Locally maximal product-free sets of size 3

By
Chimere S. Anabanti and Sarah B. Hart

Locally maximal product-free sets of size 3

Chimere S. Anabanti*
c.anabanti@mail.bbk.ac.uk

Sarah B. Hart
s.hart@bbk.ac.uk

April 2015

Abstract

Let G be a group, and S a non-empty subset of G. Then S is product-free if $a b \notin S$ for all $a, b \in S$. We say S is locally maximal product-free if S is product-free and not properly contained in any other product-free set. A natural question is what is the smallest possible size of a locally maximal product-free set in G. The groups containing locally maximal product-free sets of sizes 1 and 2 were classified in [3]. In this paper, we prove a conjecture of Giudici and Hart in [3] by showing that if S is a locally maximal product-free set of size 3 in a group G, then $|G| \leq 24$. This shows that the list of known locally maximal product-free sets given in [3] is complete.

1 Introduction

Let G be a group, and S a non-empty subset of G. Then S is product-free if $a b \notin S$ for all $a, b \in S$. For example, if H is a subgroup of G then $H g$ is a product-free set for any $g \notin H$. Traditionally these sets have been studied in abelian groups, and have therefore been called sum-free sets. Since we are working with arbitrary groups it makes more sense to say 'product-free' in this context. We say S is locally maximal product-free if S is product-free and not properly contained in any other product-free set. We use the term locally maximal rather than maximal because the majority of the literature in this area uses maximal to mean maximal by cardinality (for example [7, 8]).

There are some obvious questions from the definition: given a group G, what is the maximum cardinality of a product-free set in G, and what are the maximal (by cardinality) productfree sets? How many product-free sets are there in G ? Given that each product-free set is contained in a locally maximal product-free set, what are the locally maximal product-free sets? What are the possible sizes of locally maximal product-free sets? The question of maximal (by cardinality) product-free sets has been fully solved for abelian groups by Green and Rusza [5]. For the nonabelian case Kedlaya [6] showed that there exists a constant c such

[^0]that the largest product-free set in a group of order n has size at least $c n^{11 / 14}$. Gowers [4] proved that if the smallest nontrivial representation of G is of dimension k then the largest product-free set in G has size at most $k^{-1 / 3} n$ (Theorem 3.3 and commentary at the start of Section 5). Much less is known about the minimum sizes of locally maximal product-free sets. This question was first asked in [1] where the authors ask what is the minimum size of a locally maximal product-free set in a group of order n ? A good bound is still not known. Small locally-maximal product-free sets when G is an elementary abelian 2-group are of interest in finite geometry, because they correspond to complete caps in $\operatorname{PG}(n-1,2)$. In [3], the groups containing locally maximal product-free sets of sizes 1 and 2 were classified. Some general results were also obtained. Furthermore, there was a classification (Theorem 5.6) of groups containing locally maximal product-free sets S of size 3 for which not every subset of size 2 in S generates $\langle S\rangle$. Each of these groups has order at most 24 . Conjecture 5.7 of [3] was that if G is a group of order greater than 24 , then G does not contain a locally maximal product-free set of size 3 . Table 5 listed all the locally maximal product-free sets in groups of orders up to 24 . So the conjecture asserts that this list is the complete list of all such sets. We have reproduced Table 5 as Table 1 in this paper because we need to use it in some of the arguments here. The main result of this paper is the following and its immediate corollary.

Theorem 1.1. Suppose S is a locally maximal product-free set of size 3 in a group G, such that every two element subset of S generates $\langle S\rangle$. Then $|G| \leq 24$.

Corollary 1.2. If a group G contains a locally maximal product-free set S of size 3, then $|G| \leq 24$ and the only possibilities for G and S are listed in Table 1.

Proof. If not every two-element subset of S generates $\langle S\rangle$, then by Theorem 5.6 of [3], $|G| \leq 24$. We may therefore assume that every two-element subset of S generates $\langle S\rangle$. Then $|G| \leq 24$ by Theorem 1.1. Now Table 1 is just Table 5 of [3]; it is a list of all locally maximal product-free sets of size 3 occurring in groups of order up to 24 (in fact, up to 37 in the original paper). Since we have shown that all locally maximal product-free sets of size 3 occur in groups of order up to 24 , this table now constitutes a complete list of possibilities.

We finish this section by establishing the notation to be used in the rest of the paper, and giving some basic results from [3]. For subsets A, B of a group G, we use the standard notation $A B$ for the product of A and B. That is,

$$
A B=\{a b: a \in A, b \in B\} .
$$

By definition, a nonempty set $S \subseteq G$ is product-free if and only if $S \cap S S=\varnothing$. In order to investigate locally maximal product-free sets, we introduce some further notations. For a
set $S \subseteq G$, we define the following sets:

$$
\begin{aligned}
S^{2} & =\left\{a^{2}: a \in S\right\} \\
S^{-1} & =\left\{a^{-1}: a \in S\right\} \\
\sqrt{S} & =\left\{x \in G: x^{2} \in S\right\} \\
T(S) & =S \cup S S \cup S S^{-1} \cup S^{-1} S \\
\hat{S} & =\{s \in S: \sqrt{\{s\}} \not \subset\langle S\rangle\}
\end{aligned}
$$

For a singleton set $\{a\}$, we usually write \sqrt{a} instead of $\sqrt{\{a\}}$.
For a positive integer n, we will denote by $\operatorname{Alt}(n)$ the alternating group of degree n, by C_{n} the cyclic group of order n, by $D_{2 n}$ the dihedral group of order $2 n$, and by $Q_{4 n}$ the dicyclic group of order $4 n$ given by $Q_{4 n}:=\left\langle x, y: x^{2 n}=1, x^{n}=y^{2}, y x=x^{-1} y\right\rangle$.

We finish this section with a few results from [3].
Lemma 1.3. [3, Lemma 3.1] Suppose S is a product-free set in the group G. Then S is locally maximal product-free if and only if $G=T(S) \cup \sqrt{S}$.

The next result lists, in order, Proposition 3.2, Theorem 3.4, Propositions 3.6, 3.7, 3.8 and Corollary 3.10 of [3].

Theorem 1.4. Let S be a locally maximal product-free set in a group G. Then
(i) $\langle S\rangle$ is a normal subgroup of G and $G /\langle S\rangle$ is either trivial or an elementary abelian 2-group;
(ii) $|G| \leq 2|T(S)| \cdot|\langle S\rangle|$;
(iii) if $\langle S\rangle$ is not an elementary abelian 2-group and $|\hat{S}|=1$, then $|G|=2|\langle S\rangle|$;
(iv) every element s of \hat{S} has even order, and all odd powers of s lie in S;
(v) if there exists $s \in S$ and integers m_{1}, \ldots, m_{t} such that $\hat{S}=\left\{s, s^{m_{1}}, \ldots, s^{m_{t}}\right\}$, then $|G|$ divides $4|\langle S\rangle|$;
(vi) if $S \cap S^{-1}=\varnothing$, then $|G| \leq 4|S|^{2}+1$.

We require one final result.
Theorem 1.5. [3, Theorem 5.1] Up to isomorphism, the only instances of locally maximal product-free sets S of size 3 of a group G where $|G| \leq 37$ are given in Table 1.

2 Proof of Theorem 1.1

Proposition 2.1. Suppose S is locally maximal product-free of size 3 in G. If $\langle S\rangle$ is cyclic, then $|G| \leq 24$.

Proof. Write $S=\{a, b, c\}$. First note that since $\langle S\rangle$ is abelian, $S S^{-1}=S^{-1} S$; moreover $a a^{-1}=b b^{-1}=c c^{-1}=1$; so $\left|S S^{-1}\right| \leq 7$. Also $S S \subseteq\left\{a^{2}, b^{2}, c^{2}, a b, a c, b c\right\}$. Thus

$$
|T(S)|=\left|S \cup S S \cup S S^{-1}\right| \leq 3+6+7=16 .
$$

By Lemma 1.3, $G=T(S) \cup \sqrt{S}$; so $\langle S\rangle=T(S) \cup(\langle S\rangle \cap \sqrt{S})$. Elements of cyclic groups have at most two square roots. Therefore $|\langle S\rangle| \leq 16+6=22$. By Table $1,\langle S\rangle$ must now be one of $C_{6}, C_{8}, C_{9}, C_{10}, C_{11}, C_{12}, C_{13}$ or C_{15}. Theorem 1.4(iv) tells us that every element s of \hat{S} has even order and all odd powers of s lie in S. This means that for C_{9}, C_{11}, C_{13} or C_{15}, we have $\hat{S}=\varnothing$ and so $G=\langle S\rangle$. In particular, $|G| \leq 24$.

It remains to consider C_{6}, C_{8}, C_{10} and C_{12}. For $C_{6}=\left\langle g: g^{6}=1\right\rangle$, the unique locally maximal product-free set of size 3 is $S=\left\{g, g^{3}, g^{5}\right\}$. Now if g or g^{5} is contained in \hat{S}, then \hat{S} consists of powers of a single element; so by Theorem $1.4(\mathrm{v}),|G|$ divides 24. If neither g nor g^{5} is in \hat{S}, then $|\hat{S}| \leq 1$, and so by Theorem 1.4(iii) therefore, $|G|$ divides 12. In C_{8} there is a unique (up to group automorphisms) locally maximal product-free set of size 3 , and it is $\left\{g, g^{-1}, g^{4}\right\}$, where g is any element of order 8. If \hat{S} contains g or g^{-1}, then S contains all odd powers of that element by Theorem 1.4(iv), and hence S contains $\left\{g, g^{3}, g^{5}, g^{7}\right\}$, a contradiction. Therefore $|\hat{S}| \leq 1$ and so $|G|$ divides 16 . Next, we consider $\langle S\rangle=C_{10}$. Recall that elements of \hat{S} must have even order. If \hat{S} contains any element of order 10 , then S contains all five odd powers of this element, which is impossible by Theorem 1.4(iv). This leaves only the involution of C_{10} as a possible element of \hat{S}. Hence again $|\hat{S}| \leq 1$ and $|G|$ divides 20. Finally we look at C_{12}. If \hat{S} contains any element of order 12 , then $|S| \geq 6$, a contradiction. If \hat{S} contains an element x of order 6 then S contains all three of its odd powers, so $S=\left\{x, x^{3}, x^{5}\right\}$. But then $\langle S\rangle \cong C_{6}$, contradicting the assumption that $\langle S\rangle=C_{12}$. Therefore, \hat{S} can only contain elements of order 2 or 4 . Up to group automorphism, we see from Table 1 that every locally maximal product-free set S of size 3 in C_{12} with $\langle S\rangle=C_{12}$ is one of $\left\{g, g^{6}, g^{10}\right\}$ or $\left\{g, g^{3}, g^{8}\right\}$ for some generator g of C_{12}. Each of these sets contains exactly one element of order 2 or 4 . Therefore in every case, $|\hat{S}| \leq 1$ and so $|G|$ divides 24 . This completes the proof.

Note that the bound on $|G|$ in Proposition 2.1 is attainable. For example in Q_{24} there is a locally maximal product-free set S of size 3 , with $\langle S\rangle \cong C_{12}$.

Proposition 2.2. Suppose S is locally maximal product-free of size 3 in G such that every 2element subset of S generates $\langle S\rangle$. Then either $|G| \leq 24$ or S contains exactly one involution.

Proof. First suppose S contains no involutions. If $S \cap S^{-1}=\varnothing$, then Theorem 1.4(vi) tells us that G has order at most 37, and then by Theorem $1.5,(G, S)$ is one of the possibilities listed in Table 1. In particular $|G| \leq 24$. If $S \cap S^{-1} \neq \varnothing$, then $S=\left\{a, a^{-1}, b\right\}$ for some a, b.

But then $\langle S\rangle=\left\langle a, a^{-1}\right\rangle=\langle a\rangle$, so $\langle S\rangle$ is cyclic. Now by Proposition 2.1 we get $|G| \leq 24$. Next, suppose that S contains at least two involutions, a and b, with the third element being c. Then, since every 2-element subset of S generates $\langle S\rangle$, we have that $H=\langle S\rangle=\langle a, b\rangle$ is dihedral and S is locally maximal product-free in H. Let $o(a b)=m$, so $H \cong D_{2 m}$. The non-trivial coset of the subgroup $\langle a b\rangle$ is product-free of size m. So if c lies in this coset, then we have $m=3$ and $H \cong D_{6}$. If c does not lie in this coset then $c=(a b)^{i}$ for some i, and from the relations in a dihedral group $a c^{-1}=c a, c^{-1} a=a c, b c^{-1}=c b$ and $c^{-1} b=b c$. The coset $\langle a b\rangle a$ consists of m involutions, which cannot lie in \sqrt{S}. Thus $\langle a b\rangle a \subseteq T(S)$ by Lemma 1.3. A straightforward calculation shows that

$$
\begin{aligned}
\langle a b\rangle a=T(S) \cap\langle a b\rangle a & =\left\{a, b, a c, c a, b c, c b, a c^{-1}, c^{-1} a, b c^{-1}, c^{-1} b\right\} \\
& =\{a, b, a c, c a, b c, c b\}
\end{aligned}
$$

This means $m \leq 6$, and S consists of two generating involutions a, b plus a power of their product $a b$, with the property that any two-element subset of S generates $\langle a, b\rangle$. A glance at Table 1 shows there are no locally maximal product-free sets of this form in $D_{2 m}$ for $m \leq 6$. Therefore the only possibility is that $\langle S\rangle \cong D_{6}$, with S consisting of the three reflections in $\langle S\rangle$. By Theorem 1.4(i), the index of $\langle S\rangle$ in G is a power of 2. By Theorem 1.4(ii), $|G| \leq 2|T(S)| \cdot|\langle S\rangle|$. Thus $|G| \in\{6,12,24,48\}$. Suppose for contradiction that $|G|=48$. Now $G=T(S) \cup \sqrt{S}$, and since S consists of involutions, the elements of \sqrt{S} have order 4. So G contains two elements of order 3, three elements of order 2 and the remaining non-identity elements have order 4. Then the 46 elements of G whose order is a power of 2 must lie in three Sylow 2-subgroups of order 16, with trivial pairwise intersection. Each of these groups therefore has a unique involution and 14 elements of order 4, all of which square to the given involution. But no group of order 16 has fourteen elements of order 4 . Hence $|G| \neq 48$, and so $|G| \leq 24$. Therefore either $|G| \leq 24$ or G contains exactly one involution.

Before we establish the next result, we first make a useful observation. Suppose $S=\{a, b, c\}$ where $a, b, c \in G$ and c is an involution. Then a straightforward calculation shows that

$$
T(S) \subseteq\left\{\begin{array}{c}
1, a, b, c, a^{2}, b^{2}, a b, b a, a c, c a, b c, c b, \tag{1}\\
a b^{-1}, b a^{-1}, c a^{-1}, c b^{-1}, a^{-1} b, a^{-1} c, b^{-1} a, b^{-1} c
\end{array}\right\}
$$

Lemma 2.3. Suppose S is a locally maximal product-free set of size 3 in G, every 2 -element subset of S generates $\langle S\rangle$, and S contains exactly one involution. Then either $|G| \leq 24$ or $S=\{a, b, c\}$, where a and b have order 3 and c is an involution.

Proof. Suppose $S=\{a, b, c\}$ where c is an involution and a, b are not. Consider a^{-1}. Recall that $G=T(S) \cup \sqrt{S}$. If $a^{-1} \in \sqrt{S}$ then $a^{-2} \in\{a, b, c\}$ which implies that either a has order 3 or $\langle S\rangle$ is cyclic (because for example if $a^{-2}=b$ then $\langle S\rangle=\langle a, b\rangle=\langle a\rangle$). Thus if $a^{-1} \in \sqrt{S}$ implies that either a has order 3 or (by Lemma 2.1) $|G| \leq 24$. Suppose then that $a^{-1} \in T(S)$. The elements of $T(S)$ are given in Equation 1. If $a^{-1} \in\left\{b, b^{2}, a b, b a, a b^{-1}, b a^{-1}, a^{-1} b, b^{-1} a\right\}$ then by remembering that $\langle S\rangle=\langle a, b\rangle$, we deduce that $\langle S\rangle$ is cyclic, generated by either a or b. For example, $a^{-1}=b a$ implies $b \in\langle a\rangle$. Similarly, if $a^{-1} \in\left\{c, a c, c a, a^{-1} c, c^{-1} a\right\}$, then $\langle S\rangle$ is cyclic. Since a has order at least 3 , we cannot have $a^{-1} \in\{1, a\}$. If $a^{-1} \in\left\{b c, c b, b^{-1} c, c^{-1} b\right\}$,
then S would not be product-free. For instance $a^{-1}=b^{-1} c$ implies that $b^{-1} c a=1$, and hence $a c=b$. The only remaining possibility is $a^{-1}=a^{2}$, meaning that a has order 3 . The same argument with b^{-1} shows that b also has order 3 .

We can now prove Theorem 1.1, which states that if S is a locally maximal product-free set of size 3 in a group G, such that every two element subset of S generates $\langle S\rangle$, then $|G| \leq 24$.

Proof of Theorem 1.1 Suppose S is a locally maximal product-free set of size 3 in G such that every two element subset of S generates $\langle S\rangle$. Then by Lemma 2.3, either $|G| \leq 24$ or $S=\{a, b, c\}$ where a and b have order 3 and c is an involution. In the latter case, we observe that $a c a^{-1}$ is an involution, so must be contained in $T(S)$. Using Equation 1 we work through the possibilities. Obviously it is impossible for $a c a^{-1}$ to be equal to any of $1, a, b, a^{2}$ or b^{2} because these elements are not of order 2. If any of $a c, c a, a^{-1} c, c^{-1} a, b c, c b, b^{-1} c$ or $c b^{-1}$ were involutions, then it would imply that $\langle S\rangle$ was generated by two involutions whose product has order 3. For example if $a c$ were an involution then $\langle c, a c\rangle=\langle a, c\rangle=\langle S\rangle$. That is, $\langle S\rangle$ would be dihedral of order 6 . But there is no product-free set in D_{6} containing two elements of order 3 , because if x, y are the elements of order 3 in D_{6} then $x^{2}=y$ and $y^{2}=x$. So the remaining possibilities for $a c a^{-1}$ are $c, a b, b a, a b^{-1}, b a^{-1}, a^{-1} b$ and $b^{-1} a$. Now $a c a^{-1}=a b$ implies $c=b a$, whereas $a c a^{-1}=a b^{-1}$ implies $b c=a$ and $a c a^{-1}=b a^{-1}$ implies $b=a c$, each of which contradicts the fact that S is product-free. We are now left with the cases $a c a^{-1}=c, a c a^{-1}=b a$ and $a c a^{-1}=a^{-1} b$ (which, if it is an involution, equals $b^{-1} a$). If $a c a^{-1}=c$, then $\langle S\rangle=\langle a, c\rangle=C_{6}$, but the only product-free set of size 3 in C_{6} contains no elements of order 3 , so this is impossible. Therefore $a c a^{-1} \in\left\{b a, a^{-1} b\right\}$. If $a c a^{-1}=b a$, then $a^{-1} b a=c a^{-1}$, so $a c=a^{-1} b^{-1} a$, which has order 3 . If $a c a^{-1}=a^{-1} b$, then $a c=a^{-1} b a$, again of order 3. So we see that

$$
\langle S\rangle=\left\langle a, c: a^{3}=1, c^{2}=1,(a c)^{3}=1\right\rangle .
$$

This is a well known presentation of the alternating group Alt(4). As c is the only element of S whose order is even, we see that $|\hat{S}| \leq 1$, and hence $|G| \leq 2|\operatorname{Alt}(4)|=24$. Therefore in all cases $|G| \leq 24$.

3 Data and Programs

Though Table 1 is essentially just Table 5 from [3], we have taken the opportunity here to correct a typographical error in the entry for the (un-named) group of order 16. We provide below the GAP programs used to obtain the table.

Program 3.1. A program that tests if a set T is product-free.

```
## It returns "0" if T is product-free, and "1" if otherwise.
prodtest:= function(T)
local x, y, prod;
prod:=0;
```

```
for x in T do
    for y in T do
        if x*y in T then
        prod:=1;
        fi;
    od;
od;
return prod;
end;
```

Program 3.2. A program for finding all locally maximal product-free sets of size 3 in G.

```
##It prints the list of all locally maximal product-free sets of size 3 in G.
```

LMPFS3:=function(G)
local L, lmpf, combs, $x, p f, H, y, z, s, i, q ;$
L:=AsSortedList(G); lmpf:=[]; combs:=Combinations(L,3);
for i in [1..Binomial(Size(L),3)] do
pf:=combs[i];
if prodtest(pf)=0 then
s:=Size(lmpf); H:=Difference(L,pf);
for y in [1..3] do
for z in [1..3] do
$H:=\operatorname{Difference}\left(H, \quad\left[p f[y] * p f[z], \operatorname{pf}[y] *(p f[z])^{\wedge}-1, \quad\left((p f[y])^{\wedge}-1\right) * p f[z]\right]\right)$;
od;
od;
for q in L do
if $q^{\wedge} 2$ in $p f$ then
H:=Difference(H, [q]);
fi;
od;
if Size(H) = 0 then
lmpf:=Union(lmpf, [pf]);
fi;
fi;
od;
if Size(lmpf) > 0 then
Print (G,"\n", L, "\n","Structure Description of G is ",StructureDescription(G),
"\n", "Gap Id of G is ", IdGroup(G), "\n", "\n", lmpf, "\n", "\n");
fi;
end;

G		S	$\langle S\rangle$	\# Locally maximal product-free sets of size 3 in G
$\left\langle g: g^{6}=1\right\rangle$	$\cong C_{6}$	$\left\{g, g^{3}, g^{5}\right\}$	$\cong C_{6}$	1
$\left\langle g, h: g^{3}=h^{2}=1, h g h=g^{-1}\right\rangle$	$\cong D_{6}$	$\left\{h, g h, g^{2} h\right\}$	$\cong D_{6}$	1
$\left\langle g: g^{8}=1\right\rangle$	$\cong C_{8}$	$\left\{g, g^{-1}, g^{4}\right\}$	$\cong C_{8}$	2
$\left\langle g, h: g^{4}=h^{2}=1, h g h^{-1}=g^{-1}\right\rangle$	$\cong D_{8}$	$\left\{h, g h, g^{2}\right\}$	$\cong D_{8}$	4
$\left\langle g: g^{9}=1\right\rangle$	$\cong C_{9}$	$\left\{g, g^{3}, g^{8}\right\},\left\{g, g^{4}, g^{7}\right\}$	$\cong C_{9}$	8
$\left\langle g, h: g^{3}=h^{3}=1, g h=h g\right\rangle$	$\cong C_{3} \times C_{3}$	$\left\{g, h, g^{2} h^{2}\right\}$	$\cong C_{3} \times C_{3}$	8
$\left\langle g: g^{10}=1\right\rangle$	$\cong C_{10}$	$\left\{g^{2}, g^{5}, g^{8}\right\},\left\{g, g^{5}, g^{8}\right\}$	$\cong C_{10}$	6
$\left\langle g: g^{11}=1\right\rangle$	$\cong C_{11}$	$\left\{g, g^{3}, g^{5}\right\}$	$\cong C_{11}$	10
$\left\langle g: g^{12}=1\right\rangle$	$\cong C_{12}$	$\left\{g^{2}, g^{6}, g^{10}\right\}$	$\cong C_{6}$	1
		$\left\{g, g^{6}, g^{10}\right\},\left\{g, g^{3}, g^{8}\right\}$	$\cong C_{12}$	8
$\left\langle g, h: g^{6}=1, g^{3}=h^{2}, h g h^{-1}=g^{-1}\right\rangle$	$\cong Q_{12}$	$\left\{g, g^{3}, g^{5}\right\}$	$\cong C_{6}$	1
Alternating group of degree 4	$=\operatorname{Alt}(4)$	$\begin{gathered} \left\{x, y, z: x^{2}=y^{2}=z^{3}=1\right\} \\ \left\{x, z, x z x: x^{2}=z^{3}=1\right\} \\ \left\{x, z, z x z: x^{2}=z^{3}=1\right\} \end{gathered}$	$\cong \operatorname{Alt}(4)$	48
$\left\langle g: g^{13}=1\right\rangle$	$\cong C_{13}$	$\left\{g, g^{3}, g^{9}\right\},\left\{g, g^{6}, g^{10}\right\}$	$\cong C_{13}$	16
$\left\langle g: g^{15}=1\right\rangle$	$\cong C_{15}$	$\left\{g, g^{3}, g^{11}\right\}$	$\cong C_{15}$	4
$\left\langle g, h: g^{4}=h^{4}=1, g h=h g\right\rangle$	$\cong C_{4} \times C_{4}$	$\left\{g, h, g^{-1} h^{-1}\right\}$	$\cong C_{4} \times C_{4}$	16
$\left\langle g, h: g^{8}=1, g^{4}=h^{2}, h g h^{-1}=g^{-1}\right\rangle$	$\cong Q_{16}$	$\left\{g, g^{4}, g^{-1}\right\}$	$\cong C_{8}$	2
$\left\langle g, h: g^{8}=h^{2}=1, h g h^{-1}=g^{5}\right\rangle$	(order 16)	$\left\{g, g^{6}, g^{3} h\right\}$	$\cong G$	8
$\left\langle g, h: g^{10}=1, g^{5}=h^{2}, h g h^{-1}=g^{-1}\right\rangle$	$\cong Q_{20}$	$\left\{g, g^{5}, g^{8}\right\},\left\{g^{2}, g^{5}, g^{8}\right\}$	$\cong C_{10}$	6
$\left\langle g, h: g^{3}=h^{7}=1, g h g^{-1}=h^{2}\right\rangle$	$\cong C_{7} \rtimes C_{3}$	$\left\{g h, g h^{-1}, g^{-1}\right\}$	$\cong C_{7} \rtimes C_{3}$	42
$\left\langle x: x^{3}=1\right\rangle \times\left\langle g, h: g^{4}=1, g^{2}=h^{2}, h g h^{-1}=g^{-1}\right\rangle$	$\cong C_{3} \times Q_{8}$	$\left\{g^{2}, x g^{2}, x^{2} g^{2}\right\}$	$\cong C_{6}$	1
$\left\langle g, h: g^{12}=1, g^{6}=h^{2}, h g h^{-1}=g^{-1}\right\rangle$	$\cong Q_{24}$	$\left\{g^{2}, g^{6}, g^{10}\right\}$	$\cong C_{6}$	1
		$\left\{g, g^{6}, g^{10}\right\}$	$\cong C_{12}$	4

Table 1: Locally maximal product-free sets of size 3 in groups of order up to 24

References

[1] László Babai and Vera T. Sós, Sidon sets in groups and induced subgraphs of Cayley graphs, European J. Combin. 6 (1985), 101-114.
[2] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.7.7; 2015, (http://www.gap-system.org).
[3] Michael Giudici and Sarah Hart, Small maximal sum-free sets, Elect. J. Comb. 16 (2009), 1-17.
[4] W. T. Gowers, Quasirandom groups, Combin. Probab. Comput. 17 (2008), no. 3, 363387.
[5] Ben Green and Imre Z. Ruzsa, Sum-free sets in abelian groups, Israel J. Math. 147 (2005), 157-188.
[6] Kiran S. Kedlaya, Large product-free subsets of finite groups, J. Combin. Theory Ser. A 77 (1997), 339-343.
[7] A. P. Street and E. G. Whitehead Jr., Group Ramsey theory, J. Combinatorial Theory Ser. A 17 (1974), 219-226.
[8] A. P. Street and E. G. Whitehead, Jr., Sum-free sets, difference sets and cyclotomy. Combinatorial Math., Lecture notes in Mathematics 403 (1974), 109-124.

[^0]: *The first author is supported by a Birkbeck PhD Scholarship

