

Locally maximal product-free sets of size 3

By

Chimere S. Anabanti and Sarah B. Hart

Birkbeck Pure Mathematics Preprint Series

Preprint Number 10

www.bbk.ac.uk/ems/research/pure/preprints

Locally maximal product-free sets of size 3

Chimere S. Anabanti^{*} c.anabanti@mail.bbk.ac.uk

Sarah B. Hart s.hart@bbk.ac.uk

April 2015

Abstract

Let G be a group, and S a non-empty subset of G. Then S is product-free if $ab \notin S$ for all $a, b \in S$. We say S is locally maximal product-free if S is product-free and not properly contained in any other product-free set. A natural question is what is the smallest possible size of a locally maximal product-free set in G. The groups containing locally maximal product-free sets of sizes 1 and 2 were classified in [3]. In this paper, we prove a conjecture of Giudici and Hart in [3] by showing that if S is a locally maximal product-free set of size 3 in a group G, then $|G| \leq 24$. This shows that the list of known locally maximal product-free sets given in [3] is complete.

1 Introduction

Let G be a group, and S a non-empty subset of G. Then S is product-free if $ab \notin S$ for all $a, b \in S$. For example, if H is a subgroup of G then Hg is a product-free set for any $g \notin H$. Traditionally these sets have been studied in abelian groups, and have therefore been called sum-free sets. Since we are working with arbitrary groups it makes more sense to say 'product-free' in this context. We say S is *locally maximal product-free* if S is product-free and not properly contained in any other product-free set. We use the term *locally maximal* rather than maximal because the majority of the literature in this area uses *maximal* to mean maximal by cardinality (for example [7, 8]).

There are some obvious questions from the definition: given a group G, what is the maximum cardinality of a product-free set in G, and what are the maximal (by cardinality) product-free sets? How many product-free sets are there in G? Given that each product-free set is contained in a locally maximal product-free set, what are the locally maximal product-free sets? What are the possible sizes of locally maximal product-free sets? The question of maximal (by cardinality) product-free sets has been fully solved for abelian groups by Green and Rusza [5]. For the nonabelian case Kedlaya [6] showed that there exists a constant c such

^{*}The first author is supported by a Birkbeck PhD Scholarship

that the largest product-free set in a group of order n has size at least $cn^{11/14}$. Gowers [4] proved that if the smallest nontrivial representation of G is of dimension k then the largest product-free set in G has size at most $k^{-1/3}n$ (Theorem 3.3 and commentary at the start of Section 5). Much less is known about the minimum sizes of locally maximal product-free sets. This question was first asked in [1] where the authors ask what is the minimum size of a locally maximal product-free set in a group of order n? A good bound is still not known. Small locally-maximal product-free sets when G is an elementary abelian 2-group are of interest in finite geometry, because they correspond to complete caps in PG(n-1,2). In [3], the groups containing locally maximal product-free sets of sizes 1 and 2 were classified. Some general results were also obtained. Furthermore, there was a classification (Theorem 5.6) of groups containing locally maximal product-free sets S of size 3 for which not every subset of size 2 in S generates $\langle S \rangle$. Each of these groups has order at most 24. Conjecture 5.7 of [3] was that if G is a group of order greater than 24, then G does not contain a locally maximal product-free set of size 3. Table 5 listed all the locally maximal product-free sets in groups of orders up to 24. So the conjecture asserts that this list is the complete list of all such sets. We have reproduced Table 5 as Table 1 in this paper because we need to use it in some of the arguments here. The main result of this paper is the following and its immediate corollary.

Theorem 1.1. Suppose S is a locally maximal product-free set of size 3 in a group G, such that every two element subset of S generates $\langle S \rangle$. Then $|G| \leq 24$.

Corollary 1.2. If a group G contains a locally maximal product-free set S of size 3, then $|G| \leq 24$ and the only possibilities for G and S are listed in Table 1.

Proof. If not every two-element subset of S generates $\langle S \rangle$, then by Theorem 5.6 of [3], $|G| \leq 24$. We may therefore assume that every two-element subset of S generates $\langle S \rangle$. Then $|G| \leq 24$ by Theorem 1.1. Now Table 1 is just Table 5 of [3]; it is a list of all locally maximal product-free sets of size 3 occurring in groups of order up to 24 (in fact, up to 37 in the original paper). Since we have shown that all locally maximal product-free sets of size 3 occur in groups of order up to 24, this table now constitutes a complete list of possibilities.

We finish this section by establishing the notation to be used in the rest of the paper, and giving some basic results from [3]. For subsets A, B of a group G, we use the standard notation AB for the product of A and B. That is,

$$AB = \{ab : a \in A, b \in B\}.$$

By definition, a nonempty set $S \subseteq G$ is product-free if and only if $S \cap SS = \emptyset$. In order to investigate locally maximal product-free sets, we introduce some further notations. For a

set $S \subseteq G$, we define the following sets:

$$S^{2} = \{a^{2} : a \in S\};\$$

$$S^{-1} = \{a^{-1} : a \in S\};\$$

$$\sqrt{S} = \{x \in G : x^{2} \in S\};\$$

$$T(S) = S \cup SS \cup SS^{-1} \cup S^{-1}S;\$$

$$\hat{S} = \{s \in S : \sqrt{\{s\}} \not\subset \langle S \rangle\}.$$

For a singleton set $\{a\}$, we usually write \sqrt{a} instead of $\sqrt{\{a\}}$.

For a positive integer n, we will denote by Alt(n) the alternating group of degree n, by C_n the cyclic group of order n, by D_{2n} the dihedral group of order 2n, and by Q_{4n} the dicyclic group of order 4n given by $Q_{4n} := \langle x, y : x^{2n} = 1, x^n = y^2, yx = x^{-1}y \rangle$.

We finish this section with a few results from [3].

Lemma 1.3. [3, Lemma 3.1] Suppose S is a product-free set in the group G. Then S is locally maximal product-free if and only if $G = T(S) \cup \sqrt{S}$.

The next result lists, in order, Proposition 3.2, Theorem 3.4, Propositions 3.6, 3.7, 3.8 and Corollary 3.10 of [3].

Theorem 1.4. Let S be a locally maximal product-free set in a group G. Then

- (i) $\langle S \rangle$ is a normal subgroup of G and $G/\langle S \rangle$ is either trivial or an elementary abelian 2-group;
- (ii) $|G| \leq 2|T(S)| \cdot |\langle S \rangle|;$
- (iii) if $\langle S \rangle$ is not an elementary abelian 2-group and $|\hat{S}| = 1$, then $|G| = 2|\langle S \rangle|$;
- (iv) every element s of \hat{S} has even order, and all odd powers of s lie in S;
- (v) if there exists $s \in S$ and integers m_1, \ldots, m_t such that $\hat{S} = \{s, s^{m_1}, \ldots, s^{m_t}\}$, then |G| divides $4|\langle S \rangle|$;
- (vi) if $S \cap S^{-1} = \emptyset$, then $|G| \le 4|S|^2 + 1$.

We require one final result.

Theorem 1.5. [3, Theorem 5.1] Up to isomorphism, the only instances of locally maximal product-free sets S of size 3 of a group G where $|G| \leq 37$ are given in Table 1.

2 Proof of Theorem 1.1

Proposition 2.1. Suppose S is locally maximal product-free of size 3 in G. If $\langle S \rangle$ is cyclic, then $|G| \leq 24$.

Proof. Write $S = \{a, b, c\}$. First note that since $\langle S \rangle$ is abelian, $SS^{-1} = S^{-1}S$; moreover $aa^{-1} = bb^{-1} = cc^{-1} = 1$; so $|SS^{-1}| \leq 7$. Also $SS \subseteq \{a^2, b^2, c^2, ab, ac, bc\}$. Thus

$$|T(S)| = |S \cup SS \cup SS^{-1}| \le 3 + 6 + 7 = 16.$$

By Lemma 1.3, $G = T(S) \cup \sqrt{S}$; so $\langle S \rangle = T(S) \cup (\langle S \rangle \cap \sqrt{S})$. Elements of cyclic groups have at most two square roots. Therefore $|\langle S \rangle| \leq 16 + 6 = 22$. By Table 1, $\langle S \rangle$ must now be one of C_6 , C_8 , C_9 , C_{10} , C_{11} , C_{12} , C_{13} or C_{15} . Theorem 1.4(iv) tells us that every element s of \hat{S} has even order and all odd powers of s lie in S. This means that for C_9 , C_{11} , C_{13} or C_{15} , we have $\hat{S} = \emptyset$ and so $G = \langle S \rangle$. In particular, $|G| \leq 24$.

It remains to consider C_6 , C_8 , C_{10} and C_{12} . For $C_6 = \langle g : g^6 = 1 \rangle$, the unique locally maximal product-free set of size 3 is $S = \{g, g^3, g^5\}$. Now if g or g^5 is contained in \hat{S} , then \hat{S} consists of powers of a single element; so by Theorem 1.4(v), |G| divides 24. If neither g nor g^5 is in \hat{S} , then $|\hat{S}| \leq 1$, and so by Theorem 1.4(iii) therefore, |G| divides 12. In C_8 there is a unique (up to group automorphisms) locally maximal product-free set of size 3, and it is $\{g, g^{-1}, g^4\}$, where g is any element of order 8. If \hat{S} contains g or g^{-1} , then S contains all odd powers of that element by Theorem 1.4(iv), and hence S contains $\{g, g^3, g^5, g^7\}$, a contradiction. Therefore $|\hat{S}| \leq 1$ and so |G| divides 16. Next, we consider $\langle S \rangle = C_{10}$. Recall that elements of \hat{S} must have even order. If \hat{S} contains any element of order 10, then S contains all five odd powers of this element, which is impossible by Theorem 1.4(iv). This leaves only the involution of C_{10} as a possible element of \hat{S} . Hence again $|\hat{S}| \leq 1$ and |G|divides 20. Finally we look at C_{12} . If \hat{S} contains any element of order 12, then $|S| \ge 6$, a contradiction. If \hat{S} contains an element x of order 6 then S contains all three of its odd powers, so $S = \{x, x^3, x^5\}$. But then $\langle S \rangle \cong C_6$, contradicting the assumption that $\langle S \rangle = C_{12}$. Therefore, \hat{S} can only contain elements of order 2 or 4. Up to group automorphism, we see from Table 1 that every locally maximal product-free set S of size 3 in C_{12} with $\langle S \rangle = C_{12}$ is one of $\{g, g^6, g^{10}\}$ or $\{g, g^3, g^8\}$ for some generator g of C_{12} . Each of these sets contains exactly one element of order 2 or 4. Therefore in every case, $|\hat{S}| \leq 1$ and so |G| divides 24. This completes the proof.

Note that the bound on |G| in Proposition 2.1 is attainable. For example in Q_{24} there is a locally maximal product-free set S of size 3, with $\langle S \rangle \cong C_{12}$.

Proposition 2.2. Suppose S is locally maximal product-free of size 3 in G such that every 2element subset of S generates $\langle S \rangle$. Then either $|G| \leq 24$ or S contains exactly one involution.

Proof. First suppose S contains no involutions. If $S \cap S^{-1} = \emptyset$, then Theorem 1.4(vi) tells us that G has order at most 37, and then by Theorem 1.5, (G, S) is one of the possibilities listed in Table 1. In particular $|G| \leq 24$. If $S \cap S^{-1} \neq \emptyset$, then $S = \{a, a^{-1}, b\}$ for some a, b. But then $\langle S \rangle = \langle a, a^{-1} \rangle = \langle a \rangle$, so $\langle S \rangle$ is cyclic. Now by Proposition 2.1 we get $|G| \leq 24$. Next, suppose that S contains at least two involutions, a and b, with the third element being c. Then, since every 2-element subset of S generates $\langle S \rangle$, we have that $H = \langle S \rangle = \langle a, b \rangle$ is dihedral and S is locally maximal product-free in H. Let o(ab) = m, so $H \cong D_{2m}$. The non-trivial coset of the subgroup $\langle ab \rangle$ is product-free of size m. So if c lies in this coset, then we have m = 3 and $H \cong D_6$. If c does not lie in this coset then $c = (ab)^i$ for some i, and from the relations in a dihedral group $ac^{-1} = ca$, $c^{-1}a = ac$, $bc^{-1} = cb$ and $c^{-1}b = bc$. The coset $\langle ab \rangle a$ consists of m involutions, which cannot lie in \sqrt{S} . Thus $\langle ab \rangle a \subseteq T(S)$ by Lemma 1.3. A straightforward calculation shows that

$$\langle ab \rangle a = T(S) \cap \langle ab \rangle a = \{a, b, ac, ca, bc, cb, ac^{-1}, c^{-1}a, bc^{-1}, c^{-1}b\}$$

= $\{a, b, ac, ca, bc, cb\}$

This means $m \leq 6$, and S consists of two generating involutions a, b plus a power of their product ab, with the property that any two-element subset of S generates $\langle a, b \rangle$. A glance at Table 1 shows there are no locally maximal product-free sets of this form in D_{2m} for $m \leq 6$. Therefore the only possibility is that $\langle S \rangle \cong D_6$, with S consisting of the three reflections in $\langle S \rangle$. By Theorem 1.4(i), the index of $\langle S \rangle$ in G is a power of 2. By Theorem 1.4(ii), $|G| \leq 2|T(S)| \cdot |\langle S \rangle|$. Thus $|G| \in \{6, 12, 24, 48\}$. Suppose for contradiction that |G| = 48. Now $G = T(S) \cup \sqrt{S}$, and since S consists of involutions, the elements of \sqrt{S} have order 4. So G contains two elements of order 3, three elements of order 2 and the remaining non-identity elements have order 4. Then the 46 elements of G whose order is a power of 2 must lie in three Sylow 2-subgroups of order 16, with trivial pairwise intersection. Each of these groups therefore has a unique involution and 14 elements of order 4, all of which square to the given involution. But no group of order 16 has fourteen elements of order 4. Hence $|G| \neq 48$, and so $|G| \leq 24$. Therefore either $|G| \leq 24$ or G contains exactly one involution.

Before we establish the next result, we first make a useful observation. Suppose $S = \{a, b, c\}$ where $a, b, c \in G$ and c is an involution. Then a straightforward calculation shows that

$$T(S) \subseteq \left\{ \begin{array}{c} 1, a, b, c, a^2, b^2, ab, ba, ac, ca, bc, cb, \\ ab^{-1}, ba^{-1}, ca^{-1}, cb^{-1}, a^{-1}b, a^{-1}c, b^{-1}a, b^{-1}c \end{array} \right\}.$$
(1)

Lemma 2.3. Suppose S is a locally maximal product-free set of size 3 in G, every 2-element subset of S generates $\langle S \rangle$, and S contains exactly one involution. Then either $|G| \leq 24$ or $S = \{a, b, c\}$, where a and b have order 3 and c is an involution.

Proof. Suppose $S = \{a, b, c\}$ where c is an involution and a, b are not. Consider a^{-1} . Recall that $G = T(S) \cup \sqrt{S}$. If $a^{-1} \in \sqrt{S}$ then $a^{-2} \in \{a, b, c\}$ which implies that either a has order 3 or $\langle S \rangle$ is cyclic (because for example if $a^{-2} = b$ then $\langle S \rangle = \langle a, b \rangle = \langle a \rangle$). Thus if $a^{-1} \in \sqrt{S}$ implies that either a has order 3 or (by Lemma 2.1) $|G| \leq 24$. Suppose then that $a^{-1} \in T(S)$. The elements of T(S) are given in Equation 1. If $a^{-1} \in \{b, b^2, ab, ba, ab^{-1}, ba^{-1}, a^{-1}b, b^{-1}a\}$ then by remembering that $\langle S \rangle = \langle a, b \rangle$, we deduce that $\langle S \rangle$ is cyclic, generated by either a or b. For example, $a^{-1} = ba$ implies $b \in \langle a \rangle$. Similarly, if $a^{-1} \in \{c, ac, ca, a^{-1}c, c^{-1}a\}$, then $\langle S \rangle$ is cyclic. Since a has order at least 3, we cannot have $a^{-1} \in \{1, a\}$. If $a^{-1} \in \{bc, cb, b^{-1}c, c^{-1}b\}$,

then S would not be product-free. For instance $a^{-1} = b^{-1}c$ implies that $b^{-1}ca = 1$, and hence ac = b. The only remaining possibility is $a^{-1} = a^2$, meaning that a has order 3. The same argument with b^{-1} shows that b also has order 3.

We can now prove Theorem 1.1, which states that if S is a locally maximal product-free set of size 3 in a group G, such that every two element subset of S generates $\langle S \rangle$, then $|G| \leq 24$.

Proof of Theorem 1.1 Suppose S is a locally maximal product-free set of size 3 in Gsuch that every two element subset of S generates $\langle S \rangle$. Then by Lemma 2.3, either $|G| \leq 24$ or $S = \{a, b, c\}$ where a and b have order 3 and c is an involution. In the latter case, we observe that aca^{-1} is an involution, so must be contained in T(S). Using Equation 1 we work through the possibilities. Obviously it is impossible for aca^{-1} to be equal to any of 1, a, b, a^2 or b^2 because these elements are not of order 2. If any of $ac, ca, a^{-1}c, c^{-1}a, bc, cb, b^{-1}c$ or cb^{-1} were involutions, then it would imply that $\langle S \rangle$ was generated by two involutions whose product has order 3. For example if ac were an involution then $\langle c, ac \rangle = \langle a, c \rangle = \langle S \rangle$. That is, $\langle S \rangle$ would be dihedral of order 6. But there is no product-free set in D_6 containing two elements of order 3, because if x, y are the elements of order 3 in D_6 then $x^2 = y$ and $y^2 = x$. So the remaining possibilities for aca^{-1} are $c, ab, ba, ab^{-1}, ba^{-1}, a^{-1}b$ and $b^{-1}a$. Now $aca^{-1} = ab$ implies c = ba, whereas $aca^{-1} = ab^{-1}$ implies bc = a and $aca^{-1} = ba^{-1}$ implies b = ac, each of which contradicts the fact that S is product-free. We are now left with the cases $aca^{-1} = c$, $aca^{-1} = ba$ and $aca^{-1} = a^{-1}b$ (which, if it is an involution, equals $b^{-1}a$). If $aca^{-1} = c$, then $\langle S \rangle = \langle a, c \rangle = C_6$, but the only product-free set of size 3 in C_6 contains no elements of order 3, so this is impossible. Therefore $aca^{-1} \in \{ba, a^{-1}b\}$. If $aca^{-1} = ba$, then $a^{-1}ba = ca^{-1}$, so $ac = a^{-1}b^{-1}a$, which has order 3. If $aca^{-1} = a^{-1}b$, then $ac = a^{-1}ba$, again of order 3. So we see that

$$\langle S \rangle = \langle a, c : a^3 = 1, c^2 = 1, (ac)^3 = 1 \rangle.$$

This is a well known presentation of the alternating group Alt(4). As c is the only element of S whose order is even, we see that $|\hat{S}| \leq 1$, and hence $|G| \leq 2|Alt(4)| = 24$. Therefore in all cases $|G| \leq 24$.

3 Data and Programs

Though Table 1 is essentially just Table 5 from [3], we have taken the opportunity here to correct a typographical error in the entry for the (un-named) group of order 16. We provide below the GAP programs used to obtain the table.

Program 3.1. A program that tests if a set T is product-free.

```
## It returns "0" if T is product-free, and "1" if otherwise.
prodtest:= function(T)
local x, y, prod;
prod:=0;
```

```
for x in T do
    for y in T do
        if x*y in T then
            prod:=1;
        fi;
        od;
od;
return prod;
end;
```

Program 3.2. A program for finding all locally maximal product-free sets of size 3 in G.

```
##It prints the list of all locally maximal product-free sets of size 3 in G.
LMPFS3:=function(G)
local L, lmpf, combs, x, pf, H, y, z, s, i, q;
L:=AsSortedList(G); lmpf:=[]; combs:=Combinations(L,3);
for i in [1..Binomial(Size(L),3)] do
  pf:=combs[i];
  if prodtest(pf)=0 then
   s:=Size(lmpf); H:=Difference(L,pf);
   for y in [1..3] do
     for z in [1..3] do
       H:=Difference(H, [pf[y]*pf[z], pf[y]*(pf[z])^-1, ((pf[y])^-1)*pf[z]]);
     od;
   od;
   for q in L do
       if q^2 in pf then
          H:=Difference(H, [q]);
       fi;
   od;
   if Size(H) = 0 then
      lmpf:=Union(lmpf, [pf]);
   fi;
  fi;
od;
if Size(lmpf) > 0 then
  Print(G,"\n",L,"\n","Structure Description of G is ",StructureDescription(G),
  "\n", "Gap Id of G is ", IdGroup(G), "\n", "\n", lmpf, "\n", "\n");
fi;
end;
```

# Locally maximal product-free sets of size 3 in G		7 4 8	8 6 1 0 1	48 1 8	16 16 16 16 16 17 16 16 16 16 16 16 16 16 16 16 16 16 16
$\langle S \rangle$	$\sum_{i=1}^{N} D_{6}^{i}$	$\ \overset{C}{\to} D_8 \\ \ \overset{C}{\to} D_8 \\ \ \overset{C}{\to} U_8 \\ \ \overset{C}{\to} U_$	$\begin{array}{c} C_{10} \\ C_{10} \\ C_{10} \\ C_{11} \\ C_{11$	$ \cong C_{12} \\ \cong C_6 \\ \cong \operatorname{Alt}(4) $	$ \begin{array}{c c} \mathbb{C}_{13}\\ \mathbb{C}_{13}\\ \mathbb{C}_{15}\\ \mathbb{C}_{15}\\ \mathbb{C}_{10}\\ \mathbb{C}_{10}\\ \mathbb{C}_{10}\\ \mathbb{C}_{10}\\ \mathbb{C}_{12}\\ \mathbb$
S	$\{g, g^3, g^5\} \ \{h, gh, g^2h\} \ \{r, 2^{-1}, 2^{4}\}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c } & \{g,h,g^2h^2\} & \{g^2,g^5,g^8\}, \{g,g^3,g^5\} & \{g,g^3,g^5\} & \{g^2,g^6,g^{10}\} & \{g^2,g^6,g^{10}\} & \\ & \{g^2,g^6,g^{10}\} & \\ & & \{g^2,g^6,g^{10}\} & \\ & & & \\ \end{array} $	$ \begin{array}{c} \{g,g^{\circ},g^{\circ},g^{\circ}\}, \{g,g^{\circ},g^{\circ}\}\\ \{g,g^{3},g^{5}\}\\ \{x,y,z:x^{2}=y^{2}=z^{3}=1\}\\ \{x,z,xzx:x^{2}=z^{3}=1\}\\ \begin{bmatrix}z,z,xzx:x^{2}=z^{3}=1\\z^{2}=z^{3}=1\end{bmatrix} \end{array} $	$ \{ x, z, zxz : x^{-} = z^{0} = 1 \} $ $ \{ g, g^{3}, g^{9} \}, \{ g, g^{6}, g^{10} \} $ $ \{ g, h, g^{-1}h^{-1} \} $ $ \{ g, g^{6}, g^{3}h \} $ $ \{ g, g^{6}, g^{3}h \} $ $ \{ g, g^{6}, g^{3}h \} $ $ \{ g^{2}, xg^{2}, x^{2}g^{2} \} $ $ \{ g^{2}, xg^{2}, x^{2}g^{2} \} $ $ \{ g^{2}, g^{6}, g^{10} \} $ $ \{ g, g^{6}, g^{10} \} $
	De De	$C^{0}_{D} D^{0}_{C}$	$ \begin{array}{c} \mathbb{R} \\ \mathbb{C}_3 \times \\ \mathbb{C}_{10} \\ \mathbb{C}_{11} \\ \mathbb{C}_{12} \\ \mathbb{C}_{12} \end{array} \\ \mathbb{R} \end{array} \\ \mathbb{R} \\ \mathbb$	$\cong Q_{12}$ = Alt(4)	$ \begin{array}{c} \mathbb{R} & \mathbb{C}_{13} \\ \mathbb{C}_{15} \\ \mathbb{C}_{15} \\ \mathbb{C}_{4} \times C_{4} \\ \mathbb{C}_{4} \times C_{4} \\ \mathbb{C}_{20} \\ \mathbb{C}_{7} \times C_{3} \\ \mathbb{C}_{7} \times C_{3} \\ \mathbb{C}_{23} \times Q_{8} \\ \mathbb{C}_{24} \\ C$
IJ	$\begin{array}{c} \langle g : g^{6} = 1 \rangle \\ \langle g, h : g^{3} = h^{2} = 1, hgh = g^{-1} \rangle \\ \langle g, -g^{8} - 1 \rangle \end{array}$	$egin{array}{l} \langle g:g^{2}=1 angle \ \langle g,h:g^{4}=h^{2}=1,hgh^{-1}=g^{-1} angle \ \langle g:g^{9}=1 angle \end{array}$	$ \begin{array}{l} \langle g,h:g^3=h^3=1,gh=hg\rangle\\ \langle g:g^{10}=1\rangle\\ \langle g:g^{11}=1\rangle\\ \langle g:g^{12}=1\rangle \end{array} \end{array}$	$\langle g, h: g^6 = 1, g^3 = h^2, hgh^{-1} = g^{-1} \rangle$ Alternating group of degree 4	$ \begin{array}{l} \langle g:g^{13}=1 \rangle \\ \langle g:g^{15}=1 \rangle \\ \langle g,h:g^4=h^4=1,gh=hg \rangle \\ \langle g,h:g^8=1,g^4=h^2,hgh^{-1}=g^{-1} \rangle \\ \langle g,h:g^8=h^2=1,hgh^{-1}=g^5 \rangle \\ \langle g,h:g^{10}=1,g^5=h^2,hgh^{-1}=g^5 \rangle \\ \langle g,h:g^3=h^7=1,ghg^{-1}=h^2 \rangle \\ \langle g,h:g^3=1 \rangle \times \langle g,h:g^4=1,g^2=h^2,hgh^{-1}=g^{-1} \rangle \\ \langle g,h:g^{12}=1,g^6=h^2,hgh^{-1}=g^{-1} \rangle \end{array} $

Table 1: Locally maximal product-free sets of size 3 in groups of order up to 24

8

References

- László Babai and Vera T. Sós, Sidon sets in groups and induced subgraphs of Cayley graphs, European J. Combin. 6 (1985), 101–114.
- The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.7.7; 2015, (http://www.gap-system.org).
- [3] Michael Giudici and Sarah Hart, Small maximal sum-free sets, Elect. J. Comb. 16 (2009), 1–17.
- [4] W. T. Gowers, Quasirandom groups, Combin. Probab. Comput. 17 (2008), no. 3, 363–387.
- [5] Ben Green and Imre Z. Ruzsa, Sum-free sets in abelian groups, Israel J. Math. 147 (2005), 157–188.
- [6] Kiran S. Kedlaya, Large product-free subsets of finite groups, J. Combin. Theory Ser. A 77 (1997), 339–343.
- [7] A. P. Street and E. G. Whitehead Jr., *Group Ramsey theory*, J. Combinatorial Theory Ser. A 17 (1974), 219–226.
- [8] A. P. Street and E. G. Whitehead, Jr., Sum-free sets, difference sets and cyclotomy. Combinatorial Math., Lecture notes in Mathematics 403 (1974), 109–124.