an edge to

9 Again, “eα” denotes the constant function mapping all values from Nn to eα.
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|i|≥|t0, i′| |x|≥|t0, x′|

|i|≥|t1, i′| |x|+|i|≥|t1, x′|

|i|≥|t2, i′| |x|≥|t2, x′|

|i|≥|t3, i′| |x|≥|t3, x′|

α. We require |Vα| = 1, i.e., no two result vari-
ables |t, v′|, |t̃, ṽ′| in α’s SCC C with v 6= ṽ
may have edges to α. But we allow incoming
edges from arbitrary result variables outside
the SCC. The requirement is satisfied in our
RVG, as α = |t1, x′| is a predecessor of itself
and its SCC contains no other result variables.
Thus, Vα = {x}. Of course, α also has prede-
cessors of the form |t, i′| outside the SCC.

For each variable v, let fαv be an upper bound on the size of those result
variables |t, v′| /∈ C that have edges to α, i.e., fαv = max{S(t, v′) | |t, v′| ∈
pre(α) \ C}. The execution of α’s transition then means that the value of the
variable in Vα can be increased by adding fαv (for all v ∈ actV(Sl(α)) \ Vα) plus
the constant eα. Again, this can be repeated at most R(α) times. So the overall
size is bounded by adding R(α) · (eα +

∑
v∈actV(Sl(α))\Vα f

α
v ).

In our example with α = |t1, x′|, we have Vα = {x}, actV(Sl(α)) = actV(|x|+
|i|) = {i, x}, and fαi = max{S(t0, i

′),S(t1, i
′)} = |i|. When entering α’s SCC,

the input is bounded by the preceding transitions, i.e., by max{S(t0, i
′),S(t1, i

′),
S(t0, x

′)} = max{|i|, |x|}. By traversing α’s transition t1 repeatedly (at most
R(α) = R(t1) = |i| times), this value may be increased by adding R(α) · (eα +
fαi ) = |i| · (0 + |i|) = |i|2. Hence, we obtain S(α) = max{|i|, |x|}+ |i|2. Conse-
quently, we also get S(t2, x

′) = S(t3, x
′) = max{|i|, |x|}+ |i|2. Thm. 10 extends

the procedure SizeBounds from Thm. 9 to non-trivial SCCs.

Theorem 10 (SizeBounds for Non-Trivial SCCs). Let (R,S) be a complexi-
ty approximation, Sl a local size approximation, and C ⊆ RV a non-trivial SCC
of the RVG. If there is an α ∈ C with α /∈ Σ̇ or both α ∈ Σ̇\u and |Vα| > 1, then
we set S ′ = S. Otherwise, for all α /∈ C let S ′(α) = S(α). For all α ∈ C, we set

S ′(α) = max( {S(α̃) | there is an α ∈ C with α̃ ∈ pre(α) \ C} ∪ {eα | α ∈
.
=} )

+
∑
α∈u\ .= R(α) · eα

+
∑
α∈Σ̇\u R(α) · (eα +

∑
v∈actV(Sl(α))\Vα f

α
v )

Then SizeBounds(R,S, C) = S ′ is also a size approximation.

In our example, by the inferred size bounds we can derive a runtime bound for
the last transition t3. When calling TimeBounds on T ′ = {t3}, it finds the PRF
Pol(`2) = x, implying that T ′’s runtime is linear. When reaching T ′, the size of x
is bounded by S(t2, x

′). So R(t3) = R(t2) · [Pol(`2)](S(t2, i
′),S(t2, x

′)) = 1 ·
S(t2, x

′) = max{|i|, |x|}+ |i|2. So a bound on the overall runtime is
∑
t∈T R(t)

= 2 + |i|+ max{|i|, |x|}+ |i|2, i.e., it is linear in |x| and quadratic in |i|.

5 Implementation and Related Work

We presented a new alternating modular approach for runtime and size com-
plexity analysis of integer programs. Each step only considers a small part of the
program, and runtime bounds help to infer size bounds and vice versa.

Our overall procedure to compute the runtime and size approximationsR and
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(R,S) := (R0,S0)
while there are t, v with R(t) = ? or S(t, v′) = ? do
T ′ := {t ∈ T | R(t) = ?}
R := TimeBounds(R,S, T ′)
for all SCCs C of the RVG in topological order do
S := SizeBounds(R,S, C)

done
done

S is displayed on the right.
After starting with the ini-
tial approximations R0,S0,
the procedure TimeBounds
(Thm. 6) is used to improve
the runtime bounds for those
transitions T ′ for which we
have no bound yet.10 After-
wards, the procedure SizeBounds (Thm. 9 and 10) considers the SCCs of the
result variable graph in topological order to update the size approximation.

When all bounds have been determined, R and S are returned. Of course, we
do not always succeed in finding bounds for all transitions and variables. Thus,
while the procedure keeps on improving the bounds, at any point during its run,
R and S are over-approximations of the actual runtimes and sizes. Hence, the
procedure can be interrupted at any time and it always returns correct bounds.

Several methods to determine symbolic complexity bounds for programs have
been developed in recent years. The approaches of [3, 4] (implemented in COSTA

and its backend PUBS) and [37] (implemented in Loopus) also use an iterative
procedure based on termination proving techniques to find runtime bounds for
isolated loops, which are then combined to an overall result. However, [3,4] han-
dles all loop transitions at once and [37] is restricted to termination proofs via the
size-change principle [28]. The approach of [6] (implemented in Rank) first proves
termination by a lexicographic combination of linear rank functions, similar to
our Thm. 6. However, while Thm. 6 combines these rank functions with size
bounds, [6] approximates the reachable state space using Ehrhart polynomials.
The tool SPEED [24] instruments programs by counters and employs an invariant
generation tool to obtain bounds on these counters. The ABC system [11] also
determines symbolic bounds for nested loops, but does not treat sequences of
loops. Finally, our technique in Sect. 4.2 to infer size bounds by estimating the
effect of repeated local changes has some similarities to the approach of [10]
which defines syntactic criteria for programs to have polynomial complexity.

The work on determining the worst-case execution time (WCET) for real-
time systems [36] is largely orthogonal to symbolic loop bounds. It distinguishes
processor instructions according to their complexity, but requires loop bounds
to be provided by the user. Recently, recurrence solving has been used as an
automatic pre-processing step for WCET analysis in the tool r-TuBound [27].

There is also a wealth of work on complexity for declarative paradigms. For
instance, resource aware ML [26] analyzes amortized complexity for recursive
functional programs with inductive data types, but it does not handle programs
whose complexity depends on integers. There are also numerous techniques for
complexity analysis of term rewriting and logic programming [7, 18,22,31,32].
10 After generating a PRF Pol for T ′, it is advantageous to extend T ′ by all remaining

transitions (`, τ, `′) from T \ T ′ where the measure Pol is also (weakly) decreasing,
i.e., where τ ⇒ (Pol(`))(v1, . . . , vn) ≥ (Pol(`′))(v′1, . . . , v′n). Calling the procedure
TimeBounds with this extended set T ′ yields better results and may also improve pre-
viously found runtime bounds. We also used this strategy for the example in Sect. 3.
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Our approach builds upon well-known basic concepts (like lexicographic rank
functions), but uses them in a novel way to obtain a more powerful technique
than previous approaches. In particular, in contrast to previous work, our
approach deals with non-linear information flow between different program parts.

To evaluate our approach, we implemented a prototype KoAT and compared
it with PUBS [3, 4] and Rank [6]. We also contacted the authors of SPEED [24]
and Loopus [37], but were not able to obtain these tools. We did not compare
KoAT to ABC [11], RAML [26], or r-TuBound [27], as their input or analysis goals
differ considerably from ours. As benchmarks, we collected 682 programs from
the literature on termination and complexity of integer programs. These include
all 36 examples from the evaluation of Rank, all but one of the 53 examples used
to evaluate PUBS,11 all 27 examples from the evaluations of SPEED, and the ex-
amples from the current paper (which can be handled by KoAT, but not by PUBS

or Rank). Where examples were available as C programs, we used the tool KITTeL
[19] to transform them into integer programs automatically. The collection con-
tains 48 recursive examples, which cannot be analyzed with Rank, and 20 exam-
ples with non-linear arithmetic, which can be handled by neither Rank nor PUBS.
The remaining examples are compatible with all tested tools. All examples, the
results of the three tools, and a binary of KoAT are available at [1].

1 logn n n logn n2 n3 n>3 EXP Time

KoAT 121 0 145 0 59 3 3 0 1.1 s

PUBS 116 5 131 5 22 7 0 6 0.8 s

Rank 56 0 19 0 8 1 0 0 0.5 s

The table illustrates how of-
ten each tool could infer a spe-
cific runtime bound for the exam-
ple set. Here, 1, log n, n, n log n,
n2, n3, and n>3 represent their corresponding asymptotic classes and EXP is
the class of exponential functions. In the column “Time”, we give the average
runtime on those examples where the respective tool was successful. The average
runtime on those 65 examples where all tools succeeded were 0.5 s for KoAT, 0.2 s
for PUBS, and 0.6 s for Rank. The benchmarks were executed on a computer with
6GB of RAM and an Intel i7 CPU clocked at 3.07 GHz, using a timeout of 60
seconds for each example. A longer timeout did not yield additional results.

On this collection, our approach was more powerful than the two other tools
and still efficient. In fact, KoAT is only a simple prototype whose efficiency could
still be improved considerably by fine-tuning its implementation. As shown in
[1], there are 77 examples where KoAT infers a bound of a lower asymptotic
class than PUBS, 548 examples where the bounds are in the same class, and 57
examples where the bound of PUBS is (asymptotically) more precise than KoAT’s.
Similarly, there are 259 examples where KoAT is asymptotically more precise than
Rank, 410 examples where they are equal, and 13 examples where Rank is more
precise. While KoAT is the only of the three tools that can also handle non-linear
arithmetic, even when disregarding the 20 examples with non-linear arithmetic,
KoAT can detect runtime bounds for 325 examples, whereas PUBS succeeds only
for 292 programs and Rank only finds bounds for 84 examples.

A limitation of our implementation is that it only generates (possibly non-
linear) PRFs to detect polynomial bounds. In contrast, PUBS uses PRFs to find
logarithmic and exponential complexity bounds as well [3]. Such an extension
11 We removed one example with undefined semantics.
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could also be directly integrated into our method. Moreover, we are restricted to
weakly monotonic bounds in order to allow their modular composition. Another
limitation is that our size analysis only handles certain forms of local size bounds
in non-trivial SCCs of the result variable graph. For that reason, it often over-
approximates the sizes of variables that are both incremented and decremented
in the same loop. Due to all these imprecisions, our approach sometimes infers
bounds that are asymptotically larger than the actual asymptotic costs.

Our method is easily extended. In [14], we provide an extension to handle
(possibly recursive) procedure calls in a modular fashion. Moreover, we show how
to treat other forms of bounds (e.g., on the number of sent network requests)
and how to compute bounds for separate program parts in advance or in parallel.

Future work will be concerned with refining the precision of the inferred
runtime and size approximations and with improving our implementation (e.g.,
by extending it to infer also non-polynomial complexities). Moreover, instead of
abstracting heap operations to integers, we intend to investigate an extension of
our approach to apply it directly to programs operating on the heap. Finally,
similar to the coupling of COSTA with the tool KeY in [5], we want to automatically
certify the complexity bounds found by our implementation KoAT.

Acknowledgments. We thank A. Ben-Amram, B. Cook, C. von Essen, C. Otto for
valuable discussions and C. Alias and S. Genaim for help with the experiments.
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