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Abstract

Let G be a group, and S a non-empty subset of G. Then S is product-free if ab /∈ S
for all a, b ∈ S. We say S is locally maximal product-free if S is product-free and not
properly contained in any other product-free set. A natural question is what is the
smallest possible size of a locally maximal product-free set in G. The groups containing
locally maximal product-free sets of sizes 1 and 2 were classified in [3]. In this paper, we
prove a conjecture of Giudici and Hart in [3] by showing that if S is a locally maximal
product-free set of size 3 in a group G, then |G| ≤ 24. This shows that the list of
known locally maximal product-free sets given in [3] is complete.

1 Introduction

Let G be a group, and S a non-empty subset of G. Then S is product-free if ab /∈ S for
all a, b ∈ S. For example, if H is a subgroup of G then Hg is a product-free set for any
g /∈ H. Traditionally these sets have been studied in abelian groups, and have therefore been
called sum-free sets. Since we are working with arbitrary groups it makes more sense to say
‘product-free’ in this context. We say S is locally maximal product-free if S is product-free
and not properly contained in any other product-free set. We use the term locally maximal
rather than maximal because the majority of the literature in this area uses maximal to
mean maximal by cardinality (for example [7, 8]).

There are some obvious questions from the definition: given a group G, what is the maximum
cardinality of a product-free set in G, and what are the maximal (by cardinality) product-
free sets? How many product-free sets are there in G? Given that each product-free set is
contained in a locally maximal product-free set, what are the locally maximal product-free
sets? What are the possible sizes of locally maximal product-free sets? The question of
maximal (by cardinality) product-free sets has been fully solved for abelian groups by Green
and Rusza [5]. For the nonabelian case Kedlaya [6] showed that there exists a constant c such
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that the largest product-free set in a group of order n has size at least cn11/14. Gowers [4]
proved that if the smallest nontrivial representation of G is of dimension k then the largest
product-free set in G has size at most k−1/3n (Theorem 3.3 and commentary at the start of
Section 5). Much less is known about the minimum sizes of locally maximal product-free
sets. This question was first asked in [1] where the authors ask what is the minimum size of
a locally maximal product-free set in a group of order n? A good bound is still not known.
Small locally-maximal product-free sets when G is an elementary abelian 2-group are of
interest in finite geometry, because they correspond to complete caps in PG(n − 1, 2). In
[3], the groups containing locally maximal product-free sets of sizes 1 and 2 were classified.
Some general results were also obtained. Furthermore, there was a classification (Theorem
5.6) of groups containing locally maximal product-free sets S of size 3 for which not every
subset of size 2 in S generates 〈S〉. Each of these groups has order at most 24. Conjecture
5.7 of [3] was that if G is a group of order greater than 24, then G does not contain a locally
maximal product-free set of size 3. Table 5 listed all the locally maximal product-free sets
in groups of orders up to 24. So the conjecture asserts that this list is the complete list of all
such sets. We have reproduced Table 5 as Table 1 in this paper because we need to use it in
some of the arguments here. The main result of this paper is the following and its immediate
corollary.

Theorem 1.1. Suppose S is a locally maximal product-free set of size 3 in a group G, such
that every two element subset of S generates 〈S〉. Then |G| ≤ 24.

Corollary 1.2. If a group G contains a locally maximal product-free set S of size 3, then
|G| ≤ 24 and the only possibilities for G and S are listed in Table 1.

Proof. If not every two-element subset of S generates 〈S〉, then by Theorem 5.6 of [3],
|G| ≤ 24. We may therefore assume that every two-element subset of S generates 〈S〉.
Then |G| ≤ 24 by Theorem 1.1. Now Table 1 is just Table 5 of [3]; it is a list of all locally
maximal product-free sets of size 3 occurring in groups of order up to 24 (in fact, up to
37 in the original paper). Since we have shown that all locally maximal product-free sets
of size 3 occur in groups of order up to 24, this table now constitutes a complete list of
possibilities.

We finish this section by establishing the notation to be used in the rest of the paper, and
giving some basic results from [3]. For subsets A,B of a group G, we use the standard
notation AB for the product of A and B. That is,

AB = {ab : a ∈ A, b ∈ B}.

By definition, a nonempty set S ⊆ G is product-free if and only if S ∩ SS = ∅. In order
to investigate locally maximal product-free sets, we introduce some further notations. For a

2



set S ⊆ G, we define the following sets:

S2 = {a2 : a ∈ S};
S−1 = {a−1 : a ∈ S};√
S = {x ∈ G : x2 ∈ S};

T (S) = S ∪ SS ∪ SS−1 ∪ S−1S;

Ŝ = {s ∈ S :
√
{s} 6⊂ 〈S〉}.

For a singleton set {a}, we usually write
√
a instead of

√
{a}.

For a positive integer n, we will denote by Alt(n) the alternating group of degree n, by Cn

the cyclic group of order n, by D2n the dihedral group of order 2n, and by Q4n the dicyclic
group of order 4n given by Q4n := 〈x, y : x2n = 1, xn = y2, yx = x−1y〉.

We finish this section with a few results from [3].

Lemma 1.3. [3, Lemma 3.1] Suppose S is a product-free set in the group G. Then S is
locally maximal product-free if and only if G = T (S) ∪

√
S.

The next result lists, in order, Proposition 3.2, Theorem 3.4, Propositions 3.6, 3.7, 3.8 and
Corollary 3.10 of [3].

Theorem 1.4. Let S be a locally maximal product-free set in a group G. Then

(i) 〈S〉 is a normal subgroup of G and G/〈S〉 is either trivial or an elementary abelian
2-group;

(ii) |G| ≤ 2|T (S)| · |〈S〉|;

(iii) if 〈S〉 is not an elementary abelian 2-group and |Ŝ| = 1, then |G| = 2|〈S〉|;

(iv) every element s of Ŝ has even order, and all odd powers of s lie in S;

(v) if there exists s ∈ S and integers m1, . . . ,mt such that Ŝ = {s, sm1 , . . . , smt}, then |G|
divides 4|〈S〉|;

(vi) if S ∩ S−1 = ∅, then |G| ≤ 4|S|2 + 1.

We require one final result.

Theorem 1.5. [3, Theorem 5.1] Up to isomorphism, the only instances of locally maximal
product-free sets S of size 3 of a group G where |G| ≤ 37 are given in Table 1.
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2 Proof of Theorem 1.1

Proposition 2.1. Suppose S is locally maximal product-free of size 3 in G. If 〈S〉 is cyclic,
then |G| ≤ 24.

Proof. Write S = {a, b, c}. First note that since 〈S〉 is abelian, SS−1 = S−1S; moreover
aa−1 = bb−1 = cc−1 = 1; so |SS−1| ≤ 7. Also SS ⊆ {a2, b2, c2, ab, ac, bc}. Thus

|T (S)| = |S ∪ SS ∪ SS−1| ≤ 3 + 6 + 7 = 16.

By Lemma 1.3, G = T (S) ∪
√
S; so 〈S〉 = T (S) ∪ (〈S〉 ∩

√
S). Elements of cyclic groups

have at most two square roots. Therefore |〈S〉| ≤ 16 + 6 = 22. By Table 1, 〈S〉 must now
be one of C6, C8, C9, C10, C11, C12, C13 or C15. Theorem 1.4(iv) tells us that every element
s of Ŝ has even order and all odd powers of s lie in S. This means that for C9, C11, C13 or
C15, we have Ŝ = ∅ and so G = 〈S〉. In particular, |G| ≤ 24.

It remains to consider C6, C8, C10 and C12. For C6 = 〈g : g6 = 1〉, the unique locally
maximal product-free set of size 3 is S = {g, g3, g5}. Now if g or g5 is contained in Ŝ, then
Ŝ consists of powers of a single element; so by Theorem 1.4(v), |G| divides 24. If neither g
nor g5 is in Ŝ, then |Ŝ| ≤ 1, and so by Theorem 1.4(iii) therefore, |G| divides 12. In C8 there
is a unique (up to group automorphisms) locally maximal product-free set of size 3, and it
is {g, g−1, g4}, where g is any element of order 8. If Ŝ contains g or g−1, then S contains
all odd powers of that element by Theorem 1.4(iv), and hence S contains {g, g3, g5, g7}, a
contradiction. Therefore |Ŝ| ≤ 1 and so |G| divides 16. Next, we consider 〈S〉 = C10. Recall
that elements of Ŝ must have even order. If Ŝ contains any element of order 10, then S
contains all five odd powers of this element, which is impossible by Theorem 1.4(iv). This
leaves only the involution of C10 as a possible element of Ŝ. Hence again |Ŝ| ≤ 1 and |G|
divides 20. Finally we look at C12. If Ŝ contains any element of order 12, then |S| ≥ 6,
a contradiction. If Ŝ contains an element x of order 6 then S contains all three of its odd
powers, so S = {x, x3, x5}. But then 〈S〉 ∼= C6, contradicting the assumption that 〈S〉 = C12.
Therefore, Ŝ can only contain elements of order 2 or 4. Up to group automorphism, we see
from Table 1 that every locally maximal product-free set S of size 3 in C12 with 〈S〉 = C12

is one of {g, g6, g10} or {g, g3, g8} for some generator g of C12. Each of these sets contains
exactly one element of order 2 or 4. Therefore in every case, |Ŝ| ≤ 1 and so |G| divides 24.
This completes the proof.

Note that the bound on |G| in Proposition 2.1 is attainable. For example in Q24 there is a
locally maximal product-free set S of size 3, with 〈S〉 ∼= C12.

Proposition 2.2. Suppose S is locally maximal product-free of size 3 in G such that every 2-
element subset of S generates 〈S〉. Then either |G| ≤ 24 or S contains exactly one involution.

Proof. First suppose S contains no involutions. If S ∩ S−1 = ∅, then Theorem 1.4(vi) tells
us that G has order at most 37, and then by Theorem 1.5, (G,S) is one of the possibilities
listed in Table 1. In particular |G| ≤ 24. If S ∩ S−1 6= ∅, then S = {a, a−1, b} for some a, b.
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But then 〈S〉 = 〈a, a−1〉 = 〈a〉, so 〈S〉 is cyclic. Now by Proposition 2.1 we get |G| ≤ 24.
Next, suppose that S contains at least two involutions, a and b, with the third element being
c. Then, since every 2-element subset of S generates 〈S〉, we have that H = 〈S〉 = 〈a, b〉
is dihedral and S is locally maximal product-free in H. Let o(ab) = m, so H ∼= D2m. The
non-trivial coset of the subgroup 〈ab〉 is product-free of size m. So if c lies in this coset,
then we have m = 3 and H ∼= D6. If c does not lie in this coset then c = (ab)i for some i,
and from the relations in a dihedral group ac−1 = ca, c−1a = ac, bc−1 = cb and c−1b = bc.
The coset 〈ab〉a consists of m involutions, which cannot lie in

√
S. Thus 〈ab〉a ⊆ T (S) by

Lemma 1.3. A straightforward calculation shows that

〈ab〉a = T (S) ∩ 〈ab〉a = {a, b, ac, ca, bc, cb, ac−1, c−1a, bc−1, c−1b}
= {a, b, ac, ca, bc, cb}

This means m ≤ 6, and S consists of two generating involutions a, b plus a power of their
product ab, with the property that any two-element subset of S generates 〈a, b〉. A glance at
Table 1 shows there are no locally maximal product-free sets of this form in D2m for m ≤ 6.
Therefore the only possibility is that 〈S〉 ∼= D6, with S consisting of the three reflections
in 〈S〉. By Theorem 1.4(i), the index of 〈S〉 in G is a power of 2. By Theorem 1.4(ii),
|G| ≤ 2|T (S)| · |〈S〉|. Thus |G| ∈ {6, 12, 24, 48}. Suppose for contradiction that |G| = 48.
Now G = T (S)∪

√
S, and since S consists of involutions, the elements of

√
S have order 4. So

G contains two elements of order 3, three elements of order 2 and the remaining non-identity
elements have order 4. Then the 46 elements of G whose order is a power of 2 must lie in
three Sylow 2-subgroups of order 16, with trivial pairwise intersection. Each of these groups
therefore has a unique involution and 14 elements of order 4, all of which square to the given
involution. But no group of order 16 has fourteen elements of order 4. Hence |G| 6= 48, and
so |G| ≤ 24. Therefore either |G| ≤ 24 or G contains exactly one involution.

Before we establish the next result, we first make a useful observation. Suppose S = {a, b, c}
where a, b, c ∈ G and c is an involution. Then a straightforward calculation shows that

T (S) ⊆
{

1, a, b, c, a2, b2, ab, ba, ac, ca, bc, cb,
ab−1, ba−1, ca−1, cb−1, a−1b, a−1c, b−1a, b−1c

}
. (1)

Lemma 2.3. Suppose S is a locally maximal product-free set of size 3 in G, every 2-element
subset of S generates 〈S〉, and S contains exactly one involution. Then either |G| ≤ 24 or
S = {a, b, c}, where a and b have order 3 and c is an involution.

Proof. Suppose S = {a, b, c} where c is an involution and a, b are not. Consider a−1. Recall
that G = T (S)∪

√
S. If a−1 ∈

√
S then a−2 ∈ {a, b, c} which implies that either a has order

3 or 〈S〉 is cyclic (because for example if a−2 = b then 〈S〉 = 〈a, b〉 = 〈a〉). Thus if a−1 ∈
√
S

implies that either a has order 3 or (by Lemma 2.1) |G| ≤ 24. Suppose then that a−1 ∈ T (S).
The elements of T (S) are given in Equation 1. If a−1 ∈ {b, b2, ab, ba, ab−1, ba−1, a−1b, b−1a}
then by remembering that 〈S〉 = 〈a, b〉, we deduce that 〈S〉 is cyclic, generated by either a or
b. For example, a−1 = ba implies b ∈ 〈a〉. Similarly, if a−1 ∈ {c, ac, ca, a−1c, c−1a}, then 〈S〉 is
cyclic. Since a has order at least 3, we cannot have a−1 ∈ {1, a}. If a−1 ∈ {bc, cb, b−1c, c−1b},
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then S would not be product-free. For instance a−1 = b−1c implies that b−1ca = 1, and
hence ac = b. The only remaining possibility is a−1 = a2, meaning that a has order 3. The
same argument with b−1 shows that b also has order 3.

We can now prove Theorem 1.1, which states that if S is a locally maximal product-free set
of size 3 in a group G, such that every two element subset of S generates 〈S〉, then |G| ≤ 24.

Proof of Theorem 1.1 Suppose S is a locally maximal product-free set of size 3 in G
such that every two element subset of S generates 〈S〉. Then by Lemma 2.3, either |G| ≤ 24
or S = {a, b, c} where a and b have order 3 and c is an involution. In the latter case, we
observe that aca−1 is an involution, so must be contained in T (S). Using Equation 1 we work
through the possibilities. Obviously it is impossible for aca−1 to be equal to any of 1, a, b, a2

or b2 because these elements are not of order 2. If any of ac, ca, a−1c, c−1a, bc, cb, b−1c or
cb−1 were involutions, then it would imply that 〈S〉 was generated by two involutions whose
product has order 3. For example if ac were an involution then 〈c, ac〉 = 〈a, c〉 = 〈S〉. That
is, 〈S〉 would be dihedral of order 6. But there is no product-free set in D6 containing
two elements of order 3, because if x, y are the elements of order 3 in D6 then x2 = y and
y2 = x. So the remaining possibilities for aca−1 are c, ab, ba, ab−1, ba−1, a−1b and b−1a. Now
aca−1 = ab implies c = ba, whereas aca−1 = ab−1 implies bc = a and aca−1 = ba−1 implies
b = ac, each of which contradicts the fact that S is product-free. We are now left with the
cases aca−1 = c, aca−1 = ba and aca−1 = a−1b (which, if it is an involution, equals b−1a). If
aca−1 = c, then 〈S〉 = 〈a, c〉 = C6, but the only product-free set of size 3 in C6 contains no
elements of order 3, so this is impossible. Therefore aca−1 ∈ {ba, a−1b}. If aca−1 = ba, then
a−1ba = ca−1, so ac = a−1b−1a, which has order 3. If aca−1 = a−1b, then ac = a−1ba, again
of order 3. So we see that

〈S〉 = 〈a, c : a3 = 1, c2 = 1, (ac)3 = 1〉.

This is a well known presentation of the alternating group Alt(4). As c is the only element
of S whose order is even, we see that |Ŝ| ≤ 1, and hence |G| ≤ 2|Alt(4)| = 24. Therefore in
all cases |G| ≤ 24.

3 Data and Programs

Though Table 1 is essentially just Table 5 from [3], we have taken the opportunity here to
correct a typographical error in the entry for the (un-named) group of order 16. We provide
below the GAP programs used to obtain the table.

Program 3.1. A program that tests if a set T is product-free.

## It returns "0" if T is product-free, and "1" if otherwise.

prodtest:= function(T)

local x, y, prod;

prod:=0;
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for x in T do

for y in T do

if x*y in T then

prod:=1;

fi;

od;

od;

return prod;

end;

Program 3.2. A program for finding all locally maximal product-free sets of size 3 in G.

##It prints the list of all locally maximal product-free sets of size 3 in G.

LMPFS3:=function(G)

local L, lmpf, combs, x, pf, H, y, z, s, i, q;

L:=AsSortedList(G); lmpf:=[]; combs:=Combinations(L,3);

for i in [1..Binomial(Size(L),3)] do

pf:=combs[i];

if prodtest(pf)=0 then

s:=Size(lmpf); H:=Difference(L,pf);

for y in [1..3] do

for z in [1..3] do

H:=Difference(H, [pf[y]*pf[z], pf[y]*(pf[z])^-1, ((pf[y])^-1)*pf[z]]);

od;

od;

for q in L do

if q^2 in pf then

H:=Difference(H, [q]);

fi;

od;

if Size(H) = 0 then

lmpf:=Union(lmpf, [pf]);

fi;

fi;

od;

if Size(lmpf) > 0 then

Print(G,"\n",L,"\n","Structure Description of G is ",StructureDescription(G),

"\n", "Gap Id of G is ", IdGroup(G), "\n", "\n", lmpf, "\n", "\n");

fi;

end;
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